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Background

Roli Wendorf (DPS student) 
Interest in thesis in wireless data networks

Philips Labs
DARPA and FCC interest in Dynamic 
Spectrum Allocation

“Channel-Change Games in Spectrum-Agile 
Wireless Networks”

Fred Dreyfus (DPS student)
“Access-Control Games in Wireless Networks”
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Wireless Data Networks (e.g., 802.11)

access point
Internet

ad hoc mode infrastructure mode

single, shared frequency channel per network
one at a time or collision -- who gets to 
transmit?
distributed, dynamic medium-access control

each station decides when to transmit,
e.g., using CSMA/CA
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Wireless Games

access point
Internet

Access-Control Game
each station decides when to transmit
…  is selfish, but rational
…  tries to maximize its own performance, rather 
than following dictated protocol rules.

Channel-Change Game
multiple, interfering networks
each network decides whether to change channel
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Game Theory

mathematical models of interaction 
between two or more rational
decision makers

traditional applications -
economics and political science

J. Von Neumann and O. Morgenstern 

J. Nash (1950 work, 1994 Nobel)

R. Aumann and T. Schelling (2005 Nobel)
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Mathematical Game

ai player i’s action   i = 1, … N

Ai player i’s action space

a action profile = (ai , a –i) 

ui(ai , a –i) player i’s utility

How should player i choose its action? 

Need a solution concept!

Saddle Point (Two-Person Zero-Sum) 

Nash Equilibrium
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Nash Equilibrium (NE)

NE - an action profile a* in which no 
individual player has incentive to 
deviate.

i.e., a* is a NE if for every player i, 

ui(ai , a*
–i) ≤ ui(ai

*, a*
–i)   for all  ai ε Ai

There may exist 0, 1 or multiple NEs in a game.
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Mixed Strategies and Existence of NE

Mixed Strategy
probability distribution over the action 
set Ai (pure strategies)
enlarges the space of strategies

Existence of NE (John Nash 1950)
In a finite game, introducing mixed 
strategies assures existence of a NE.
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2-Player, Symmetric, Single-Stage 
Wireless-Access Game

m, m1,0Wait

0, 1c+m, c+mTransmit

WaitTransmit

Player 1

Player 2

time slots
Ai = {Transmit, Wait}
ui = cost (delay + power) expended prior to start of 
successful transmission 
m > 1 = contention cost
c = power expenditure penalty for a transmission

Two asymmetric NEs in pure strategies
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2-Player Wireless-Access Game (cont.)

Introduce mixed strategies 
yields a symmetric NE in mixed strategies
p* = NE probability of transmitting 

m

p*

c = 0.1

c = 0.2

c = 0.4
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Consider Cost of Non-cooperation

Choose transmission probability p’ to minimize total 
expected cost for all players, i.e., Socially Optimal!

p* game

p’ socially optimal

m
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Cost of Non-cooperation (cont.)

Expected Cost

U* game

U’ socially optimal

m
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Summary

Many extensions and variations
> 2 players
multistage
dynamic number of players
varying the players’ information 

Techniques
analytical
numerical
simulation

Acknowledge DPS students
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