
Joseph Bergin 1/31/97 1

Designing Semantic
Structures

Thinking Like a Compiler Designer

Joseph Bergin 1/31/97 2

Step 1-- Language Design

● Start by defining the language cleanly
and developing a sound grammar.

● Good language design leads to good
compiler design.

● Languages should be largely LL(1) so
that predictive parsing can be done by
humans. Compilers need not be LL(1).

Joseph Bergin 1/31/97 3

Example-- if-then-else

● <stmt> ::= “if” <boolexpr> “->“
<statements>

[]
<statements>

“fi” “;”
● This is a possible form for an

if-then-else statement in MicroGCL.
● It is but one form of statement (<stmt>).

Joseph Bergin 1/31/97 4

Step 2. Look at an Example

● A sample if-then-else statement might
be:

● if a < b -> write a; [] write b; fi;
● Pick a simple, but representative

example to work with. (In some cases
one example isn’t sufficient to cover the
possible options.)

Joseph Bergin 1/31/97 5

Step 3. Write Output Code

● By hand, write down the code for your
example in the target language.
» LD R0, a if a < b

» IC R0, b

» JGE L3 ->
» WRI a write a;

» JMP L4 []

» LABEL L3

» WRI b write b;
» LABEL L4 fi ;

Joseph Bergin 1/31/97 6

Step 4. Analyze

● Find the earliest point at which you can
generate each piece of code.
» LD R0, a if a < b

» IC R0, b

» JGE L3 ->
» WRI a write a;

» JMP L4 []

» LABEL L3

» WRI b write b;
» LABEL L4 fi ;

Joseph Bergin 1/31/97 7

Step 4. continued

● You now know where to put semantic
routines.

● “if” < boolexpr > “->“ #iftest
<statements>

[] #elsepart
<statements>

“fi” “;” #endif

Joseph Bergin 1/31/97 8

Step 5. The Parameters

● Now determine what information each
semantic routine needs to initiate
generation of the required code.

● This gives you the input parameters of
that routine.

● The location at which that information is
first known gives the output parameters
of the routine at that location.

Joseph Bergin 1/31/97 9

Step 5. continued

● #iftest needs the operator from the
<boolexpr> and a label. It can create
the label. Therefore the <boolexpr>
must return the operator and pass it to
#iftest

● #elsepart needs the label from #iftest
and another label that it can generate

● #endif needs the label from #elsepart.

Joseph Bergin 1/31/97 10

Step 5. continued

● #iftest receives an operator record and
returns a label record with a new label.

● #elsepart receives the label record from
#startif and returns a modified label
record with a new label.

● #endif receives the label record
returned by #elsepart.

Joseph Bergin 1/31/97 11

Notes

● If you have a complex situation, you
may need to try more than one
example.

● Your goal is to place semantic routines
to cover all cases, but to do so as
cleanly as possible.

● You also want to pass as little
information as reasonable.

Joseph Bergin 1/31/97 12

Notes continued

● The values returned by a semantic
routine are held as local variables in the
parsing routine that contains the call to
the semantic routine. Alternatively they
are stored on a stack.

● They are never stored in fixed global
variables, since the language is likely
recursive.

