LL(1) Parse Table Generation

S :=Sb | a

This grammar is left recursive, hence not suitable for
recursive descent or LL parsing.

S =a| aA
:=b | bA

Now the grammar has common prefixes

1 IS a non-term, are terms.



LL(1) Parse Table Generation

S =a| aA
A :=Db | bA

Now the grammar has common prefixes

= aB

::: (13}) | A

= pbC Now two non-terminals are the
R | A same. Simplify.

OX> W,
I




LL(1) Parse Table Generation

S = aB

B ::: (1%)) | A

A = bC Now two non-terminals are the
C = w | A same. Simplify.

S = aB

B =" 1A Looks OK Next the firsts and
NI ooks ext the firsts an

follows.




LL(1) Parse Table Generation

The of a string of symbols is the
set of tokens (plus *” indicator) that may
appear when the string is expanded. This
IS only interesting when the string begins
with one or more non-Terminals.

The of a non-Terminal is the
set of tokens that can immediately follow
the non-Terminal in some syntactic form.




LL(1) Parse Table Generation

S ;= aB
2= Looks OK Next the firsts and
A = bB OOKS ex e Tirsts an

follows.

First(S) ={a}
First(B) = { b, o } empty string indicates B can be empty
First(A) ={ b}

S a
B o] B

A b




LL(1) Parse Table Generation

S ;== aB
(1%}) | A
0] 2]

Follow(S)
Follow(B)
Follow(A)

{$}
{$}
{$}

$ = end of string




LL(1) Parse Table Generation

S ;== aB
B : —_ (1%}) | A
A = bB

First(S) ={a} Follow(S)
First(B) ={Db, “} Follow(B)
First(A) ={b} Follow(A)

{$}
{$}
{$}




LL(1) Parse Table Generation

S ;= aB

B:=“]A
A = bB

1.S ;= aB
2.B ="
3.B ::= A
4. A ;== bB




LL(1) Parse Table Generation

aB
JA
bB

= (B
> W W W

> Wwwm




LL(1) Parse Table Generation

> T W;m

Finally, output this table
and the standard form
grammar to the parser.

10



LL(1) Parse Table Generation

1.S ;= aB
2. B — (1%})
3.B 1= A
4. A = bB

Parser
1. Terminal on parse stack--match against input.
2. Non-Term on parse stack -- replace with RHS
of predicted production using next input token.
3. Action on parse stack -- execute it.

11



