Data Layouts

Data Structures For a Simple
Compiler

Joseph Bergin 1/12/99

Symbol Tables

Information about user
defined names

Joseph Bergin 1/12/99

Symbol Table

o« Symbol Tables are organized for
fast lookup.

» Items are typically entered once and
then looked up several times.

» Hash Tables and Balanced Binary
Search Trees are commonly used.

» Each record contains a ‘“name”
(symbol) and i1nformation describing
1t.

Joseph Bergin 1/12/99

Simple Hash Table

o Hasher translates ‘“name” 1nto an
integer in a fixed range- the hash
value.

« Hash Value indexes into an array
of lists.

» Entry with that symbol 1s 1n that list
or 1S not stored at all.

» Items with same hash value = bucket.

Joseph Bergin 1/12/99

Simple Hash Table

index buckets
anObject

| 4 0

hasher \

max

YYYVYVY VY

Joseph Bergin 1/12/99

Self Organizing Hash Table

« Can achieve constant average time
lookup 1f buckets have bounded
average length.

o Can guarantee this 1f we
periodically double number of
hash buckets and re-hash all
elements.

» Can be done so as to minimize
movement of i1tems.

Joseph Bergin 1/12/99 6

Self Organizing Hash Table

index index

eeeeeeeee

Joseph Bergin 1/12/99

Balanced Binary Search Tree

o Binary search trees work i1f they
are kept balanced.

o« Can achieve logarithmic lookup
time.

o Algorithms are somewhat complex.

» Red-black trees and AVL trees are
used.

» No leatf 1s much farther from root
than any other

Joseph Bergin 1/12/99 8

Balanced Binary Search Tree

P

J -

b

Joseph Bergin 1/12/99

Symbol Tables + Blocks

o If a language 1s block structured
then each block (scope) needs to
be represented separately in the
symbol table.

o If the hash table buckets are
“stack-like” this 1s automatic.

o Can use a stack of balanced trees
with one entry per scope.

Joseph Bergin 1/12/99

10

Special Cases

» Some languages partition names
into different classes- keywords,
variable&function names, struct
names...

o Separate symbol tables can then be
used for each kind of name. The
different symbol tables might have
different characteristics.

» hashtable-sortedlist-binarytree...

Joseph Bergin 1/12/99 11

Joseph Bergin

Parsing Information

112/99

12

Parse Trees

o The structure of a modern
computer language 1s tree-like

o Trees represent recursion well.

o« A gramatical structure 1s a node
with 1ts parts as child nodes.

o Interior nodes are nonterminals.

« The tokens of the language are
leaves.

Joseph Bergin 1/12/99 13

Parse Trees

<statement> ::= <variable> “:=" <expression>

X:=a+b

Joseph Bergin 1112/99 14

Parse Trees

o There are different node types in
the same tree.

e Variant records or type unions are
typically used. Object-orientation
1s also useful here.

« Each node has a tag that
distinguishes 1t, permitting testing
on node type.

Joseph Bergin 1/12/99 15

Parse Stack

o Parsing 1s often accomplished with
a stack. (Not in this version of GCL)

o The stack holds values
representing tokens, nonterminals
and semantic symbols from the
grammar.

—1It can either hold what is expected next
(LL parsing) or what has already been
seen (LR parsing)

Joseph Bergin 1/12/99 16

Parse Stack

o« A stack 1s used because most
languages and their grammars are
recursive. Stacks can accomplish
much of what trees can.

« The contents of the stack are
usually numeric encodings of the
symbols for compactness of
representation and speed of
processing.

Joseph Bergin 1/12/99 17

<var>

“,_n

<expr>

#doAs

Joseph Bergin

Parse Stack

G rammar fragment

<statement> ::= <variable>

=" <expression> #doAssign

Example being scanned:

112/99

max :=max + 1;

Stack vs Parameters

o In recursive descent parsing, no
stack 1s needed.

o This 1S because the semantic
records can be passed directly to
the semantic routines as
parameters.

o Semantic records can also be
returned from the parsing
functions.

Joseph Bergin 1/12/99 19

Joseph Bergin

Tokens

Information produced by the
Scanner

112/99

20

Token Records

« Token records pass information
about symbols scanned. This
varies by token type.

o Variant records or type unions are
typically used.

« Each value contains a tag - the
token type - and additional
information.

» The tag 1s usually an integer.

Joseph Bergin 1/12/99 21

Token Examples

o Simple tokens

e Others are more

« No additional info complex

o Only the tag field

» endNum

Joseph Bergin

o« Tag plus other
info

» numeralNum
» 35

112/99

22

Handling Strings

o Strings are variable length and
therefore present some problems.

« In C we can allocate a free-store
object to hold the spelling--BUT,
allocation 1s expensive 1n time.

o In Pascal, allocating fixed length
strings 1s wasteful.

o Spell buffers are an alternative.

Joseph Bergin 1/12/99

23

Strings in the Free Store

write “The answer is: , X;

The answer is:\0

/

strval = new char[16];

The string is represented by the
value of the pointer which can be
passed around the compiler.

Joseph Bergin 1/12/99

Strings in a Spell Buffer

write “The answer is: , X;
v

3 Nl ajm|e

before

18 Nl alm|e|l T h| e answewuyxw 18 ¢t

after

The string is represented as (3,15) = (start, length)

Joseph Bergin 1/12/99

Joseph Bergin

Semantic Information

112/99

26

Semantic Information

o Parsing and semantic routines
need to share information.

o This information can be passed as
function parameters or a semantic
stack can be used.

o There are different kinds of
semantic 1nformation.

» Varilant Records/Type Unions/Objects

Joseph Bergin 1/12/99 27

Semantic Records

« Each record needs a tag to
distinguish its kind. We need to
test the tag types.

 Depending on the tag there will be
additional 1nformation.

o Sometimes the additional
information must itself be a tagged
union/variant record.

Joseph Bergin 1/12/99 28

Joseph Bergin

Simple Semantic Records

112/99

29

Joseph Bergin

Complex Semantic Records

. B

* see types (later)

112/99

30

Semantic Stack

In some compilers semantic records

are stored in a semantic stack. In

others, they are passed as
-«— stacktop parameters.

Joseph Bergin 1/12/99 31

Joseph Bergin

Type Information

112/99

32

Type Information

o Type information must be
maintained for variables and
parameters.

o« There are different kinds of types
» Variant Records/Type Unions/Objects

o There are different typing rules in
different languages.

» Pointers to records/structs are a
simple representation.

Joseph Bergin 1/12/99 33

Type Information

o Types describe variables.

» size of a variable of this type(in bytes)
» kind (tag)

» additional i1nformation for some
types.

« There are also recursive types.

Joseph Bergin 1/12/99 34

Joseph Bergin

Simple Types

@

The tag and the size are enough.

112/99

-

35

Joseph Bergin

Tuple Type
[integer, Boolean]

/Q-—

\ \

112/99

36

Recursive Types

[integer, [integer, Boolean]]

/

\

Joseph Bergin 1/12/99

\

37

Joseph Bergin

Range Types

integer range[1..10]

/

112/99

38

Array Types

Boolean array[1..10][0..4]

e

Joseph Bergin 1/12/99

Joseph Bergin

Array Types (alternate)

Boolean array [range1] [range2]

112/99

40

Record Types

record [integer X, boolean y |

e

\ \

Note similarity to tuple types.

Joseph Bergin 1/12/99

Pointer Types

pointer [integer, Boolean]

-

\ \
SR

Joseph Bergin 1112/99 42

Procedure Types

proc (integer, Boolean)

/

Note: Not all languages have procedure types
even when they have procedures.

Joseph Bergin 1/12/99

43

Function Types

func (integer returns [integer, Boolean))

N

" Y

Note: Not all languages have function types
even when they have functions.

Joseph Bergin 1/12/99

- -
S

44

Selt Recursive Types

Some languages (Java, Modula-3) permit a type to
reference itself:

class node
{ int value;
node next;

\

7

Joseph Bergin 1/12/99

The internal
representation is a
pointer (4 bytes)

45

Joseph Bergin

Recursive Types Again

record [integer array[0..4] x, Boolean y] ,

integer range [1..10],

pointer [integer, integer] ,

func(integer, Boolean returns integer array[1..5])

Left as an exercise. :-)

112/99

46

