
The Cathedral and the Bazaar
Eric Steven Raymond

Thyrsus Enterprises [http://www.tuxedo.org/~esr/]

<esr@thyrsus.com>

This is version3.0
Copyright © 2000Eric S.Raymond

Copyright

Permissionis grantedto copy, distribute and/ormodify this documentunderthe termsof the OpenPublication
License,version2.0.

$Date:2002/08/0209:02:14$
Revision History
Revision 1.57 11 September2000 esr
New majorsection“How Many EyeballsTameComplexity”.
Revision 1.52 28 August2000 esr
MATLAB is a reinforcingparallelto Emacs.Corbatoó& Vyssotsky got it in 1965.
Revision 1.51 24 August2000 esr
First DocBookversion.Minor updatesto Fall 2000on thetime-sensitivematerial.
Revision 1.49 5 May 2000 esr
AddedtheHBSnoteon deadlinesandscheduling.
Revision 1.51 31 August1999 esr
This theversionthatO’Reilly printedin thefirst editionof thebook.
Revision 1.45 8 August1999 esr
AddedtheendnotesontheSnafuPrinciple,(pre)historicalexamplesof bazaardevelopment,andoriginality
in thebazaar.
Revision 1.44 29 July1999 esr
Addedthe“On ManagementandtheMaginotLine” section,someinsightsabouttheusefulnessof bazaars
for exploringdesignspace,andsubstantiallyimprovedtheEpilog.
Revision 1.40 20 Nov 1998 esr
Addedacorrectionof Brooksbasedon theHalloweenDocuments.
Revision 1.39 28 July1998 esr
I removedPaulEggert’s ’graphon GPLvs. bazaarin responseto cogentagumentsfrom RMSon
Revision 1.31 February101998 esr
Added“Epilog: NetscapeEmbracestheBazaar!”
Revision 1.29 February9 1998 esr
Changed“free software” to “opensource”.
Revision 1.27 18 November1997 esr
AddedthePerlConferenceanecdote.
Revision 1.20 7 July 1997 esr
Addedthebibliography.
Revision 1.16 21 May 1997 esr

1

First official presentationat theLinux Kongress.

I anatomizea successfulopen-sourceproject, fetchmail, that was run as a deliberatetest of the surprising
theoriesaboutsoftwareengineeringsuggestedby the history of Linux. I discussthesetheoriesin termsof two
fundamentallydifferentdevelopmentstyles,the “cathedral”modelof mostof the commercialworld versusthe
“bazaar”modelof theLinux world. I show thatthesemodelsderive from opposingassumptionsaboutthenature
of thesoftware-debuggingtask. I thenmake a sustainedargumentfrom theLinux experiencefor theproposition
that“Givenenougheyeballs,all bugsareshallow”, suggestproductiveanalogieswith otherself-correctingsystems
of selfishagents,andconcludewith someexplorationof theimplicationsof this insightfor thefutureof software.

Table of Contents

TheCathedralandtheBazaar ��� 2
TheMail Must GetThrough ��� 3
TheImportanceof Having Users ��� 6
ReleaseEarly, ReleaseOften ��� 7
How Many EyeballsTameComplexity ��� 9
WhenIs aRoseNot a Rose? ��� 11
PopclientbecomesFetchmail ��� 13
FetchmailGrowsUp ��� 15
A Few More Lessonsfrom Fetchmail ��� 17
NecessaryPreconditionsfor theBazaarStyle ��� 18
TheSocialContext of Open-SourceSoftware ��� 19
OnManagementandtheMaginotLine ��� 23
Epilog: NetscapeEmbracestheBazaar ��� 27
Notes ��� 29
Bibliography ��� 33
Acknowledgements ��� 34

The Cathedral and the Bazaar
Linux is subversive. Who would have thoughteven five yearsago(1991) that a world-classoperatingsystem
could coalesceas if by magic out of part-timehackingby several thousanddevelopersscatteredall over the
planet,connectedonly by thetenuousstrandsof theInternet?

Certainlynot I. By the time Linux swam onto my radarscreenin early 1993, I had alreadybeeninvolved in
Unix andopen-sourcedevelopmentfor tenyears.I wasoneof thefirst GNU contributorsin themid-1980s.I had
releasedagooddealof open-sourcesoftwareontothenet,developingor co-developingseveralprograms(nethack,
Emacs’sVC andGUD modes,xlife, andothers)thatarestill in wideusetoday. I thoughtI knew how it wasdone.

Linux overturnedmuchof what I thoughtI knew. I hadbeenpreachingthe Unix gospelof small tools, rapid
prototypingandevolutionaryprogrammingfor years.But I alsobelievedtherewasa certaincritical complexity
above which a more centralized,a priori approachwas required. I believed that the most importantsoftware
(operatingsystemsandreally largetools like theEmacsprogrammingeditor)neededto bebuilt like cathedrals,

2

carefullycraftedby individual wizardsor smallbandsof magesworking in splendidisolation,with no betato be
releasedbeforeits time.

LinusTorvalds’sstyleof development—releaseearlyandoften,delegateeverythingyoucan,beopento thepoint
of promiscuity—cameasa surprise. No quiet, reverentcathedral-building here—rather, the Linux community
seemedto resemblea greatbabblingbazaarof differing agendasandapproaches(aptly symbolizedby theLinux
archive sites,who’d take submissionsfrom anyoneanyone) out of which a coherentand stablesystemcould
seeminglyemergeonly by asuccessionof miracles.

The fact that this bazaarstyle seemedto work, andwork well, cameasa distinct shock. As I learnedmy way
around,I worked hardnot just at individual projects,but alsoat trying to understandwhy the Linux world not
only didn’t fly apart in confusionbut seemedto go from strengthto strengthat a speedbarely imaginableto
cathedral-builders.

By mid-1996I thoughtI wasbeginning to understand.Chancehandedme a perfectway to testmy theory, in
theform of anopen-sourceprojectthat I couldconsciouslytry to run in thebazaarstyle. SoI did—andit wasa
significantsuccess.

This is thestoryof thatproject. I’ ll useit to proposesomeaphorismsabouteffective open-sourcedevelopment.
Not all of theseare things I first learnedin the Linux world, but we’ll seehow the Linux world gives them
particularpoint. If I’m correct,they’ ll help you understandexactly what it is that makesthe Linux community
sucha fountainof goodsoftware—and,perhaps,they will helpyoubecomemoreproductiveyourself.

The Mail Must Get Through
Since1993 I’d beenrunning the technicalside of a small free-accessInternetserviceprovider called Chester
County InterLink (CCIL) in West Chester, Pennsylvania. I co-foundedCCIL andwrote our uniquemultiuser
bulletin-boardsoftware—youcan checkit out by telnettingto locke.ccil.org [telnet://locke.ccil.org]. Today it
supportsalmostthreethousanduserson thirty lines.Thejob allowedme24-hour-a-dayaccessto thenetthrough
CCIL’s 56K line—in fact,thejob practicallydemandedit!

I hadgottenquiteusedto instantInternetemail. I foundhaving to periodicallytelnetover to locke to checkmy
mail annoying. What I wantedwasfor my mail to be deliveredon snark(my homesystem)so that I would be
notifiedwhenit arrivedandcouldhandleit usingall my local tools.

TheInternet’snative mail forwardingprotocol,SMTP(SimpleMail TransferProtocol),wouldn’t suit, becauseit
worksbestwhenmachinesareconnectedfull-time, while my personalmachineisn’t alwayson theInternet,and
doesn’t have a staticIP address.What I neededwasa programthatwould reachout over my intermittentdialup
connectionandpull acrossmy mail to bedeliveredlocally. I knew suchthingsexisted,andthatmostof themused
a simpleapplicationprotocolcalledPOP(PostOffice Protocol).POPis now widely supportedby mostcommon
mail clients,but at thetime, it wasn’t built in to themail readerI wasusing.

I neededaPOP3client. SoI wentout on theInternetandfoundone.Actually, I foundthreeor four. I usedoneof
themfor a while, but it wasmissingwhatseemedanobviousfeature,theability to hacktheaddresseson fetched
mail soreplieswouldwork properly.

3

The problemwasthis: supposesomeonenamed‘joe’ on locke sentme mail. If I fetchedthe mail to snarkand
thentried to reply to it, my mailer would cheerfullytry to ship it to a nonexistent‘joe’ on snark. Hand-editing
replyaddressesto tackon<@ccil.org> quickly got to bea seriouspain.

This wasclearlysomethingthe computeroughtto be doing for me. But noneof the existing POPclientsknew
how! And this bringsusto thefirst lesson:

1. Every good work
of software starts
by scratching a
developer’s personal
itch.

Perhapsthis shouldhave beenobvious(it’s long beenproverbialthat “Necessityis themotherof invention”)but
too often softwaredevelopersspendtheir daysgrinding away for pay at programsthey neitherneednor love.
But not in the Linux world—which may explain why the averagequality of software originatedin the Linux
communityis sohigh.

So, did I immediatelylaunchinto a furious whirl of codingup a brand-new POP3client to competewith the
existingones?Not onyour life! I lookedcarefullyat thePOPutilities I hadin hand,askingmyself“Which oneis
closestto whatI want?” Because:

2. Goodprogrammers
know what to write.
Greatonesknow what
to rewrite (andreuse).

While I don’t claim to be a greatprogrammer, I try to imitate one. An important trait of the greatonesis
constructive laziness. They know that you get an A not for effort but for results,and that it’s almostalways
easierto startfrom agoodpartialsolutionthanfrom nothingatall.

Linus Torvalds [http://www.tuxedo.org/~esr/faqs/linus],for example, didn’t actually try to write Linux from
scratch. Instead,he startedby reusingcodeand ideasfrom Minix, a tiny Unix-like operatingsystemfor PC
clones.Eventuallyall theMinix codewentawayor wascompletelyrewritten—but while it wasthere,it provided
scaffolding for theinfantthatwouldeventuallybecomeLinux.

In the samespirit, I went looking for an existing POP utility that was reasonablywell coded, to use as a
developmentbase.

The source-sharingtradition of the Unix world hasalways beenfriendly to codereuse(this is why the GNU
projectchoseUnix asa baseOS,in spiteof seriousreservationsabouttheOSitself). TheLinux world hastaken
this tradition nearlyto its technologicallimit; it hasterabytesof opensourcesgenerallyavailable. So spending
time looking for someelse’s almost-good-enoughis morelikely to give you goodresultsin theLinux world than
anywhereelse.

And it did for me. With thoseI’d foundearlier, my secondsearchmadeup a total of ninecandidates—fetchpop,
PopTart, get-mail,gwpop,pimp, pop-perl,popc,popmailandupop. TheoneI first settledon was‘fetchpop’ by

4

Seung-HongOh. I put my header-rewrite featurein it, andmadevariousotherimprovementswhich the author
acceptedinto his 1.9release.

A few weekslater, though,I stumbledacrossthecodefor popclientby Carl Harris,andfound I hada problem.
Thoughfetchpophadsomegoodoriginal ideasin it (suchasits background-daemonmode),it couldonly handle
POP3andwasratheramateurishlycoded(Seung-Hongwasat that time a bright but inexperiencedprogrammer,
and both traits showed). Carl’s codewas better, quite professionaland solid, but his programlacked several
importantandrathertricky-to-implementfetchpopfeatures(includingthoseI’d codedmyself).

Stay or switch? If I switched, I’ d be throwing away the coding I’d alreadydone in exchangefor a better
developmentbase.

A practicalmotive to switchwasthepresenceof multiple-protocolsupport.POP3is themostcommonlyusedof
thepost-officeserverprotocols,but not theonly one.Fetchpopandtheothercompetitiondidn’t do POP2,RPOP,
or APOP, and I was alreadyhaving vaguethoughtsof perhapsaddingIMAP [http://www.imap.org] (Internet
MessageAccessProtocol,themostrecentlydesignedandmostpowerful post-officeprotocol)just for fun.

But I hada moretheoreticalreasonto think switchingmightbeasgoodanideaaswell, somethingI learnedlong
beforeLinux.

3. “Plan to throw
one away; you will,
anyhow.” (Fred
Brooks, The Mythical
Man-Month, Chapter
11)

Or, to put it anotherway, you oftendon’t really understandtheproblemuntil afterthefirst time you implementa
solution.Thesecondtime,maybeyou know enoughto do it right. Soif you wantto getit right, bereadyto start
overat leastatleastonce[JB].

Well (I told myself)thechangesto fetchpophadbeenmy first try. SoI switched.

After I sentmy first setof popclientpatchesto Carl Harris on 25 June1996,I found out that he hadbasically
lost interestin popclientsometime before.Thecodewasa bit dusty, with minor bugshangingout. I hadmany
changesto make,andwequickly agreedthatthelogical thing for meto do wastakeover theprogram.

Without my actuallynoticing,theprojecthadescalated.No longerwasI just contemplatingminor patchesto an
existing POPclient. I took on maintaininganentireone,andtherewereideasbubbling in my headthat I knew
wouldprobablyleadto majorchanges.

In a softwareculturethatencouragescode-sharing,this is a naturalway for a projectto evolve. I wasactingout
this principle:

4. If youhavetheright
attitude, interesting
problems will find
you.

5

But CarlHarris’sattitudewasevenmoreimportant.Heunderstoodthat

5. When you lose
interest in a program,
your last duty to it
is to hand it off to a
competentsuccessor.

Without ever having to discussit, Carl andI knew we hada commongoalof having thebestsolutionout there.
Theonly questionfor eitherof uswaswhetherI couldestablishthatI wasasafepairof hands.OnceI did that,he
actedwith graceanddispatch.I hopeI will doaswell whenit comesmy turn.

The Importance of Having Users
And soI inheritedpopclient.Justasimportantly, I inheritedpopclient’suserbase.Usersarewonderfulthingsto
have,andnot justbecausethey demonstratethatyou’reservinganeed,thatyou’vedonesomethingright. Properly
cultivated,they canbecomeco-developers.

Anotherstrengthof theUnix tradition,onethatLinux pushesto ahappy extreme,is thata lot of usersarehackers
too. Becausesourcecodeis available,they canbeeffectiveeffectivehackers.This canbetremendouslyusefulfor
shorteningdebuggingtime. Givena bit of encouragement,your userswill diagnoseproblems,suggestfixes,and
helpimprovethecodefarmorequickly thanyou couldunaided.

6. Treating your
usersasco-developers
is your least-hassle
route to rapid code
improvement and
effectivedebugging.

Thepowerof thiseffect is easyto underestimate.In fact,prettywell all of usin theopen-sourceworld drastically
underestimatedhow well it would scaleup with numberof usersand againstsystemcomplexity, until Linus
Torvaldsshowedusdifferently.

In fact,I think Linus’s cleverestandmostconsequentialhackwasnot theconstructionof theLinux kernelitself,
but ratherhis inventionof the Linux developmentmodel. WhenI expressedthis opinion in his presenceonce,
he smiledandquietly repeatedsomethinghe hasoftensaid: “I’m basicallya very lazy personwho likesto get
credit for thingsotherpeopleactuallydo.” Lazy like a fox. Or, asRobertHeinleinfamouslywroteof oneof his
characters,too lazy to fail.

In retrospect,oneprecedentfor the methodsandsuccessof Linux canbe seenin the developmentof the GNU
EmacsLisp libraryandLisp codearchives.In contrastto thecathedral-buildingstyleof theEmacsC coreandmost
otherGNU tools,theevolution of theLisp codepool wasfluid andvery user-driven. Ideasandprototypemodes
wereoftenrewritten threeor four timesbeforereachinga stablefinal form. And loosely-coupledcollaborations
enabledby theInternet,a la Linux, werefrequent.

6

Indeed,my own most successfulsinglehack previous to fetchmail wasprobablyEmacsVC (versioncontrol)
mode,a Linux-like collaborationby email with threeother people,only oneof whom (RichardStallman,the
authorof Emacsandfounderof theFreeSoftwareFoundation[http://www.fsf.org]) I havemetto this day. It was
afront-endfor SCCS,RCSandlaterCVSfrom within Emacsthatoffered“one-touch”versioncontroloperations.
It evolved from a tiny, crudesccs.elmodesomebodyelsehadwritten. And the developmentof VC succeeded
because,unlikeEmacsitself, EmacsLisp codecouldgo throughrelease/test/improvegenerationsveryquickly.

TheEmacsstoryis not unique.Therehavebeenothersoftwareproductswith a two-level architectureanda two-
tier usercommunitythatcombineda cathedral-modecoreanda bazaar-modetoolbox. Onesuchis MATLAB, a
commercialdata-analysisandvisualizationtool. Usersof MATLAB andotherproductswith a similar structure
invariablyreportthat theaction,theferment,theinnovationmostlytakesplacein theopenpartof thetool where
a largeandvariedcommunitycantinkerwith it.

Release Early, Release Often
Early andfrequentreleasesarea critical partof theLinux developmentmodel. Most developers(includingme)
usedto believe this wasbadpolicy for largerthantrivial projects,becauseearlyversionsarealmostby definition
buggyversionsandyoudon’t wantto wearout thepatienceof yourusers.

This belief reinforcedthe generalcommitmentto a cathedral-building style of development. If the overriding
objective wasfor usersto seeasfew bugsaspossible,why thenyou’d only releasea versionevery six months
(or lessoften),andwork like a dogon debuggingbetweenreleases.TheEmacsC corewasdevelopedthis way.
TheLisp library, in effect,wasnot—becausetherewereactiveLisp archivesoutsidetheFSF’scontrol,whereyou
couldgo to find new anddevelopmentcodeversionsindependentlyof Emacs’s releasecycle [QR].

Themostimportantof these,the Ohio StateEmacsLisp archive, anticipatedthespirit andmany of the features
of today’s big Linux archives. But few of us really thoughtvery hardaboutwhatwe weredoing,or aboutwhat
theveryexistenceof thatarchivesuggestedaboutproblemsin theFSF’scathedral-building developmentmodel.I
madeoneseriousattemptaround1992to geta lot of theOhio codeformally mergedinto theofficial EmacsLisp
library. I raninto political troubleandwaslargelyunsuccessful.

But by a yearlater, asLinux becamewidely visible, it wasclearthatsomethingdifferentandmuchhealthierwas
going on there. Linus’s opendevelopmentpolicy wasthe very oppositeof cathedral-building. Linux’s Internet
archiveswereburgeoning,multiple distributionswerebeingfloated.And all of this wasdrivenby anunheard-of
frequency of coresystemreleases.

Linuswastreatinghis usersasco-developersin themosteffectivepossibleway:

7. Releaseearly. Re-
leaseoften. And listen
to yourcustomers.

Linus’s innovation wasn’t so much in doing quick-turnaroundreleasesincorporatinglots of user feedback
(somethinglike this hadbeenUnix-world tradition for a long time), but in scalingit up to a level of intensity
thatmatchedthe complexity of what hewasdeveloping. In thoseearly times(around1991)it wasn’t unknown
for him to releasea new kernelmorethanoncea day!day! Becausehecultivatedhis baseof co-developersand
leveragedtheInternetfor collaborationharderthananyoneelse,this worked.

7

But howhowdid it work? And wasit somethingI couldduplicate,or did it rely on someuniquegeniusof Linus
Torvalds?

I didn’t think so. Granted,Linus is a damnfine hacker. How many of us could engineeran entireproduction-
quality operatingsystemkernelfrom scratch?But Linux didn’t representany awesomeconceptualleapforward.
Linus is not (or at least,not yet) an innovative geniusof designin theway that,say, RichardStallmanor James
Gosling(of NeWSandJava) are. Rather, Linus seemsto meto bea geniusof engineeringandimplementation,
with a sixth sensefor avoiding bugs and developmentdead-endsand a true knack for finding the minimum-
effort pathfrom point A to point B. Indeed,thewholedesignof Linux breathesthis quality andmirrorsLinus’s
essentiallyconservativeandsimplifying designapproach.

So,if rapidreleasesandleveragingtheInternetmediumto thehilt werenot accidentsbut integralpartsof Linus’s
engineering-geniusinsightinto theminimum-effort path,whatwashemaximizing?Whatwashecrankingoutof
themachinery?

Put that way, the questionanswersitself. Linus was keeping his hacker/usersconstantlystimulatedand
rewarded—stimulatedby the prospectof having an ego-satisfyingpieceof the action,rewardedby the sight of
constant(evendailydaily) improvementin theirwork.

Linus wasdirectly aimingto maximizethenumberof person-hoursthrown at debugginganddevelopment,even
at the possiblecostof instability in thecodeanduser-baseburnoutif any seriousbug proved intractable.Linus
wasbehaving asthoughhebelievedsomethinglike this:

8. Given a large
enoughbeta-testerand
co-developer base,
almost every problem
will be characterized
quickly and the fix
obviousto someone.

Or, lessformally, “Givenenougheyeballs,all bugsareshallow.” I dubthis: “Linus’sLaw”.

My original formulationwas that every problem“will be transparentto somebody”. Linus demurredthat the
personwhounderstandsandfixestheproblemis notnecessarilyor evenusuallythepersonwhofirst characterizes
it. “Somebodyfindstheproblem,” hesays,“andsomebodyelseelseunderstandsit. And I’ ll goonrecordassaying
thatfinding it is thebiggerchallenge.” Thatcorrectionis important;we’ll seehow in thenext section,whenwe
examinethepracticeof debuggingin moredetail. But thekey point is thatbothpartsof theprocess(finding and
fixing) tendto happenrapidly.

In Linus’sLaw, I think, liesthecoredifferenceunderlyingthecathedral-builderandbazaarstyles.In thecathedral-
builder view of programming,bugsanddevelopmentproblemsaretricky, insidious,deepphenomena.It takes
monthsof scrutiny by a dedicatedfew to develop confidencethat you’ve winkled themall out. Thusthe long
releaseintervals,andtheinevitabledisappointmentwhenlong-awaitedreleasesarenotperfect.

In thebazaarview, on theotherhand,you assumethatbugsaregenerallyshallow phenomena—or, at least,that
they turn shallow prettyquickly whenexposedto a thousandeagerco-developerspoundingon every singlenew

8

release.Accordinglyyou releaseoften in orderto getmorecorrections,andasa beneficialsideeffect you have
lessto loseif anoccasionalbotchgetsout thedoor.

And that’s it. That’s enough.If “Linus’s Law” is false,thenany systemascomplex asthe Linux kernel,being
hackedover by asmany handsasthe that kernelwas,shouldat somepoint have collapsedunderthe weightof
unforseenbadinteractionsandundiscovered“deep” bugs.If it’s true,on theotherhand,it is sufficient to explain
Linux’srelative lackof bugginessandits continuousuptimesspanningmonthsor evenyears.

Maybeit shouldn’t havebeensuchasurprise,at that.Sociologistsyearsagodiscoveredthattheaveragedopinion
of a massof equallyexpert(or equallyignorant)observersis quitea bit morereliableapredictorthantheopinion
of asinglerandomly-chosenoneof theobservers.They calledthistheDelphieffect. It appearsthatwhatLinushas
shown is that this appliesevento debuggingan operatingsystem—thattheDelphi effect cantamedevelopment
complexity evenat thecomplexity level of anOSkernel.[CV]

Onespecialfeatureof theLinux situationthatclearlyhelpsalongtheDelphieffect is thefactthatthecontributors
for any givenprojectareself-selected.An earlyrespondentpointedout thatcontributionsarereceivednot from a
randomsample,but from peoplewhoareinterestedenoughto usethesoftware,learnabouthow it works,attempt
to find solutionsto problemsthey encounter, andactuallyproducean apparentlyreasonablefix. Anyonewho
passesall thesefilters is highly likely to havesomethingusefulto contribute.

Linus’s Law can be rephrasedas “Debugging is parallelizable”. Although debugging requiresdebuggersto
communicatewith somecoordinatingdeveloper, it doesn’t requiresignificantcoordinationbetweendebuggers.
Thusit doesn’t fall prey to the samequadraticcomplexity andmanagementcoststhat make addingdevelopers
problematic.

In practice,the theoreticallossof efficiency dueto duplicationof work by debuggersalmostnever seemsto be
an issuein theLinux world. Oneeffect of a “releaseearlyandoften” policy is to minimizesuchduplicationby
propagatingfed-backfixesquickly [JH].

Brooks(theauthorof TheMythicalMan-Month) evenmadeanoff-handobservationrelatedto this: “The totalcost
of maintainingawidely usedprogramis typically 40percentor moreof thecostof developingit. Surprisinglythis
costis stronglyaffectedby thenumberof users.MoreusersfindmorebugsMoreusersfindmorebugs.” [emphasis
added].

More usersfind morebugsbecauseaddingmoreusersaddsmoredifferentwaysof stressingthe program.This
effect is amplifiedwhentheusersareco-developers.Eachoneapproachesthetaskof bug characterizationwith a
slightly differentperceptualsetandanalyticaltoolkit, adifferentangleontheproblem.The“Delphi effect” seems
to work preciselybecauseof thisvariation.In thespecificcontext of debugging,thevariationalsotendsto reduce
duplicationof effort.

So adding more beta-testersmay not reducethe complexity of the current “deepest” bug from the devel-
oper’sdeveloper’s point of view, but it increasesthe probability that someone’s toolkit will be matchedto the
problemin suchaway thatthebug is shallow to thatpersontothatperson.

Linus coppershis bets,too. In casethereareare seriousbugs,Linux kernelversionarenumberedin sucha way
thatpotentialuserscanmakea choiceeitherto run thelastversiondesignated“stable” or to ride thecuttingedge
andrisk bugsin orderto getnew features.This tactic is not yet systematicallyimitatedby mostLinux hackers,
but perhapsit shouldbe;thefactthateitherchoiceis availablemakesbothmoreattractive. [HBS]

9

How Many Eyeballs Tame Complexity
It’ s one thing to observe in the large that the bazaarstyle greatly acceleratesdebugging and codeevolution.
It’s anotherto understandexactly how andwhy it doesso at the micro-level of day-to-daydeveloperandtester
behavior. In this section(written threeyearsafter the original paper, using insightsby developerswho readit
andre-examinedtheir own behavior) we’ll take a hardlook at theactualmechanisms.Non-technicallyinclined
readerscansafelyskip to thenext section.

Onekey to understandingis to realizeexactlywhy it is thatthekindof bugreportnon–source-awareusersnormally
turn in tendsnot to beveryuseful.Non–source-awareuserstendto reportonly surfacesymptoms;they take their
environmentfor granted,so they (a) omit critical backgrounddata,and(b) seldomincludea reliablerecipefor
reproducingthebug.

Theunderlyingproblemhereis amismatchbetweenthetester’sandthedeveloper’smentalmodelsof theprogram;
the tester, on the outsidelooking in, andthe developeron the insidelooking out. In closed-sourcedevelopment
they’rebothstuckin theseroles,andtendto talk pasteachotherandfind eachotherdeeplyfrustrating.

Open-sourcedevelopmentbreaksthis bind, making it far easierfor testerand developerto develop a shared
representationgroundedin the actualsourcecodeandto communicateeffectively aboutit. Practically, thereis
a hugedifferencein leveragefor thedeveloperbetweenthekind of bug reportthat just reportsexternally-visible
symptomsand the kind that hooksdirectly to the developer’s source-code–basedmentalrepresentationof the
program.

Most bugs,mostof the time, areeasilynailedgivenevenan incompletebut suggestive characterizationof their
errorconditionsat source-codelevel. Whensomeoneamongyour beta-testerscanpoint out, "there’s a boundary
problemin line nnn", or even just "underconditionsX, Y, andZ, this variablerolls over", a quick look at the
offendingcodeoftensufficesto pin down theexactmodeof failureandgeneratea fix.

Thus,source-codeawarenessby bothpartiesgreatlyenhancesbothgoodcommunicationandthesynergy between
whata beta-testerreportsandwhatthecoredeveloper(s)know. In turn, this meansthatthecoredevelopers’time
tendsto bewell conserved,evenwith many collaborators.

Anothercharacteristicof the open-sourcemethodthat conservesdevelopertime is the communicationstructure
of typical open-sourceprojects. Above I usedthe term "core developer"; this reflectsa distinctionbetweenthe
projectcore(typically quitesmall;a singlecoredeveloperis common,andoneto threeis typical) andtheproject
haloof beta-testersandavailablecontributors(whichoftennumbersin thehundreds).

Thefundamentalproblemthattraditionalsoftware-developmentorganizationaddressesis Brook’sLaw: “Adding
moreprogrammersto a late projectmakesit later.” More generally, Brooks’s Law predictsthat the complexity
andcommunicationcostsof aprojectrisewith thesquareof thenumberof developers,while work doneonly rises
linearly.

Brooks’s Law is foundedon experiencethatbugstendstronglyto clusterat the interfacesbetweencodewritten
by differentpeople,andthat communications/coordinationoverheadon a projecttendsto rise with the number
of interfacesbetweenhumanbeings. Thus,problemsscalewith the numberof communicationspathsbetween
developers,which scalesas the squareof the humberof developers(moreprecisely, accordingto the formula
N*(N - 1)/2 whereN is thenumberof developers).

10

The Brooks’s Law analysis(and the resultingfear of large numbersin developmentgroups)restson a hidden
assummption:that the communicationsstructureof the project is necessarilya completegraph,that everybody
talks to everybodyelse. But on open-sourceprojects,the halo developerswork on what arein effect separable
parallelsubtasksandinteractwith eachothervery little; codechangesandbug reportsstreamthroughthe core
group,andonly withinwithin thatsmallcoregroupdo we paythefull Brooksianoverhead.[SU]

Therearearestill morereasonsthatsource-code–levelbugreportingtendsto beveryefficient. They centeraround
thefactthatasingleerrorcanoftenhavemultiplepossiblesymptoms,manifestingdifferentlydependingondetails
of theuser’s usagepatternandenvironment.Sucherrorstendto beexactly thesort of complex andsubtlebugs
(suchasdynamic-memory-managementerrorsor nondeterministicinterrupt-window artifacts)thatarehardestto
reproduceatwill or to pindownby staticanalysis,andwhichdothemostto createlong-termproblemsin software.

A testerwho sendsin a tentative source-code–level characterizationof sucha multi-symptombug (e.g. "It looks
to melike there’s a window in thesignalhandlingnearline 1250"or "Whereareyou zeroingthatbuffer?") may
give a developer, otherwisetoo closeto the codeto seeit, the critical clue to a half-dozendisparatesymptoms.
In caseslike this, it maybehardor even impossibleto know which externally-visiblemisbehaviour wascaused
by preciselywhich bug—but with frequentreleases,it’s unnecessaryto know. Othercollaboratorswill be likely
to find out quickly whethertheir bug hasbeenfixed or not. In many cases,source-level bug reportswill cause
misbehavioursto dropoutwithout everhaving beenattributedto any specificfix.

Complex multi-symptomerrorsalsotendto have multiple tracepathsfrom surfacesymptomsbackto theactual
bug. Which of the tracepathsa given developeror testercanchasemay dependon subtletiesof that person’s
environment,andmaywell changein a not obviously deterministicway over time. In effect, eachdeveloperand
testersamplesa semi-randomsetof theprogram’sstatespacewhenlooking for theetiologyof a symptom.The
moresubtleandcomplex thebug,thelesslikely thatskill will beableto guaranteetherelevanceof thatsample.

Forsimpleandeasilyreproduciblebugs,then,theaccentwill beonthe"semi"ratherthanthe"random";debugging
skill andintimacy with the codeandits architecturewill mattera lot. But for complex bugs,the accentwill be
on the"random".Underthesecircumstancesmany peoplerunningtraceswill bemuchmoreeffective thana few
peoplerunningtracessequentially—evenif thefew havea muchhigheraverageskill level.

This effect will be greatlyamplified if the difficulty of following tracepathsfrom differentsurfacesymptoms
backto a bugvariessignificantlyin away thatcan’t bepredictedby lookingat thesymptoms.A singledeveloper
samplingthosepathssequentiallywill beaslikely to pick a difficult tracepathon thefirst try asaneasyone.On
theotherhand,supposemany peoplearetrying tracepathsin parallelwhile doingrapidreleases.Thenit is likely
oneof themwill find theeasiestpathimmediately, andnail thebugin amuchshortertime. Theprojectmaintainer
will seethat,shipa new release,andtheotherpeoplerunningtraceson thesamebug will beableto stopbefore
having spenttoo muchtime on theirmoredifficult traces[RJ].

When Is a Rose Not a Rose?
Having studiedLinus’sbehavior andformeda theoryaboutwhy it wassuccessful,I madeaconsciousdecisionto
testthis theoryonmy new (admittedlymuchlesscomplex andambitious)project.

But thefirst thing I did wasreorganizeandsimplify popclienta lot. CarlHarris’s implementationwasverysound,
but exhibiteda kind of unnecessarycomplexity commonto many C programmers.He treatedthecodeascentral

11

andthe datastructuresassupportfor the code. As a result,thecodewasbeautifulbut the datastructuredesign
ad-hocandratherugly (at leastby thehigh standardsof this veteranLISP hacker).

I hadanotherpurposefor rewriting besidesimproving thecodeandthedatastructuredesign,however. Thatwas
to evolve it into somethingI understoodcompletely. It’sno fun to beresponsiblefor fixing bugsin aprogramyou
don’t understand.

For thefirst monthor so,then,I wassimply following out theimplicationsof Carl’sbasicdesign.Thefirst serious
changeI madewasto addIMAP support.I did this by reorganizingtheprotocolmachinesinto a genericdriver
andthreemethodtables(for POP2,POP3,andIMAP). Thisandthepreviouschangesillustrateageneralprinciple
that’s good for programmersto keepin mind, especiallyin languageslike C that don’t naturally do dynamic
typing:

9. Smart data struc-
tures and dumb code
works a lot betterthan
theotherwayaround.

Brooks, Chapter9: “Show me your flowchart and concealyour tables,and I shall continueto be mystified.
Show me your tables,and I won’t usuallyneedyour flowchart; it’ ll be obvious.” Allowing for thirty yearsof
terminological/culturalshift, it’s thesamepoint.

At thispoint (earlySeptember1996,aboutsix weeksfrom zero)I startedthinking thatanamechangemightbein
order—afterall, it wasn’t just aPOPclientany more.But I hesitated,becausetherewasasyetnothinggenuinely
new in thedesign.My versionof popclienthadyet to developanidentity of its own.

Thatchanged,radically, whenpopclientlearnedhow to forwardfetchedmail to theSMTPport. I’ ll get to thatin
a moment.But first: I saidearlierthat I’ d decidedto usethis projectto testmy theoryaboutwhatLinusTorvalds
haddoneright. How (youmaywell ask)did I do that?In theseways:

• I releasedearlyandoften(almostnever lessoftenthanevery tendays;duringperiodsof intensedevelopment,
oncea day).

• I grew my betalist by addingto it everyonewho contactedmeaboutfetchmail.

• I sentchattyannouncementsto thebetalist whenever I released,encouragingpeopleto participate.

• And I listenedto my beta-testers,polling themaboutdesigndecisionsandstrokingthemwhenever they sent
in patchesandfeedback.

12

Thepayoff from thesesimplemeasureswasimmediate.Fromthebeginningof theproject,I got bug reportsof a
quality mostdeveloperswould kill for, oftenwith goodfixesattached.I got thoughtfulcriticism, I got fanmail, I
got intelligentfeaturesuggestions.Which leadsto:

10. If you treat your
beta-testers as if
they’re your most
valuable resource,
they will respondby
becoming your most
valuableresource.

Oneinterestingmeasureof fetchmail’s successis thesheersizeof theprojectbetalist, fetchmail-friends.At the
timeof latestrevisionof this paper(November2000)it has287membersandis addingtwo or threea week.

Actually, whenI revisedin lateMay 1997I foundthe list wasbeginningto losemembersfrom its high of close
to 300for aninterestingreason.Severalpeoplehaveaskedmeto unsubscribethembecausefetchmailis working
sowell for themthat they no longerneedto seethe list traffic! Perhapsthis is partof thenormallife-cycle of a
maturebazaar-styleproject.

Popclient becomes Fetchmail
The real turning point in the projectwaswhenHarry Hochheisersentme his scratchcodefor forwardingmail
to the client machine’s SMTPport. I realizedalmostimmediatelythata reliableimplementationof this feature
wouldmakeall theothermail deliverymodesnext to obsolete.

For many weeksI hadbeentweakingfetchmailratherincrementallywhile feeling like the interfacedesignwas
serviceablebut grubby—inelegantandwith toomany exiguousoptionshangingoutall over. Theoptionsto dump
fetchedmail to amailboxfile or standardoutputparticularlybotheredme,but I couldn’t figureout why.

(If youdon’t careaboutthetechnicaliaof Internetmail, thenext two paragraphscanbesafelyskipped.)

What I saw whenI thoughtaboutSMTP forwardingwasthat popclienthadbeentrying to do too many things.
It hadbeendesignedto be both a mail transportagent(MTA) anda local delivery agent(MDA). With SMTP
forwarding,it couldgetoutof theMDA businessandbeapureMTA, handingoff mail to otherprogramsfor local
delivery just assendmaildoes.

Why messwith all thecomplexity of configuringamail deliveryagentor settinguplock-and-appendonamailbox
whenport 25 is almostguaranteedto bethereon any platformwith TCP/IPsupportin thefirst place?Especially
whenthismeansretrievedmail is guaranteedto look likenormalsender-initiatedSMTPmail, whichis reallywhat
we wantanyway.

(Backto a higherlevel....)

Evenif youdidn’t follow theprecedingtechnicaljargon,thereareseveralimportantlessonshere.First,thisSMTP-
forwardingconceptwasthe biggestsinglepayoff I got from consciouslytrying to emulateLinus’s methods.A
usergavemethis terrific idea—allI hadto do wasunderstandtheimplications.

13

11. Thenext bestthing
to having good ideas
is recognizing good
ideasfrom your users.
Sometimesthelatteris
better.

Interestinglyenough,you will quickly find that if you arecompletelyandself-deprecatinglytruthful abouthow
muchyouoweotherpeople,theworld at largewill treatyouasthoughyoudid everybit of theinventionyourself
andarejustbeingbecominglymodestaboutyour innategenius.We canall seehow well this workedfor Linus!

(WhenI gave my talk at the first Perl Conferencein August1997,hacker extraordinaireLarry Wall wasin the
front row. As I got to thelastline abovehecalledout, religious-revival style,“Tell it, tell it, brother!”. Thewhole
audiencelaughed,becausethey knew thishadworkedfor theinventorof Perl,too.)

After a very few weeksof runningthe projectin the samespirit, I beganto get similar praisenot just from my
usersbut from otherpeopleto whomtheword leakedout. I stashedaway someof thatemail; I’ ll look at it again
sometimeif I everstartwonderingwhethermy life hasbeenworthwhile:-).

But therearetwo morefundamental,non-politicallessonsherethataregeneralto all kindsof design.

12. Often, the most
striking andinnovative
solutions come from
realizing that your
conceptof theproblem
waswrong.

I hadbeentrying to solve thewrongproblemby continuingto developpopclientasa combinedMTA/MDA with
all kindsof funky local delivery modes.Fetchmail’s designneededto berethoughtfrom thegroundup asa pure
MTA, a partof thenormalSMTP-speakingInternetmail path.

Whenyouhit awall in development—whenyoufind yourselfhardput to think pastthenext patch—it’softentime
to asknot whetheryou’vegot theright answer, but whetheryou’reaskingtheright question.Perhapstheproblem
needsto bereframed.

Well, I hadreframedmy problem.Clearly, theright thing to do was(1) hackSMTPforwardingsupportinto the
genericdriver, (2) make it thedefaultmode,and(3) eventuallythrow out all theotherdelivery modes,especially
thedeliver-to-file anddeliver-to-standard-outputoptions.

I hesitatedoverstep3 for sometime,fearingto upsetlong-timepopclientusersdependentonthealternatedelivery
mechanisms.In theory, they could immediatelyswitch to .forward files or their non-sendmailequivalentsto
getthesameeffects.In practicethetransitionmight havebeenmessy.

But whenI did it, the benefitsprovedhuge. The cruftiestpartsof the driver codevanished.Configurationgot
radically simpler—nomoregrovelling aroundfor the systemMDA anduser’s mailbox, no moreworriesabout
whethertheunderlyingOSsupportsfile locking.

14

Also, the only way to losemail vanished.If you specifieddelivery to a file andthe disk got full, your mail got
lost. This can’t happenwith SMTPforwardingbecauseyour SMTPlistenerwon’t returnOK unlessthemessage
canbedeliveredor at leastspooledfor laterdelivery.

Also, performanceimproved(thoughnot soyou’d noticeit in a singlerun). Anothernot insignificantbenefitof
this changewasthatthemanualpagegot a lot simpler.

Later, I hadto bring delivery via a user-specifiedlocal MDA back in order to allow handlingof someobscure
situationsinvolving dynamicSLIP. But I founda muchsimplerway to do it.

Themoral?Don’t hesitateto throw awaysuperannuatedfeatureswhenyoucando it without lossof effectiveness.
AntoinedeSaint-Exupéry(who wasanaviator andaircraftdesignerwhenhewasn’t authoringclassicchildren’s
books)said:

13. “Perfection(in de-
sign) is achieved not
when there is nothing
moreto add,but rather
when there is nothing
moreto takeaway.”

Whenyour codeis gettingbothbetterandsimpler, that is whenyou knowknowit’s right. And in theprocess,the
fetchmaildesignacquiredanidentityof its own, differentfrom theancestralpopclient.

It wastimefor thenamechange.Thenew designlookedmuchmorelikeadualof sendmailthantheold popclient
had; both areMTAs, but wheresendmailpushesthendelivers, the new popclientpulls thendelivers. So, two
monthsoff theblocks,I renamedit fetchmail.

Thereis amoregenerallessonin thisstoryabouthow SMTPdeliverycameto fetchmail.It is notonly debugging
that is parallelizable;developmentand (to a perhapssurprisingextent) exploration of designspaceis, too.
When your developmentmode is rapidly iterative, developmentand enhancementmay becomespecialcases
of debugging—fixing‘bugsof omission’in theoriginal capabilitiesor conceptof thesoftware.

Evenatahigherlevel of design,it canbeveryvaluableto have lotsof co-developersrandom-walkingthroughthe
designspacenearyourproduct.Considerthewayapuddleof waterfindsadrain,or betteryethow antsfind food:
explorationessentiallyby diffusion,followedby exploitationmediatedby a scalablecommunicationmechanism.
This worksvery well; aswith Harry Hochheiserandme,oneof your outridersmaywell find a hugewin nearby
thatyou werejusta little too close-focusedto see.

Fetchmail Grows Up
ThereI waswith a neatandinnovative design,codethat I knew workedwell becauseI usedit every day, anda
burgeoningbetalist. It graduallydawnedonmethatI wasno longerengagedin a trivial personalhackthatmight
happento beusefulto few otherpeople.I hadmy handson a programthatevery hacker with a Unix box anda
SLIP/PPPmail connectionreally needs.

15

With the SMTP forwarding feature,it pulled far enoughin front of the competitionto potentially becomea
“categorykiller”, oneof thoseclassicprogramsthatfills its nichesocompetentlythatthealternativesarenot just
discardedbut almostforgotten.

I think youcan’t reallyaimor planfor a resultlike this. Youhaveto getpulledinto it by designideassopowerful
thatafterwardtheresultsjustseeminevitable,natural,evenforeordained.Theonly wayto try for ideaslikethatis
by having lots of ideas—orby having theengineeringjudgmentto take otherpeoples’goodideasbeyondwhere
theoriginatorsthoughtthey couldgo.

Andy Tanenbaumhadtheoriginal ideato build a simplenative Unix for IBM PCs,for useasa teachingtool (he
calledit Minix). LinusTorvaldspushedtheMinix conceptfurtherthanAndrew probablythoughtit couldgo—and
it grew into somethingwonderful. In thesameway (thoughon a smallerscale),I took someideasby Carl Harris
andHarry Hochheiserandpushedthemhard. Neitherof us was‘original’ in the romanticway peoplethink is
genius.But then,mostscienceandengineeringandsoftwaredevelopmentisn’t doneby original genius,hacker
mythologyto thecontrary.

Theresultswereprettyheadystuff all thesame—infact,just thekind of successeveryhacker livesfor! And they
meantI wouldhaveto setmy standardsevenhigher. To makefetchmailasgoodasI now saw it couldbe,I’ d have
to write not just for my own needs,but alsoincludeandsupportfeaturesnecessaryto othersbut outsidemy orbit.
And do thatwhile keepingtheprogramsimpleandrobust.

Thefirst andoverwhelminglymostimportantfeatureI wroteafterrealizingthiswasmultidropsupport—theability
to fetchmail from mailboxesthathadaccumulatedall mail for agroupof users,andthenrouteeachpieceof mail
to its individual recipients.

I decidedto add the multidrop supportpartly becausesomeuserswereclamoringfor it, but mostly becauseI
thoughtit would shake bugsout of thesingle-dropcodeby forcing meto dealwith addressingin full generality.
And so it proved. Getting RFC 822 [http://info.internet.isi.edu:80/in-notes/rfc/files/rfc822.txt] addressparsing
right took mea remarkablylong time,not becauseany individualpieceof it is hardbut becauseit involveda pile
of interdependentandfussydetails.

But multidropaddressingturnedout to beanexcellentdesigndecisionaswell. Here’show I knew:

14. Any tool shouldbe
useful in the expected
way, but a truly great
tool lendsitself to uses
youneverexpected.

Theunexpectedusefor multidropfetchmailis to runmailing lists with thelist kept,andaliasexpansiondone,on
theclientclientsideof theInternetconnection.This meanssomeonerunninga personalmachinethroughanISP
accountcanmanagea mailing list without continuingaccessto theISP’saliasfiles.

Anotherimportantchangedemandedby my beta-testerswassupportfor 8-bit MIME (MultipurposeInternetMail
Extensions)operation.Thiswasprettyeasyto do,becauseI hadbeencarefulto keepthecode8-bit clean(thatis,
to not pressthe8th bit, unusedin theASCII characterset,into serviceto carry informationwithin theprogram).
Not becauseI anticipatedthedemandfor this feature,but ratherin obedienceto anotherrule:

16

15. When writing
gateway software
of any kind, take
pains to disturb the
data stream as little
as possible—and
nevernever throw
away information
unless the recipient
forcesyou to!

HadI not obeyedthis rule,8-bit MIME supportwould have beendifficult andbuggy. As it was,all I hadto do is
readtheMIME standard(RFC1652[http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1652.txt]) andaddatrivial
bit of header-generationlogic.

SomeEuropeanusersbuggedme into addingan option to limit the numberof messagesretrieved per session
(sothey cancontrolcostsfrom their expensive phonenetworks). I resistedthis for a long time, andI’m still not
entirely happy aboutit. But if you’re writing for the world, you have to listen to your customers—thisdoesn’t
changejust becausethey’renotpayingyou in money.

A Few More Lessons from Fetchmail
Before we go back to generalsoftware-engineeringissues,thereare a couplemore specificlessonsfrom the
fetchmailexperienceto ponder. Nontechnicalreaderscansafelyskip this section.

Therc (control)file syntaxincludesoptional‘noise’ keywordsthatareentirelyignoredby theparser. TheEnglish-
like syntaxthey allow is considerablymorereadablethanthetraditionaltersekeyword-valuepairsyou getwhen
youstrip themall out.

Thesestartedout asa late-nightexperimentwhenI noticedhow muchtherc file declarationswerebeginningto
resemblean imperative minilanguage.(This is alsowhy I changedthe original popclient“server” keyword to
“poll”).

It seemedto methat trying to make that imperative minilanguagemorelike Englishmight make it easierto use.
Now, althoughI’m a convincedpartisanof the “make it a language”schoolof designasexemplifiedby Emacs
andHTML andmany databaseengines,I amnotnormallya big fanof “English-like” syntaxes.

Traditionallyprogrammershave tendedto favor control syntaxesthatarevery preciseandcompactandhave no
redundancy at all. This is a cultural legacy from whencomputingresourceswereexpensive, so parsingstages
hadto beascheapandsimpleaspossible.English,with about50%redundancy, lookedlike a very inappropriate
modelthen.

This is not my reasonfor normally avoiding English-like syntaxes; I mentionit hereonly to demolishit. With
cheapcyclesandcore,tersenessshouldnotbeanendin itself. Nowadaysit’smoreimportantfor a languageto be
convenientfor humansthanto becheapfor thecomputer.

17

Thereremain,however, goodreasonsto bewary. Oneis thecomplexity costof theparsingstage—youdon’t want
to raisethatto thepoint whereit’s a significantsourceof bugsanduserconfusionin itself. Anotheris thattrying
to makea languagesyntaxEnglish-likeoftendemandsthatthe“English” it speaksbebentseriouslyoutof shape,
somuchsothatthesuperficialresemblanceto naturallanguageis asconfusingasa traditionalsyntaxwould have
been.(Youseethisbadeffect in a lot of so-called“fourth generation”andcommercialdatabase-querylanguages.)

Thefetchmailcontrolsyntaxseemsto avoid theseproblemsbecausethelanguagedomainis extremelyrestricted.
It’s nowhereneara general-purposelanguage;thethingsit sayssimply arenot very complicated,sothere’s little
potentialfor confusionin moving mentallybetweena tiny subsetof Englishandthe actualcontrol language.I
think theremaybea broaderlessonhere:

16. When your
language is nowhere
near Turing-complete,
syntacticsugarcan be
your friend.

Another lessonis aboutsecurityby obscurity. Somefetchmailusersasked me to changethe softwareto store
passwordsencryptedin therc file, sosnooperswouldn’t beableto casuallyseethem.

I didn’t do it, becausethis doesn’t actuallyaddprotection.Anyonewho’s acquiredpermissionsto readyour rc
file will beableto run fetchmailasyou anyway—andif it’s your password they’reafter, they’d beableto rip the
necessarydecoderout of thefetchmailcodeitself to getit.

All .fetchmailrc password encryptionwould havedoneis givea falsesenseof securityto peoplewho don’t
think veryhard.Thegeneralrule hereis:

17. A security sys-
tem is only as secure
asits secret.Bewareof
pseudo-secrets.

Necessary Preconditions for the Bazaar Style
Early reviewers and test audiencesfor this essayconsistentlyraised questionsabout the preconditionsfor
successfulbazaar-styledevelopment,includingboth thequalificationsof theprojectleaderandthestateof code
at thetimeonegoespublicandstartsto try to build a co-developercommunity.

It’s fairly clearthatonecannotcodefrom thegroundup in bazaarstyle[IN]. Onecantest,debug andimprove in
bazaarstyle,but it would bevery hardto originateoriginatea projectin bazaarmode.Linusdidn’t try it. I didn’t
either. Yournascentdevelopercommunityneedsto havesomethingrunnableandtestableto playwith.

Whenyoustartcommunity-building,whatyouneedto beableto presentis aplausiblepromiseplausiblepromise.
Yourprogramdoesn’t haveto work particularlywell. It canbecrude,buggy, incomplete,andpoorlydocumented.
Whatit mustnotfail to dois (a)run,and(b) convincepotentialco-developersthatit canbeevolvedinto something
really neatin theforeseeablefuture.

18

Linux andfetchmailbothwentpublicwith strong,attractivebasicdesigns.Many peoplethinkingaboutthebazaar
modelasI havepresentedit havecorrectlyconsideredthis critical, thenjumpedfrom thatto theconclusionthata
highdegreeof designintuition andclevernessin theprojectleaderis indispensable.

But Linusgothisdesignfrom Unix. I gotmineinitially from theancestralpopclient(thoughit would laterchange
a greatdeal,muchmoreproportionatelyspeakingthanhasLinux). Sodoesthe leader/coordinatorfor a bazaar-
styleeffort really have to have exceptionaldesigntalent,or canhegetby throughleveragingthedesigntalentof
others?

I think it is notcritical thatthecoordinatorbeableto originatedesignsof exceptionalbrilliance,but it is absolutely
critical that thecoordinatorbeableto recognizegooddesignideasfromothersrecognizegooddesignideasfrom
others.

Both the Linux and fetchmail projectsshow evidenceof this. Linus, while not (as previously discussed)a
spectacularlyoriginal designer, hasdisplayeda powerful knack for recognizinggooddesignand integrating it
into theLinux kernel.And I havealreadydescribedhow thesinglemostpowerful designideain fetchmail(SMTP
forwarding)camefrom somebodyelse.

Early audiencesof this essaycomplimentedmeby suggestingthatI amproneto undervaluedesignoriginality in
bazaarprojectsbecauseI havea lot of it myself,andthereforetake it for granted.Theremaybesometruth to this;
design(asopposedto codingor debugging)is certainlymy strongestskill.

But theproblemwith beingcleverandoriginal in softwaredesignis thatit getsto beahabit—youstartreflexively
makingthingscuteandcomplicatedwhenyou shouldbe keepingthemrobust andsimple. I have hadprojects
crashon mebecauseI madethis mistake,but I managedto avoid this with fetchmail.

SoI believe thefetchmailprojectsucceededpartly becauseI restrainedmy tendency to beclever; this argues(at
least)againstdesignoriginality beingessentialfor successfulbazaarprojects.And considerLinux. SupposeLinus
Torvaldshadbeentrying to pull off fundamentalinnovationsin operatingsystemdesignduringthedevelopment;
doesit seemat all likely thattheresultingkernelwouldbeasstableandsuccessfulaswhatwehave?

A certainbaselevel of designand coding skill is required,of course,but I expect almostanybody seriously
thinkingof launchingabazaareffort will alreadybeabovethatminimum.Theopen-sourcecommunity’s internal
market in reputationexertssubtlepressureon peoplenot to launchdevelopmentefforts they’re not competentto
follow throughon. Sofar thisseemsto haveworkedprettywell.

Thereis anotherkind of skill not normallyassociatedwith softwaredevelopmentwhich I think is asimportantas
designclevernessto bazaarprojects—andit maybemoreimportant.A bazaarprojectcoordinatoror leadermust
havegoodpeopleandcommunicationsskills.

This shouldbeobvious. In orderto build a developmentcommunity, you needto attractpeople,interestthemin
whatyou’redoing,andkeepthemhappy abouttheamountof work they’redoing. Technicalsizzlewill go a long
way towardsaccomplishingthis,but it’s far from thewholestory. Thepersonalityyouprojectmatters,too.

It is not a coincidencethat Linus is a nice guy who makespeoplelike him andwant to help him. It’s not a
coincidencethatI’m anenergeticextrovertwhoenjoysworkingacrowd andhassomeof thedeliveryandinstincts
of a stand-upcomic. To make the bazaarmodelwork, it helpsenormouslyif you have at leasta little skill at
charmingpeople.

19

The Social Context of Open-Source Software
It is truly written: the besthacksstartout aspersonalsolutionsto the author’s everydayproblems,andspread
becausetheproblemturnsout to betypical for a largeclassof users.This takesusbackto thematterof rule 1,
restatedin a perhapsmoreusefulway:

18. To solve an
interesting problem,
start by finding
a problem that is
interestingto you.

Soit waswith CarlHarrisandtheancestralpopclient,andsowith meandfetchmail.But thishasbeenunderstood
for a long time. The interestingpoint, the point that the historiesof Linux andfetchmailseemto demandwe
focuson,is thenext stage—theevolutionof softwarein thepresenceof a largeandactivecommunityof usersand
co-developers.

In TheMythicalMan-Month, FredBrooksobservedthatprogrammertime is not fungible;addingdevelopersto a
latesoftwareprojectmakesit later. As we’ve seenpreviously, hearguedthatthecomplexity andcommunication
costsof a projectrisewith thesquareof thenumberof developers,while work doneonly riseslinearly. Brooks’s
Law hasbeenwidely regardedasa truism. But we’ve examinedin this essayan numberof waysin which the
processof open-sourcedevelopmentfalsifiestheassumptionmsbehindit—and,empirically, if Brooks’sLaw were
thewholepictureLinux would beimpossible.

GeraldWeinberg’s classicThePsychology of ComputerProgrammingsuppliedwhat, in hindsight,we cansee
asa vital correctionto Brooks. In his discussionof “egolessprogramming”,Weinberg observed that in shops
wheredevelopersarenot territorial abouttheir code,andencourageotherpeopleto look for bugsandpotential
improvementsin it, improvementhappensdramaticallyfasterthanelsewhere. (Recently, Kent Beck’s ‘extreme
programming’techniqueof deploying codersin pairslooking over oneanothers’shouldersmight beseenasan
attemptto forcethis effect.)

Weinberg’s choice of terminology has perhapsprevented his analysis from gaining the acceptanceit de-
served—onehasto smile at the thoughtof describingInternethackersas“egoless”. But I think his argument
looksmorecompellingtodaythanever.

The bazaarmethod,by harnessingthe full power of the “egolessprogramming”effect, strongly mitigatesthe
effectof Brooks’sLaw. TheprinciplebehindBrooks’sLaw is not repealed,but givenalargedeveloperpopulation
andcheapcommunicationsits effectscanbeswampedby competingnonlinearitiesthatarenot otherwisevisible.
This resemblestherelationshipbetweenNewtonianandEinsteinianphysics—theoldersystemis still valid at low
energies,but if you pushmassandvelocityhighenoughyougetsurpriseslikenuclearexplosionsor Linux.

The history of Unix should have preparedus for what we’re learning from Linux (and what I’ ve verified
experimentallyonasmallerscalebydeliberatelycopyingLinus’smethods[EGCS]).Thatis,while codingremains
anessentiallysolitaryactivity, thereallygreathackscomefrom harnessingtheattentionandbrainpowerof entire
communities. The developerwho usesonly his or her own brain in a closedproject is going to fall behind
the developerwho knows how to createan open,evolutionarycontext in which feedbackexploring the design

20

space,codecontributions,bug-spotting,andotherimprovementscomefrom from hundreds(perhapsthousands)
of people.

But thetraditionalUnix world waspreventedfrom pushingthis approachto theultimateby several factors.One
wasthe legal contraintsof variouslicenses,tradesecrets,andcommercialinterests.Another(in hindsight)was
thattheInternetwasn’t yetgoodenough.

Before cheapInternet, there were somegeographicallycompactcommunitieswhere the culture encouraged
Weinberg’s “egoless” programming,and a developer could easily attract a lot of skilled kibitzers and co-
developers. Bell Labs, the MIT AI andLCS labs, UC Berkeley—thesebecamethe homeof innovationsthat
arelegendaryandstill potent.

Linux wasthe first projectfor which a consciousandsuccessfuleffort to usethe entireworldworld asits talent
pool wasmade.I don’t think it’s a coincidencethat thegestationperiodof Linux coincidedwith thebirth of the
World Wide Web,andthatLinux left its infancy duringthesameperiodin 1993–1994thatsaw thetakeoff of the
ISPindustryandtheexplosionof mainstreaminterestin theInternet.Linuswasthefirst personwho learnedhow
to play by thenew rulesthatpervasive Internetaccessmadepossible.

While cheapInternetwas a necessarycondition for the Linux model to evolve, I think it was not by itself a
sufficientcondition.Anothervital factorwasthedevelopmentof a leadershipstyleandsetof cooperativecustoms
thatcouldallow developersto attractco-developersandgetmaximumleverageout of themedium.

But whatis this leadershipstyleandwhatarethesecustoms?They cannotbebasedon power relationships—and
even if they could be, leadershipby coercionwould not producethe resultswe see. Weinberg quotesthe
autobiographyof the 19th-centuryRussiananarchistPyotr Alexeyvich Kropotkin’s Memoirs of a Revolutionist
to goodeffecton thissubject:

Having been brought
up in a serf-owner’s
family, I entered
active life, like all
young men of my
time, with a great
deal of confidence
in the necessity
of commanding,
ordering, scolding,
punishing and the
like. But when, at
an early stage, I had
to manage serious
enterprisesandto deal
with [free] men, and
when each mistake
would lead at onceto
heavy consequences,
I began to appreciate

21

thedifferencebetween
actingon the principle
of command and
discipline and
acting on the
principle of common
understanding.
The former works
admirablyin amilitary
parade,but it is worth
nothingwherereal life
is concerned,and the
aim can be achieved
only through the
severe effort of many
convergingwills.

The“severeeffort of many convergingwills” is preciselywhataprojectlikeLinux requires—andthe“principle of
command”is effectively impossibleto applyamongvolunteersin theanarchist’sparadisewecall theInternet.To
operateandcompeteeffectively, hackerswho want to lead collaborative projectshave to learnhow to recruit
and energize effective communitiesof interest in the mode vaguely suggestedby Kropotkin’s “principle of
understanding”.They mustlearnto useLinus’sLaw.[SP]

Earlier I referredto the“Delphi effect” asa possibleexplanationfor Linus’s Law. But morepowerful analogies
to adaptive systemsin biology andeconomicsalso irresistablysuggestthemselves. The Linux world behaves
in many respectslike a free market or an ecology, a collectionof selfishagentsattemptingto maximizeutility
which in theprocessproducesa self-correctingspontaneousordermoreelaborateandefficient thanany amount
of centralplanningcouldhaveachieved.Here,then,is theplaceto seekthe“principle of understanding”.

The“utility function” Linux hackersaremaximizingis notclassicallyeconomic,but is theintangibleof theirown
ego satisfactionandreputationamongotherhackers. (Onemaycall their motivation“altruistic”, but this ignores
the fact that altruismis itself a form of ego satisfactionfor the altruist). Voluntaryculturesthat work this way
arenot actuallyuncommon;oneotherin which I have long participatedis sciencefiction fandom,which unlike
hackerdomhaslongexplicitly recognized“egoboo”(ego-boosting,or theenhancementof one’sreputationamong
otherfans)asthebasicdrivebehindvolunteeractivity.

Linus, by successfullypositioninghimself as the gatekeeperof a project in which the developmentis mostly
doneby others,andnurturinginterestin theprojectuntil it becameself-sustaining,hasshown anacutegraspof
Kropotkin’s “principle of sharedunderstanding”.This quasi-economicview of theLinux world enablesusto see
how thatunderstandingis applied.

We may view Linus’s methodasa way to createanefficient market in “egoboo”—toconnectthe selfishnessof
individualhackersasfirmly aspossibleto difficult endsthatcanonly beachievedby sustainedcooperation.With
thefetchmailprojectI haveshown (albeitonasmallerscale)thathismethodscanbeduplicatedwith goodresults.
PerhapsI haveevendoneit abit moreconsciouslyandsystematicallythanhe.

22

Many people(especiallythosewhopolitically distrustfreemarkets)wouldexpectacultureof self-directedegoists
to be fragmented,territorial, wasteful, secretive, and hostile. But this expectationis clearly falsified by (to
give just oneexample)the stunningvariety, quality, anddepthof Linux documentation.It is a hallowed given
that programmershatehatedocumenting;how is it, then,that Linux hackersgenerateso muchdocumentation?
Evidently Linux’s free market in egoboo works better to producevirtuous, other-directedbehavior than the
massively-fundeddocumentationshopsof commercialsoftwareproducers.

Both thefetchmailandLinux kernelprojectsshow thatby properlyrewardingtheegosof many otherhackers,a
strongdeveloper/coordinatorcanusethe Internetto capturethe benefitsof having lots of co-developerswithout
having a projectcollapseinto achaoticmess.Soto Brooks’sLaw I counter-proposethefollowing:

19: Provided
the development
coordinator has a
communications
medium at least as
good as the Internet,
and knows how to
lead without coercion,
many heads are
inevitably better than
one.

I think thefutureof open-sourcesoftwarewill increasinglybelongto peoplewhoknow how to playLinus’sgame,
peoplewho leave behindthe cathedraland embracethe bazaar. This is not to say that individual vision and
brilliancewill no longermatter;rather, I think thatthecuttingedgeof open-sourcesoftwarewill belongto people
who start from individual vision andbrilliance, thenamplify it throughthe effective constructionof voluntary
communitiesof interest.

Perhapsthis is not only the future of open-sourceopen-sourcesoftware. No closed-sourcedevelopercanmatch
the pool of talentthe Linux communitycanbring to bearon a problem. Very few couldafford even to hire the
morethan200(1999:600,2000:800)peoplewho havecontributedto fetchmail!

Perhapsin the end the open-sourceculture will triumph not becausecooperationis morally right or software
“hoarding” is morally wrong(assumingyou believe thelatter, which neitherLinus nor I do), but simply because
theclosed-sourceworld cannotwin anevolutionaryarmsracewith open-sourcecommunitiesthatcanput orders
of magnitudemoreskilled time into a problem.

On Management and the Maginot Line
TheoriginalCathedral andBazaarpaperof 1997endedwith thevisionabove—thatof happy networkedhordesof
programmer/anarchistsoutcompetingandoverwhelmingthehierarchicalworld of conventionalclosedsoftware.

A goodmany skepticsweren’t convinced,however;andthequestionsthey raisedeservea fair engagement.Most
of the objectionsto the bazaarargumentcomedown to the claim that its proponentshave underestimatedthe
productivity-multiplying effectof conventionalmanagement.

23

Traditionally-mindedsoftware-developmentmanagersoftenobjectthat thecasualnesswith which projectgroups
form andchangeanddissolve in the open-sourceworld negatesa significantpart of the apparentadvantageof
numbersthat theopen-sourcecommunityhasover any singleclosed-sourcedeveloper. They would observe that
in software developmentit is really sustainedeffort over time and the degreeto which customerscan expect
continuinginvestmentin theproductthatmatters,not justhow many peoplehavethrown abonein thepotandleft
it to simmer.

Thereis somethingto thisargument,to besure;in fact,I havedevelopedtheideathatexpectedfutureservicevalue
is the key to the economicsof softwareproductionin the essay TheMagic Cauldron [http://www.tuxedo.org/-
~esr/writings/magic-cauldron/].

But this argumentalsohasamajorhiddenproblem;its implicit assumptionthatopen-sourcedevelopmentcannot
deliver suchsustainedeffort. In fact, therehave beenopen-sourceprojectsthatmaintaineda coherentdirection
andaneffective maintainercommunityover quite long periodsof time without thekindsof incentive structures
or institutional controls that conventionalmanagementfinds essential. The developmentof the GNU Emacs
editoris anextremeandinstructiveexample;it hasabsorbedtheefforts of hundredsof contributorsover15 years
into a unified architecturalvision, despitehigh turnover andthe fact that only oneperson(its author)hasbeen
continuouslyactiveduringall thattime. No closed-sourceeditorhasevermatchedthis longevity record.

This suggestsa reasonfor questioningthe advantagesof conventionally-managedsoftwaredevelopmentthat is
independentof the rest of the argumentsover cathedralvs. bazaarmode. If it’s possiblefor GNU Emacsto
expressaconsistentarchitecturalvisionover15years,or for anoperatingsystemlikeLinux to dothesameover8
yearsof rapidly changinghardwareandplatformtechnology;andif (asis indeedthecase)therehave beenmany
well-architectedopen-sourceprojectsof more than5 yearsduration-- thenwe areentitled to wonderwhat, if
anything, thetremendousoverheadof conventionally-manageddevelopmentis actuallybuyingus.

Whatever it is certainly doesn’t include reliable executionby deadline,or on budget,or to all featuresof the
specification;it’s a rare‘managed’projectthatmeetsevenoneof thesegoals,let aloneall three.It alsodoesnot
appearto beability to adaptto changesin technologyandeconomiccontext duringtheprojectlifetime, either;the
open-sourcecommunityhasprovenfarfar moreeffectiveon thatscore(asonecanreadilyverify, for example,by
comparingthe30-yearhistoryof theInternetwith theshorthalf-livesof proprietarynetworking technologies—or
the costof the 16-bit to 32-bit transitionin Microsoft Windows with the nearlyeffortlessupward migrationof
Linux duringthesameperiod,notonly alongtheIntel line of developmentbut to morethanadozenotherhardware
platforms,includingthe64-bitAlpha aswell).

Onething many peoplethink the traditionalmodebuys you is somebodyto hold legally liable andpotentially
recovercompensationfrom if theprojectgoeswrong.But this is anillusion; mostsoftwarelicensesarewritten to
disclaimevenwarrantyof merchantability, let aloneperformance—andcasesof successfulrecovery for software
nonperformancearevanishinglyrare.Evenif they werecommon,feelingcomfortedby having somebodyto sue
wouldbemissingthepoint. You didn’t wantto bein a lawsuit; you wantedworking software.

Sowhatis all thatmanagementoverheadbuying?

In order to understandthat, we needto understandwhat software developmentmanagersbelieve they do. A
womanI know who seemsto beverygoodat this job sayssoftwareprojectmanagementhasfive functions:

• To definegoalsdefinegoalsandkeepeverybodypointedin thesamedirection

24

• To monitormonitorandmakesurecrucialdetailsdon’t getskipped

• To motivatemotivatepeopleto do boringbut necessarydrudgework

• To organizeorganizethedeploymentof peoplefor bestproductivity

• To marshalresourcesmarshalresourcesneededto sustaintheproject

Apparentlyworthygoals,all of these;but undertheopen-sourcemodel,andin its surroundingsocialcontext, they
canbegin to seemstrangelyirrelevant.We’ll take themin reverseorder.

My friend reportsthat a lot of resource marshallingresourcemarshalling is basicallydefensive; onceyou have
yourpeopleandmachinesandofficespace,youhaveto defendthemfrom peermanagerscompetingfor thesame
resources,andfrom higher-upstrying to allocatethemostefficientuseof a limited pool.

But open-sourcedevelopersarevolunteers,self-selectedfor both interestandability to contributeto theprojects
they work on (andthis remainsgenerallytrueevenwhenthey arebeingpaida salaryto hackopensource.)The
volunteerethostendsto take careof the ‘attack’ sideof resource-marshallingautomatically;peoplebring their
own resourcesto thetable.And thereis little or noneedfor amanagerto ‘play defense’in theconventionalsense.

Anyway, in a world of cheapPCsandfastInternetlinks, we find prettyconsistentlythat theonly really limiting
resourceis skilled attention. Open-sourceprojects,when they founder, essentiallynever do so for want of
machinesor links or officespace;they dieonly whenthedevelopersthemselvesloseinterest.

Thatbeingthe case,it’s doubly importantthatopen-sourcehackersorganizethemselvesorganizethemselvesfor
maximumproductivity by self-selection—andthe social milieu selectsruthlesslyfor competence.My friend,
familiarwith boththeopen-sourceworld andlargeclosedprojects,believesthatopensourcehasbeensuccessful
partly becauseits cultureonly acceptsthe most talented5% or so of the programmingpopulation. Shespends
mostof her time organizingthe deploymentof the other95%,andhasthusobservedfirst-handthe well-known
varianceof a factorof onehundredin productivity betweenthemostableprogrammersandthemerelycompetent.

The sizeof that variancehasalwaysraisedan awkward question:would individual projects,andthe field asa
whole,be betteroff without morethan50% of the leastablein it? Thoughtfulmanagershave understoodfor a
long time thatif conventionalsoftwaremanagement’sonly functionwereto convert theleastablefrom a netloss
to a marginalwin, thegamemightnot beworth thecandle.

Thesuccessof theopen-sourcecommunitysharpensthis questionconsiderably, by providing hardevidencethat
it is often cheaperandmoreeffective to recruit self-selectedvolunteersfrom the Internetthan it is to manage
buildingsfull of peoplewho would ratherbedoingsomethingelse.

Which brings us neatly to the questionof motivationmotivation. An equivalent and often-heardway to state
my friend’s point is that traditionaldevelopmentmanagementis a necessarycompensationfor poorly motivated
programmerswho would nototherwiseturn outgoodwork.

Thisanswerusuallytravelswith aclaimthattheopen-sourcecommunitycanonly bereliedononly to dowork that
is ‘sexy’ or technicallysweet;anything elsewill be left undone(or doneonly poorly) unlessit’s churnedout by
money-motivatedcubiclepeonswith managerscrackingwhipsover them.I addressthepsychologicalandsocial

25

reasonsfor being skeptical of this claim in Homesteadingthe Noosphere [http://www.tuxedo.org/~esr/magic-
cauldron/].For presentpurposes,however, I think it’s moreinterestingto point out theimplicationsof accepting
it astrue.

If the conventional,closed-source,heavily-managedstyle of softwaredevelopmentis really defendedonly by
a sort of Maginot Line of problemsconducive to boredom,thenit’s going to remainviable in eachindividual
applicationareafor only solongasnobodyfindsthoseproblemsreally interestingandnobodyelsefindsany way
to routearoundthem. Becausethe momentthereis open-sourcecompetitionfor a ‘boring’ pieceof software,
customersaregoingto know thatit wasfinally tackledby someonewho chosethatproblemto solvebecauseof a
fascinationwith theproblemitself—which,in softwareasin otherkindsof creative work, is a far moreeffective
motivatorthanmoney alone.

Having a conventionalmanagementstructuresolely in orderto motivate,then,is probablygoodtacticsbut bad
strategy; a short-termwin, but in thelongerterma surerloss.

So far, conventionaldevelopmentmanagementlooks like a bad bet now againstopensourceon two points
(resourcemarshalling,organization),and like it’s living on borrowed time with respectto a third (motivation).
And thepoorbeleagueredconventionalmanageris not going to getany succourfrom themonitoringmonitoring
issue;the strongestargumentthe open-sourcecommunityhasis that decentralizedpeerreview trumpsall the
conventionalmethodsfor trying to ensurethatdetailsdon’t getslipped.

Can we save defininggoalsdefininggoals as a justification for the overheadof conventionalsoftware project
management?Perhaps;but to doso,we’ll needgoodreasonto believethatmanagementcommitteesandcorporate
roadmapsaremoresuccessfulatdefiningworthyandwidely sharedgoalsthantheprojectleadersandtribal elders
who fill theanalogousrole in theopen-sourceworld.

That is on thefaceof it a prettyhardcaseto make. And it’s not somuchtheopen-sourcesideof thebalance(the
longevity of Emacs,or LinusTorvalds’sability to mobilizehordesof developerswith talk of “world domination”)
thatmakesit tough.Rather, it’s thedemonstratedawfulnessof conventionalmechanismsfor definingthegoalsof
softwareprojects.

Oneof thebest-known folk theoremsof softwareengineeringis that60%to 75%of conventionalsoftwareprojects
eitherarenever completedor arerejectedby their intendedusers.If that rangeis anywhereneartrue (andI’ ve
nevermeta managerof any experiencewho disputesit) thenmoreprojectsthannot arebeingaimedat goalsthat
areeither(a)not realisticallyattainable,or (b) justplain wrong.

This, more than any other problem, is the reasonthat in today’s software engineeringworld the very phrase
“managementcommittee”is likely to sendchills down the hearer’s spine—even (or perhapsespecially)if the
heareris a manager. Thedayswhenonly programmersgripedaboutthis patternarelong past;Dilbert cartoons
hangoverexecutives’executives’desksnow.

Our reply, then,to the traditionalsoftwaredevelopmentmanager, is simple—if the open-sourcecommunityhas
really underestimatedthevalueof conventionalmanagement,whydo somanyof youdisplaycontemptfor your
ownprocess?whydo somanyof youdisplaycontemptfor yourownprocess?

Onceagainthe exampleof the open-sourcecommunitysharpensthis questionconsiderably—becausewe have
funfundoingwhatwedo. Ourcreativeplayhasbeenrackinguptechnical,market-share,andmind-sharesuccesses
atanastoundingrate.We’reproving notonly thatwecandobettersoftware,but thatjoy is anassetjoyis anasset.

26

Two anda half yearsafter thefirst versionof this essay, the mostradicalthoughtI canoffer to closewith is no
longeravisionof anopen-source–dominatedsoftwareworld; that,afterall, looksplausibleto alot of soberpeople
in suitsthesedays.

Rather, I wantto suggestwhatmaybea wider lessonaboutsoftware,(andprobablyaboutevery kind of creative
or professionalwork). Human beingsgenerally take pleasurein a task when it falls in a sort of optimal-
challengezone;not soeasyasto beboring,not too hardto achieve. A happy programmeris onewho is neither
underutilizednor weigheddown with ill-formulated goalsand stressfulprocessfriction. Enjoymentpredicts
efficiency.Enjoymentpredictsefficiency.

Relatingto yourown work processwith fearandloathing(evenin thedisplaced,ironic waysuggestedby hanging
up Dilbert cartoons)shouldthereforebe regardedin itself asa sign that theprocesshasfailed. Joy, humor, and
playfulnessareindeedassets;it wasnot mainly for thealliterationthatI wroteof "happy hordes"above,andit is
no merejoke thattheLinux mascotis a cuddly, neotenouspenguin.

It maywell turnout thatoneof themostimportanteffectsof opensource’ssuccesswill beto teachusthatplay is
themosteconomicallyefficientmodeof creativework.

Epilog: Netscape Embraces the Bazaar
It’ sastrangefeelingto realizeyou’rehelpingmakehistory....

On January22 1998, approximatelyseven months after I first publishedThe Cathedral and the Bazaar,
NetscapeCommunications,Inc. announcedplansto give away thesourcefor NetscapeCommunicator[http://-
www.netscape.com/newsref/pr/newsrelease558.html]. I hadhadno cluethis wasgoingto happenbeforetheday
of theannouncement.

Eric Hahn,executive vice presidentandchief technologyofficer at Netscape,emailedme shortly afterwardsas
follows: “On behalfof everyoneat Netscape,I wantto thankyou for helpingusgetto this point in thefirst place.
Your thinking andwritings werefundamentalinspirationsto ourdecision.”

Thefollowing weekI flew out to Silicon Valley at Netscape’s invitation for a day-longstrategy conference(on 4
Feb1998)with someof their topexecutivesandtechnicalpeople.WedesignedNetscape’ssource-releasestrategy
andlicensetogether.

A few dayslaterI wrotethefollowing:

Netscape is about
to provide us with
a large-scale, real-
world test of the
bazaar model in the
commercial world.
The open-source
culture now faces a
danger; if Netscape’s
execution doesn’t

27

work, the open-source
concept may be so
discredited that the
commercial world
won’t touch it again
for anotherdecade.

On theotherhand,this
is also a spectacular
opportunity. Initial
reaction to the move
on Wall Street and
elsewhere has been
cautiously positive.
We’re being given
a chance to prove
ourselves, too. If
Netscape regains
substantial market
share through this
move, it just may set
off a long-overdue
revolution in the
softwareindustry.

The next year should
be a very instructive
andinterestingtime.

And indeedit was. As I write in mid-2000,the developmentof what was later namedMozilla hasbeenonly
a qualifiedsuccess.It achievedNetscape’s original goal,which wasto deny Microsoft a monopolylock on the
browsermarket. It hasalsoachievedsomedramaticsuccesses(notablythereleaseof thenext-generationGecko
renderingengine).

However, it hasnot yet garneredthemassivedevelopmenteffort from outsideNetscapethattheMozilla founders
hadoriginally hopedfor. Theproblemhereseemsto bethatfor a longtimetheMozilla distributionactuallybroke
oneof the basicrulesof the bazaarmodel; it didn’t ship with somethingpotentialcontributorscould easilyrun
andseeworking. (Until morethana yearafter release,building Mozilla from sourcerequireda licensefor the
proprietaryMotif library.)

Most negatively (from thepoint of view of theoutsideworld) theMozilla groupdidn’t shipa production-quality
browserfor two anda half yearsafter the project launch—andin 1999oneof the project’s principalscauseda
bit of a sensationby resigning,complainingof poor managementandmissedopportunities.“Open source,” he
correctlyobserved,“is not magicpixie dust.”

And indeedit is not. Thelong-termprognosisfor Mozilla looksdramaticallybetternow (in November2000)than
it did at the time of JamieZawinski’s resignationletter—in the last few weeksthe nightly releaseshave finally

28

passedthe critical thresholdto productionusability. But Jamiewasright to point out that going openwill not
necessarilysave an existing project that suffers from ill-defined goalsor spaghetticodeor any of the software
engineering’sotherchronicills. Mozilla hasmanagedto provide anexamplesimultaneouslyof how opensource
cansucceedandhow it couldfail.

In the meantime, however, the open-sourceideahasscoredsuccessesandfound backerselsewhere. Sincethe
Netscapereleasewe’ve seena tremendousexplosionof interestin the open-sourcedevelopmentmodel,a trend
bothdrivenby anddriving thecontinuingsuccessof theLinux operatingsystem.ThetrendMozilla touchedoff
is continuingat anacceleratingrate.

Notes
[JB] In ProgramingPearls, thenotedcomputer-scienceaphoristJonBentley commentson Brooks’sobservation
with “If you plan to throw oneaway, you will throw away two.”. He is almostcertainly right. The point of
Brooks’sobservation,andBentley’s,isn’t merelythatyoushouldexpectfirst attemptto bewrong,it’s thatstarting
overwith theright ideais usuallymoreeffective thantrying to salvageamess.

[QR][QR] Examplesof successfulopen-source,bazaardevelopmentpredatingthe Internetexplosionandunre-
latedto theUnix andInternettraditionshave existed.Thedevelopmentof theinfo-Zip [http://www.cdrom.com/-
pub/infozip/] compressionutility during 1990–x1992,primarily for DOS machines,was one such example.
AnotherwastheRBBSbulletin boardsystem(againfor DOS),which beganin 1983anddevelopeda sufficiently
strongcommunity that therehave beenfairly regular releasesup to the present(mid-1999)despitethe huge
technicaladvantagesof Internetmail and file-sharingover local BBSs. While the info-Zip communityrelied
to someextent on Internetmail, the RBBS developerculture was actually able to basea substantialon-line
communityon RBBSthatwascompletelyindependentof theTCP/IPinfrastructure.

[CV][CV] Thattransparency andpeerreview arevaluablefor tamingthecomplexity of OSdevelopmentturnsout,
afterall, not to bea new concept.In 1965,very early in thehistoryof time-sharingoperatingsystems,Corbató
andVyssotsky, co-designersof theMultics operatingsystem,wrote[http://www.multicians.org/fjcc1.html]

It is expected that
the Multics system
will be published
when it is operating
substantially... Such
publicationisdesirable
for two reasons:
First, the system
should withstand
public scrutiny and
criticism volunteered
by interestedreaders;
second, in an age of
increasingcomplexity,
it is an obligation to
present and future

29

system designers
to make the inner
operating system as
lucid as possible so
as to reveal the basic
systemissues.

[JH][JH] JohnHaslerhassuggestedaninterestingexplanationfor thefactthatduplicationof effort doesn’t seem
to bea netdragon open-sourcedevelopment.He proposeswhatI’ ll dub“Hasler’s Law”: thecostsof duplicated
work tend to scalesub-qadraticallywith teamsize—thatis, more slowly than the planningand management
overheadthatwouldbeneededto eliminatethem.

This claim actuallydoesnot contradictBrooks’s Law. It may be the casethat total complexity overheadand
vulnerability to bugsscaleswith the squareof teamsize,but that the costsfrom duplicatedduplicatedwork are
neverthelessaspecialcasethatscalesmoreslowly. It’snothardto developplausiblereasonsfor this,startingwith
theundoubtedfactthatit is mucheasierto agreeon functionalboundariesbetweendifferentdevelopers’codethat
will prevent duplicationof effort thanit is to prevent the kinds of unplannedbadinteractionsacrossthe whole
systemthatunderlymostbugs.

Thecombinationof Linus’s Law andHasler’s Law suggeststhat thereareactuallythreecritical sizeregimesin
softwareprojects.Onsmallprojects(I wouldsayoneto atmostthreedevelopers)no managementstructuremore
elaboratethanpickingaleadprogrammeris needed.And thereis someintermediaterangeabovethatin whichthe
costof traditionalmanagementis relatively low, soits benefitsfrom avoiding duplicationof effort, bug-tracking,
andpushingto seethatdetailsarenot overlookedactuallynetout positive.

Above that,however, thecombinationof Linus’sLaw andHasler’s Law suggeststhereis a large-projectrangein
which thecostsandproblemsof traditionalmanagementrisemuchfasterthantheexpectedcostfrom duplication
of effort. Not the leastof thesecostsis a structuralinability to harnessthe many-eyeballseffect, which (as
we’ve seen)seemsto do a muchbetterjob thantraditionalmanagementat makingsurebugsanddetailsarenot
overlooked. Thus, in the large-projectcase,the combinationof theselaws effectively drivesthe net payoff of
traditionalmanagementto zero.

[HBS][HBS] The split betweenLinux’s experimentaland stableversionshasanotherfunction relatedto, but
distinct from, hedgingrisk. Thesplit attacksanotherproblem: thedeadlinessof deadlines.Whenprogrammers
are held both to an immutablefeaturelist anda fixed drop-deaddate,quality goesout the window and there
is likely a colossalmessin the making. I am indebtedto Marco Iansiti andAlan MacCormackof the Harvard
BusinessSchoolfor showing me meevidencethat relaxingeitheroneof theseconstraintscanmake scheduling
workable.

Oneway to do this is to fix the deadlinebut leave the featurelist flexible, allowing featuresto drop off if not
completedby deadline.This is essentiallythestrategy of the"stable"kernelbranch;Alan Cox (thestable-kernel
maintainer)putsout releasesat fairly regular intervals,but makesno guaranteesaboutwhenparticularbugswill
befixedor whatfeatureswill beback-portedfrom theexperimentalbranch.

The otherway to do this is to seta desiredfeaturelist anddeliver only whenit is done. This is essentiallythe
strategy of the "experimental"kernelbranch. De Marco andLister cited researchshowing that this scheduling

30

policy ("wakemeupwhenit’sdone")producesnotonly thehighestqualitybut, onaverage,shorterdeliverytimes
thaneither"realistic"or "aggressive" scheduling.

I have cometo suspect(as of early 2000) that in earlier versionsof this essayI severely underestimatedthe
importanceof the"wakemeupwhenit’sdone"anti-deadlinepolicy to theopen-sourcecommunity’sproductivity
andquality. Generalexperiencewith therushedGNOME1.0releasein 1999suggeststhatpressurefor apremature
releasecanneutralizemany of thequality benefitsopensourcenormallyconfers.

It maywell turnout to bethattheprocesstransparency of opensourceis oneof threeco-equaldriversof its quality,
alongwith "wakemeup whenit’s done"schedulinganddeveloperself-selection.

[SU][SU] It’ s tempting, and not entirely inaccurate,to seethe core-plus-haloorganizationcharacteristicof
open-sourceprojectsasan Internet-enabledspin on Brooks’s own recommendationfor solving the N-squared
complexity problem, the "surgical-team"organization—but the differencesare significant. The constellation
of specialistrolessuchas "codelibrarian" that Brooksenvisionedaroundthe teamleaderdoesn’t really exist;
thoserolesareexecutedinsteadby generalistsaidedby toolsetsquitea bit morepowerful thanthoseof Brooks’s
day. Also, theopen-sourcecultureleansheavily on strongUnix traditionsof modularity, APIs, andinformation
hiding—noneof which wereelementsof Brooks’sprescription.

[RJ][RJ] Therespondentwho pointedout to metheeffect of widely varyingtracepathlengthson thedifficulty
of characterizinga bug speculatedthat trace-pathdifficulty for multiple symptomsof the samebug varies
"exponentially" (which I take to meanon a Gaussianor Poissondistribution, andagreeseemsvery plausible).
If it is experimentallypossibleto geta handleon theshapeof this distribution, thatwould beextremelyvaluable
data. Largedeparturesfrom a flat equal-probabilitydistribution of tracedifficulty would suggestthatevensolo
developersshouldemulatethebazaarstrategy by boundingthetimethey spendontracingagivensymptombefore
they switchto another. Persistencemaynot alwaysbeavirtue...

[IN][IN] An issuerelatedto whetheronecanstartprojectsfrom zeroin the bazaarstyle is whetherthe bazaar
style is capableof supportingtruly innovative work. Someclaim that, lackingstrongleadership,thebazaarcan
only handlethecloningandimprovementof ideasalreadypresentat theengineeringstateof theart,but is unable
to pushthe stateof the art. This argumentwasperhapsmost infamouslymadeby the HalloweenDocuments
[http://www.opensource.org/halloween/], two embarrassinginternalMicrosoftmemorandawrittenabouttheopen-
sourcephenomenon.The authorscomparedLinux’s developmentof a Unix-like operatingsystemto “chasing
taillights”, andopined“(oncea projecthasachieved"parity" with thestate-of-the-art),the level of management
necessaryto pushtowardsnew frontiersbecomesmassive.”

Thereareseriouserrorsof factimpliedin thisargument.Oneis exposedwhentheHalloweenauthorsthemseselves
later observe that “often [...] new researchideasarefirst implementedandavailableon Linux beforethey are
available/ incorporatedinto otherplatforms.”

If we read“open source”for “Linux”, we seethat this is far from a new phenomenon.Historically, the open-
sourcecommunitydid not invent Emacsor the World Wide Web or the Internetitself by chasingtaillights or
beingmassively managed—andin the present,thereis so muchinnovative work going on in opensourcethat
oneis spoiledfor choice.TheGNOME project(to pick oneof many) is pushingthestateof theart in GUIs and
objecttechnologyhardenoughto have attractedconsiderablenoticein thecomputertradepresswell outsidethe
Linux community. Otherexamplesarelegion,asavisit to Freshmeat[http://freshmeat.net/]onany givendaywill
quickly prove.

31

But thereis a morefundamentalerror in theimplicit assumptionthat thecathedral modelcathedral model(or the
bazaarmodel,or any otherkind of managementstructure)cansomehow make innovationhappenreliably. This
is nonsense.Gangsdon’t have breakthroughinsights—even volunteergroupsof bazaaranarchistsareusually
incapableof genuineoriginality, let alonecorporatecommitteesof peoplewith asurvival stake in somestatusquo
ante.Insightcomesfromindividuals.Insightcomesfromindividuals.Themosttheirsurroundingsocialmachinery
caneverhopeto do is to beresponsiveresponsiveto breakthroughinsights—tonourishandrewardandrigorously
testtheminsteadof squashingthem.

Somewill characterizethis as a romanticview, a reversionto outmodedlone-inventorstereotypes.Not so; I
am not assertingthat groupsare incapableof developingdevelopingbreakthroughinsightsoncethey have been
hatched;indeed,we learnfrom thepeer-review processthatsuchdevelopmentgroupsareessentialto producing
a high-quality result. RatherI am pointing out that every suchgroupdevelopmentstartsfrom—is necessarily
sparkedby—onegoodideain oneperson’shead.Cathedralsandbazaarsandothersocialstructurescancatchthat
lightning andrefineit, but they cannotmake it on demand.

Thereforetherootproblemof innovation(in software,or anywhereelse)is indeedhow notto squashit—but, even
morefundamentally, it is howto grow lots of peoplewhocanhaveinsightsin thefirst placehowto grow lots of
peoplewhocanhaveinsightsin thefirstplace.

To supposethatcathedral-styledevelopmentcouldmanagethis trick but thelow entrybarriersandprocessfluidity
of thebazaarcannotwould beabsurd.If what it takesis onepersonwith onegoodidea,thena socialmilieu in
which onepersoncanrapidly attractthe cooperationof hundredsor thousandsof otherswith that goodideais
goinginevitably to out-innovateany in whichthepersonhasto doapolitical salesjob to ahierarchybeforehecan
work onhis ideawithout risk of gettingfired.

And, indeed,if we look at the history of software innovation by organizationsusing the cathedralmodel, we
quickly find it is ratherrare. Large corporationsrely on university researchfor new ideas(thusthe Halloween
Documentsauthors’uneaseaboutLinux’s facility at cooptingthatresearchmorerapidly). Or they buy out small
companiesbuilt aroundsomeinnovator’s brain. In neithercaseis the innovationnative to the cathedralculture;
indeed,many innovationssoimportedendup beingquietly suffocatedunderthe"massive level of management"
theHalloweenDocuments’authorssoextol.

That,however, is anegativepoint. Thereaderwouldbebetterservedbyapositiveone.I suggest,asanexperiment,
thefollowing:

• Pickacriterionfor originality thatyoubelieveyoucanapplyconsistently. If yourdefinitionis “I know it when
I seeit”, that’snot aproblemfor purposesof this test.

• Pick any closed-sourceoperatingsystemcompetingwith Linux, anda bestsourcefor accountsof current
developmentwork on it.

• WatchthatsourceandFreshmeatfor onemonth. Every day, countthenumberof releaseannouncementson
Freshmeatthat you consider‘original’ work. Apply the samedefinition of ‘original’ to announcementsfor
thatotherOSandcountthem.

• Thirty dayslater, total up bothfigures.

32

ThedayI wrotethis,Freshmeatcarriedtwenty-two releaseannouncements,of whichthreeappearthey mightpush
stateof theart in somerespect,This wasa slow dayfor Freshmeat,but I will beastonishedif any readerreports
asmany asthreelikely innovationsa monthamonthin any closed-sourcechannel.

[EGCS][EGCS]We now havehistoryona projectthat,in severalways,mayprovidea moreindicativetestof the
bazaarpremisethanfetchmail;EGCS[http://egcs.cygnus.com/],theExperimentalGNU CompilerSystem.

This projectwasannouncedin mid-Augustof 1997asa consciousattemptto apply the ideasin theearlypublic
versionsof The Cathedral and the Bazaar. The project foundersfelt that the developmentof GCC, the Gnu
C Compiler, hadbeenstagnating.For abouttwenty monthsafterwards,GCC andEGCScontinuedasparallel
products—bothdrawing from the sameInternetdeveloperpopulation,bothstartingfrom the sameGCC source
base,bothusingprettymuchthesameUnix toolsetsanddevelopmentenvironment.Theprojectsdifferedonly in
thatEGCSconsciouslytried to apply thebazaartacticsI have previously described,while GCCretaineda more
cathedral-likeorganizationwith acloseddevelopergroupandinfrequentreleases.

This wasaboutascloseto a controlledexperimentasonecould askfor, andthe resultsweredramatic. Within
months,the EGCSversionshad pulled substantiallyaheadin features;betteroptimization,bettersupportfor
FORTRAN andC++. Many peoplefound the EGCSdevelopmentsnapshotsto be morereliablethanthe most
recentstableversionof GCC,andmajorLinux distributionsbeganto switchto EGCS.

In April of 1999, the Free Software Foundation(the official sponsorsof GCC) dissolved the original GCC
developmentgroupandofficially handedcontrolof theprojectto thetheEGCSsteeringteam.

[SP][SP] Of course,Kropotkin’scritiqueandLinus’sLaw raisesomewider issuesaboutthecyberneticsof social
organizations.Anotherfolk theoremof softwareengineeringsuggestsoneof them;Conway’s Law—commonly
statedas“If you have four groupsworking on a compiler, you’ll geta 4-passcompiler”. Theoriginal statement
wasmoregeneral:“Organizationswhich designsystemsareconstrainedto producedesignswhich arecopiesof
thecommunicationstructuresof theseorganizations.” We might put it moresuccinctlyas“The meansdetermine
theends”,or even“Processbecomesproduct”.

It is accordinglyworth noting that in the open-sourcecommunityorganizationalform and function matchon
many levels. The network is everythingandeverywhere:not just the Internet,but the peopledoing the work
form a distributed,looselycoupled,peer-to-peernetwork that providesmultiple redundancy anddegradesvery
gracefully. In bothnetworks,eachnodeis importantonly to theextentthatothernodeswantto cooperatewith it.

Thepeer-to-peerpartis essentialto thecommunity’sastonishingproductivity. Thepoint Kropotkin wastrying to
makeaboutpowerrelationshipsis developedfurtherby the‘SNAFU Principle’: “Truecommunicationis possible
only betweenequals,becauseinferiors are more consistentlyrewardedfor telling their superiorspleasantlies
thanfor telling the truth.” Creative teamwork utterly dependson truecommunicationandis thusvery seriously
hinderedby the presenceof power relationships.The open-sourcecommunity, effectively free of suchpower
relationships,is teachingusby contrasthow dreadfullymuchthey cost in bugs,in loweredproductivity, andin
lost opportunities.

Further, theSNAFU principlepredictsin authoritarianorganizationsa progressive disconnectbetweendecision-
makersandreality, asmoreandmoreof theinput to thosewhodecidetendsto becomepleasantlies. Theway this
playsout in conventionalsoftwaredevelopmentis easyto see;therearestrongincentivesfor theinferiorsto hide,
ignore,andminimizeproblems.Whenthis processbecomesproduct,softwareis a disaster.

33

Bibliography
I quotedseveralbits from FrederickP. Brooks’s classicTheMythical Man-Monthbecause,in many respects,his
insightshaveyet to beimprovedupon.I heartilyrecommendthe25thAnniversaryeditionfrom Addison-Wesley
(ISBN 0-201-83595-9), whichaddshis 1986“No SilverBullet” paper.

Thenew editionis wrappedup by aninvaluable20-years-laterretrospective in which Brooksforthrightly admits
to the few judgementsin the original text which have not stoodthe testof time. I first readthe retrospective
after thefirst public versionof this essaywassubstantiallycomplete,andwassurprisedto discover thatBrooks
attributedbazaar-likepracticesto Microsoft! (In fact,however, this attribution turnedout to bemistaken. In 1998
we learnedfrom the HalloweenDocuments[http://www.opensource.org/halloween/] that Microsoft’s internal
developercommunityis heavily balkanized,with the kind of generalsourceaccessneededto supporta bazaar
not eventruly possible.)

GeraldM. Weinberg’s The Psychology Of ComputerProgramming(New York, Van NostrandReinhold1971)
introducedthe ratherunfortunately-labeledconceptof “egolessprogramming”.While he wasnowherenearthe
first personto realizethefutility of the“principle of command”,hewasprobablythefirst to recognizeandargue
thepoint in particularconnectionwith softwaredevelopment.

RichardP. Gabriel,contemplatingtheUnix cultureof thepre-Linuxera,reluctantlyarguedfor thesuperiorityof
a primitive bazaar-like modelin his 1989paper“LISP: GoodNews,BadNews, andHow To Win Big”. Though
datedin somerespects,this essayis still rightly celebratedamongLISP fans(including me). A correspondent
remindedme that the sectiontitled “WorseIs Better” readsalmostasan anticipationof Linux. The paperis
accessibleon theWorld WideWebathttp://www.naggum.no/worse-is-better.html.

De Marco andLister’s Peopleware: ProductiveProjectsand Teams(New York; DorsetHouse,1987; ISBN 0-
932633-05-6)is an underappreciatedgem which I was delightedto seeFred Brooks cite in his retrospective.
While little of what theauthorshave to sayis directly applicableto the Linux or open-sourcecommunities,the
authors’insight into theconditionsnecessaryfor creative work is acuteandworthwhilefor anyoneattemptingto
import someof thebazaarmodel’svirtuesinto a commercialcontext.

Finally, I mustadmit that I very nearlycalled this essay“The Cathedralandthe Agora”, the latter term being
theGreekfor anopenmarket or public meetingplace.Theseminal“agoric systems”papersby Mark Miller and
Eric Drexler, by describingthe emergentpropertiesof market-like computationalecologies,helpedprepareme
to think clearlyaboutanalogousphenomenain theopen-sourceculturewhenLinux rubbedmy nosein themfive
yearslater. Thesepapersareavailableon theWebathttp://www.agorics.com/agorpapers.html.

Acknowledgements
Thisessaywasimprovedby conversationswith alargenumberof peoplewhohelpeddebugit. Particularthanksto
Jeff Dutky <dutky@wam.umd.edu>, whosuggestedthe“debuggingis parallelizable”formulation,andhelped
developthe analysisthatproceedsfrom it. Also to Nancy Lebovitz <nancyl@universe.digex.net> for
hersuggestionthatI emulateWeinberg by quotingKropotkin. Perceptivecriticismsalsocamefrom JoanEslinger
<wombat@kilimanjaro.engr.sgi.com> andMarty Franz<marty@net-link.net> of the General
Technicslist. Glen Vandenburg <glv@vanderburg.org> pointeedout the importanceof self-selectionin
contributorpopulationsandsuggestedthefruitful ideathatmuchdevelopmentrectifies‘bugsof omission’;Daniel

34

Upper<upper@peak.org> suggestedthenaturalanalogiesfor this. I’m gratefulto themembersof PLUG,the
PhiladelphiaLinux User’sgroup,for providing thefirst testaudiencefor thefirst publicversionof thisessay. Paula
Matuszek<matusp00@mh.us.sbphrd.com> enlightenedme aboutthe practiceof softwaremanagement.
Phil Hudson<phil.hudson@iname.com> remindedme that the socialorganizationof the hacker culture
mirrors the organizationof its software,andvice-versa. JohnBuck <johnbuck@sea.ece.umassd.edu>
pointedout that MATLAB makesan instructive parallel to Emacs. RussellJohnston<russjj@mail.com>
broughtmeto consciousnessaboutsomeof themechanismsdiscussedin “How Many EyeballsTameComplexity.”
Finally, LinusTorvalds’scommentswerehelpful andhisearlyendorsementveryencouraging.

35

