
 

Abstract—The proliferation of wireless networks on unlicensed 
communication bands is leading to coexisting networks, creating 
interference problems. In this paper, we present simple game-
theoretic models of dynamic channel-change decision-making for 
intelligent, spectrum-agile wireless networks to address 
interference problems. The channel-change decisions depend on 
the cost of channel change and the level of interference on the 
current and new channels. Game-theoretic analysis reflects the 
choices and motivations of independent, rational, selfish decision 
makers that do not trust one another. We also compare these 
decisions to idealized, socially optimal decisions that maximize the 
expected benefit of the coexisting networks. While game-theoretic 
decisions are more suited to an untrusted environment, socially 
optimal decisions give better performance in a trusted 
environment. 

I. INTRODUCTION 
N recent years, there has been a proliferation of wireless 
networks on unlicensed communication bands, such as the 

ISM bands at 2.4 GHz. Multiple networks may find themselves 
using the same communication band at the same time, 
resulting in interference problems [9], [11]. One way of 
addressing large-scale spectrum sharing is through the use of 
smart, spectrum-agile (or cognitive) networks that can 
dynamically switch communication channels based on 
interference and load conditions on the current channel. The 
decision-making is done in the access point of each network. 

In this paper, we use the tools of game theory [4], [10] to 
make channel-change decisions in spectrum-agile wireless 
networks. Game theory has been used extensively to model 
strategic interactions among people. Game-theoretic analysis 
reflects the choices and motivations of independent, rational, 
selfish decision makers who do not trust one another. Here, we 
also compare game-theoretic decisions to idealized, socially 
optimal decisions that maximize the expected benefit of all 
coexisting networks.  

Recently, game theory has been used to model several 
aspects of wireless networks [1]. Mangold et al [8], [3] have 
used game theory to model channel-sharing decisions by 
coexisting wireless networks. They address the issue of how to 
share the current channel more effectively, whereas we look at 
channel change. Further, their work is concerned with real-
time traffic and quality-of-service issues. Game theory has also 
been applied to access control in single Aloha-like networks 

[2], [6], [7].  
In our dissertation [12], we have introduced the modeling of 

channel-change decisions using game theory by developing 
five models to capture different channel-change scenarios. We 
have focused on simple scenarios to provide initial insight. In 
this paper, two of these models are presented. In Section II, an 
overview of channel-change scenarios is provided.  In Sections 
III and IV, the two channel-change models are presented for 
two different decision-making scenarios. Finally, some 
conclusions are presented in Section V.  

II. CHANNEL-CHANGE SCENARIOS 
We model two similar networks such as IEEE 802.11 that 

reside on the same wireless communication channel and wish 
to transmit messages. Each network’s message transmission 
time is longer than if it was alone on the channel. We assume 
that the message size for each network is identical. The 
message transmission time for each network, if it is alone on a 
channel, has been normalized to 1 time unit. When both 
networks are on the same channel, the increase in message 
transmission time for each network is given by the channel-
sharing overhead, and represented by m, with m>0. In this 
paper, we vary the channel-sharing overhead to model a range 
of interference scenarios.  

Instead of sharing a channel with another network, each 
network has the option of changing to a new channel in order 
to make faster progress. However, there is a time delay in 
moving from one channel to another, known as the channel-
change overhead and represented as v with v>0. The 
parameters, v and m, are simple variables here, but can be 
functions in future work for more complex scenarios. 

Two channel-change scenarios are presented, based on the 
number of available channels. Channel-change decision-
making is expected to be affected by the number of wireless 
channels available for transmission. In order to first focus on 
the simplest models, we consider a many-channel scenario in 
which a potentially unlimited number of alternate channels are 
available for switching, and a two-channel scenario that is 
more constrained. In the many-channel case, even if the 
coexisting networks simultaneously change their channels, 
they do not interfere with each other again. However, in the 
two-channel scenario, the networks will interfere again after 
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simultaneous channel change. Multi-network and multi-stage 
decision-making models are covered elsewhere [12]. 

The transmission environment is assumed to consist of two 
or more transmission channels. The networks are assumed to 
have intelligent access points, capable of making dynamic 
decisions regarding which channel to use. The networks are 
further assumed to have a protocol whereby any network can 
request its member devices to dynamically switch to a new 
channel.1 The intelligent access points can potentially run 
various decision-making algorithms. We assume that the 
access points make decisions expected to achieve the best 
payoffs for their own networks, consistent with game-theoretic 
assumptions. Note that interference from RF sources, such as 
microwave ovens, is not considered.  

III. TWO-NETWORK MANY-CHANNEL GAME 

A. Game Representation 
We represent the decision-making of two coexisting 

networks as a two-player strategic-form game with complete 
information [4] (p. 4). The strategic game is a model of 
interacting decision makers for static, one-stage decisions 
applicable to a wide range of situations. Since there are two 
decision makers in the game, Network 1 and Network 2, the 
set of players ϑ is given by {1, 2}. The choice of actions for 
each player is the same: Change to another channel or Remain 
on the current channel. Hence the set of actions for player 1 
and player 2 is given by A1 = A2 = {Change, Remain}.  

An action profile a is a combination of an action taken by 
player 1 and an action taken by player 2. An example is 
(Change, Remain), in which player 1 (Network 1) chooses the 
action Change and player 2 chooses the action Remain. Since 
there are two choices of actions for each of the players, four 
combinations of choices are possible. These four choice 
combinations constitute the set of all possible action profiles. 
This set is given by {(C, C), (C, R), (R, C), (R, R)}, where C 
stands for Change and R for Remain.  

The goal for each player is to minimize the expected time 
taken for its own message transmission. Hence the expected 
message transmission time is used as each player’s “utility” or 
“payoff”. Since the objective is to minimize the expected 
transmission time, we will refer to it as “cost” rather than 
“utility”, but use u to represent it. Each player (network) is 
affected by the action taken by it, as well as the action taken by 
the other player. Hence the cost depends on the selected action 
profile. For example, u1(C, C) represents the cost of the action 
profile (C, C) for network 1.  

The game played by the two networks can be represented as 
a matrix as shown in Fig. 1. Each cell of the matrix represents 
an action profile. It shows two quantities, such that the first 
and second correspond to the costs incurred for networks 1 and 
 

1 This capability has already been defined in the IEEE 802.11h standard, 
where the access point sends information regarding channel change in its 
beacon and specifies the number of beacon intervals after which the change 
will be effective. 

2 respectively for the action profile represented. 
 

Network 2  
Change Remain 

Change v+1, v+1 v+1, 1  
Network  1 Remain 1, v+1 m+1, m+1 

 
Fig. 1: The two-network channel-change game with many channels, where v 
gives the channel-change overhead, and m the channel-sharing overhead. 

 
The value of u1(C, C) is given by v+1 (Fig. 1). In this 

scenario, when both networks change channels, they always 
switch to different channels. The transmission cost for network 
1 is v time units for changing channel and 1 time unit for 
transmitting when alone on the new channel. For similar 
reasons, u1(C, R) is also given by v+1. However, u1(R, C) = 1 
because network 2 changes to another channel, and network 1 
is left alone on the current channel. In the last case, u1(R, R) = 
m+1, since both networks share the same channel, and they 
each incur the channel-sharing overhead m in addition to the 
transmission time without interference. We have assumed that 
the two networks are similar, hence the costs for network 2 can 
also be obtained using similar reasoning. 

B. Game-Theoretic Analysis 
Let us now examine how this game will be played by 

rational players (networks) using the solution concept of Nash 
Equilibrium (NE). A Nash Equilibrium is an action profile a* 
such that each player’s action is an optimal response to the 
other players’ actions [10] (p.23). There is no motivation for a 
player to deviate unilaterally from this action profile. 

In Fig. 1, if network 2 changes channel, network 1 will 
prefer to remain on the current channel. Since v+1 > 1 (we 
know that v > 0), the transmission time on the current channel 
will always be lower. If network 2 remains on the current 
channel, network 1 will make one of two decisions: change 
channel if v < m, and remain on the current channel if v ≥ m 
(there is no motivation to change channel if v = m). Thus, we 
have two cases to analyze, depending on whether the channel-
change overhead v is greater than or less than the channel-
sharing overhead m. 

 
Case v ≥ m  

When v ≥ m, network 1 always chooses to remain on the 
current channel, irrespective of whether network 2 chooses 
change or remain. Since the two networks are similar, network 
2 will apply the same reasoning as network 1 and also always 
choose remain. Hence we have a dominant action profile of 
(R, R) in this game [10] (p.45-46). This action profile is also 
the Nash Equilibrium of this game. The NE cost u* of the 
game for each network is given by:  

 
u* = m + 1 (1) 

 
Case v < m  

©1-4244-0357-X/06/$20.00     2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.



 

When v < m, if network 2 chooses change, network 1 will 
choose remain since v+1 > 1. However, if network 2 chooses 
to remain on the current channel, network 1 will prefer to 
change to another channel. Thus there are two stable action 
profiles in this game, depending on the action chosen by the 
other player: (R, C) and (C, R). Given that the other player 
does not change its action, there is no motivation for a player 
to deviate unilaterally from either of these two action profiles. 
Hence, these two action profiles are the two Nash Equilibria 
(NE) of this game, using pure strategies. 

We notice that the two NE in pure strategies, (R, C) and (C, 
R) are not symmetric, because when one network chooses 
change, the other chooses remain, and vice-versa. Since the 
two networks are assumed identical (e.g. drawn from the same 
population), they should be able to choose the same strategy. 
The choice of a strategy should not depend on whether a 
network is Network 1 or Network 2. Hence we consider using 
a mixed strategy by assigning probabilities to each of the two 
pure strategies. Since the networks are identical, both will 
assign the same values to these probabilities. 

We are interested in determining the stable operating point 
for our game using mixed strategies, given by the Nash 
Equilibrium. We start this analysis by assuming that network 2 
chooses the strategy change with probability p and remain 
with probability 1-p. Since the networks are identical, network 
1 knows that this is the choice that will be made by network 2. 
Hence it determines its own action by first calculating its 
expected cost to change channel and to remain on the current 
channel, and then choosing the action with the lower cost. 

Network 1’s expected cost to change channel, UC, is found 
by considering the first row of Fig. 1, with p and 1-p as 
weights for the u1(C, C) and u1(C, R) costs: 

 
1)1)(1()1( +=+−++= vvpvpUC  (2) 

 
Similarly, by considering the second row of Fig. 1, the 

expected cost to remain on the current channel is given by UR 
as: 

 
mpmmppU R −+=+−+×= 1)1)(1(1  (3) 

 
Network 1 will choose to change channel if UC < UR and to 

remain on the current channel if UC > UR. When UC = UR, 
network 1 has no preference between the two strategies. Under 
this condition, network 1 has the same cost whether it chooses 
the pure strategy of change or remain or some mixed strategy 
which is a combination of the two. In particular, it can choose 
the mixed strategy of (p, 1-p) and obtain the same expected 
cost.  Thus, it has no motivation to deviate from the mixed 
strategy of (p, 1-p) given that network 2 has chosen this mixed 
strategy. This is the Nash Equilibrium (NE) condition. Thus, 
under NE, UC = UR, and using (1)-(3), we get: 
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These quantities are plotted below in Fig. 2-3. 
 

 
 

Fig. 2: The Nash Equilibrium channel-change probability p* with respect to 
the channel-change delay v and the channel-sharing overhead m. 
 
 

 
 

Fig. 3: The Nash Equilibrium message transmission delay U* with respect to 
the channel-change delay v and the channel-sharing overhead m. 

C. Socially Optimal Analysis 
The results of game-theoretic analysis obtained above are 

compared to those obtained from analyzing “socially optimal” 
decisions made by an abstract “centralized” decision maker. 
The socially optimal decision maker promotes the best interest 
of all networks, rather than the self-interest of any individual 
network. It assigns a channel-change probability of p to each 
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of the two networks, instead of allowing each of them to non-
cooperatively choose their own channel-change probabilities. 
We will see how the socially optimal channel-change 
probability (p′) compares to the game-theoretic value p* 
derived in the previous section. 

Let UC and UR be the expected change and remain 
transmission costs for both networks as before. Then, U is 
given by: 
 

RC UppUU )1( −+=  (6) 
 

Substituting UC and UR using (2) and (3) respectively, and 
minimizing U with respect to p gives: 
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The values of p′ and p* are compared in Fig. 4, while U′ and 

U* are compared in Fig. 5. 
 

m 2 m v0
0

0 . 5

1 . 0

p

p '

p *

m 2 m v0
0

0 . 5

1 . 0

p

p '

p *

  
Fig. 4: Comparison of game-theoretic and socially optimal channel-change 
probabilities for the two-network many-channel game. The socially optimal 
decision maker forces more channel change. 
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Fig. 5: Comparison of game-theoretic and socially optimal message 
transmission delay cost for the two-network many-channel game. The socially 
optimal decision maker gives lower transmission delay. The maximum cost of 
game-theoretic decisions in this case is m/4 or v/4. 
 

It is interesting to note that with self-interest-based rational 
decision-making, both networks do less well than they would 
with centralized, socially optimal decisions. One may naively 
expect that self-interest-based decisions would be better for an 
individual by providing a win-lose proposition. However, they 
lead to the “tragedy of commons” [5] instead. Since both 

players are maximizing self-interest, they are in fact less 
effective in resource-sharing. The difference between the two 
outcomes is the price paid for non-cooperation resulting from 
lack of trust. 

IV. TWO-NETWORK TWO-CHANNEL GAME 
In the previous game, a large enough number of alternate 

channels was available, so that every channel change resulted 
in a network finding an unused channel. We now limit the total 
number of available channels to two. All other aspects of the 
decision-making scenario are the same as before. With only 
two channels available, a simple scenario of channel 
contention is created when both networks change their 
channels simultaneously. This scenario introduces the more 
realistic expectation that changing a channel does not always 
solve the interference problem.  

The two-channel game is shown in Fig. 6. The only 
difference between Fig. 1 and Fig. 6 is in the cost for action 
profile (C, C). When both networks change channel, they find 
themselves sharing the new channel as well. 
 

Network 2  
Change Remain 

Change v+m+1, v+m+1 v+1, 1  
Network  1 Remain 1, v+1 m+1, m+1 

 
Fig. 6: Two-network two-channel game. The main difference with many 
channels in Fig. 1 is that when both networks change channels, they share the 
new channel as well. 
 

Using the same procedure as before, we determine the stable 
operating point for the game by finding the Nash Equilibrium 
(NE) for this game, which is given by: 
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The analysis for centralized, “socially optimal” decisions 

with two channels, carried out using the same approach as for 
many-channels, gives the following results:  
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Notice that the game-theoretic and socially optimal channel-

change probabilities for two channels given by (9) and (11) 
respectively are exactly one-half the respective values for 
many channels given by (4) and (6). Hence, the comparison of 
(9) and (11) is as shown in Fig. 4, with all values on the p axis 
reduced by a factor of 0.5. The comparison of game-theoretic 
and socially optimal message transmission delay for the two-
channel scenario is shown in Fig. 7. Comparing Figs. 5 and 7 
gives an idea of results for more than two channels.  
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Fig. 7: Comparison of message transmission delay for game-theoretic and 
socially optimal decisions with two channels. The socially optimal decision 
maker always has a lower transmission delay. The maximum cost of game-
theoretic decisions in this case is m/8 or v/8. 

V. CONCLUSION 
We introduce the idea of modeling dynamic channel change 

decisions as games to handle the problem of interference from 
coexisting spectrum-agile wireless networks. In this paper, we 
make a start by presenting two simple, single-stage channel-
change games. We have also developed several dynamic, 
multi-stage models for two and multiple interfering networks 
in [12]. More complex models that relax our assumptions and 
simulation work are left for the future. 

The issue of dynamic channel change is very relevant in 
unlicensed bands, since they are shared by many different 
networks. Further, unlicensed usage is expected to grow as 
more and more licensed bands start supporting unlicensed 
secondary users. This will make dynamic channel change even 
more important in the future. Incorporating channel change is 
also helpful in allowing the easy set up of access points, 
especially in large installations, because channels do not need 
to be manually pre-assigned. 

This paper makes a contribution to the understanding of 
game-theoretic, self-interest-based decisions for dynamic 
channel change in spectrum-agile coexisting networks. 
Existing work in this area addresses the issue of how to share 
the current channel more effectively, whereas we consider the 
option of changing the transmission channel to address 
coexistence problems.  

We have also compared game-theoretic decisions with 
centralized, socially optimal decisions. Socially optimal 

decisions require the presence of only trusted parties so that 
the common good of all can be ensured. Game-theoretic 
decision-making, on the other hand, reflects scenarios in which 
there is no trust between the players.  

Existing networks, such as Ethernet, use centrally-imposed 
strategies through the use of standards. These strategies 
attempt to provide fairness for all users, and can be seen as 
approximations of socially optimal strategies. In such an 
environment, trusted access is enforced by using the same 
network standard, and allowing only those devices on the 
network that conform to the standard. Centralized, socially 
beneficial decision-making works very well here. However, 
when many different networks share a channel, there is no 
common standard being used that can restrict access to trusted 
networks only. In such an environment, self-interest based 
game-theoretic decisions are a better reflection of reality even 
though an additional transmission delay cost is incurred. 
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