Game Theory in Wireless Networking

Prof. Howard Blum

Seidenberg School of Computer Science and Information Systems

Outline

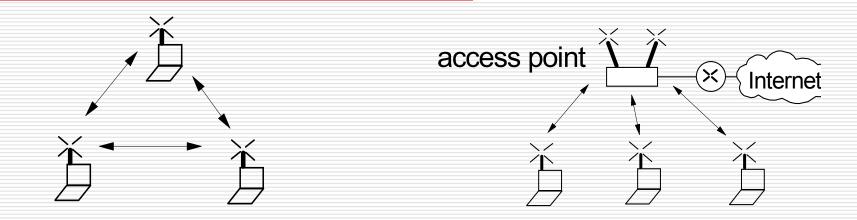
- BackgroundDPS Theses
- Wireless Data Networks
 - Contention for Shared-Channel
- □ Game Theory
 - Nash Equilibrium
 - Mixed Strategies
- Example A Channel-Access Game
 - Game vs. Socially Optimal Solutions

Background

Roli Wendorf (DPS student)

- Interest in thesis in wireless data networks
 - Philips Labs
 - DARPA and FCC interest in Dynamic Spectrum Allocation
- "Channel-Change Games in Spectrum-Agile Wireless Networks"
- Fred Dreyfus (DPS student)
 - "Access-Control Games in Wireless Networks"

Wireless Data Networks (e.g., 802.11)

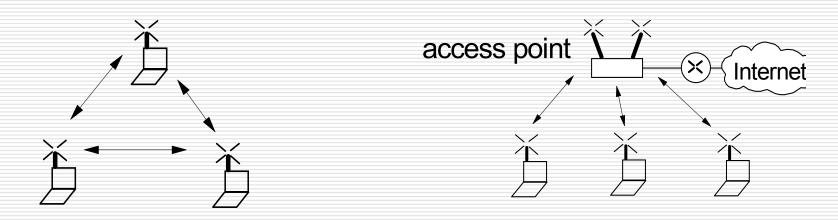


ad hoc mode

infrastructure mode

- □ single, shared frequency channel per network
- one at a time or collision -- who gets to transmit?
- □ distributed, dynamic medium-access control → each station decides when to transmit, e.g., using CSMA/CA

Wireless Games



Access-Control Game

each station decides when to transmit

is selfish, but rational

tries to maximize its own performance, rather than following dictated protocol rules.

Channel-Change Game

- multiple, interfering networks
- each network decides whether to change channel

Game Theory

mathematical models of interaction between two or more rational decision makers

traditional applications -

- economics and political science
 - □ J. Von Neumann and O. Morgenstern

J. Nash (1950 work, 1994 Nobel)

□ R. Aumann and T. Schelling (2005 Nobel)

Mathematical Game

- $\mathbf{a_i}$ player i's action i = 1, ... N
- A_i player i's action space
- **a** action profile = (a_i, a_{-i})
- u_i(a_i, a_{-i}) player i's utility

How should player i choose its action?

Need a **solution concept!**

- Saddle Point (Two-Person Zero-Sum)
- Nash Equilibrium

Nash Equilibrium (NE)

NE - an action profile a* in which no individual player has incentive to deviate.

i.e., a^* is a NE if for every player i, $u_i(a_i, a^*_{-i}) \le u_i(a_i^*, a^*_{-i})$ for all $a_i \ge A_i$

There may exist **0**, **1** or multiple NEs in a game.

Mixed Strategies and Existence of NE

Mixed Strategy

- probability distribution over the action set A_i (pure strategies)
- enlarges the space of strategies

Existence of NE (John Nash 1950)

In a finite game, introducing mixed strategies assures existence of a NE.

2-Player, Symmetric, Single-Stage Wireless-Access Game

Player 2

		Transmit	Wait
Player 1	Transmit	c+m, c+m	0,1
	Wait	1,0	m, m

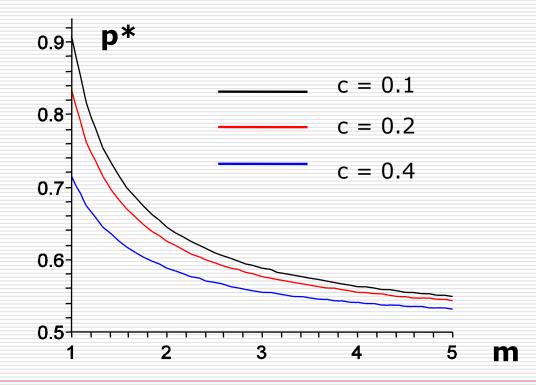
- □ time slots
- $\Box A_i = \{Transmit, Wait\}$
- u_i = cost (delay + power) expended prior to start of successful transmission
- \square m > 1 = contention cost
- c = power expenditure penalty for a transmission

Two asymmetric NEs in pure strategies

2-Player Wireless-Access Game (cont.)

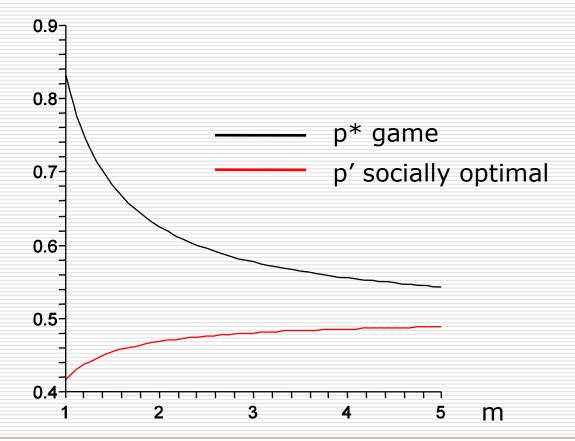
Introduce mixed strategies

- yields a symmetric NE in mixed strategies
- p* = NE probability of transmitting

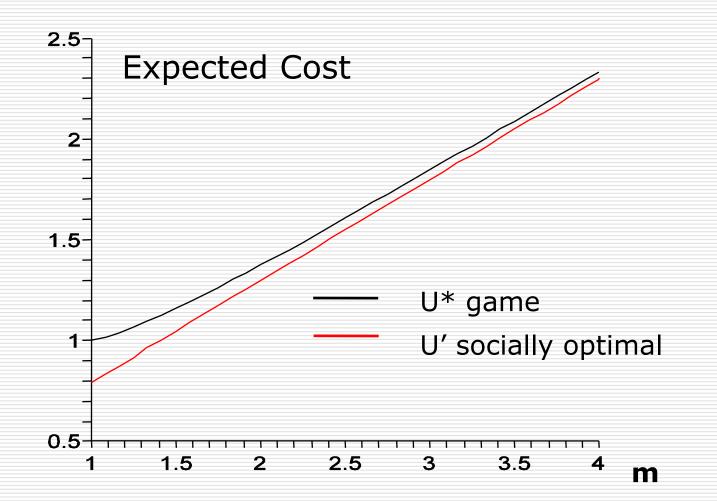


Consider Cost of Non-cooperation

Choose transmission probability p' to minimize total expected cost for all players, i.e., Socially Optimal!



Cost of Non-cooperation (cont.)



Summary

Many extensions and variations

- > 2 players
- multistage
- dynamic number of players
- varying the players' information
- Techniques
 - analytical
 - numerical
 - simulation
- Acknowledge DPS students

- D. Fudenberg and J. Tirole, Game Theory, The MIT Press, Cambridge, Massachusetts, 1991.
- A. MacKenzie and S. Wicker, "Game Theory and the Design of Self-Configuring, Adaptive Wireless Networks", *IEEE Communications Magazine*, November 2001, pp. 126-131.