
 

Abstract— The proliferation of wireless networks on 
unlicensed communication bands leads to coexisting networks, 
creating interference problems. In this paper, interference 
problems for spectrum-agile networks are addressed by allowing 
the networks to dynamically change channel. For insight into 
dynamic channel-change strategies, we model the networks as 
autonomous players in a multistage non-cooperative game-
theoretic model. Here the networks are assumed to be highly 
interfering, i.e., when two or more networks exist on a single 
channel they cannot successfully carry traffic. Each network 
seeks to minimize its time to find a clear channel. The game-
theoretic analysis reflects the motivations and choices of 
independent, rational, selfish decision makers that do not trust 
one another. We analyze the game-theoretic solutions appropriate 
for an untrusted environment, and compare the results with 
socially optimal decisions that would maximize the expected 
benefit of all coexisting networks in a trusted environment. 

I. INTRODUCTION 
N recent years, there has been a proliferation of wireless 
networks on unlicensed communication bands, such as the 

ISM bands at 2.4 GHz. Multiple networks may find 
themselves using the same communication band at the same 
time, resulting in interference problems [10], [13]. One way of 
addressing large-scale spectrum sharing is through the use of 
smart, spectrum-agile (or cognitive) networks that can 
dynamically switch communication channels based on 
interference on the current channel. The decision-making can 
be done in the access point of each network. 

In our dissertation [15], we have introduced the modeling of 
channel-change decisions using game theory [4], [12] by 
developing five models to capture different channel-change 
scenarios. We have focused on simple scenarios to provide 
initial insight. In this paper, two of these models are presented. 
The other models, using different assumptions, are presented 
in [16], [17].  We also compare game-theoretic decisions to 
idealized, socially optimal decisions that maximize the 
expected benefit of all coexisting networks.  

Game theory has been used extensively to model strategic 
decision-making in economics [14], political science [9], and 
other social sciences. Recently, it has been used to model 
several aspects of wireless networks [1]. Mangold et al [8], [3] 
have used game theory to model channel-sharing decisions by 
coexisting wireless networks, but do not address channel 

change. Game theory has also been applied to adaptive 
channel allocation [11], and to access control in single Aloha-
like networks [2], [6], [7].  

In Section II, the two channel-change decision-making 
scenarios are presented. In Section III, our multi-stage game 
formulation is described, while Sections IV and V present the 
details of the two decision-making models. The two models 
are compared in Section VI, and some conclusions are 
presented in Section VII.  

II. CHANNEL-CHANGE SCENARIOS 
We model two similar, interfering networks that find 

themselves residing on the same wireless communication 
channel. We consider scenarios of high network interference 
where we assume channel sharing leads to blocking. Each 
coexisting network has the option of changing to a new 
channel to make progress. However, there is a time delay in 
moving from one channel to another, known as the channel-
change overhead and represented as v with v>0. The two 
networks play a game of “chicken” to see who blinks first and 
therefore pays the channel-change overhead cost. We have 
focused on high interference scenarios because dynamic 
channel change is more relevant here, and the assumption 
simplifies the analysis. 

Two channel-change scenarios are presented, based on the 
number of available channels. In order to first focus on the 
simplest models, we consider a two-network many-channel 
scenario in which the two interfering networks have a large 
number of alternate channels for switching, and a two-network 
two-channel scenario that is more constrained. In the many-
channel case, even if the coexisting networks simultaneously 
change their channels, they do not interfere with each other 
again. However, in the two-channel scenario, the networks 
will interfere again after simultaneous channel change.  

The networks are assumed to have intelligent access points, 
capable of making dynamic decisions regarding which channel 
to use. The networks are further assumed to have a protocol 
whereby any network can request its member devices to 
dynamically switch to a new channel.1 We assume that the 

 
1 This capability has already been defined in the IEEE 802.11h standard, 

where the access point sends information regarding channel change in its 
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access points make decisions expected to achieve the best 
payoffs for their own networks, consistent with game-theoretic 
assumptions.  

III. GAME FORMULATION 
Game-theoretic modeling shows the decisions made by 

rational decision makers maximizing their own benefit in 
various competitive situations. Channel-change decision-
making is modeled using multi-stage games, since it is 
expected to be an ongoing activity as traffic conditions on 
different channels change over time.  

To model multi-stage decision-making, each network 
considers time as a sequence of “time slots”. One stage of 
decision-making is carried out in a time slot. At the beginning 
of an arbitrary time slot, two similar networks find themselves 
coexisting on a single channel. Each network has a message to 
transmit, where the messages are assumed to be of equal 
duration. Assuming high interference (channel blocking), 
neither network can successfully transmit as long as both 
networks coexist on the same channel.  

At the beginning of each time slot, each network can either 
choose to change channel (C), or to remain (R) on the current 
channel and attempt transmission. If a network chooses to 
change channel, it incurs a channel-change delay equal to v 
time slots. If the network chooses to remain, it either 
experiences a blockage or a clear channel, depending upon 
whether the other network has chosen to remain or change 
respectively. In the case of mutual blockage, the game must be 
played again in the next time slot. Each network has the 
objective of minimizing its channel acquisition cost defined as 
the total expected delay incurred until achieving a clear 
channel for transmission. 

IV. TWO-NETWORK MANY-CHANNEL GAME 

A. Game Representation 
We use multi-stage games with a simple structure known as 

multi-stage games with observed actions2 [4] (p. 70). All 
stages of the game are identical, with each stage being a 
strategic-form game with complete information [4] (p. 4). The 
two interfering networks, Network 1 and Network 2, are the 
players of the game. The set of players ϑ is given by {1, 2}. 
The choice of actions for each player is the same: Change to 
another channel or Remain on the current channel. The set of 
actions is given by A1 = A2 = {Change, Remain}. In each stage 
of the game, both players simultaneously choose their actions. 
An action profile represents the combination of the actions 
taken by each of the players. The set of all possible action 
profiles in any stage is given by {(C, C), (C, R), (R, C), (R, 

                                                                                                      
beacon and specifies the number of beacon intervals after which the change 
will be effective. 

2 Referred to as an extensive game with perfect information and 
simultaneous moves in [12] (p. 206). 

R)}, where C stands for Change and R for Remain.  
The cost3 to each player depends on the selected action 

profile since each player is affected by its action, as well as the 
action taken by the other player. For example, u1(C, C) 
represents the cost of the action profile (C, C) for network 1. 
The goal for each player (network) is to minimize cost, or the 
time to acquire a clear channel.  

The two-network many-channel game is represented by the 
matrix shown in Fig. 1. Each cell of the matrix represents the 
costs incurred by networks 1 and 2 respectively for the action 
profile represented. The value of u1(C, C) is given by the 
channel-change cost v. This is a result of our assumption of 
many available channels, where, if both networks change 
channel, they always acquire clear channels by switching to 
different channels. Similarly, u1(C, R) is also given by v since 
network 1 changes channel. However, u1(R, C) = 0 because 
network 2 changes to another channel, while network 1 has no 
further delays since it is left alone on the current channel. The 
costs for network 2 are obtained using similar reasoning, since 
both networks are identical. The three action profiles discussed 
so far represent terminal states because the game ends. The last 
case, ui(R, R), is more complex since the game continues.  
 

 Network 2 
Change Remain 

 
Network  1 

Change v, v v, 0 
Remain 0, v 1+u, 1+u 

 
Fig. 1: Stage game for the two-network channel-change game with many 
channels and pure strategies. v gives the channel-change overhead, and u the 
cost of the full multi-stage game. 

 
The action profile (R, R) leads to the same situation as at the 

start of the game, in which two networks are on one channel.  
Once again, the two networks face an identical game and an 
identical time cost before transmission can begin. Let us 
assume that the total cost incurred by a network before it 
exclusively acquires a channel is u1 = u2 = u time units. Then 
we say that the cost of the full multi-stage game is given by u 
time units. Since choosing the action profile (R, R) leads to the 
same state as at the start of the game, the same time delay of u 
units remains after the current stage.  In addition, a delay of 1 
time unit for the current stage has to be added. Hence, the cost 
for this action profile, u1(R, R), is given by 1+u for each 
player. 

B. Game-Theoretic Analysis 
Let us examine how this game is played by rational players 

(networks) using the solution concept of Nash Equilibrium 
(NE). A Nash Equilibrium is an action profile a* such that 

 
3 Note that in game theory, usually the term “utility” or “payoff” is used 

instead of “cost” because it represents a benefit that the player would like to 
maximize.  In this paper, since the objective of the players is to minimize the 
channel acquisition time, the term “cost” is used instead. However, in a slight 
abuse of notation, we continue to use the symbol “u” to represent this cost. 



 

each player’s action is an optimal response to the other 
players’ actions [12] (p.23). There is no motivation for a 
player to deviate unilaterally from this action profile.  

Let us look at the selection of actions in each stage of the 
multi-stage game. Each network would like to minimize its 
delay cost. If network 2 changes its channel, network 1 prefers 
to remain on the current channel, since v > 0 (refer to Fig. 1). 
However, if network 2 remains on the current channel, 
network 1 prefers to change channel as shown below. 

 
Condition 1+u > v  

We show that the condition 1+u > v always holds. Suppose 
this condition does not hold, i.e., vu ≤+1 . In this case, 
network 1 would always choose the action remain irrespective 
of whether network 2 chooses change or remain. Using similar 
reasoning, network 2 would also always choose remain. Thus 
(R, R) would always get selected, making it a dominant action 
profile. But if the networks keep playing (R, R), no one can 
transmit due to channel blocking. The cost of the game, u, 
becomes infinite, leading to a contradiction.  Hence, we know 
that 1+u > v. Q.E.D. 

Thus there are two stable action profiles in this game: (R, C) 
and (C, R). These two action profiles are also the two Nash 
Equilibria (NE) using pure strategies. We notice that these two 
NE are not symmetric. When one network chooses change, the 
other chooses remain, and vice-versa. Since the two networks 
are assumed identical, they should be able to choose the same 
actions. However, this is not possible with pure strategies. 
Hence we consider using a mixed strategy by assigning 
probabilities to each of the two pure strategies. By symmetry, 
both networks will assign the same values to these 
probabilities. 
 

 Network 2 
Change Remain 

 
Network  1 

Change v, v v, 0 
Remain 0, v 1+U, 1+U 

 
Fig. 2: Stage game for the two-network channel-change game using mixed 
strategies. Similar to Fig. 1, except that the expected cost of the full game, U is 
substituted for the pure strategy cost u. v gives the channel-change overhead. 

 
The stage game using mixed strategies is shown in Fig. 2. 

Note that the only difference with Fig. 1 is that the cost of the 
remaining game u is replaced by the expected cost U, since the 
cost depends on the probability with which the actions change 
and remain are selected. 

To determine the stable operating point for this multi-stage 
game, we find its Nash Equilibrium (NE). Using mixed 
strategies, we assume that both networks 1 and 2 use a 
probability p of changing channel and probability 1-p of 
remaining on the current channel. We first find UC, network 
1’s expected cost to change channel. Considering the first row 
of Fig. 2, we obtain UC using p and 1-p as weights for the 

u1(C, C) and u1(C, R) costs: 
 

vvppvU C =−+= )1(  (2) 
 

Similarly, considering the second row of Fig. 2, the 
expected cost for network 1 to remain on the current channel 
is given by UR as: 
 

)1)(1( UpU R +−=  (3) 
 

Network 1 will choose to change channel if UC < UR and to 
remain on the current channel if UC > UR. When UC = UR, 
network 1 has no preference between the two strategies. Under 
this condition, network 1 has the same cost whether it chooses 
the pure strategy of change or remain or some mixed strategy 
which is a combination of the two. In particular, it can choose 
the mixed strategy of (p, 1-p) and obtain the same expected 
cost. Thus, it has no motivation to deviate from the mixed 
strategy of (p, 1-p) given that network 2 has chosen this mixed 
strategy. This is the Nash Equilibrium condition. Under NE, 
the two costs are equal, i.e. UC = UR = U. Applying this 
condition to (2) and (3), we can find the NE probability p* as: 
 

v
p

+
=

1
1*  (4) 

 
The NE probability of changing channel depends on the 

channel-change overhead. As we would expect, if the cost of 
changing channel v goes up, the probability of changing 
channel p* comes down. From the symmetry of the game, both 
networks will use the same probability p*. The expected cost 
U* at the NE can be found from (2):  
 
U* = v (5) 

 
Under Nash Equilibrium, the expected delay in exclusively 

acquiring a channel is the same as the channel-change time. 
The equations for p* and U* have also been verified by using 
an alternate approach [15]. 

C. Socially Optimal Analysis 
The results of game-theoretic analysis obtained above are 

compared to those obtained from analyzing “socially optimal” 
decisions made by an abstract “centralized” decision maker. 
The socially optimal decision maker promotes the best interest 
of all networks, rather than the self-interest of any individual 
network. It assigns a channel-change probability of p to each 
of the two networks, instead of allowing each of them to non-
cooperatively choose their own channel-change probabilities. 
We will see how the socially optimal channel-change 
probability (p′) compares to the game-theoretic value p* 
derived in the previous section. Note that in this paper, the 
terms “socially optimal” and “centralized” are used in 



 

analogously, but the decisions are not made by a single 
centralized entity such as an access point. 

The socially optimal channel-change probability (p′) is 
obtained by minimizing U, the total expected channel 
acquisition delay cost for each network. Let UC and UR be the 
expected change and remain delay costs for both networks as 
before. Then, U is given by: 
 

RC UppUU )1( −+=  (6) 
 

Substituting UC and UR using (2) and (3) and minimizing U 
with respect to p gives the socially optimal channel-change 
probability p′ > 0 and the corresponding delay cost U′ as: 

 

v
vp 121 −+

=′  (7) 

 

2
121 −++

=′ vvU  (8) 

D. Comparison and Cost 
The game-theoretic and centralized change probabilities, p* 

and p′, are shown in Fig. 3. We see that the centralized 
decision maker forces much more change, i.e. p′ > p*.  

 

 
 
Fig. 3: Comparison of channel-change probability in game-theoretic and 
centralized, socially optimal decisions for two networks and many channels. 
The centralized decision maker forces more change. 

 
The game-theoretic and centralized delay costs, U* and U′ 

are plotted in Fig. 4. Socially optimal decision-making 
provides lower expected cost than non-cooperative, game-
theoretic decision-making. The price paid for self-interested 
game-theoretic decisions is given by U* - U′. This cost can be 
viewed as an example of the Tragedy of Commons [5], where 
a shared resource is used less effectively when users are 
optimizing their self-interest. However, we note that self-

interest is the rational choice of independent networks in an 
untrusted environment. 

 

 
 
Fig. 4: Comparison of delay cost in game-theoretic and centralized, socially 
optimal decisions for two networks and many channels. The centralized 
decision maker gives a lower delay cost. 

V. TWO-NETWORK TWO-CHANNEL GAME 

A. Game-Theoretic Analysis 
In the previous game, a large enough number of alternate 

channels was available, so that every channel change resulted 
in a network finding an unused channel. We now limit the total 
number of available channels to two. All other aspects of the 
decision-making scenario are the same as before. With only 
two channels available, a simple scenario of channel 
contention is created when both networks change their 
channels simultaneously. This scenario introduces the more 
realistic expectation that changing a channel does not always 
solve the interference problem, and further channel changes 
may be necessary. We study how the channel-change 
probability and channel acquisition time are affected by this 
new constraint. 
 

 Network 2 
Change Remain 

 
Network  1 

Change v+U, v+U v, 0 
Remain 0, v 1+U, 1+U 

 
Fig. 5: Stage game with mixed strategies for two channels. The main 
difference with many channels in Fig. 2 is that when both networks change 
channels, they interfere with each other again and the game continues. 
 

The two-network two-channel game using mixed strategies 
is shown in Fig. 5 (equivalent to Fig. 2). The only difference 
between Fig. 2 and Fig. 5 is in the cost for the action profile 
(C, C). Now, when both networks change channel, they find 
themselves blocking each other on the new channel as well. 
Thus, they are in the same situation as at the start of the game, 
but on a different channel, and have incurred an additional 



 

delay of v time units each due to channel change, with v>0 as 
before. 

Using the same procedure as before, we determine the stable 
operating point for the game by finding the Nash Equilibrium 
(NE) values p* and U* for this game: 
 

2
42*

2vvvp +−+
=  (9) 

2
4*

2vvvU ++
=  (10) 

B. Socially Optimal Analysis and Comparison 
Using the same procedure as before for centralized, 

“socially optimal” decisions, the expressions obtained for p′ 
and U′ with two channels are: 
 

1
1
+

=′
v

p  (11) 

2
vvU +=′  (12) 

 
The comparison of game-theoretic and socially optimal 

results for the two-channel scenario are shown in Fig. 6-7. As 
with many channels, we see that the socially optimal decision 
maker forces much more change, i.e. p′ > p* in Fig. 6, 
resulting in lower delay cost as shown in Fig. 7. 
 

 
 
Fig. 6: Comparison of channel-change probability for game-theoretic and 
centralized decisions with two channels. The game-theoretic decision maker 
always has a lower channel-change probability. 

 

 
 
Fig. 7: Comparison of delay cost for game-theoretic and centralized decisions 
with two channels. The game-theoretic decision maker always has a higher 
delay cost. 

VI. COMPARISON OF MODELS 
For comparison, the results obtained for many channels and 

two channels are summarized in Table I. 
 

TABLE I: SUMMARY OF RESULTS 
 

 Two-Network Many-
Channel Game 

Two-Network Two-
Channel Game 

p* 

v+1
1

 
2

42 2vvv +−+
 

U* v 

2
4 2vvv ++

 

p′ 

v
v 121 −+

 1
1
+v

 

U′ 

2
121 −++ vv

 2
vv +  

Cost 
U* - U′ 

2
211 vv +−+

 vvv
−

+
2

4 2

 

 
The comparison of game-theoretic channel-change 

probabilities for two channels and many channels is shown in 
Fig. 8. We see that the channel-change probability for two 
channels is always lower than that for many channels. This is 
intuitive, because with only two channels available, the 
networks could interfere again by changing channel, and hence 
the motivation to do so is lower. As v gets larger, the 
difference between the two reduces.  

The comparison of the NE delay cost U* for two channels 
and many channels is shown in Fig. 9. The cost for two 
channels is always higher than for many channels. This is also 
intuitive because one would expect higher delays with fewer 



 

channels.  
 

 
 
Fig. 8: Game-theoretic NE channel-change probability comparison for many-
channel and two-channel models. With two channels, the probability is lower 
for low values of v. 
 
 

 
 
Fig. 9: Game-theoretic NE delay cost comparison for many-channel and two-
channel models. With two channels, the delay cost is always slightly higher. 

VII. CONCLUSION 
We introduce the idea of modeling dynamic channel-change 

decisions as games to handle the problem of interference from 
coexisting spectrum-agile wireless networks. In this paper, we 
have presented two two-network, multi-stage channel-change 
games. We have extended this work to multiple interfering 
networks in [17]. We have also removed the channel blocking 
assumption for two single-stage models in [16]. More complex 
models, including multi-stage models without channel 
blocking, and simulation work are left for the future. 

The issue of dynamic channel change is very relevant in 
unlicensed bands, since they are shared by many different 
networks. Further, unlicensed usage is expected to grow as 
more and more licensed bands start supporting unlicensed 

secondary users. This will make dynamic channel change even 
more important in the future. Incorporating channel change is 
also helpful in allowing the easy set up of access points, 
especially in large installations, because channels do not need 
to be manually pre-assigned. The results of this paper provide 
some insight into dynamic channel-change strategies for 
intelligent spectrum-agile wireless networks. 
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