
Joseph Bergin 1/12/99 1

Data Layouts

Data Structures For a Simple
Compiler

Joseph Bergin 1/12/99 2

Symbol Tables

Information about user
defined names

Joseph Bergin 1/12/99 3

Symbol Table

● Symbol Tables are organized for
fast lookup.
È Items are typically entered once and

then looked up several times.
È Hash Tables and Balanced Binary

Search Trees are commonly used.
È Each record contains a ÒnameÓ

(symbol) and information describing
it.

Joseph Bergin 1/12/99 4

Simple Hash Table

● Hasher translates ÒnameÓ into an
integer in a fixed range- the hash
value.

● Hash Value indexes into an array
of lists.
È Entry with that symbol is in that list

or is not stored at all.
È Items with same hash value = bucket.

Joseph Bergin 1/12/99 5

Simple Hash Table

0

max

anObject

hasher

index buckets

Joseph Bergin 1/12/99 6

Self Organizing Hash Table

● Can achieve constant average time
lookup if buckets have bounded
average length.

● Can guarantee this if we
periodically double number of
hash buckets and re-hash all
elements.
È Can be done so as to minimize

movement of items.

Joseph Bergin 1/12/99 7

Self Organizing Hash Table

0

2 * max

newhasher

index

0

max

anObject

hasher

index

n n

n + max

Joseph Bergin 1/12/99 8

Balanced Binary Search Tree

● Binary search trees work if they
are kept balanced.

● Can achieve logarithmic lookup
time.

● Algorithms are somewhat complex.
È Red-black trees and AVL trees are

used.
È No leaf is much farther from root

than any other

Joseph Bergin 1/12/99 9

Balanced Binary Search Tree

Joseph Bergin 1/12/99 10

Symbol Tables + Blocks

● If a language is block structured
then each block (scope) needs to
be represented separately in the
symbol table.

● If the hash table buckets are
Òstack-likeÓ this is automatic.

● Can use a stack of balanced trees
with one entry per scope.

Joseph Bergin 1/12/99 11

Special Cases

● Some languages partition names
into different classes- keywords,
variable&function names, struct
names.. .

● Separate symbol tables can then be
used for each kind of name. The
different symbol tables might have
different characteristics.
È hashtable-sortedlist-binarytree.. .

Joseph Bergin 1/12/99 12

Parsing Information

Joseph Bergin 1/12/99 13

Parse Trees

● The structure of a modern
computer language is tree-like

● Trees represent recursion well.
● A gramatical structure is a node

with its parts as child nodes.
● Interior nodes are nonterminals.
● The tokens of the language are

leaves.

Joseph Bergin 1/12/99 14

Parse Trees

<statement> ::= <variable> Ò:=Ò <expression>
x := a + 5

statement

variable := expression

x a + 5

Joseph Bergin 1/12/99 15

Parse Trees

● There are different node types in
the same tree.

● Variant records or type unions are
typically used. Object-orientation
is also useful here.

● Each node has a tag that
distinguishes it, permitting testing
on node type.

Joseph Bergin 1/12/99 16

Parse Stack

● Parsing is often accomplished with
a stack. (Not in this version of GCL)

● The stack holds values
representing tokens, nonterminals
and semantic symbols from the
grammar.

Ð It can either hold what is expected next
(LL parsing) or what has already been
seen (LR parsing)

Joseph Bergin 1/12/99 17

Parse Stack

● A stack is used because most
languages and their grammars are
recursive. Stacks can accomplish
much of what trees can.

● The contents of the stack are
usually numeric encodings of the
symbols for compactness of
representation and speed of
processing.

Joseph Bergin 1/12/99 18

Parse Stack

<statement> ::= <variable> Ò:=Ó <expression> #doAssign

max := max + 1;

<var>

Ò:=Ó

<expr>

#doAs

...

Example being scanned:

G rammar fragment

Joseph Bergin 1/12/99 19

Stack vs Parameters

● In recursive descent parsing, no
stack is needed.

● This is because the semantic
records can be passed directly to
the semantic routines as
parameters.

● Semantic records can also be
returned from the parsing
functions.

Joseph Bergin 1/12/99 20

Tokens

Information produced by the
Scanner

Joseph Bergin 1/12/99 21

Token Records

● Token records pass information
about symbols scanned. This
varies by token type.

● Variant records or type unions are
typically used.

● Each value contains a tag - the
token type - and additional
information.
È The tag is usually an integer.

Joseph Bergin 1/12/99 22

Token Examples

● Simple tokens
● No additional info
● Only the tag field

È e n d N u m

● Others are more
complex

● Tag plus other
info

È numera lNum
È 3 5

Joseph Bergin 1/12/99 23

Handling Strings

● Strings are variable length and
therefore present some problems.

● In C we can allocate a free-store
object to hold the spelling--BUT,
allocation is expensive in time.

● In Pascal, allocating fixed length
strings is wasteful.

● Spell buffers are an alternative.

Joseph Bergin 1/12/99 24

Strings in the Free Store

write ÒThe answer is: Ò, x;

The answer is:\0

The string is represented by the
value of the pointer which can be
passed around the compiler.

strval = new char[16];

Joseph Bergin 1/12/99 25

Strings in a Spell Buffer

write ÒThe answer is: Ò, x;

before

N a m e T h e a n s w e r i s : 18

3 N a m e

after

The string is represented as (3,15) = (start, length)

Joseph Bergin 1/12/99 26

Semantic Information

Joseph Bergin 1/12/99 27

Semantic Information

● Parsing and semantic routines
need to share information.

● This information can be passed as
function parameters or a semantic
stack can be used.

● There are different kinds of
semantic information.
È Variant Records/Type Unions/Objects

Joseph Bergin 1/12/99 28

Semantic Records

● Each record needs a tag to
distinguish its kind. We need to
test the tag types.

● Depending on the tag there will be
additional information.

● Sometimes the additional
information must itself be a tagged
union/variant record.

Joseph Bergin 1/12/99 29

Simple Semantic Records

identifier
maximum

7

addoperator
+

reloperator
<=

ifentry
J35
J36

Joseph Bergin 1/12/99 30

Complex Semantic Records

typeentry

integer
2

exprentry
const

33

* see types (later)

exprentry
variable

0, 6
false

Joseph Bergin 1/12/99 31

Semantic Stack
In some compilers semantic records
are stored in a semantic stack. In
others, they are passed as
parameters.

typeentry
integer

2

identifier
maximum

7

identifier
value

5

stacktop

Joseph Bergin 1/12/99 32

Type Information

Joseph Bergin 1/12/99 33

Type Information

● Type information must be
maintained for variables and
parameters.

● There are different kinds of types
È Variant Records/Type Unions/Objects

● There are different typing rules in
different languages.
È Pointers to records/structs are a

simple representation.

Joseph Bergin 1/12/99 34

Type Information

● Types describe variables.

È size of a variable of this type(in bytes)
È kind (tag)
È additional information for some

types.

● There are also recursive types.

Joseph Bergin 1/12/99 35

Simple Types

integer
2

Boolean
2

The tag and the size are enough.

character
1

Joseph Bergin 1/12/99 36

Tuple Type

[integer, Boolean]

tuple
4

integer
2

Boolean
2

Joseph Bergin 1/12/99 37

Recursive Types

[integer, [integer, Boolean]]

tuple
6

integer
2

tuple
4

...

...

Joseph Bergin 1/12/99 38

Range Types

integer range[1..10]

range
2

1, 10
...

integer
2

Joseph Bergin 1/12/99 39

Array Types

Boolean array[1..10][0..4]

array
100

1, 10

array
10

0, 4

Boolean
2

Joseph Bergin 1/12/99 40

Array Types (alternate)

Boolean array [range1] [range2]

array
100

array
10

Boolean
2

range
2

1, 10

range
2

0, 4

integer
2

integer
2

Joseph Bergin 1/12/99 41

Record Types
record [integer x, boolean y]

record
4

x y

integer
2

Boolean
2

Note similarity to tuple types.

Joseph Bergin 1/12/99 42

Pointer Types

pointer [integer, Boolean]

tuple
4

integer
2

Boolean
2

pointer
2

Joseph Bergin 1/12/99 43

Procedure Types

integer
2

proc
2
... Boolean

2

proc (integer, Boolean)

Note: Not all languages have procedure types
even when they have procedures.

Joseph Bergin 1/12/99 44

Function Types

func (integer returns [integer, Boolean])

tuple
4

integer
2

Boolean
2

integer
2

func
2
...

Note: Not all languages have function types
even when they have functions.

Joseph Bergin 1/12/99 45

Self Recursive Types
Some languages (Java, Modula-3) permit a type to
reference itself:

class node
{ int value;

node next;
}

class
8 value next

int
4

The internal
representation is a
pointer (4 bytes)

Joseph Bergin 1/12/99 46

Recursive Types Again

[record [integer array[0..4] x, Boolean y] ,
integer range [1..10] ,
pointer [integer, integer] ,
func(integer, Boolean returns integer array[1..5])

]

Left as an exercise. :-)

