
2/15/97 12/15/97 1

Teaching with the STL

Joseph Bergin
Michael Berman

2/15/97 22/15/97 2

Part 1

Introduction to STL Concepts

2/15/97 32/15/97 3

Templates are not Classes

● These are not
cookies

● You can’t eat them
● They can be used to

make cookies

2/15/97 42/15/97 4

Templates are not Classes

● These are cookies
● They are made with

a cookie cutter
● You can eat them

2/15/97 52/15/97 5

Templates are not Cookies

● Templates are used to create classes
● You can’t compile them
● You can instantiate them

» This gives you a class

● The instantiations are compiled
● The instantiations are strongly typed

like other classes

2/15/97 62/15/97 6

Templates are not Classes

template <class E>
class stack
{ ...

void push(E e){...}
}

<- A class template

stack <int> S;

S.push(55);

<- a template class

2/15/97 72/15/97 7

Templates are not Functions

template <class E>
E& min(E& a, E& b)
{ if(a < b) return a;

return b;
}

abox = min(box1, box2);

<- a function template

<- a template function

2/15/97 82/15/97 8

The Standard Template
Library

● Containers
» array, vector, deque, list, set, map, multiset, multimap

● Algorithms
» sort, search, and nearly everything else

● Iterators
» generalize pointers and pointer arithmetic

● Adaptors
» change the behavior of other components

● Allocators
» memory management

2/15/97 92/15/97 9

The Standard Template
Library

● Containers
» array, vector, deque, list, set, map, multiset, multimap

● Algorithms
» sort, search, and nearly everything else

● Iterators
» generalize pointers and pointer arithmetic

● Adaptors
» change the behavior of other components

● Allocators
» memory management

2/15/97 102/15/97 10

The Major Dimensions

● Containers
» contain values

● Algorithms
» operate on

containers

● Iterators
» interface between

containers and
algorithms

Independent Development of:

2/15/97 112/15/97 11

The Major Dimensions

Algorithms

Containers

Iterators

● Containers
» contain values

● Algorithms
» operate on

containers

● Iterators
» interface between

containers and
algorithms

Independent Development of:

2/15/97 122/15/97 12

STL Example

vector<int> v;
v.push_back(3);
v.push_back(4);
v.push_back(5);
v.push_back(6);

vector<int>::iterator i;

for(i = v.begin(); i != v.end(); ++i) cout << *i << endl;

sort(v.begin(); v.end());

for(i = v.begin(); i != v.end(); ++i) cout << *i << endl;

2/15/97 132/15/97 13

Iterator Flavors

● Forward Iterators (operator++)
» Input Iterators
» Output Iterators

● Bidirectional Iterators (operator --)
● Random Access Iterators (operator +=)

2/15/97 142/15/97 14

Iterator Flavors

● Forward Iterators (operator++)
» Input Iterators
» Output Iterators

● Bidirectional Iterators (operator --)
● Random Access Iterators (operator +=)

All Iterators have operator*
All Containers produce iterators begin() and end()
begin references first. end is “after” last

2/15/97 152/15/97 15

Slouching Toward Iterators

template < class T >
void selectionSort(T elements[], int length)
{ for(int i = 0; i < length - 1; ++i)

{ int s = i;
T small = elements[s];
for(unsigned j = i + 1; j < length; ++j)

if(elements[j] < small)
{ s = j;

small = elements[s];
}

elements[s] = elements[i];
elements[i] = small;

}
}

Pt. 1: Dependent on Arrays

2/15/97 162/15/97 16

Pointer Duality Law

int * A = new int [20];

A[i] is equivalent to *(A + i)

A

A + 6 (6 ints past A)

2/15/97 172/15/97 17

Slouching Towards Iterators

int elements [20] = ...
selectionSort(elements, 20)

int * start = elements;
int * end = elements + 20; // or &elements[20]

selectionSort(start, end);

Pt. 2: The Goal

2/15/97 182/15/97 18

The Replacements

template < class T >
void selectionSort(T elements[], int length)
{ for(int i = 0; i < length - 1; ++i)

{ int s = i;
T small = elements[s];
for(unsigned j = i + 1; j < length; ++j)

if(elements[j] < small)
{ s = j;

small = elements[s];
}

elements[s] = elements[i];
elements[i] = small;

}
}

start = elements
end = elements + length
loc = & elements[s]
where = & elements[i]
inner = & elements[j]

2/15/97 192/15/97 19

Slouching Towards Iterators

template < class T >
void selectionSort(T* start, T* end)
{ for(T* where = start ; where < end - 1 ; ++where)

{ T* loc = where;
T small = *loc;
for(T* inner = where + 1; inner < end; ++inner)

if(*inner < *loc)
{ loc = inner;

small = *loc;
}

*loc = *where;
*where = small;

}
}

Pt 3: The Result (almost)

2/15/97 222/15/97 22

The Advantages

● This version will sort more than arrays.
» All we need is a structure referenced by a

datatype like a pointer that implements
– operator *

– operator++

– operator+
– operator-

– operator=

– operator<

With care we could
reduce this list

Such datatypes are called iterators

2/15/97 232/15/97 23

The Lesson

● Implement containers separate from
algorithms

● Use pointer like structures as an
interfacing mechanism

2/15/97 242/15/97 24

The Lesson

● Implement containers separate from
algorithms

● Use pointer like structures as an
interfacing mechanism

ToGain

2/15/97 252/15/97 25

Advantages

● Generality
● A framework for thinking about

containers and algorithms
● Smaller written code
● Smaller compiled code

2/15/97 262/15/97 26

Advantages

● Generality
● A framework for thinking about

containers and algorithms
● Smaller written code
● Smaller compiled code

But...

2/15/97 272/15/97 27

Disadvantages

● Students must become thoroughly
familiar with all aspects of pointers
including
» The pointer duality law
» Pointer arithmetic

» Pointer “gotchas”

2/15/97 282/15/97 28

Part 2

STL Containers

2/15/97 292/15/97 29

STL Containers

● Ordinary Arrays
● Vectors -- expandable array
● Deques -- expandable at both ends
● Lists -- doubly linked circular with header
● Sets and Multisets -- red-black tree
● Maps and Multimaps -- dictionary like

Note: Implementation is not specified
but efficiency is specified.

2/15/97 302/15/97 30

All Containers Provide

● A Storage Service
» insert and erase...

● An Associated Iterator type
» The type of iterator determines what can be

done with the container.

● begin() and end() iterators - - - [b, e)
● A collection of types: vector::value_type...
● constructors, assignment, cast, equality...

2/15/97 312/15/97 31

All Iterators Provide

● operator*
» may be readonly or read/write

● copy constructor
● operator++ and operator++(int)
● operator== and operator!=
● Most provide operator=

2/15/97 322/15/97 32

Specialized Iterators

● Forward
» provide operator=

● Bidirectional (extend forward)
» provide operator-- and operator--(int)

● Random Access (extend bidirectional)
» provide operator<..., operator+=...,

operator-

2/15/97 332/15/97 33

Algorithms

● Defined in terms of a specific iterator type
» e.g. sort requires random access iterators

● Work with all containers that provide that
iterator type -- including user written.

● Combine good generality with good
efficiency

● Do not appear within container classes
» This is important to generality & efficiency

2/15/97 342/15/97 34

Function Objects 1

● Predicates
» A function of one argument returning bool

● Comparisons
» A function of two arguments returning bool

● Unary Operator, Binary Operator
» A function of one or two arguments

returning a value

2/15/97 352/15/97 35

Function Objects 2

● Can be functions or template functions
● Can be objects implementing an

appropriate operator()
● Many are built in

» less..., plus..., and...,...

● Function adaptors too
» not1, not2, bind1st, bind2nd,...

2/15/97 362/15/97 36

Function Object Example

class stringLess
{ bool operator()(char* s1, char* s2)

{ return strcmp(s1, s2) < 0;
}
. . .

} // Defines a function object.

vector< char* > stringVec;
. . .
sort (stringVec.begin(), stringVec.end(), stringLess());
// Note the constructor call in the last argument ^^^^

2/15/97 372/15/97 37

vector

● Expandable array -- operator[]
● push_back, pop_back
● Average O(1) insert at end.
● O(n) insert in middle
● Random Access Iterators
● Fastest (average) container for most

purposes.

2/15/97 382/15/97 38

deque

● Expandable “array” at both ends
● push_front, pop_front
● Average O(1) insert at both ends
● Linear insert in middle
● Random Access Iterators
● Good choice for queues & such.

2/15/97 392/15/97 39

list

● Doubly linked list
● O(1) inserts everywhere, but slower on

average than vector and deque
● Bidirectional iterators
● Some specialized algorithms (sort).

2/15/97 402/15/97 40

set and multiset

● Sorted set (multiset) of values
● O(lg n) inserts and deletions

» Balanced binary search tree

● Sorted with respect to operator< or any
user defined comparison operator

● Bidirectional iterators
● Good choice if elements must stay in

order.

2/15/97 412/15/97 41

map and multimap

● Ordered set (multiset) of key-value pairs
● Kept in key order
● O(lg n) inserts and deletions
● Bidirectional iterators
● Good choice for dictionaries, property

lists, & finite functions as long as keys
have comparison operation

2/15/97 422/15/97 42

Extending the STL

● Not standardized but available
» hash_set
» hash_map

» hash_multiset
» hash_multimap

● Like set... but have a (self reorgainzing)
hashed implementation

● Constant average time for insert/erase

2/15/97 432/15/97 43

STL in Java

● ObjectSpace has developed an
equivalent library for Java

● (JGL) Java Generic Library
● Public domain, available on internet.
● Depends on run-time typing instead of

compile time typing, but is otherwise
equivalent.

2/15/97 442/15/97 44

Resources

● http://csis.pace.edu/~bergin
● http://www.objectspace.com

● http://www.cs.rpi.edu/~musser/stl.html
● http://weber.u.washington.edu/~bytewave/

bytewave_stl.html
● ftp.cs.rpi.edu/pub/stl
● http://www.sgi.com/Technology/STL/

● http://www.cs.brown.edu/people/jak/
programming/stl-tutorial/home.html

2/15/97 452/15/97 45

Books

● Data Structures Programming with the STL,
Bergin, Springer-Verlag (to appear)

● STL Tutorial and Reference Guide, Musser and
Saini, Addison-Wesley, 1996

● The STL <primer>, Glass and Schuchert,
Prentice-Hall, 1996

● The Standard Template Library, Plauger,
Stepanov, and Musser, Prentice-Hall, 1996

