
1

LL(1) Parser Generation

S ::= Sb | a

This grammar is left recursive, hence not suitable for
recursive descent or LL parsing.

Step 1. Remove Left Recursion pg 39 in notes

S ::= a | aA
A :: = b | bA

S is a non-term, a,b are terms.

Now the grammar has common prefixes

2

LL(1) Parser Generation

S ::= a | aA
A :: = b | bA

Now the grammar has common prefixes

Step 2. Remove common prefixes pg 39 notes

S ::= aB
B ::= | A
A ::= bC
C ::= | A

Now two non-terminals are the
same. Simplify.

3

LL(1) Parser Generation

S ::= aB
B ::= | A
A ::= bC
C ::= | A

Now two non-terminals are the
same. Simplify.

Step 3. Simplify

S ::= aB
B ::= | A
A ::= bB Looks OK Next the firsts and

follows.

4

LL(1) Parser Generation

The First Set of a string of symbols is the
set of tokens (plus indicator) that may
appear when the string is expanded. This
is only interesting when the string begins
with one or more non-Terminals.

The Follow Set of a non-Terminal is the
set of tokens that can immediately follow
the non-Terminal in some syntactic form.

5

LL(1) Parser Generation

S ::= aB
B ::= | A
A ::= bB Looks OK Next the firsts and

follows.

Step 4. Compute firsts of all Non-Terms pg 43 Notes

First(S) = { a }
First(B) = { b, } empty string indicates B can be empty

First(A) = { b }
Whenever we expect an S, the next token must be a
Whenever we expect a B, the next token must be b or whatever could follow a B
Whenever we expect an A, the next token must be a b.

6

LL(1) Parser Generation

S ::= aB
B ::= | A
A ::= bB

Step 5. Compute follows of all Non-Terms pg 44, Notes

Follow(S) = { $ }
Follow(B) = { $ }
Follow(A) = { $ } $ = end of string

7

LL(1) Parser Generation

Follow(S) = { $ }
Follow(B) = { $ }
Follow(A) = { $ }

First(S) = { a }
First(B) = { b, }
First(A) = { b }

Step 6. Check LL(1) pg 44 notes

S ::= aB
B ::= | A
A ::= bB

Rule 1 does not apply, Rule 2 applies to B
Require First(B) * Follow(B) = {} O.K.
If the rule fails the grammar is not LL(1).

* means set intersection

8

LL(1) Parser Generation

S ::= aB
B ::= | A
A ::= bB

Step 7. Write the grammar in standard form
(number the productions).

1. S ::= aB
2. B ::=
3. B ::= A
4. A ::= bB

9

LL(1) Parser Generation

1. S ::= aB
2. B ::=
3. B ::= A
4. A ::= bB

Step 8. Compute the predict function for each production.

S: Predict(1) = first(aB) = { a }
B: Precict(2) = first(empty) + follow(B) = Follow(B) = { $ }
B: Predict(3) = first(A) = { b }
A: Predict(4) = first(bB) = { b }

10

LL(1) Parse Table Generation

S: Predict(1) = { a }
B: Precict(2) = { $ }
B: Predict(3) = { b }
A: Predict(4) = { b }

Step 9. Re-arrange into a table

S
A
B

a b $

1
 4
 3 2

Finally, output this table
and the standard form
grammar to the parser.

The predict function can be
used to produce a recursive
descent parser or a table
driven parser.

11

LL(1) Parse Table Generation

1. S ::= aB
2. B ::=
3. B ::= A
4. A ::= bB

S
A
B

a b $

1
 4
 3 2

Table Driven Parser
 1. Terminal on parse stack--match against input.
 2. Non-Term on parse stack -- replace with RHS

of predicted production using next input token.
 3. Action on parse stack -- execute it.

