
Secure Web Development Teaching Modules
1
 

 

 

Secure Web Transactions 

Contents 
 

 
1.1 SSL/TLS ................................................................................................................................... 1 
1.2 HTTPS ...................................................................................................................................... 2 
1.3 Site Security Indicators ............................................................................................................. 3 
1.4 OpenSSL ................................................................................................................................... 5 

2 Labs Objectives ............................................................................................................................. 5 
3 Lab Setup ...................................................................................................................................... 5 
4 Lab Guide ...................................................................................................................................... 5 

4.1 Web Browser Certificate Management ..................................................................................... 5 
4.1 Creating SSL Certificates Using OpenSSL ............................................................................... 6 
4.2 Configuring Apache2 with BadStore.net .................................................................................. 9 
4.3 Running a Secure Web Server ................................................................................................ 11 
4.4 Client SSL Handshakes ........................................................................................................... 12 

 

 

1. Concepts 

1.1 SSL/TLS 

Transport Layer Security (TLS)
2
 is a protocol for securing communications among applications over 

the Internet. TLS secures application layer contents, such as web communications, and is implemented 

using transport layer protocols, such as TCP. The protocol can provide confidentiality by encrypting the 

application data sent between a server and its clients and provide authentication of both the server and the 

clients. Secure Socket Layer (SSL) is the predecessor of TLS. 

SSL/TLS is often used together with HTTP, called HTTPS, for securing web transactions. The 

protocol can also be used with other applications, such as emails, file transfer or virtual private networks 

(VPN). When using SSL/TLS with IMAP and POP, users can authenticate the email server and encrypt 

the emails sent between the email server and their email software, such as Mozilla Thunderbird or 

Microsoft Outlook. However, in this case, the emails are only encrypted over the SSL/TLS channel. The 

emails are not encrypted when routed through the Internet unless other means of security measures are 

                                                      
1
 Copyright© 2009-2011 Li-Chiou Chen (lchen@pace.edu) & Lixin Tao (ltao@pace.edu), Pace University. 

This document is based upon work supported by the National Science Foundation’s Course Curriculum, and 

Laboratory Improvement (CCLI) program under Grant No. 0837549. Any opinions, findings, and conclusions or 

recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the 

National Science Foundation. Permission is granted to copy, distribute and/or modify this document under the terms 

of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software 

Foundation. A copy of the license is available at http://www.gnu.org/copyleft/fdl.html.  
2
 TLS 1.2 is the latest version, described in IETF RFC 2546 (http://tools.ietf.org/html/rfc5246).  

http://www.gnu.org/copyleft/fdl.html
http://tools.ietf.org/html/rfc5246


established, such as VPN connections over the infrastructure or PGP encryption over the email content. 

SSL/TLS can also be used together with FTP for secure file transfer, called FTPS
3
. FileZilla is an 

example of file transfer software that utilizes FTPS. SSL/TLS has also been applied to build VPN 

connections. CISCO’s AnyConnect VPN utilizes TLS and a modified TLS protocol called DTLS
4
 that 

utilizes TLS on top of UDP datagram.   

1.2 HTTPS 

HTTPS
5
 combines both HTTP and SSL/TLS protocols to provide secure communications between 

web servers and browsers. HTTPS operates at port 443 instead of the default port 80. It provides 

encryption of web contents and authentication of the web server. In other words, users will be able to 

authenticate web sites and encrypt the confidential information sent between their browsers and the web 

sites through the HTTPS protocol. HTTPS does not apply client authentication so that the web sites 

cannot authenticate users when they connect through HTTPS. The users must go through additional 

authentication methods, such as password checking, biometrics or a combination of various user 

authentication measures. 

SSL/TLS communications in HTTPS include two stages: handshaking and data sending. Prior to 

communications, web sites need to request a certificate authority (CA) to sign its digital certificate which 

contains the site’s public key. Users obtain the CA’s digital certificate, called root certificate, when they 

install their browser. Web browsers such as Internet Explorer or Firefox are installed with hundreds of 

root certificates from a wide range of companies, such as VeriSign or Entrust, acting as certificate 

authorities.  

As in Figure 1, once a user decides to connect to a web site through HTTPS connection, the web 

server sends its certificate containing its site public key. The user can then verify the web site’s digital 

certificate using the pre-installed root certificate from the web site’s CA.  

 
 

                                                      
3
 FTPS is described in IETF RFC 4217 (http://tools.ietf.org/html/rfs4217).  

4
 Modadugu, N., Rescorla, E., The Design and Implementation of Datagram TLS, Proceedings of NDSS 2004, 

February 2004. 
5
 HTTPS is described in IETF RFC 2818 (http://tools.ietf.org/html/rfc2818).  

 

CA: VeriSign 

Client: Alice’s 

browser 

Server: 

Amazon.com 

2: Install CA’s certificate (including 

CA’s public key) in Alice’s browser 

 

3: Connect amazon.com via HTTPS 

 5: Verify 

Amazon’s 

certificate using 

CA’s public key 

 
4: Exchange digital certificates 

including its public key 

1: VeriSign signs Amazon’s 

certificate using its public key  

 



Figure 1: SSL/TLS Handshaking in HTTPS 

 

 

The second stage of the SSL/TLS communication encrypts data sent between the server and the client 

based on cryptographic protocols negotiated between the two parties. As in Figure 2, once the site’s 

digital certificate is verified, the browser and the server start to negotiate cipher suite, cryptographic 

algorithms that can be used by both for encrypting data and verifying digital signatures. If a public key 

encryption method is chosen, the two parties encrypt information using each other’s public key and then 

decrypt the contents using its own private keys. To save communication time, usually public key 

encryption is used only for exchanging a session key (a temporary private key) that can be used for data 

encryption.  

 

 
 

Figure 2: SSL/TLS Data Sending in HTTPS  

 

1.3 Site Security Indicators 

Most web sites utilize HTTPS to conduct secure transactions with their customers to send sensitive 

information such as credit numbers, purchase records or personal information. For example, the login 

pages of most banking sites and the check-out pages of most e-commerce sites are implemented using 

HTTPS. Users can verify web sites by recognizing site security indicators. They are the indicators for 

verifying TLS/SSL connections over HTTPS on a web site. These indicators only are displayed when a 

TLS/SSL session is established between a browser and the web server. Figure 3 illustrates an example. 

The indicators included the following: 

 

 HTTPS heading in URL that indicates a HTTPS session is established. 

 SSL security padlock at the lower right corner of the browser following the domain name of the 

secure web server. The domain name should be the same as the one in the URL. By double-

clicking the padlock, users will be able to see the contents of the digital certificate for the web 

server. 

 Security seal which is an icon that links to the site’s certificate issuer, such as VeriSign or 

Entrust. Once users click on the security seal, they will be prompted with certificate information 

to verify the web site that displays the seal. A security seal is an additional indicator for users to 

authenticate the server although a TLS/SSL session can be verified by just the HTTPS heading 

and the SSL security padlock.  

Client: Alice’s 

browser 

Server: 

Amazon.com 

2: Send data encrypted in 

Amazon’s public key 

 

1: Negotiate cipher suite 

 

3: Send data encrypted in 

Alice’s public key 

 
4: Decrypt 

Amazon’s data 

using Alice’s 

public key 

 

5: Decrypt 

Alice’s data 

using Amazon’s 

public key 

 

 



 

Figure 3. SSL Security Indicators and Security Seal 

 

Digital certificate is a cryptographic method used in TLS/SSL to authenticate both parties of a 

communication. When a browser is connecting to a web server requesting a TLS/SSL session, the server 

sends the browser its digital certificate and the browser then verifies the certificate using the public key of 

the certificate issuer that has been pre-installed in the browser. If the certificate is accepted, the TLS/SSL 

session is established. A digital certificate contains information for site validation including:  

 Common name: It is the server domain name displayed in the certificate. Once a certificate is 

received, browsers compare the common name with the domain name in the URL. If they do not 

match, it is likely that the certificate is forged and a warning window would pop up to warn users 

of the potential risk. We conducted the same comparison.  

 Organization name: Each certificate displays the name of the organization that operates the 

server. The organization name usually is the same as the company name on the web site. 

However, there are a couple of reasons that the organization name could be different. First, the 

organization who registers for the certificate is the holding company. Second, companies may 

outsource its web services to a third party who operates the web server.  

 Cipher suite: the cryptographic method used to secure the transaction, which include the key size, 

the hash function used, the authentication and digital signature cipher and a symmetric key 

encryption method. Since a browser usually advertises several cipher suites, the web server picks 

the strongest one it can offer. In our survey, we advertised all cipher suites that are currently 

available so that we could know the strongest cipher suite that the banking web server adopts.  

SSL security 

padlock 

Security seal 

HTTPS heading 



 SSL version: the most current SSL version is TLSv1 although SSLv3 or SSLv2 are still used by 

some web servers. SSLv2 and SSLv3 have been proved to have several security vulnerabilities
6
. 

 Validity duration: the number of years that the digital certificate to be valid.   

 

1.4 OpenSSL 

OpenSSL
7
 is an open source library that provides cryptographic functionality to applications, such as 

web servers. It is maintained by a group of volunteers worldwide. The library includes programs for 

public keys creation, public key and private encryption, digital certificates creation and signing, and 

SSL/TLS communications. OpenSSL library can be complied under both Windows and Linux. We will 

utilize OpenSSL in our laboratory exercises to create and install a digital certificate for a unsecure web 

server. 

 

 

2 Labs Objectives 

From this lab, you will learn about 

 

 Setting Browser Security Policies 

 Generating a digital certificate using OpenSSL 

 Deploying a digital certificate on an Apache server 

 Signing and deploying a digital certificate 

 Observe SSL communications 

 

3 Lab Setup 

1. You will use the ubuntu 10 virtual machine for SWEET teaching modules. 

2. Extract the virtual machine from ubuntu10tm.exe. 

3. Under the folder ubuntu10tm, double click on ubuntu10tm.vmx to start the virtual machine.  

4. The username is “user” and the password is “123456”. 

 

4 Lab Guide 

4.1 Web Browser Certificate Management 

1. Open a Firefox browser. In the tool bar, go to Edit -> Preferences ->Advanced -> 

Encryption. 

2. What is the encryption protocols used for web transactions? ____________________ 

                                                      
6
 Wagner, D., and Schneier, B. “Analysis of the SSL 3.0 Protocol,” The Second USENIX Workshop 

on Electronic Commerce Proceedings, USENIX Press, November 1996, pp. 29-40. 
7
 OpenSSL toolkit is maintained by the OpenSSL Project and is available at http://www.openssl.org/.  

 

http://www.openssl.org/


3. Click View Certificates -> Authorities. You will see a list of Certificate Authorities that 

are on your computer when the browser was installed. These are the names of companies that 

offer certificate signing and verification (these are the trusted third parties by default).  

List two of their names. 1)______________ 2)______________________ 

4. Along with the names of the company, you will see the certificates of these companies. 

These are called “root certificates”. Choose one of these certificates and click the View button. 

Take a screenshot of the certificate and paste it below. 

__________________________________________________________________________ 

5. Now, click on the Details tab. In the Certificate Fields box, find the Certificate Signature 

Algorithm. This is the algorithm that the CA used to sign this certificate.  

What is the algorithm used here? _____________________  

6. Look at the Subject’s Public Key field. This is the CA’s public key.  

How long is the Subject’s Public Key? _________ bits.  

7. Click Close to exit the Certificate Viewer and click OK to leave the Certificate Manager 

window and go back to the Preference window. Click the Validation button.  

8. What is the network protocol listed here that can be used to verify the certificates? ___ 

What is the reason that a certificate might be invalid? ___________________ 

9. Close the Firefox Preferences Window and the Firefox browser. 

4.1 Creating SSL Certificates Using OpenSSL 

In the following exercises, you will learn how to install your very own secure web server 

which utilizes SSL/TLS for secure communications. To install an open-source secure web server, 

web developers usually need to install two software packages from different sources. For 

simplicity, they have already been installed on your Ubuntu virtual machine. 

Apache 2.2.11: Apache2 is an open-source web server. You can find more information about 

Apache2 at http://httpd.apache.org/.  

OpenSSL 0.9.8k: OpenSSL is a set of open-source toolkits that implement the Secure Socket 

Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols as well as a general purpose 

cryptography library.  You can find more information at http://www.openssl.org/. 

Mod_SSL 2.2.11: Mod_SSL is an add-on module for older versions of Apache that had to be 

compiled. With Apache2, mod_SSL is built into the server which provides the interface between 

Apache and OpenSSL. You can find more information about mod_ssl from 

http://www.mod_ssl.org.  

  
We will need to create a SSL certificate for the web server before we can run the server 

securely with HTTPS. This exercise creates a public/private key pair, a SSL certificate, a 

certificate signing request (CSR) and we will also become a Certificate Authority (CA). Usually 

a commercial server would ask a trusted third party to sign their certificate. For example, 

VeriSign is one of the most well known companies that signs certificates for commercial servers. 

You must have a public/private key pair before you can create a certificate request. You will 

also need a FQDN (Fully Qualified Domain Name) for the certificate you want to create. Since 

we are hosting the website locally, you are able to choose any FQDN that you like. For this lab 

exercise we will www.BadStore.net as a domain name. You will also be creating a certificate for 

BadStore.net.  

 



1. Access the Terminal window by navigating to Applications > Accessories > Terminal. 

2.  Point the terminal shell to the  /etc/apache2/ssl directory by running command: 

cd /etc/apache2/ssl 

3. The ssl directory is where you will store all your private keys, certificate signing request 

and certificates. 

4. There are existing keys and certificates under this directory (you can see them using ls 

command). We will start this exercise by a new set of keys. So, please delete the files 

under this directory before we start. 

 sudo rm * 

When prompted for the [sudo] password, it is the same password (123456) that was 

used to login.  

5. To generate the Certificate Signing Request (CSR), you will need to create your own 

private/public key first. You will create a key by the name of server.key. Run the 

following command from  terminal to create the key: 

sudo openssl genrsa -des3 -out server.key 1024 

genrsa indicates to OpenSSL that you want to generate a key pair. 

des3 indicates that the private key should be encrypted and protected by a passphrase. 

out indicates the file name in which to store the results. 

1024 indicates the number of bits of the generated key. 

 

The result is going to look something like this: 

Generating RSA private key, 1024 bit long modulus 
........++++++ 
...++++++ 
e is 65537 (0x10001) 
Enter pass phrase for server.key: 
Verifying - Enter pass phrase for server.key: 

You will be prompted for a pass phrase, once you type in your initial pass phrase, you 

will be asked to verify this pass phrase. Write down your passphrase below: 

_________________________________________________ 



If you execute command ls in terminal you will see a file called server.key in the ssl 

directory. 

6. You will store your passphrase in a password script, so that Apache2 will not prompt you 

for the pass phrase whenever Apache2 is started or restarted. 

Run command:  sudo gedit /etc/apache2/ssl_passphrase 

The ssl-passphrase script will be opened in a text editor. Enter your private key pass 

phrase in-between the pink quotes replacing 123456. Click File > Save. 

If the pass phrase does not match the pass phrase that you had submitted to Apache2 

when you created your private key, the private key will not be decrypted when Apache2 

starts resulting in non accessible hosted websites. 

7. Next you will create a certificate signing request with the private/public key you have just 

created. This command will prompt for a series of things: When prompted enter the 

values as follows: 

Country Name: US 

State or Province Name: New York 

Locality Name: New York 

Organization Name: Pace University 

Organizational Unit Name: CSIS-IT300 

Common Name: www.BadStore.net 

Email: Your email address 

A challenge password: enter another password that you can remember. 

An Optional Company Name: CSIS 

A very important step to keep in mind is when filling out the Common Name (CN) 

field. The Common Name should match the web address, DNS name or the IP address 

you will specify in your Apache configuration. For this lab example the Common Name 

that we will be using is www.BadStore.net 

Otherwise to create the Certificate Signing Request, run the following command at 

the terminal prompt, making sure you are still in the /etc/apache2/ssl directory. 

sudo openssl req -new -key server.key -out server.csr 

You will be prompted to enter your private key passphrase. You will also be 

prompted to enter the values which were addressed above. 

You may run command ls in the ssl directory to see a file called server.csr when you 

are finished. This is your certificate signing request. 



8. Now you will create your self-signed certificate. Make sure you are still in the 

/etc/apache2/ssl directory. 

The certificate signing request (CSR) has to be signed by a Certificate Authority 

(CA). For testing purpose, we will not ask a commercial CA (such as Verisign) to sign 

our certificate but sign the CSR by ourselves, which is called self-signing. In this case, 

we are our own CA. 

The following command will create a self signed certificate that will last for 365 

days. 

sudo openssl x509 -req -days 365 -in server.csr -signkey server.key -out 

server.crt 

The command will prompt you to enter your private key passphrase. Once you enter 

the correct passphrase, your certificate will be created and it will be stored in the 

server.crt file. 

The above command, took the certificate signing request, plus your private key in 

order to make your self-signed certificate. 

9. Run command ls in the /etc/apache2/ssl directory and you will see server.crt, server.csr, 

and server.key. 

10. You have just created your very own self-signed certificate. 

4.2 Configuring Apache2 with BadStore.net 

 
1. In the ssl folder under the Apache2 directory, there should exist three files, server.crt, 

server.csr and server.key. Make sure these files reside in this directory for the next steps 

to be successful. 

 

2. Enable the SSL module for Apache2 

 

sudo a2enmod ssl 

 

** To disable the SSL module for Apache2, the command is sudo a2dismod ssl ** 

3. A restart of Apache2 is required for the SSL module to be effective. 

 

sudo /etc/init.d/apache2 restart 
 

Apache should restart with no errors. 

4. Creation of a virtual host for the secured BadStore.net website is necessary so that when 

the FQDM is entered into a web browser, the secured BadStore.net website will be 

available at that address. Start by copying the default template which will be modified in 

the following steps. 



 

sudo cp /etc/apache2/sites-available/default /etc/apache2/sites-

available/www.badstore.net 

 

The template copy is now named www.badstore.net and is located in the 

/etc/apache2/sites-available/ directory. 

 

5. Edit the content of the template copy. This is a very important step. Make sure it is 

modified correctly. 

 

sudo gedit /etc/apache2/sites-available/www.badstore.net 

 

Change the VirtualHost port from 80 to 443. The first line of the file will look like the 

following: 
 

<VirtualHost *:443> 

 

Next declare the server name and the fully qualified domain name plus the HTTPS port 

number after the ServerAdmin line. 

 

ServerName www.badstore.net:443 
 

Change the DocumentRoot to point to the badstore web directory (setup of the badstore 

directory will be explained later in this document). 

 

DocumentRoot /var/www/badstore 
 

Also change the <Directory /var/www/> to reflect the badstore web directory. 

 

<Directory /var/www/badstore> 
 

In the line before ErrorLog /var/log/apache2/error.log, you will enter these values 

 

SSLEngine On 

SSLCertificateFile /etc/apache2/ssl/server.crt 

SSLCertificateKeyFile /etc/apache2/ssl/server.key 

 

These entries tell the virtual host where the SSL certificate and key are located and to 

turn on SSL. 

 

6. Save the file. 

 

7. Enable the website. 

 

sudo a2ensite www.badstore.net 

 



8. Edit the /etc/hosts file to resolve the www.badstore.net website to 127.0.0.1 since the 

website is hosted locally. 

 

sudo gedit /etc/hosts 

 

Find the line that begins with 127.0.0.1, remove the localhost text and in its place enter 

www.badstore.net.  

 

9. Save the file and exit gedit. 

 

4.3 Running a Secure Web Server 

1. All the web server settings are contained in the Apache2 server configuration files. For 

simplicity, the configuration files have already been modified for you. If you have 

correctly followed the directions for generating SSL certificates, everything will work 

correctly.  

2. You need to restart Apaceh2 for the SSL certificate settings to take effect. Run command: 

sudo /etc/init.d/apache2 restart 

If everything is correct, Apache2 will restart and give you an [ OK ] message. 

3. Open Firefox and visit http://localhost you should be greeted with a message that states 

“It Works!” 

4. In your browser, visit the following URL https://www.badstore.net  

5. VERY IMPORTANT: The beginning of the URL is HTTPS not HTTP 

Firefox will display a message stating Secure Connection Failed due to the certificate 

that is used. In Firefox, The certificate is not trusted because it is self signed. We will 

accept the certificate anyway and add an exception. 

 

Click the I Understand the Risks link. 

 

Click the Add Exception button. 

 

Click the Get Certificate button. 

 

You can click the View button to see the self-signed certificate that you have created. 

 

Make sure the Permanently store this exception checkbox is selected and click the 

Confirm Security Exception button. 

 

6. Take a screenshot of the secured web page and paste it below. 

http://localhost/


_________________________________________________ 

 

7. Do you see a silver lock on the lower right corner of the browser window? _______ 

8. Double-click on the silver lock. 

9. Click on the View Certificate button. What is the validation period of this certificate? 

____________________.  

10. Click on the Details tab. Who is the issuer of this certificate? ____________________ 

11. What is the functionality of the certificate during web communication between the 

browser and your web server? 

____________________________________________________ 

 [Note: You will see the same silver lock when you check out your purchase on 

Amazon.com or other secure web servers. Double-click on the silver lock next time when 

you shop online and take a look at their certificates] 

4.4 Client SSL Handshakes 

1. The following will show you what information is transmitted between the secure web 

server and the browser during SSL handshaking. You will capture the results in a text file 

(handshake.txt).  

a. In the terminal window, login as the root user with command:  

sudo su 

b. Change your directory to point to the Desktop directory with command: 

cd /home/user/Desktop 

c. You will capture the SSL handshake that takes place between the client browser and 

Apache2 web server with the following command:  

            openssl s_client -connect www.badstore.net:443 > handshake.txt 

d. You should see the web server return some certificate information and the phrase 

“Verify return:1”. This means that the server has acknowledged your request. At this 

point, please type 

GET / HTTP/1.1  

e. There will be a new file created on you Ubuntu desktop called handshake.txt. It will 

appear with an orange lock icon in the upper right corner. The orange lock represents 

the read-only file permission. 

2. Double-click handshake.txt to open it in the gedit text editor. Copy & paste the results 

from the text file below: 



________________________________________________________ 

 

3. Try to reason the content of the file “handshake.txt”.  

Why does the web server send you the information? _________________ 

What information does this file contain? ___________________________ 

4. Suggestion: If you have tried the SWEET module on Security Testing, you can try using 

Paros to intercept the web transactions again. The web content should be able to view and 

to be tampered since they not now encrypted.  

5. Close the gedit text editor, terminal, and shut down your Ubuntu virtual machine. 

 


