
 

 

 

 

A Tutorial on XHTML and XML 

 

 
Copyright 2008  

 

Dr. Lixin Tao 

http://csis.pace.edu/lixin 

Pace University 
 





 

 

Table of Contents 
 

 

1 Web Pages Using Web Standards ................................................................ 1 
1.1 Overview .......................................................................................... 1 
1.2 Web Architecture ............................................................................. 2 
1.3 HTML Basics ................................................................................... 4 

1.3.1 Tags, Elements and Attributes ................................................. 4 
1.3.2 Basic Structure of an HTML File ............................................ 6 
1.3.3 Basic HTML Elements ............................................................ 7 

1.4 Cascading Style Sheets (CSS) ........................................................ 18 
1.4.1 Style Rule Format .................................................................. 20 
1.4.2 Box Model ............................................................................. 20 
1.4.3 Formatting Text ..................................................................... 22 
1.4.4 Formatting a Subset of Element Instances ............................ 24 
1.4.5 Customizing Hyperlinks with Pseudo-Classes ...................... 25 
1.4.6 Formatting Part of Text or Document with Span and Div ..... 26 
1.4.7 Division-Based Layout .......................................................... 30 
1.4.8 Dynamically Loading HTML Files in iframes .................. 32 

1.5 HTML Forms and HTTP Basics .................................................... 34 
1.5.1 HTTP Basics .......................................................................... 34 
1.5.2 HTML Forms ........................................................................ 36 
1.5.3 Common HTML Form Input Controls .................................. 40 
1.5.4 HTTP GET vs. HTTP POST ................................................. 43 

1.6 Session Data Management ............................................................. 44 
1.6.1 Cookies .................................................................................. 44 
1.6.2 Hidden Fields ........................................................................ 45 
1.6.3 Query Strings ......................................................................... 45 
1.6.4 Server-Side Session Objects .................................................. 45 

1.7 Summary ........................................................................................ 46 
1.8 Self-Review Questions ................................................................... 46 
1.9 Keys to the Self-Review Questions ................................................ 49 
1.10 Exercises .................................................................................... 49 
1.11 Programming Exercises ............................................................. 49 
1.12 References .................................................................................. 50 

2 XML – the „X‟ in Ajax ............................................................................... 51 
2.1 Overview ........................................................................................ 51 
2.2 XML Documents ............................................................................ 53 

2.2.1 XML Declaration................................................................... 54 
2.2.2 Unicode Encoding ................................................................. 54 
2.2.3 Tags, Elements and Attributes ............................................... 54 
2.2.4 Using Special Characters ....................................................... 55 



ii 

 

2.2.5 Well-Formed XML Documents ............................................ 56 
2.3 DTD ............................................................................................... 56 

2.3.1 Declaring Elements ............................................................... 57 
2.3.2 Declaring Attributes .............................................................. 59 
2.3.3 Declaring Entity Names ........................................................ 60 

2.4 Associating DTD Declarations to XML Documents ..................... 60 
2.5 XML Schema ................................................................................. 62 

2.5.1 XML Namespace ................................................................... 63 
2.5.2 Declaring Simple Elements and Attributes ........................... 64 
2.5.3 Declaring Complex Elements ................................................ 65 
2.5.4 Controlling Element Order and Repetition ............................ 67 
2.5.5 Referencing XML Schema Specification in an XML 

Document 68 
2.6 XML Parsing and Validation with SAX and DOM ....................... 70 
2.7 XML Transformation with XSLT .................................................. 70 

2.7.1 Identifying XML Nodes with XPath ..................................... 71 
2.7.2 Transforming XML Documents to XHTML Documents ...... 74 

2.8 Summary ........................................................................................ 77 
2.9 Self-Review Questions ................................................................... 77 
2.10 Keys to the Self-Review Questions ........................................... 79 
2.11 Exercises .................................................................................... 79 
2.12 Programming Exercises ............................................................. 79 
2.13 References .................................................................................. 79 

Index .............................................................................................................. 81 
 



 

 

1  
Web Pages Using Web Standards 

1.1 Overview 

1.2 Web Architecture 

1.3 HTML Basics 

1.4 Cascading Style Sheets (CSS) 

1.5 HTML Forms and HTTP Basics 

1.6 Session Data Management 

1.7 Summary 

1.8 Self-Review Questions  

1.9 Keys to the Self-Review Questions  

1.10 Exercises  

1.11 Programming Exercises 

1.12 References 

  

Objectives of This Chapter 

 

 Introduce fundamental concepts of Web computing 

 Introduce XHTML and Cascading Style Sheets 

 Introduce how HTTP protocol supports Web browser and Web server  

   interactions 

 Introduce different ways of maintaining session data 

 

1.1 Overview 

A Web browser is a graphic user interface for a user to interact with various Web 

applications. A Web browser communicates with the Web servers that host the 

Web applications over the Internet. A Web browser can send requests to a Web 

server for data or service. The Web server will reply and send back the response 

data in a language called HTML, short for Hypertext Markup Language. The 

Web browser can then present the response data to the user following some 

rendering directives or defaults. 

The focus of this chapter is the introduction to the basics of HTML languages. 

There are several variations of HTML languages in use now. The popular HTML 

version 4 is more lenient to syntax errors and has limited support for presenting 

data in various presentation devices like PCs, PDAs or cellular phones. The 



2  Web Pages Using Web Standards 

 

XHTML, short for Extensible Hypertext Markup Language, rewrites HTML in 

XML (Extensible Markup Language, to be covered in Chapter 3) for better 

supporting flexible data presentation on different devices. At this time the 

browser support for XHTML is still limited. This chapter introduces a subset of 

XHTML that is supported by any Web browser that supports the traditional 

HTML version 4, and HTML and XHTML are treated as synonyms. 

The chapter starts with the introduction of the basic Web architecture 

underpinning all Web applications. A typical Web application has four tiers: the 

presentation tier on the client side (Web browsers), the presentation tier on the 

Web servers, the business logic tier on the application servers, and the database 

tier on database servers. Different types of servers may co-exist on a single server 

machine. 

HTML (XHTML) basics will be introduced for mainly defining logical data 

(contents) structures, and Cascading Style Sheets or CSS will be introduced as an 

important mechanism for defining presentation styles of HTML elements. Since 

XHTML is a special dialect of XML, the HTML introduction in this chapter also 

serves as the first-iteration introduction to XML discussed in the following 

chapter. 

Web browsers and Web servers communicate through a simple application 

protocol named HTTP, short for Hypertext Transfer Protocol, on top of the 

TCP/IP network transportation layer. This chapter will explain the HTTP 

protocol basics and how HTML forms can be used as the main mechanism for 

submitting user data to a Web server application. 

The basic properties of a Web browser will then be outlined. In particular, 

you will see what cookies are, and how a Web browser exchanges cookies with 

Web server applications. This chapter will also briefly explain the security 

sandbox for applets and JavaScipts. 

1.2 Web Architecture 

A typical web application involves four tiers as depicted in Figure 1: Web 

browsers on the client side for rendering data presentation coded in HTML, a 

Web server program that generates data presentation, an application server 

program that computes business logic, and a database server program that 

provides data persistency. The three types of server programs may run on the 

same or different server machines. 

 



3 

                                                                                                 

 

 
 

 

Web browsers can run on most operating systems with limited hardware or 

software requirement. They are the graphic user interface for the clients to 

interact with Web applications. The basic functions of a Web browser include: 

 

 Interpret HTML markup and present documents visually; 

 Support hyperlinks in HTML documents so the clicking on such a hyperlink 

can lead to the corresponding HTML file being downloaded from the same 

or another Web server and presented; 

 Use HTML form and HTTP protocol to send requests and data to Web 

applications and download HTML documents; 

 Maintain cookies (name value pairs, explained later in this chapter) deposited 

on client computers by a Web application and send all cookies back to a Web 

server if they are deposited by Web applications from the same Web server 

(cookies will be discussed more later in this chapter); 

 Use plug-in applications to support extra functions like playing audio-video 

files and running Java applets; 

 Implement a Web browser sandbox security policy: any software component 

(applets, JavaScripts) running inside a Web browser cannot normally access 

local clients‟ resources like data files or keyboards, and can only 

communicate directly with applications on the Web server from where it is 

downloaded. 

 

The Web server is mainly for receiving document requests and data submission 

from Web browsers through the HTTP protocol on top of the Internet‟s TCP/IP 

layer. The main function of the Web server is to feed HTML files to the Web 

browsers. If the client is requesting a static existing file, it will be retrieved on a 

server hard disk and sent back to the Web browser right away. If the client needs 

customized HTML pages like the client‟s bank statement, a software component, 

like a JSP page or a servlet class (the “Extension” box in Figure 1), needs to 

retrieve the client‟s data from the database and compose a response HTML file 

on-the-fly.  

The application server is responsible for computing the business logics of the 

Web application, like carrying out a bank account balance transfer and 

computing the shortest route to drive from one city to another. If the business 

Figure 1 Web architecture 

 
Internet 
TCP/IP 

Web server 

App server 

Extension 

Tier 1 

Web browser 

Tier 2 

Web server 

Tier 3 

App Server 

Tier 4 

Database 

DBMS 

HTTP 

HTTP 

HTTP 



2  Web Pages Using Web Standards 

 

logic is simple or the Web application is only used by a small group of clients, 

the application server is usually missing and business logics are computed in the 

JSP or servlet components of the Web server. But for a popular Web application 

that generates significant computation load for serving each client, the 

application server will take advantage of a separate hardware server machine to 

run business logics more efficiently. This is a good application of the divide-and-

conquer problem-solving methodology.  

This chapter focuses on the basics of HTML, CSS and HTTP that supports 

efficient data presentation and browser-server interaction. 

 

1.3 HTML Basics 

HTML is a markup language. An HTML document is basically a text document 

marked up with instructions as to document logical structure and document 

presentation. There are multiple versions of HTML. While the earlier HTML 

versions used a more relaxed syntax and focused on more document presentation 

than document structure, the latest HTML, called XHTML (the Extensible 

HyperText Markup Language), uses the more strict and standard XML 

(Extensible Markup Language, to be covered in the next chapter) syntax to 

markup text document structures and depends on the separate CSS (Cascading 

Style Sheet) to control the presentation of the document. This separation of 

document structure and document presentation, even though it is not complete 

yet, is essential for supporting the same document being rendered by various 

modern presentation devices including PCs and cell phones that must use very 

different presentation markups. The HTML concepts and examples in this 

chapter are based on XHTML v1.0, which is now supported by all the latest Web 

browsers including Microsoft‟s Internet Explorer v7 and Mozilla‟s Firefox v2. 

1.3.1 Tags, Elements and Attributes 

An HTML tag name is a predefined keyword, like html, body, head, title, p, b, all 

in lower-case, for describing document structure or presentation. 

A tag name is used in the form of a start tag or an end tag. A start tag is a tag 

name enclosed in angle brackets <  and >, like <html> and <p>. An end tag is 

the same as the corresponding start tag except it has a forward slash / 

immediately before the tag name, like </html> and </p>. 

An element consists of a start tag and a matching end tag based on the same 

tag name, with optional text or other elements, called element value, in between 

them. The following are some element examples: 

 
<p>This is free text</p> 

 



5 

                                                                                                 

 

<p>This element has a nested <b>element</b></p> 

 

While the elements can be nested, they cannot be partially nested: the end tag of 

an element must come after the end tags of all of its nested elements (first 

starting last ending). The following example is not a valid element because it 

violates the above rule: 

 
<p>This is not a valid <bold>element<p><bold> 

 

The newline character, the tab character and the space character are collectively 

called the white-space characters. A sequence of white-space characters acts like 

a single space for Web browser‟s data presentation. Therefore, in normal 

situations, HTML document‟s formatting is not important (it will not change its 

presentation in Web browsers) as long as you don‟t remove all white-space 

characters between successive words. As a result, the following two html 

elements are equivalent: 

 
<html> 

<body> 

<p>Sample text</p> 

</body> 

</html> 

 
<html><body><p>Sample      text</p></body></html> 

 

If an element contains no value, the start tag and the end tag can be combined 

into a single one as <tagName /> (the space is for backward compatibility 

and convention thus not necessary for today‟s Web browsers; there are some 

special tags, like script, for which such combination cannot be used). 

Therefore the following two p elements are equivalent: 

 
<p></p> 

 
<p /> 

 

The start tag of an element may contain one or more attributes, each in the 

form “attributeName="attributeValue"”. The following is a p element with two 

attributes: 

 

<p  class="quotation"  id="paragraph1"> 

 

If an attribute value contains quotes, they should be single quote ', as in 

 
<p style="font: bold  24px  'Times New Roman', serif"> 



2  Web Pages Using Web Standards 

 

 

Here we use the “style” attribute to set the font to present the p element‟s value: 

boldface, 24 pixels, first choice is font family “Times New Roman”, and the 

second choice is font family “serif”.  

 

1.3.2 Basic Structure of an HTML File 

A basic XHTML v1.0 file that is compatible with HTML v4.0 must start with a 

“DOCTYPE” declaration for HTML‟s root element html, followed by a single 

html element. The DOCTYPE declaration specifies a universal resource 

identifier (URI, a unique string for identifying a network resource that may not 

be an address for accessing the resource), “-//W3C//DTD XHTML 1.0 

Transitional//EN”, for the version of HTML used in the current file, as well as a 

universal resource location (URL), “http://www.w3.org/TR/xhtml1/DTD/ 

xhtml1-transitional.dtd”, for accessing the DTD (data type definition, to be 

introduced in the next chapter) file defining the syntax of the version of HTML 

used in the current file. Such long strings in this chapter should not be broken by 

new line characters, even though sometimes we have to break them up in the 

book samples due to our book page‟s limited text width.  

Like any XML file, an HTML file can only contain one root element (an 

element that is not nested inside another element). All the other text and elements 

must be nested inside this root element. For HTML this root element is html. For 

XHTML v1.0 files, the start tag of an html element must have a namespace 

attribute xmlns with value http://www.w3.org/1999/xhtml. There are many 

different specifications of HTML elements, and this attribute specifies a 

particular specification of HTML that is adopted by XHTML v1.0. 

The minimal requirement is that an html element must contain exactly one 

body element, which encloses much of document data. An optional head element 

can appear before the body element to specify a title of the document to be 

displayed in the title bar of the Web browser window, and any JavaScript code 

and CSS style directives, which will be covered later in this chapter. 

The following is a sample HTML skeleton that you can use as the starting 

point of your own HTML files. Be aware that all HTML element and attribute 

names are in lower-cases, but DOCTYPE must be in upper-cases. All quoted 

strings in an HTML file, as well as those in XML and program files, must be 

typed on a single line, even though sometimes we have to break them in our book 

examples due to the limited page width, as the third line of this HTML skeleton. 

When we have to print a quoted string value on two lines, we put character  at 

the end of the first line to indicate that these two lines should be on the same line 

in HTML files. Our following introduction to HTML features will only use 

incomplete HTML pieces. To try them out, just copy them in the body element of 

this skeleton and display the resultant file in a Web browser. 

 



7 

                                                                                                 

 

<!DOCTYPE html  

  PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

  "http://www.w3.org/TR/xhtml1/DTD/xhtml1- 

  transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

<head> 

<title> 

  Sample Title Shown in Window Title Bar 

</title> 

</head> 

<body> 

<p>Sample text</p> 

</body> 

</html> 

 

In this chapter we will introduce many HTML elements in generic terms. For 

example, we say element h1 is used to create a large-size heading. Most of the 

presentation details, like which font is used, in which size, and how the heading 

is aligned on its line, are not specified. This is because HTML is supposed to 

specify a document‟s logical structure, and the document‟s presentation should 

be specified by CSS, which will be covered in a later section of this chapter. 

Each type of Web browser has a default way to present these elements, and we 

can use CSS style specifications to change the default presentation. 

1.3.3 Basic HTML Elements 

1.3.3.1 Creating Headings, Paragraphs, Line-Breaks and Formatting Text 

HTML supports elements h1, h2, h3, h4, h5 and h6 to create headings in 

decreasing font size.  

Element p is used to create paragraphs. There is extra vertical space between 

successive paragraphs. White-space characters (new-line, tab and space) are only 

used to separate successive words, and a sequence of white-space characters is 

equivalent to a single one. A new-line character will not break a line in a Web 

browser presentation. To break the current line but avoid the extra space 

introduced by a new paragraph, use a br element in form <br />. 

Element b, like <b>text</b>, will present its text in italic. 

Element i, like <i>text</i>, will present its text in italic. Elements b and i 

can be nested, as <b><i>text</i></b>, to present text in bold italic. 

Element tt, like <tt>text</tt>, will present its text in a monospace font. 

The text inside a pre element will be presented in a monospace font, with all 

white-space characters preserved. Elements b and i can be used inside pre 

elements. 



2  Web Pages Using Web Standards 

 

The following is an HTML piece using the above elements and its Web 

browser presentation (copy the HTML piece into the body element of the HTML 

skeleton file and load the skeleton file in a Web browser). 

 
<h2>A Large-Size Heading</h2> 

<p>Successive white spaces     are equivalent 

to a single one, and the new-line character will  

not break the current line in a <b>Web browser</b>.</p> 

<p>To break a line without creating a <br />  

new paragraph, use element <i>br</i>.</p> 

<p>You can introduce a <tt>horizontal line</tt>  

with element <i>hr</i>.</p> 

<pre> 

   To present preformatted text in monospace font, 

   use element <i>pre</i> 

</pre> 

<hr /> 

 

 

Figure 2 Illustrating elements h2, p, br, b, i, tt, pre and hr 

 



9 

                                                                                                 

 

1.3.3.2 Creating Lists 

 

The ul (unordered list) elements can be used to create a bullet list, in which each 

item is a li element. The following is an unordered list with two items: 

 
<ul> 

<li>Disc item 1</li> 

<li>Disc item 2</li> 

</ul> 

 
 

The ol (ordered list) elements can be used to create a numbered list, in which 

each item is a li element. The following is an ordered list with two items: 

 
<ol> 

<li>Disc item 1</li> 

<li>Disc item 2</li> 

</ol> 

 
 

 

The ul elements support attribute style with values of form “list-style-

type: type”, where type could be disc (filled circle, the default), circle 

(unfilled circle), and square (filled square). 

The ol elements support attribute style with values of form “list-style-

type: type”, where type could be decimal (1, 2, 3, …, the default), lower-

roman (i, ii, iii, iv, …), and lower-alpha (a, b, c, …). The ol elements also 

support attribute start for specifying the starting number/letter. For example, 

the first item of the following ordered list has sequence number 2. 

 
<ol start="2"><li>Item 2</li><li>Item 3</li></ol> 

 

The li elements in an ol element can use attribute value to specify a 

sequence number out of order. For example, the second item of the following 

ordered list has sequence number 3. 

 
<ol><li>Item 1</li><li value="3">Item 3</li></ol> 

 

The following is an HTML piece using the above elements and its Web 

browser presentation (copy the HTML piece into the body element of the HTML 



2  Web Pages Using Web Standards 

 

skeleton file and load the skeleton file in a Web browser). Make sure that you 

understand why the Web browser presents this way. 

 
<ul> 

<li>Disc item 1</li> 

<li>Disc item 2 

  <ol> 

  <li>Decimal item 1</li> 

  <li value="3">Decimal item 3 (skip item 2)</li> 

  <li>Decimal item 4</li> 

  </ol> 

<li>Disc item 3</li> 

</ul> 

<ul style="list-style-type: square"> 

<li>Square item 1</li> 

<li>Square item 2 

  <ol style="list-style-type: lower-alpha"  

      start="2"> 

  <li>Lower-alpha item 2 (skip item 1)</li> 

  <li value="4">Lower-alpha item 4  

      (skip item 3)</li> 

  <li>Lower-alpha item 5</li> 

  </ol> 

<li>Square item 3</li> 

</ul> 

 



11 

                                                                                                 

 

 
 

1.3.3.3 Inserting Special Characters 

Not all characters have corresponding keys on a computer keyboard. Also, 

characters <, > and & are meta-characters in HTML and Web browsers will try to 

interpret them as part of markups so they cannot be part of document text as they 

are. 

As a special case of XML, HTML uses entities to specify those special 

characters. An HTML (XML) entity can be specified with syntax &code;, where 

code could be a predefined entity name or a predefined entity number. Only 

some popular entities have entity names. The following table shows the most 

useful HTML entity definitions. 

 

Table 1 Popular HTML entities 

Symbol Entity Name Entity Number 

& (ampersand) &amp; &#38; 

<  (less than) &lt; &#60; 

>  (greater than) &gt; &#62; 

" (straight double quote) &quot; &#34; 

' (straight single quote) &apros; &#39; 

(space)  &#32; 

(nobreaking space) &nbsp; &#160; 



2  Web Pages Using Web Standards 

 

(tab)  &#09; 

© (copyright) &copy; &#169; 

† (dagger) &dagger; &#8224; 

“ (curly double start quote)  &#147; 

” (curly double end quote)  &#148; 

„ (curly single start quote)  &#145; 

‟ (curly single end quote)  &#146; 

. (period)  &#46; 

 

The following is an HTML piece using the above entities and its Web 

browser presentation. 

 

 
<p>&#147;&lt;&#148; and  

&#147;&gt;&#148; are  

special characters in  

HTML documents&#46;</p> 

 

 
 

 

1.3.3.4 Applying Colors 

For any HTML element that can contain text as its value, like body and p, you 

can apply a foreground color property for rendering its text by assigning value 

color: color to its style attribute, and apply a background color property 

for the text by assigning value background-color: color to its style 

attribute, where aqua, black, blue, gray, green, lime, navy, red, silver, 

white and yellow are just a few example predefined color values for color. 

You can search “HTML color” on the Web to find more HTML color choices, or 

define your own colors. 

If a style attribute specifies more than one properties, the successively 

properties should be separated by a semi-colon. For example, the following 

example specifies navy as the body‟s background color, and blue as its 

foreground color. 

 
<body style="background-color: navy; color: blue"> 

 



13 

                                                                                                 

 

1.3.3.5 Creating Hyperlinks and Anchors 

Each Web page on the Internet has a URL (universal resource location) to 

identify its location. A typical URL has the following format: 

 

http://domain-name/application/resource  

 

where domain-name is a unique name to identify a server computer on the 

Internet, like www.amazon.com; application is a server-side folder containing all 

resources related to an application or service; and resource could be the name (or 

alias or nickname) of an HTML or script/program file residing on a server disk, 

where the script or program can generate an HTML file on-the-fly based on data 

submitted by a user. The domain name could be replaced by an IP address, which 

is four decimal numbers, each between 0 and 255, separated by periods, like 

108.168.1.2. Fundamentally all server computers are identified by their unique 

IP addresses, and the domain names are just nicknames for the IP addresses so 

they will be easier for people to use. More explanation for URL will be provided 

in Section 1.5.1 on page 34. 

An HTML file can contain hyperlinks to other Web pages so users can click 

on them to visit different Web pages. A hyperlink has the general structure of  <a 

href="url">Hyperlink Text</a>. The Web page linked to by the 

hyperlink is called the target page of the hyperlink. By default, a Web browser 

will display a hyperlink‟s text with an underline, and the hyperlink will have 

different color based on whether the hyperlink has been visited (clicked) or 

whether the mouse cursor is hovering on the hyperlink. Later you will learn how 

to customize the hyperlink views with CSS. For example 

 
<a href="http://www.google.com/index.html">Google</a> 

 

is a hyperlink to Google‟s home page. Many Web sites define a “welcome page” 

so if a user uses an URL for the Web site without the resource name, the 

welcome page will be returned. Since Google has defined “index.html” as its 

welcome page, the following hyperlink will have the same effect as the previous 

one: 

 
<a href="http://www.google.com">Google</a> 

 

The above URLs are also called absolute paths for Web pages. An absolute 

path can be used in any Web page as hyperlink target independent of the page‟s 

own URL. If a Web page needs to link to another Web page on the same Web 

server, say in the same Web server directory, then you can use a shorter relative 

path, which is a path relative to the current page‟s location. Let us use a scenario 

to illustrate relative paths. Assume a Web application has three nested directories 

a/b/c; directory a contains directory b and file a.html; directory b contains 



2  Web Pages Using Web Standards 

 

directory c and files b1.html and b2.html; and directory c contains file 

c.html. File b1.html can use hyperlink <a href="../a.html">Link 

A</a> to link to file a.html, where “../” represents the parent directory of 

directory b; use hyperlink <a href="b2.html">Link B</a> to link to file 

b2.html; and use hyperlink <a href="c/c.html">Link C</a> to link to 

file c.html. The forward slash / used in relative paths are operating system 

independent. 

By default clicking on a hyperlink will lead the target page of the hyperlink 

to replace the current page in a Web browser. You can also use a target 

attribute in an a element to display the target page in a new Web browser 

instance, as in 

 
<a href="http://www.google.com"  

   target="_blank">Google</a> 

 

You can also use a hyperlink to send emails. You just need to use a URL of 

form mailto:email-address. If a user clicks on the following hyperlink, the 

user‟s default mail application will be started with address admin@gmail.com 

filled in its To text field.  

 
<a href="mailto:admin@gmail.com">Contact Us</a> 

 

You can also specify a subject for the email by using a query string of form 

“?subject=Title” (refer to Section 1.5.1 on page 34 for the definition of 

query strings). When a user clicks on the following hyperlink, the default mail 

application will be launched with admin@gmail.com in its To text field and 

Comment in its Subject text field. 

 
<a href="mailto:admin@gmail.com?subject=Comment"> 

Contact Us</a> 

 

You can also display a tooltip when a user puts the mouse cursor on top of 

the hyperlink by using a title attribute of an a element. When a user puts the 

mouse cursor on top of the following hyperlink, tooltip “Comment on the topic” 

will be displayed next to the cursor. 

 
<a href="mailto:admin@gmail.com?subject=Comment"  

title="Comment on the topic"> 

 

So far you have been using hyperlinks to link to separate Web pages. But you 

can also use hyperlinks to link to specific anchors on the same page or other Web 

pages. When a user clicks on such a hyperlink, the Web browser will jump to 

display the text close to the anchor. It is a very useful feature for long documents. 



15 

                                                                                                 

 

An anchor is like a bookmark in an HTML file that can be used as the target of a 

hyperlink. To define an anchor for word Conclusion in an HTML document 

test.html, make Conclusion the value of an a element as in 

 
<a name="conclusion">Conclusion</a> 

 

where the value of attribute name can be any string. To make a hyperlink to this 

anchor in the same file, you can use a hyperlink like  

 
<a href="#conclusion">View the Conclusion</a> 

 

To make a hyperlink to this anchor from another file in the same directory, 

you can use a hyperlink like 

 
<a href="test.html#conclusion"> 

View the Conclusion</a> 

 

 

1.3.3.6 Creating Tables 

Table is a popular format of presenting data. Until the adoption of CSS, tables 

have also been used to format Web page layout. 

A table consists of a few rows, and each row is further divided into a few 

data fields. In HTML, a table element encapsulates all the table rows, a tr 

(table row) element specifies each row, and a td (table data) element specifies 

each data field. A th element is similar to a tr element except it is used to 

specify table headers that will be presented in a different style from that for the 

table data. A table can also have an optional caption created with a caption 

element. The following is a basic table with default properties: 

 
<table> 

<tr><th>Symbol</th> 

    <th>Entity</th> 

</tr> 

<tr><td>&lt;</td> 

    <td>&amp;lt;</td> 

</tr> 

<tr><td>&gt;</td> 

    <td>&amp;gt;</td> 

</tr> 

</table> 

 

 



2  Web Pages Using Web Standards 

 

By default a table does not have border. You can use the border attribute of 

a table element to add a solid border of width 1 pixel (px) by rewriting the start 

tag as <table border= "1">. You can use the width attribute of a td or th 

element to set the width of a column, as in <th width="100px">. You can set 

the width of a table column by setting the width of any single th or td element 

in this column. If a data field needs to use two columns and there is a column to 

its right, you can use a colspan attribute of the td element to combine the two 

neighboring data fields, as in <td colspan="2">. The following is the above 

table with the addition of the new features. 

 
<table border="1"> 

<tr><th width="100px">Symbol</th> 

    <th width="100px">Entity</th> 

</tr> 

<tr><td>&lt;</td><td>&amp;lt;</td></tr> 

<tr><td>&gt;</td><td>&amp;gt;</td></tr> 

<tr><td colspan="2">More are available</td></tr> 

</table> 

 

 
 

At this point you may hope that the text in all the td elements be centered. 

Yes you can do it here, but you need to repeat the text alignment property for 

each of the five td elements, which is a tedious work. Later you will see how you 

can use CSS to customize table presentation in a more efficient way. 

 

1.3.3.7 Inserting Graphics 

Graphics can make a Web page alive and catchy. They are very important for 

user-friendly Web sites. There are three popular graphic formats for Web page 

design. Graphic Interchange Format (GIF) represents each pixel in 8 bits thus 

can support only 256 colors. The GIF files are compressed without loss of quality. 

Many graphics applications can be used to make the background of a GIF file 

transparent thus easier to mingle with neighboring text, and make a simple 



17 

                                                                                                 

 

animation by integrating a series images into a single GIF file. GIF file is 

recommended for images created with graphics applications, like simple icons. 

On the other hand, Joint Photographic Experts Group (JPEG, JPG) format 

represents each pixel with 24 bits thus support up to 1.6 million colors. You can 

trade-off JPEG file size with image quality: the higher the compression rate, the 

more loss of precision. JPEG files don‟t support transparent background or built-

in animation, as GIF files do. JPEG files are recommended for images created 

with cameras. 

Portable Network Graphics (PNG) is a new graphics format for combining 

the advantages of GIF and JPEG as well as overcoming some patent issue with 

GIF. A PNG image uses 24 or 48 bits to represent a pixel. It supports lossless 

compression, transparent background and built-in animation. Since more Web 

browsers are supporting it, PNG is recommended for all new Web graphics. 

An image element can be used to insert an image in the current Web page 

location, as in <image src="tomcat.gif" />, where attribute src is used to 

specify the image file name. You can also use the image element‟s width and 

height attributes to specify the width and height of the image in pixels, and use 

the alt attribute to specify a short text description for the image that will only be 

presented when the Web browser cannot present the image. Normally you don‟t 

specify image width and height at the same time since that may change the 

original image‟s aspect ratio, as you see in the second image in the following 

example. You can also use an image as a hyperlink, as is the case for the third 

smaller tomcat image in the following example. Here an a element‟s target 

attribute is used to present the target image in a new Web browser window or tab, 

and its title attribute to set a tooltip that will show a message when a mouse 

cursor is put on the hyperlink image. By default an image embedded in a 

hyperlink has a border. To remove this border, you can use image element‟s 

style attribute and set its value to “border: none” as in <image 

src="tomcat.gif" width="40" style="border: none" />. 

 
<image src="tomcat.gif" /> 

<image src="tomcat.gif" width="100" height="100"  

       alt="Tomcat" /> 

<a href="tomcat.gif" target="_blank"  

   title="Tomcat"> 

  <image src="tomcat.gif" width="40" /> 

</a> 

 

 



2  Web Pages Using Web Standards 

 

 
 

You can use the style property float to flush an image to the left or right, 

depending on whether you assign value left or right to float. The text will 

wrap around the image. To move down text vertically until the space occupied by 

the image becomes “clear”, use style property clear. The following example 

illustrates these features.  

 
<image src="tomcat.gif" style="float:left"/> 

<h3>Tomcat Web Sever</h3> 

<p>Tomcat is an open-source project that supports  

servlet container and the basic Web server  

functions.</p> 

<h3 style="clear: left">Apache Web Server</h3> 

<p>Apache is a full-fledge Web server. To enable it  

to support servlet/JSP technologies, a Tomcat Web  

server is usually integrated to Apache and works  

behind it.</p> 

 

 

1.4 Cascading Style Sheets (CSS) 

HTML before version 4 uses tags to markup for both logical structure (like the 

h1 and p elements) and presentation (like the b and i elements), and lacks the 



19 

                                                                                                 

 

ability to apply a single directive to format many elements. Starting with HTML 

version 4, HTML tags are recommended to mainly markup logical structures, and 

the presentation details will be specified with separate and better structured 

cascading style sheets. 

Cascading style sheets are based on the success of word processor‟s style 

concept. In word processing, a user can define styles for formatting each type of 

document elements, and you can format a particular document element instance 

by simply applying a predefined style. 

Each Web browser has a default way to render HTML elements. For example, 

the HTML standards do not specify the font size of h1 elements, and the Web 

browser designers have the freedom to choose a font size to present h1 elements 

as long as the font size for h1 elements is no smaller than that for h2 elements. 

Such default behavior of a Web browser can be modified in multiple ways: 

A user may use the Web browser‟s graphic user interface, most likely under 

the View menu, to change some limited aspects of HTML document‟s 

presentation. For example, almost all Web browsers allow users to change text 

size. 

An HTML file may import external cascading style sheets using a link 

element inside a head element. The following example shows how to import 

stylesheet entries from a CSS file named “default.css” in the same directory as 

the HTML file. 
<head>  

<title> ... </title> 

<link rel="stylesheet" type="text/css"  

      href="default.css" /> 

<style> 

Local CSS definitions go here 

</style> 

</head> 

 

An HTML file may also specify some local style rules within a style 

element, nested inside the head element, as shown in the previous example. 

Each start tag in the HTML file may also contain a style attribute to define 

style properties for that particular element. You have seen some examples in this 

category earlier in this chapter. 

If an HTML element has some presentation aspects not defined by the 

HTML standard, the Web browser will search for their potential definitions in 

reverse order of the previous list, the closest definitions first, and apply the first 

found definitions. This is the first reason why cascading style sheets are so 

named. You can always override general style rules with lower-level style 

definitions. 



2  Web Pages Using Web Standards 

 

On another hand, HTML elements are highly nested. A style rule specified 

for an element will also be applied to elements nested in it unless it is overridden 

in its child elements. This also suggests the name of cascading style sheets. 

The ability for many HTML files to share style definitions in external CSS 

files is very important. A Web site can change many Web page‟s presentation by 

modifying only a single CSS file. 

The follow sections will show many CSS definitions. To test them, you can 

either copy them inside a style element or copy them in an external CSS file 

that is linked to the HTML file with a link element, as shown earlier in this 

section. 

 

1.4.1 Style Rule Format 

A style sheet consists of a list of style rules, and most style rules in a CSS sheet 

are of form 

 e1  e2  ...  ek { attribute1: value1; attribute2: value2; ... attributen: valuen} 

where “e1  e2  ...  e k”, called a selector, is a list of space-separated elements, and 

each of them, except the first one, is nested in the element to its left (later 

notations based on attributes id and class will be introduced to represent a 

subset of elements and they can also be used in the style rule selectors, but the 

general concept of from general to specific in a selector list is still true). This 

style rule specifies values to attributes for all ek elements in the current document 

that are successively nested in ek-1, ..., e2, e1. As a simple example, 

 
p  {border-style: solid; border-width: 2px} 

 

specifies that all paragraphs in the current document will have a 2-pixel width 

solid external border. If you only need to apply this style to a particular 

paragraph, you can use the p element‟s style attribute to specify the same 

external border: 

 
<p style="border-style: solid; border-width: 2px"> 

 

Note that the attribute value strings must be on the same line in HTML files, 

even though sometimes they have to be printed on multiple lines in this book. 

While the following discussions will mainly introduce CSS attributes in the style 

sheet format, you should be able to follow this example to rewrite them in the 

form of an element‟s style attribute if necessary. 

 

1.4.2 Box Model 

 



21 

                                                                                                 

 

All HTML elements that can contain text value are based on the same box model 

as shown below. There is a border around the content area, which may be 

invisible by default. The border has a width and a color. There is a padding area 

between the border and the content area so that the text will not touch the border. 

The background color for an element is applied to the area formed by the content 

and padding. There is also a margin area between the border and the external 

invisible boundary of the box, which is transparent and mainly used to control the 

distance between neighing elements. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 CSS box model 

 

The border style is controlled by attribute border-style, which can take on 

values solid, dotted, dashed, double, groove, ridge, inset, outset and 

none. The border width is controlled by attribute border-width, whose value 

is the number of pixels. The border color is controlled by attribute border-

color. The following style rule specifies that the paragraphs will have a solid 

blue border of width 2 pixels.  

 
p  {border-style: solid; border-width: 2px;  

    border-color: blue} 

 

We can use attribute border as a shortcut to specify all properties of a 

border together in the following order: size, color, style. The above example is 

now rewritten with the border attribute. 

 
p  {border: 2px blue solid} 

 

Padding and margins are optional and default to zero. You can specify a 

padding size with attribute padding, and a margin size with attribute margin. 

Attributes color and background-color are used to specify the foreground 

(text) color and the background color within the border. The following is an 

example style rule applying these new attributes. 

Content Area 

padding 

border 

margin 



2  Web Pages Using Web Standards 

 

 
p  {padding: 20px; margin: 40px;  

    background-color: grey;  

    border: 2px blue dotted; 

    color: white} 

 

When two or more vertical margins meet, they will collapse to form a single 

margin. The height of this margin will equal the height of the larger of the two 

collapsed margins, as illustrated below. 

 
 

When one element is contained within another element, assuming there is no 

padding or border separating margins, their top and/or bottom margins will also 

collapse together, as illustrated below. 

 
 

1.4.3 Formatting Text 

Specifying a certain font to appear on a page can be tricky because not everyone 

has the same fonts installed. To work around this problem, you can specify a font 

family rather than an individual font. A font family is a set of fonts listed in order 

of preference. If the computer displaying your page does not have the first font in 

Before After 

Margins collapse 

to form a single 

one 

20px 

10px 

Content 

20px 

Content 

10px 

Content 

Before After 

Margins collapse 

to form a single 

one 

20px 

10px 

Content 

Content 

20px 

Content 



23 

                                                                                                 

 

the list, it checks the second, and the third, and so on until it finds a match. The 

last font on a font family list is normally a font that is guaranteed to be available 

on any computer. Such generic fonts are specified without using double quotes 

around them. If a Web browser cannot find any font match, it will use its default 

font to display the text. 

You can use the font-family attribute to specify font families. The following 

are some commonly used font families: 

 "Arial Black", "Helvetica Bold" 

 "Arial", "Helvetica", sans-serif 

 "Verdana", "Geneva", "Arial", "Helvetica",  

sans-serif 

 "Times New Roman", "Times", serif 

 "Courier New", "Courier", monospace 

 "Georgia", "Times New Roman", "Times", serif 

 "Zapf-Chancery", cursive 

 "Western", fantasy 

 

If you specify a font family in an element‟s style attribute, the double 

quotes around the font names should be dropped. The following examples show 

how to specify a font family in a style rule and in a style attribute: 

 
p { font-family: "Times New Roman", serif} 

 
<p style="font-family: Times New Roman, serif">  

...</p> 

 

Font size can be specified with attribute font-size.  The commonly used 

font-size values include small, medium (default), large, 12px (any font 

size specified in pixel number), 120% (120% of the base/inherited size). 

Attribute font-style can be used to specify whether the text should be in 

normal or in italic style, where normal and italic are font-style‟s 

most popular values. 

Attribute font-weight can be used to specify the darkness or boldness of 

the text. Attribute font-weight‟s popular values include lighter, normal 

(default), bold, and bolder. 

The font color is specified by attribute color. The background color of text 

is specified by attribute background-color. The popular color values include 

blue, green, red, yellow, grey, magenta, lime and white. For more color 

values, make a Web search for “HTML color”. 

Text alignment can be specified with attribute text-align, which can take 

on values left, right, center and justify with the same meaning as they 

have in word processors.  



2  Web Pages Using Web Standards 

 

Attribute text-indent can be used to specify the indentation of the first 

line of a paragraph, as in style rule p {text-indent: 20px}.  

The line height is the amount of space between each line, which is also 

referred to as leading. You can use attribute line-height to specify line height 

as a percentage of the base one, with popular values 100% (single-spacing), 150% 

and 200% (double-spacing). 

HTML text can be further decorated with lines or blinking effects with 

attribute text-decoration, which supports the following values: underline 

(line under the text), overline (line over the text), line-through 

(strikethrough), blink (flashing text), and none (remove all inherited 

decoration). 

You can also control the extra spacing between successive words with 

attribute word-spacing, and extra spacing between successive letters with 

attribute letter-spacing. By default both word-spacing and letter-

spacing have value 0 pixels. If you specify positive integers, the spacing 

increases. If you specify negative integers, the spacing decreases. Usually one or 

two pixels in either direction are plenty. As an example, style rule p {word-

spacing: 1px} increases the space between successive words by one pixel. 

 

1.4.4 Formatting a Subset of Element Instances 

So far you have learned how to apply style rules to all elements of a particular 

type, say p. In practice you need to be able to support exceptions. For example, 

while specifying that all paragraphs start with an indention on their first lines, 

you may also want the first line of the first paragraph to have no text indentation. 

You may also want paragraphs in different sections of a document to be 

formatted differently. 

If you need to format a unique element instance, say a specific paragraph, of 

an HTML document differently, you can use attribute id to assign a unique 

string value to this element, and use a special style rule to format this element 

instance differently. The selector for this style rule is the sharp character # 

followed by the unique id string value. For example, the following style rules 

and HTML body will indent the first line of each paragraph by 20 pixels except 

for the first paragraph that will have no first-line indentation. Each attribute id of 

an HTML, or XML, document must have unique value in the document, even 

though several Web browsers are not enforcing this rule.  

 
p { text-indent: 20px} 

#first {text-indent: 0px} 

 
<body> 

<p id="first">No first-line indentation ...</p> 



25 

                                                                                                 

 

<p>With first-line 20 pixel indentation ...</p> 

...... 

</body> 

 

If you need to format a subset of element instances, say all paragraphs in a 

particular section, of an HTML document differently, you can use attribute 

class to assign a class name to those element instances, and use a special style 

rule to format these element instances differently. The selector for this style rule 

is the period character . followed by the class name. A document can have many 

elements carrying the same class value, and these elements may be based on 

different tag names. The following style rule and HTML body show how you can 

define a class “important” to present several elements in red color. 

 
p {color: black} 

.important {color: red} 

 
<body> 

<h2 class="important">Title in Red</h2> 

<p class="important">Text in this paragraph will  

  be in red</p> 

<p>Text in this paragraph will be in black</p> 

</body> 

 

 

1.4.5 Customizing Hyperlinks with Pseudo-Classes 

In most Web browsers, by default textual hyperlinks appear as underlined blue 

text, and visited hyperlinks (that is, hyperlinks to pages that you have already 

visited) appear as underlined purple text. You cannot just change a element‟s 

attributes to customize hyperlink views because hyperlinks may have different 

views depending on hyperlink‟s status. HTML defined several pseudo-classes, 

which are basically modifiers to style sheet selectors to refine the selections, to 

allow you to customize hyperlink views. 

You can use pseudo-classes a:link to define color for unvisited hyperlinks, 

a:visited to define color for visited hyperlinks, a:hover to define color for 

hyperlinks when the mouse cursor is close to them, and a:active to define 

color for hyperlinks when the user is clicking on them (active is less used since it 

is hard-to-observe transient colors). The following is an example for customizing 

hyperlink views. Hyperlinks in HTML files adopting this style sheet will have no 

underlines. They will be in blue, green, lime, or red depending on whether they 

are unvisited, visited, having a mouse cursor nearby, or clicked by a mouse 

cursor. 

 



2  Web Pages Using Web Standards 

 

a:link {color: blue; text-decoration: none} 

a:visited {color: green} 

a:hover {color: lime} 

a:active {color: red} 

1.4.6 Formatting Part of Text or Document with Span and Div 

So far you have learned how to format all text in an element differently. 

Sometime you also need to format a few words in an element differently. You 

cannot do so at this point because these words may not be all text in an element 

and your style rules or style attributes can only be applied to all text in an 

element. The solution is the introduction of a new type of element: span. A 

span element itself has no visual effect on text formatting. But like all HTML 

elements, span supports attributes style, id and class, therefore you can use 

style attributes and style rules to format text in a span element differently. 

On another hand, you may also want to format all elements in a particular 

logical section of an HTML document in a special way. You can use a div 

element to enclose all elements in a logical section and assign an id or class 

attribute value to identify this division. You can also use the style attribute to 

apply formatting to the entire div box. Like span, element div itself has no 

visual effects on a Web page‟s view. It depends on style rules or style attributes 

to format its contents. While span is an inline box, part of a text line, that does 

not start new lines, div usually encloses elements like paragraphs, lists and 

headers that are separated from elements outside of the div element by some 

vertical space. 

The following example illustrates the HTML features introduced in this 

subsection. It uses id “id1” to display a single term in the document in 

underlined red. It defines two divisions, and displays each of the divisions in a 

different boundary box. While all elements of class “keyword” are set to display 

in italic blue, all elements of class “keyword” inside division “ajax” are set to 

display in italic green. As explained earlier, a style rule for a specific subset of 

elements overrides that for a more generic style rule applied to a larger scope 

containing that subset. 

 
<style> 

#id1 {color: red; text-decoration: underline} 

.keyword {color: blue; font-style: italic} 

#ajax .keyword {color: green; font-style: italic} 

#intro {border: 4px blue outset;  

        margin: 10px; padding:5px} 

#ajax {border: 4px blue inset;  

        margin: 10px; padding: 5px} 

</style> 



27 

                                                                                                 

 

 
<body> 

<div id="intro"> 

<h3>Introduction</h3> 

<p>This course introduces you to the  

<span id="id1">fundamental concepts</span>  

underpinning the latest IT technologies like  

<span class="keyword">Ajax</span> and  

<span class="keyword">Service-Oriented  

Architecture</span>. 

</p> 

</div> 

<div id="ajax"> 

<h3>What is Ajax?</h3> 

<p>Ajax supports <span class="keyword">incremental  

update</span> of a Web page thus improves the  

responsiveness of Web applications.</p> 

</div> 

</body> 

 

 
 

  

You can use attribute width to specify the width of a division, whose value 

can be in the form of 100px for 100 pixels or 40% for 40% of the Web browser 

window‟s width. You can use attribute float to specify whether the division 

should float to the left or right, depending on whether you assign to it value left 

or right. As an example, if you add the following two style rules to the last 



2  Web Pages Using Web Standards 

 

example, the two divisions will be displayed side by side, each taking 40% of the 

screen width.  

 
#intro {float: left; width: 40%} 

#ajax {float: right; width: 40%} 

 

 
 

Sometimes you may want to put a division at a specific location of the Web 

page relative to its parent element, normally the body element. On other 

occasions you may want to move the division relative to its natural position. 

Even though both of these two positioning mechanisms may lead to content 

overlapping, they could be handy for advanced page layout. You can use div‟s 

attribute position to specify a division‟s location: if its value is absolute, the 

division‟s position is relative to its parent element, normally the top of a Web 

page; if its value is relative, the division‟s position is relative to its natural 

position. Attribute position must be used in conjunction with attributes left, 

right, top, or bottom to specify the specific location. As an example, if you 

change the style rules for #intro and #ajax to absolute positioning as the 

following, 

 
#intro {position: absolute; left: 20px;  

        width: 100px} 

#ajax {position: absolute; right: 20px;  

        width: 100px} 

 

the screen captures below show that the two divisions are 20 pixels from 

their left and right browser window boundaries respectively, and they may 

overlap if the browser window  is too narrow. 

 



29 

                                                                                                 

 

         
 

The following example modifies the style rules for #intro and #ajax to 

use relative positioning as the following: 

 
#intro {position: relative; left: 0px;  

        width: 150px} 

#ajax {position: relative; left: 170px;  

        width: 150px} 

 

and the screen capture below shows the resulting Web browser display: 

 

 



2  Web Pages Using Web Standards 

 

1.4.7 Division-Based Layout 

As an application for what you have learned about cascading style sheet, we now 

present an application of CSS in implementing a popular Web page layout that 

has a banner section in the top pane, a navigation link section in the bottom left 

pane, and a contents section in the bottom right pane. The following is its screen 

capture: 

 

 
 

The following is the contents of the main HTML file “cssLayout.html”. Load 

this page in a Web browser and you can see the above display. This design uses 

author‟s JavaScript file “loadHtml.js” to support dynamic updating of the 

contents of the bottom right contents pane, one of the essences of the Ajax 

technology. Element script is used to load the external JavaScript file 

“loadHtml.js”. Attribute onclick of the a element is for specifying some action 

to be activated when the hyperlink is clicked on. JavaScript function 

loadHtml(url, elementID) is defined in file “loadHtml.js” for downloading 

the HTML data (normally only text or elements without the html or body 

elements, but it can be complete HTML file too) at the specified URL and setting 

its contents in the HTML element that has the specified id value. Bookmark 

self is a dummy one without definition. Its only purpose is to make the a 

elements syntactically correct while not referring to any real Web resources. You 

can change self to any other undefined bookmarks and the example still works. 

If you want to see this page in action, you need to download the author‟s 

JavaScript file “loadHtml.js” from this book‟s resource Web site, and create 

dummy HTML files “cs612objectives.html”, “cs612grading.html” and 

“cs612instructor.html” with any contents. Then you can put all these files in the 

same directory of a Web server. You can also download a single file 

“cssLayout.war” from the book‟s resource Web site, download Tomcat Web 

server from http://tomcat.apache.org and install it on your computer, and 

copy file “cssLayout.war” in directory “webapps” of your Tomcat‟s installation 



31 

                                                                                                 

 

directory. Now you can test this example by launching your Tomcat Web server 

and using a Web browser to visit URL http://localhost:8080/cssLayout.  

 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0  

  Transitional//EN" 

  "http://www.w3.org/TR/xhtml1/DTD/xhtml1- 

  transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

<head> 

<title>CS612 Concepts and Structures of Internet  

       Computing</title> 

<script language="JavaScript"  

        src="loadHtml.js"></script> 

<style type="text/css"> 

body { margin: 0px; } 

#header { font: bold 24px "Times New Roman", serif; 

          font-style: italic; 

          text-align: center; 

          padding: 20px; 

          border-bottom: 3px solid black;  

          background-color: GreenYellow;  

          margin-bottom: 0px; } 

#contents { float: right; 

            padding: 1px 35px 1px 10px;  

            width: 70%;  

            margin: 0px;  

            border: none;  

            background-color: White; } 

#nav { float: left;  

       width: 20%;  

       height: 600px; 

       margin-top: 0px; 

       font-weight: bold;  

       padding: 10px; 

       border: none;  

       background-color: LemonChiffon; } 

#nav a { text-decoration: none;  

         color: Blue }  

#nav a:hover { color: Red } 

h2 { margin-top: 10px; }    

</style> 

</head> 

<body> 



2  Web Pages Using Web Standards 

 

<div id="header">CS612 Concepts and Structures of  

                 Internet Computing</div> 

<div id="contents"> 

<h2>Course Description</h2> 

<p>Integrated hands-on coverage of fundamental  

concepts and technologies for enterprise and  

Internet computing. Topics include data storage;  

XML data specification, parsing and validation;  

data and language translation; networking and Web  

technology overview; software framework technology  

for controlling software system complexity; and a  

roadmap for the enterprise computing  

technologies.</p> 

</div> 

<div id="nav"> 

<a href="cssLayout.html"> 

Course Description</a><br /> 

<a href="#self" onclick='loadHtml( 

"cs612objectives.html", "contents")'>Learning  

Objectives</a><br /> 

<a href="#self" onclick='loadHtml( 

"cs612grading.html", "contents")'>Grading Scheme 

</a><br /> 

<a href="#self" onclick='loadHtml( 

"cs612instructor.html", "contents")'>Instructor 

</a><br /> 

</div> 

</body> 

</html> 

 

Even though you dynamically loaded data in div elements in this example, 

you can also use the same mechanism to load dynamic data into span elements. 

 

1.4.8 Dynamically Loading HTML Files in iframes 

In the last example you saw how to dynamically load HTML text/elements in 

divisions or spans. Technically, you are only supposed to load text or HTML 

elements not including html or body elements. If there are hyperlinks in the 

loaded HTML data, you cannot follow them to visit other Web pages. The Web 

browser navigation buttons will not work for the loaded HTML pages either. We 

can use the newer iframe (inline frame) elements of HTML to overcome this 

limitation. Element iframe has attribute name that functions like id for div,  

attribute frameborder with possible values yes and no for deciding whether a 



33 

                                                                                                 

 

frame border is needed, attribute scrolling with possible values yes and no 

for deciding whether the frame should support scrolling, and attributes width 

and height for specifying the frame size in pixels. One limitation of iframe is 

its frame size must be hard coded. Some older Web browsers may not support 

iframe well yet. To load a new Web page, say http://www.amazon.com, in an 

iframe, we can use JavaScript code 

“frames['IFrameName'].location.href='http://www.amazon

.com'” where IframeName represents the name of the iframe. 

The following is a simple example to show how iframe works. The iframe 

start with no contents. When a user clicks on the hyperlink, Amazon‟s home page 

is loaded in the iframe. 

 

<a href="#self" onclick="frames['IFrameName']  

.location.href='http://www.amazon.com'">Load  

Amazon's Web site into the following inline  

frame:</a> 

<iframe name="IFrameName" frameborder="yes"  

   width="100%" height="200" scrolling="yes" /> 

 

Initial display: 

 
 

After clicking on the hyperlink: 

 
 



2  Web Pages Using Web Standards 

 

1.5 HTML Forms and HTTP Basics 

Web browsers interact with Web servers with a simple application-level protocol 

called HTTP (HyperText Transfer Protocol), which runs on top of TCP/IP 

network connections. The main function of HTTP is for Web browsers or 

programs to download Web pages or any data from Web servers, or submit user 

data to Web servers. HTML form elements can be used to create graphic user 

interfaces in Web browsers and interact with Web servers through the HTTP 

protocol. 

 

1.5.1 HTTP Basics 

You need to review the concept and general format of a URL (Uniform Resource 

Locator), first introduced on page 13 when we introduced hyperlinks. A URL is 

an address for uniquely identifying a Web resource, like a particular Web page, 

and it has the following general format: 

 

 http://domain-name:port/application/resource?query-string  

 

where http is the protocol for accessing the resource (https and ftp are popular 

alternative protocols standing for secure HTTP and File Transfer Protocol); 

domain-name is for uniquely identifying a server computer on the Internet, like 

www.amazon.com; port is an integer between 0 and 65535 for identifying a 

particular server process; application is a server-side folder containing all 

resources related to a Web site, a Web application or a Web service; resource 

could be the name (alias or nickname) of an HTML or script/program file 

residing on a server hard disk; and the optional query string passes user data to 

the Web server. 

The domain name is typically in the form of a sequence of three strings 

separated by periods, like www.amazon.com. The right-most is one of the top-

level domain names, among which “com” stands for companies, “edu” for 

education, and “gov” for government. The string to its immediate left is one of its 

subdomains, typically representing a company or an institution. The left-most 

string is normally an alias for one of the server computers in the company or 

institution. A server computer may have multiple domain names all referring to 

the same server computer. For example, www in many URLs is optional. But each 

domain name must refer to no more than one server computer (which may be a 

façade or interface for a cluster of computers working behind the scene). The 

domain name could be replaced by an IP address, which is four decimal numbers, 

each between 0 and 255, separated by periods, like 108.168.1.2. On Windows 

you can easily find your computer‟s IP address by typing command ipconfig in a 

Command Prompt window. Fundamentally each server computer is identified by 



35 

                                                                                                 

 

one or more IP addresses, and one or more domain names are used as the 

nicknames for each IP address so they will be easier for people to use. There is a 

special domain name “localhost” that is normally defined as an alias of local 

IP address 127.0.0.1. Domain name “localhost” and IP address 127.0.0.1 

are for addressing a local computer, very useful for testing Web applications 

where the Web browser and the Web server are running on the same computer. 

When a user uses a domain name to specify a URL, the Web browser will use a 

DNS (domain name server) server on the Internet to translate the domain name 

into an IP address.  

A server computer may run many server applications, like Web servers and 

database servers, and you may run more than one Apache Web server on the 

same computer too. A running program is called a process. A computer may 

have many server processes running at the same time, and some of them may be 

running the same application. When a client sends information or request to this 

computer, there need a way for the client to specify that the information or 

request is directed to which server process. The port numbers are used to identify 

different server processes. Each server process will claim an unused port number 

and only listen to messages directed to that port number. No two server processes 

can use the same port number. If you start a server program that uses a port but 

the port is already in use by another process, the server program will fail to start. 

Port numbers from 0 to 1024 are reserved for popular server applications and 

user applications are suggested not to use them. For example, by default the 

HTTP protocol of Web servers uses port 80, the HTTPS (secure HTTP) protocol 

uses port 443, the FTP (File Transfer Protocol) protocol uses ports 20 and 21 (for 

data transfer and FTP command separately), the SSH (Secure Shell) protocol 

uses port 22, the telnet protocol uses port 23, the DNS (Domain Name Server) 

protocol uses port 53, and the email IMAP protocol uses port 220. Many server 

applications allow you to change the port numbers. 

One way for a Web browser or client program to submit user data to a Web 

server is to use query string, which was originally used for sending database 

query criteria. A query string starts with the question character ? and consists of a 

sequence of “name=value” (both name and value are strings) assignments 

separated by character &. Since a valid URL cannot contain some special 

characters, like space and those with special meanings in HTML, URL encoding 

is used to encode these special characters in the query strings. For example, space 

is encoded as + or %20, tab as %09, linefeed as %0a, carriage return as %0d, & 

as %26, ; as %3b, ? as %3f, / as %2f, : as %3a, # as %23, = as %3d, < 

as %3c, > as %3e, + as %2b, % as %25, " as %22; ' as %27, ~ as %7e, | 

as %7c, $ as %24, * as %2a, ( as %28, ) as %29, and , as %2c. For example, a 

query string containing names “lang” and “os” with values “Java & C++” and 

“unix” respectively will be encoded in a URL as 

“?lang=Java+%26+C%2b%2b&os=unix”. 



2  Web Pages Using Web Standards 

 

HTTP is a stateless protocol. Every time a user uses a Web browser or 

program to interact with a Web server through HTTP, HTTP has no memory of 

the user‟s recent interactions with the Web server. For a Web server to remember 

the recent interactions with a user, it needs to adopt some mechanisms like 

cookies and server-side session objects (cookies will be explained later in this 

chapter, and session objects will be introduced when servelt/JSP technologies are 

covered) to explicitly record interaction history.  

HTTP GET and HTTP POST are the two main HTTP methods for a Web 

browser or client-side program to interact with a Web server. When you click on 

a hyperlink in a Web browser, the Web browser will generate an HTTP GET 

request to the Web server specified by the hyperlink. For a Web browser to 

interact with a Web server with the HTTP POST method, you need to use an 

HTML form. 

 

1.5.2 HTML Forms 

 

HTML form elements are used to create simple graphic user interfaces in a Web 

browser for the user to interact with a Web server with HTTP GET or HTTP 

POST methods. The form element has two major attributes: method for 

specifying HTTP submission method (with common value get or post), and 

action for specifying the URL of a Web resource that will accept this HTTP 

request. The following is an excerpt of example file echoPost.html deployed 

in this book‟s demo Web application. In this example, HTTP POST is used to 

submit user data to Web resource echo (a Java servlet) inside Web application 

demo deployed in your local Tomcat Web server.  

 

 
...... 

<html xmlns="http://www.w3.org/1999/xhtml"> 

...... 

<body> 

  <form method="post"   

     action="http://localhost:8080/demo/echo"> 

    Enter your name: <input type="text"    

                        name="user"/> <br/><br/> 

    <input  type="submit"  value="Submit"/> 

    <input  type="reset"  value="Reset"/> 

  </form> 

</body> 

</html> 

 

 



37 

                                                                                                 

 

A form element can contain free text and most other HTML elements. For 

each element type that is introduced here for collecting data from a user, it 

supports a parameter called name. This name parameter is for specifying a 

unique variable name representing the data that the user specifies through this 

input element. The server scripts or programs can use this variable name to 

access the data that the user has specified through this input element.  

In this example, an input element <input type="text"   

name="user"/> is used to create a text field with name “user”. Element 

input can be used to specify several types of input controls (devices), and its 

type attribute specifies its particular input control type. Another input element 

of type “submit”, <input type="submit"  value="Submit"/>, is used to 

create a submit button. The value attribute here is used to specify the string on 

top of the button. When a user clicks on a submit button, all data that the user has 

entered in the form will be submitted to the target Web server resource, as 

specified by the action attribute value of the form element, with either HTTP 

POST or HTTP GET method, as specified by the method attribute value of the 

form element. A third input element, <input  type="reset"  

value="Reset"/>, is used to specify a reset button with type value “reset”. Its 

value attribute is used to specify the string on top of this reset button. When a 

user clicks on a reset button, all the data that the user has entered the form will be 

erased and reset to the form‟s initial state so the user can enter the data again 

from scratch. 

Make sure that you have followed our earlier instruction to deploy book 

resource file “demo.war” in your Tomcat installation, and your local Tomcat 

Web server is running at its default port 8080. If you load file 

“http://localhost:8080/demo/echoPost.html” into a Web browser, you will see a 

graphic user interface similar to the following one. Here the user has typed string 

“Ada” in the text field. 

 

 
 

If the user clicks on the submit button now, the Web browser will generate an 

HTTP POST request to the Web resource “http://localhost:8080/demo/echo” 

specified by the action attribute of the form element. Basically, a TCP/IP 

communication channel will be created to connect the Web browser to the 



2  Web Pages Using Web Standards 

 

Tomcat Web server running on port 8080; and the following HTTP request text 

(simplified) will be sent through the TCP/IP channel to the Tomcat Web server.  

 
POST   /demo/echo   HTTP/1.1 

Accept:  text/html 

Accept:  audio/x 

User-agent:  Mozilla/5.0 

Referer:  http://localhost:8080/demo/echoPost.html 

Content-length:  8 

 

user=Ada 

 

The first line of a HTTP request is used to specify the submission type, GET 

or POST; the specific Web resource on the Web server for receiving and 

processing the submitted data; and the latest HTTP version that the Web browser 

supports. As of 2008, version 1.1 is the latest HTTP specification. The following 

lines, up to before the blank line, are HTTP header lines for declaring Web 

browser capabilities and extra information for this submission, each of form 

“name:  value”. The first two Accept headers declare that the Web browser can 

process HTML files and any standard audio file formats from the Web server. 

The User-agent header declares the software architecture of the Web browser. 

The Referer header specifies the URL of a Web page from which this HTTP 

request is generated (this is how online companies like Amazon and Yahoo 

collect money for advertisements on their Web pages from their sponsors). Any 

text after the blank line below the header lines is called the entity body of the 

HTTP request, which contains user data submitted through HTTP POST. The 

Content-length header specifies the exact number of bytes that the entity 

body contains. If the data is submitted through HTTP GET, the entity body will 

be empty and the data go to the query string of the submitting URL, as you will 

see later. 

In response to this HTTP POST request, the Tomcat Web server will forward 

the submitted data to resource echo of Web application demo, and the resource 

echo will generate dynamically an HTML page for most data it can get from the 

submission and let Tomcat send the HTML page back to the Web browser as the 

entity body of the following HTTP response.  

 
HTTP/1.1   200   OK 

Server: NCSA/1.3 

Mime_version: 1.0 

Content_type: text/html 

Content_length: 2000 

 

<HTML> 

…… 

</HTML> 



39 

                                                                                                 

 

 

The first line of an HTTP response specifies the latest HTTP version that the 

Web browser supports. The first line also provides a Web server processing 

status code, the popular values of which include 200 for OK, 400 if the server 

doesn‟t understand the request, 404 if the server cannot find the requested page, 

and 500 for server internal error. The third entry on the first line is a brief 

message explaining the status code. The first two header lines declare the Web 

server capabilities and meta-data for the returned data. In this example, the Web 

server is based on a software architecture named “NCSA/1.3”, and it supports 

Multipurpose Internet Mail Extension (MIME) specification v1.0 for Web 

browsers to submit text or binary data with multi-parts. The last two header lines 

declare that the entity body contains HTML data with exactly 2000 bytes. The 

Web browser will parse this HTTP response and present the response data in a 

window similar to the following one: 

  

 
 

 

Example file http://localhost:8080/demo/echoGet.html is the same as 

http://localhost:8080/demo/echoPost.html except the value of form attribute 

method has been changed from “post” to “get”. If you type “Ada” in its text field 

and click on the submit button, the submitted data will be in the form of URL 

query string, as shown below, and the HTTP GET request‟s entity body will be 

empty. 



2  Web Pages Using Web Standards 

 

 
 

 

1.5.3 Common HTML Form Input Controls 

1.5.3.1 Text Field 

To generate a text field for collecting user input, use an input element of form 
<input type="text"  name="variableName"  

       value="initial text"   

       size="number of characters"/> 

As an example, the following element 
<input type="text"  name="user"  

       value="" size="10"/> 

will generate a text field that is long enough for showing ten characters (user 

can type more than ten characters, but only ten of them can be visible at a time) 

and with its initial value being empty; and the Web server can access the string in 

this text field through variable “user”. 

 

1.5.3.2 Text Area 

If you need to enter more than one line of text, you can use a text area element 

textarea to create a large multi-line text entry field supporting horizontal and 

vertical scroll bars. A textarea element is of form 
<textarea name="variableName" rows="20" cols="80"> 

Initial text 

</textarea> 

where 20 and 80 are example row size and column size in characters. The 

user can edit the initial text by default. If the textarea is intended to be read 

only, you can add a “readonly="readonly"” attribute specification in the start 

tag of the textarea element. 

 



41 

                                                                                                 

 

1.5.3.3 Password Control 

If you need to prompt a user to type a password, you can use a password control 

of the same form as the text field control except you replace “type="text"” with 

“type="password"”. The only difference between a text field control and a 

password control is, the password control will use the * character to echo each 

password character so people cannot read the password over your shoulders. No 

other security measures are implied by the password control. 

 

1.5.3.4 Select Control 

You can use select and option elements to create a select control (list box or 

dropdown menu) for a user to choose values from multiple pre-specified values. 

A select control can be specified with the following format: 
<select name="variableName"  size="1"  

        multiple="multiple"> 

    <option value="value1" selected="selected"> 

      option 1 text 

    </option> 

    <option value="value2">option 2 text</option> 

    …… 

</select> 

This example will generate a select control showing the text of one option a 

time. If you need to show more options a time, increase the value of the size 

attribute accordingly. Initially the option with attribute “selected="selected"” 

will be selected and its text will be displayed. If none of the options have this 

selected attribute, the first option will be selected. You can select more than 

one option by holding down the left Ctr key when you use the mouse to select. If 

you drop the multiple attribute of the select element, then you can only make 

one selection a time. When you click on a submission button of the form 

containing this select element, all the selected values will be submitted to the 

target Web resource of the form. If an option has the value attribute, its value 

is the option‟s value to be submitted. Otherwise the displayed option element 

value is submitted. 

1.5.3.5 Radio Buttons 

Radio Buttons are used when you want the user to select one of a limited 

number of choices. To generate a set of radio buttons so only one of them can be 

selected, use the following input element format for each of the radio buttons 

and use the same name for all of these radio buttons. 
<input  type="radio"  name="variableName"   

        value="variable value"/> 



2  Web Pages Using Web Standards 

 

As an example, the following two elements 
<input type="radio" name="sex" value="male"/> Male  

<br /> 

<input type="radio" name="sex" value="female"/>  

 Female 

will generate a set of two radio buttons for a user to specify his/her sex. 

 

1.5.3.6 Checkbox 

Checkboxes are used when you want the user to select one or more options of a 

limited number of choices. Its syntax is the same as that for radio buttons except 

the type attribute will have value “checkbox”. All checkboxes in the same 

group will have the same variable name, and more than one of them can be 

selected at the same time. The Web server can use the variable name to retrieve a 

list of checked values. The following is a checkbox example. 
Which language do you know? <br /> 

English: <input type="checkbox" name="lang"  

                value="English" /> 

<br /> 

French:  <input type="checkbox" name="lang"  

                value="French" /> 

 

1.5.3.7 Submission Button 

To generate a submission button for submitting all data that is already in a form, 

use an input element of form 
<input  type="submit"  name="variableName"   

        value="button face string"/> 

As an example, the following element 
<input  type="submit" name="b" value="Finish"/> 

will generate a submission button labeled “Finish”. If the form contains 

multiple submission buttons with the same name attribute value but different 

button face strings, the Web server can check the value of variable “b” to see 

which submission button has been clicked. 

 

1.5.3.8 Reset Button 

To generate a reset button for resetting data already in a form so the user can 

enter data again from scratch, use an input element of form 
<input  type="reset"  value="button face string"/> 

As an example, the following element 



43 

                                                                                                 

 

<input  type="reset" value="Clear"/> 

will generate a reset button labeled “Clear”.  

 

1.5.3.9 Hidden Field 

Sometimes a Web application can use a hidden field to remember some data 

related to the current user. A hidden filed has syntax 
<input  type="hidden" name="variableName"  

        value="hiddenValue"/> 

If a Web application includes such a hidden field in a form and sends it to a 

user‟s Web browser, the Web browser will not present the hidden field elements 

even though the user can see them by reading the source of the Web page. When 

the user clicks a submission button of the form, all input data in the form, 

including those in the hidden fields, will be sent back to the Web server so the 

Web server can remember some information about the user. 

In addition to HTML forms, hyperlinks can also generate HTTP GET 

requests. When a user clicks on a hyperlink in a Web browser, an HTTP GET 

request is sent to the Web resource the URL of which is specified as the href 

value of the hyperlink. A hyperlink can only send data to the Web resource 

through query strings hard-coded in it. 

 

1.5.4 HTTP GET vs. HTTP POST 

HTTP GET was initially designed for downloading static Web pages from Web 

servers, and it mainly used short query strings to specify the Web page search 

criteria. HTTP POST was initially designed for submitting data to Web servers, 

so it used the request entity body to send data to the Web servers as a data stream, 

and its response normally depended on the submitted data and the submission 

status. While both HTTP GET and HTTP POST can send user requests to Web 

servers and retrieve HTML pages from Web servers for a Web browser to 

present, they have the following subtle but important differences: 

 HTTP GET sends data as query strings so people can read the submitted 

data over submitter‟s shoulders. 

 Web servers have limited buffer size, typically 512 bytes, for 

accommodating query string data. If a user submits more data than that 

limit, either the data would be truncated, or the Web server would crash, 

or the submitted data could potentially overwrite some computer code on 

the server and the server was led to run some hideous code hidden as part 

of the query string data. The last case is the so-called buffer overflow, a 

common way for hackers to take over the control of a server and spread 

virus or worms. 



2  Web Pages Using Web Standards 

 

 By default Web browsers keep (cache) a copy of the Web page returned 

by an HTTP GET request so the future requests to the same URL can be 

avoided and the cached copy could be easily reused. While this can 

definitely improve the performance if the requested Web page doesn‟t 

change, it could be disastrous if the Web page changes or depends on the 

data submitted by the user. 

1.6 Session Data Management 

Most Web applications need a user to interact with it multiple times to complete 

a business transaction. For example, when you shop at Amazon, you choose one 

book a time by clicking on some HTML form‟s submission buttons in a Web 

browser, and Amazon will process your submitted data and send you another 

HTML form for further shopping. A sequence of related HTTP requests between 

a Web browser and a Web application for accomplishing a single business 

transaction is called a session. All data specified by the user is called the session 

data. Session data are private so they must be protected from other users. A 

session normally starts when you first visit a Web site in a particular day, and 

terminates when you pay off your purchase or shut down your Web browser. 

Since the HTTP protocol has no memory, Web applications have to use some 

special mechanisms to securely maintain the user session data.  

 

1.6.1 Cookies 

A cookie is a pair of name and value, as in (name, value). A Web application can 

generate multiple cookies, set their life spans in terms of how many milliseconds 

each of them should be alive, and send them back to a Web browser as part of an 

HTTP response. If cookies are allowed, a Web browser will save all cookies on 

its hosting computer, along with their originating URLs and life spans. When an 

HTTP request is sent from a Web browser of the same type on the same 

computer to a Web site, all live cookies originated from that Web site will be sent 

to the Web site as part of the HTTP request. Therefore session data can be stored 

in cookies. This is the simplest approach to maintain session data. Since the Web 

server doesn‟t need to commit any resources for the session data, this is the most 

scalable approach to support session data of large number of users. But it is not 

secure or efficient for cookies to go between a Web browser and a Web site for 

every HTTP request, and hackers could eavesdrop for the session data along the 

Internet path. 

 



45 

                                                                                                 

 

1.6.2 Hidden Fields 

Some Web users have great concern of the cookie‟s security implications and 

they disable cookie support on their Web browsers. A Web application can check 

the header fields to detect whether cookies are supported by the requesting Web 

browser. If the cookies are disabled, the Web application will normally use form 

hidden fields to store session data. Upon receiving submitted data through an 

HTTP request, the Web application will generate a new HTML form for the user 

to continue the business transaction, and it will populate all useful session data in 

the new HTML form as hidden fields. When the user submits the form again, all 

the data that the user just entered the form, as well as all data saved in the form as 

hidden fields, will be sent back to the Web application again. Therefore this 

hidden fields approach for maintaining session data shares most of the 

advantages and disadvantages of the cookie approach. 

 

1.6.3 Query Strings 

Sometimes query strings can also be used to maintain small amount of session 

data. This is particular true for maintaining the short session IDs that will be 

introduced below. But since most business transactions are implemented with 

HTML forms, this approach is less useful. 

 

1.6.4 Server-Side Session Objects 

For improving the security of session data and avoiding the wasted network 

bandwidth for session data to move back and forth between a Web browser and a 

Web server, you can also save much of the session data on the Web server as 

server-side session objects. A session object has a unique session ID for 

identifying a specific user. A session object is normally implemented as a hash 

table (lookup table) consisting of (name, value) pairs. A single cookie, hidden 

field of a form, or query string of a hyperlink can be used to maintain the session 

ID. Since session ID is a fixed size small piece of data, it will not cause much 

network overhead for going between a Web browser and a Web server for each 

HTTP request. For securing the session data, you need to make sure that the 

session ID is unique and properly protected on the client site. Since this approach 

stores all session data on the Web server, it takes the most server resources and is 

relatively harder to serve large number of clients concurrently. 

 



2  Web Pages Using Web Standards 

 

1.7 Summary 

Web technologies are based on a tiered Web architecture with each tier having its 

well-defined roles. HTML is the Web language for describing the logical 

structure of Web documents, and cascading style sheets are for customizing the 

presentation of the Web documents. HTTP is the application-level protocol to 

support dynamic interactions between Web browsers and Web servers. In general 

HTTP POST is a more secure way for a client to interact with Web applications. 

While there are several ways to maintain client session data, each of them has its 

pros and cons. 

1.8 Self-Review Questions 

1. HTML is a language for specifying data presentation in Web browsers. 

 

a.   True   

b.   False   

 

2. CSS is a language for specifying data presentation in Web browsers. 

 

a.   True   

b.   False   

 

3. XHTML and HTML are totally different languages. 

 

a.   True   

b.   False   

 

4. Can users introduce new tags in an XHTML document? 

 

a.   True   

b.   False   

 

5. Attributes are mainly for specifying large chunks of business data. 

 

a.   True   

b.   False   

 

6. Which HTML elements are normally used to define the general layout of a 

Web page? 

 

a.   table   



47 

                                                                                                 

 

b.   frame 

c. form 

d. div  

 

7. Can you customize hyperlink views without using CSS? 

 

a.   True   

b.   False   

 

8. Multiple elements of an HTML document can have the same value for their 

id attribute. 

 

a.   True   

b.   False   

 

9. Attributes id and class are for defining special formatting of subsets of 

elements. 

 

a.   True   

b.   False   

 

10. URL is for specifying the location of a network resource. 

 

a.   True   

b.   False   

 

11. HTTP is a network protocol similar to TCP/IP. 

 

a.   True   

b.   False   

 

12. The port number in a URL is for identifying a server-side process for 

receiving the HTTP GET/POST request. 

 

a.   True   

b.   False   

 

13. HTTP GET is more secure in submitting large amount of data to a Web 

server. 

 

a.   True   

b.   False   

 

14. Using HTTP GET to submit data from a text field or text area could lead to 



2  Web Pages Using Web Standards 

 

 

a.   crash of the Web server   

b.   Web server buffer overflow  

c. viruses or worms being implanted on the Web server and starting to run 

d. Web browser presenting outdated data 

 

 

15. HTTP GET should be used to request the price of a stock. 

 

a.   True   

b.   False   

 

16. If you don‟t want people to read over your shoulders what you have 

submitted to a Web server, you should use which method to submit the 

data? 

 

a.   HTTP GET   

b.   HTTP POST   

 

17. When you click on a hyperlink, an HTTP GET request will be sent to the 

Web server specified by the hyperlink. 

 

a.   True   

b.   False   

 

18. Can you use the space character explicitly in a query string? 

 

a.   True   

b.   False   

 

 

19. Which mechanisms can help maintain client session data? 

 

a.   Cookies   

b.   Form hidden fields 

c. URL query strings 

d. Server-side session data 

 

20. Cookies are client session data stored on Web servers. 

 

a.   True   

b.   False   

 

21. CSS is a language for specifying data presentation in Web browsers. 



49 

                                                                                                 

 

 

a.   True   

b.   False   

 

22. If client session data are stored on Web servers, then there is no need to use 

cookies, form hidden fields or URL query strings to store any data for a 

client. 

 

a.   True   

b.   False   

 

1.9 Keys to the Self-Review Questions 

 

(To be provided later)   

 

 

1.10 Exercises 

1. What are the main advantages of using CSS to format data presentation 

relative the old approach of formatting data presentation inside HTML? 

2. How do the id and class attributes of HTML elements support the special 

data presentations for a subset of elements? 

3. What are the major components of a URL and what are their functions? 

4. What are the major differences between HTTP GET and HTTP POST for 

submitting form data to a Web server? 

5. What are the pros and cons of using cookies to support session data of a 

Web application? 

6. Consider supporting session data with cookies or with server-side session 

objects. For maintaining session data for large amount of concurrent users, 

which approach provides better response time? Which approach is more 

secure? Which approach takes the least server-side resources? 

1.11 Programming Exercises 

1. Use XHTML and CSS to create a Web site for the course that adopts this 

book. The main Web page has three sections: the top banner section for 

Web site title and some graphics, the narrow bottom-left section for 

navigation links, and the large bottom-right section for the contents of the 



2  Web Pages Using Web Standards 

 

link that the user has chosen on the navigation link section. CSS division-

based layout should be used for your solution. 

2. Create a Web application on Tomcat that will collect student information 

from each of its user and echo the user data back for the user to review. You 

can use this chapter‟s demo Web application as the foundation of your 

project. Make sure that your graphics user interface uses all common HTML 

form input controls introduced in Section 1.5.3. 

1.12 References 

1. Laura Lemay and Rafe Colburn. Sams Teach Yourself Web Publication with 

HTML and CSS in One Hour a Day, Sams, 2006. ISBN 0-672-32886-0. 

2. Faithe Wempen. HTML and XHTML Step by Step, Microsoft Press, 2006. 

ISBN 0-7356-2263-9. 

3. XHTML™ 1.0 The Extensible HyperText Markup Language (Second 

Edition). http://www.w3.org/TR/xhtml1/ 

4. XHTML Tutorial. http://www.w3schools.com/xhtml/ 

5. HTML Tutorial. http://www.w3schools.com/html/ 



 

 

2  
XML – the ‘X’ in Ajax 

2.1 Overview 

2.2  XML Documents 

2.3 DTD 

2.4 XML Schema  

2.5 XML Parsing with SAX 

2.6 XML Parsing with DOM 

2.7 XML Transformation with XSLT 

2.8 Summary 

2.9 Self-Review Questions 

2.10 Keys to the Self-Review Questions  

2.11 Exercises  

2.12 Programming Exercises 

2.13 References  

 

Objectives of This Chapter 

 

 Introduce the motivation and importance of XML technologies 

 Explain the major technologies for defining XML dialects 

 Illustrate how to parse, validate and process XML documents 

 Introduce XSL and XSLT for transforming XML documents 

 

2.1 Overview 

For two information systems to integrate smoothly, they must either adopt the 

same data structures, or have the ability to interpret their partners‟ data accurately. 

This is the data integration challenge, the focus of this chapter. 

Different business data types have different logical structures. For example, 

the hospital patients‟ medical records have totally different structure from the 

bank transaction records. For efficient processing, each business data type must 

be represented in some well-defined formats. Such data representations are not 

unique and the different businesses may represent the same type of business data 

in different data formats. For example, different hospitals may represent their 

patients‟ medical record in different data formats. Such inconsistencies could 



52  XML – the „X‟ in Ajax 

 

lead to difficulties in integrating the information systems of the cooperating 

businesses. 

On another hand, for computers to process and store a type of business data, 

each information system needs to implement the data format adopted by the 

business in a particular programming language. Different programming 

languages may have different data specification mechanisms and data types for 

specifying the same type of business data. If two cooperating information 

systems are implemented with different programming languages, they could have 

difficulties in processing their partners‟ data. The properties of computer 

hardware, operating systems and networking protocols could also add 

complications to such data integration. 

XML, or Extensible Markup Language, is a technology introduced mainly for 

business data specification and integration. XML is a simplified descendant of 

SGML, or Standard Generalized Markup Language. Like XHTML/HTML, it 

uses tags and attributes to mark up data. But XML is generic and doesn‟t have a 

specific application domain. It does not limit what tag or attribute names can be 

used. For different types of business data you may need to define different 

concrete markup languages to define their data structures. Each of these concrete 

markup languages needs to follow the general syntax structure of XML but uses 

a set of tag and attribute names predefined with XML syntax specification 

mechanisms like DTD (Data Type Definition) or XML Schema, which will be 

introduced in the following sections. In this sense people usually say that XML is 

a meta-language for defining markup languages in specific application domains, 

and the latter are called XML dialects and can only use predefined tags and 

attributes. Each XML dialect document is a special case of an XML document, 

and is called an instance document of the XML dialect specification. The popular 

XML dialects include XHTML for specifying Web page structures, SOAP 

(originally standing for Simple Object Access Protocol, and more recently for 

Service Oriented Architecture Protocol) for specifying message structure 

representing remote method invocations, and BPEL (Business Process Execution 

Language)  for specifying business processes. 

For a particular type of business data, different information systems may 

have different specification mechanisms for its logical structure. An XML dialect 

could be defined and adopted by the cooperating systems and become an 

intermediate language for data exchange among these systems. For a system to 

exchange data with its partners, it only needs to have the ability to transform data 

between its proprietary format and the accepted XML dialect format. Since XML 

processing functions have been integrated into most operating systems and are 

freely available, such XML-based data integration is quite cost-effective. 

This chapter first introduces the syntax of basic XML documents. DTD 

(Document Type Definition) and XML Schema mechanisms are then used to 

define XML dialects for specifying logical data structures. SAX (Simple API for 

XML) and DOM (Document Object Model) will be used to parse and validate 

XML documents. The XSL (Extensible Stylesheet Language) and XSLT (XSL 



53 

                                                                                                 

 

Transformation) techniques will then be introduced to transform XML 

documents to other data formats. 

2.2 XML Documents 

An XML document contains an optional XML declaration followed by a single 

top-level element, which may contain nested elements and text, as shown by the 

following example (the contents are in file “dvd.xml”): 

 
<?xml version="1.0" encoding="UTF-8"?> 

<!-- This XML document describes a DVD library --> 

<library> 

 <dvd id="1"> 

  <title>Gone with the Wind</title> 

  <format>Movie</format> 

  <genre>Classic</ genre > 

 </dvd> 

 <dvd id="2"> 

  <title>Star Trek</title> 

  <format>TV Series</format> 

  <genre>Science fiction</genre> 

 </dvd> 

</library> 

 

This XML documents starts with an optional XML declaration. The second 

line is an example of XML comment, which always starts with <-- and ends with 

-->. Such comments can occur anywhere and continue over multiple lines in an 

XML document, and they are ignored by XML processors. The main contents of 

this example XML document is an element named library, which includes 

three nested elements named dvd. Each of the dvd elements in turn contains 

three elements named title, format and genre. Each of the dvd elements 

also contains an attribute id which specifies a unique ID number. The nesting 

structure of such an XML document can be described by the following tree that 

grows downwards. Here library is called the root or top-level element. Prefix 

@ is used to indicate that the following name is for an attribute. 

 

 

library 

dvd 

title format genre @id 

dvd 

title format genre @id 



54  XML – the „X‟ in Ajax 

 

2.2.1 XML Declaration 

If it is used, the optional XML declaration must be the first line of an XML 

document. It declares the XML version and character encoding of the following 

XML document. Different versions of the XML specification have different 

capabilities and features (backward compatible), and by 2008 the latest XML 

version is 1.1 and the most popular version is 1.0. If an XML document doesn‟t 

have an XML declaration, the XML processors will assume to be based on some 

default XML version and character encoding. Since such defaults are not 

standardized, it is much safer to declare them so the XML processors will process 

the XML documents with predictable behavior. 

2.2.2 Unicode Encoding 

XML data are based on Unicode (http://unicode.org), an industry standard 

character coding system designed to support the worldwide interchange, 

processing, and display of the written texts of the diverse languages and technical 

disciplines of the modern world. The Unicode standard assigns unique integers, 

called code points, to characters of most languages, as well as defines methods 

for storing the integers as byte sequences in a computer. There are three 

approaches, named UTF-8, UTF-16, and UTF-32 where UTF stands for Unicode 

Transformation Format. UTF-8 stores each Unicode character as a sequence of 

one to four 8-bit values (one byte for the 128 US-ASCII characters, two or three 

bytes for most of the remainder characters, four bytes for some rarely used 

characters), and it is the most space-efficient data encoding method if the data is 

mainly based on the US-ASCII characters, as is the case for English.  

 

2.2.3 Tags, Elements and Attributes 

Each XML element consists of a start tag and an end tag with nested elements or 

text in between. The matching start tag and end tag must be based on the same 

tag name, which is also called the element name. The nested elements or text 

between the matching start and end tags are called the value of the element. The 

start tag is of form <tagName>, and the end tag is of form </tagName>. For 

example, <format>Movie</format> is an element, its start tag is <format>, 

its end tag is </format>, the element is based on tag name format, so it is also 

called a format element. This format element has text Movie as its value. Any 

string consisting of a letter followed by an optional sequence of letters or digits 

and having no variations of “xml” as its prefix is a valid XML tag name. Tag 

names are case-sensitive. An element that is not nested in another element is 

called a root or top-level one. By specification an XML document can have 

exactly one root element.  



55 

                                                                                                 

 

If an element has no value, like <tagName></tagName>, it can be 

abbreviated into a more concise form <tagName /> (where the space before / 

is optional). 

Elements can be nested. In the above example, title, format and genre 

elements are nested inside dvd elements, which are in turn nested in a library 

element. Elements cannot partially overlap each other. For example, 

“<a><b>data</a>data</b>” contains two partially overlapping a and b 

elements thus is not allowed in a valid XML document. For avoiding partial 

elements overlapping, the element started the first must be ended the last. 

The start tag of an element may contain one or more attribute specifications, 

in the form of a sequence of attributeName="attributeValue" separated 

by white spaces, as in <dvd id="1">, where the dvd element has attribute id 

with its value being 1. Attribute values must be enclosed in either matching 

single straight quotes (') or matching double straight quotes ("). Any string 

consisting of a letter followed by an optional sequence of letters or digits can be a 

valid attribute name. While most information of an XML document is in the form 

of element values, attributes are usually used for specifying short categorizing 

values for the elements. 

 

2.2.4 Using Special Characters 

The following five characters are used for identifying XML document structures 

thus cannot be used in XML data directly: &, <, >, ", and '. If you need to use 

them as value of XML elements or attributes, you need to use &amp; for &, 

&lt; for <, &gt; for >, &quot; for ", and &apos; for '. These alternative 

representations of characters are examples of entity references. 

As an example, the following XML string is invalid:   
<Organization>IBM & Microsoft</Organization> 

Whereas the following is valid XML:   
<Organization>IBM &amp; Microsoft</Organization> 

 

If your keyboard will not allow you to type the characters you want, or if you 

want to use characters outside the limits of the encoding scheme that you have 

chosen, you can use a symbolic notation called entity referencing. If the character 

that you need to use has hexadecimal Unicode code point nnn, you can use 

syntax &#xnnn; to represent it in XML documents. If the character that you need 

to use has decimal Unicode code point nnn, you can use syntax &#nnn; to 

represent it in XML documents. If you use a special character multiple times in a 

document, you could define an entity name for it in DTD, which will be covered 

in Section 2.3.3 of this chapter, for easier referencing. An entity assigns a string 

name to an entity reference. For example, if your keyboard has no Euro symbol 

(€), you can type &#8364; to represent it in XML documents, where 8364 is the 



56  XML – the „X‟ in Ajax 

 

decimal Unicode code point for the Euro symbol. If you need to use the Euro 

symbol multiple times in a document, you can define an entity name, say euro, 

through a DTD declaration <!ENTITY euro "&#8364;"> (more explanation 

will be available in the section on DTD). Then you can use the more meaningful 

entity reference &euro; in your XML document. In general, if there is an entity 

name ccc for a character, you can replace it with syntax &ccc; in XML 

documents. Entity names “amp”, “lt”, “gt”, “quot” and “apos” are predefined for 

&, <, >, " and ' and you can use them in your XML documents without declaring 

them with DTD. Table 1 on page 11 listed the popular HTML entities. The entity 

numbers in the third column can be used in XML documents too, but only the 

first five entity names are predefined in XML specifications.  

 

2.2.5 Well-Formed XML Documents 

A well-formed XML document must conform to the following rules, among 

others: 

 

 Non-empty elements are delimited by a pair of matching start tag and end 

tag.  

 Empty elements may be in their self-ending tag form, such as <tagName />.  

 All attribute values are enclosed in matching single (') or double (") quotes.  

 Elements may be nested but must not partially overlap. Each non-root 

element must be completely contained in another element.  

 The document complies with its declared or default character encoding.  

 

Both the SAX and DOM XML parsers, which will be introduced in the 

following sections, will check whether the input XML document is well-formed. 

If it is not, the parsing process will be terminated with error messages. 

 

2.3 DTD 

DTD (Document Type Definition) is the first mechanism for defining XML 

dialects. As a matter of fact, it is part of the XML specification v1.0 so all XML 

processors must support it. But DTD itself does not follow the general XML 

syntax. The following is an example DTD declaration for the earlier DVD XML 

document example (the contents are in example file “dvd.dtd”): 

 
<?xml version="1.0" encoding="UTF-8"?> 

<!ELEMENT library (dvd+)> 

<!ELEMENT dvd (title, format, type)> 



57 

                                                                                                 

 

<!ELEMENT title (#PCDATA)> 

<!ELEMENT format (#PCDATA)> 

<!ELEMENT genre (#PCDATA)> 

<!ATTLIST dvd id CDATA #REQUIRED> 

 

Since DTD is part of XML specification, it is advised to start its declarations 

with the XML declaration for XML version and character encoding. 

2.3.1 Declaring Elements 

To declare a new XML element or tag name (element type) in an XML dialect, 

use the following syntax: 
<!ELEMENT elementName  (elementContent)> 

2.3.1.1 Empty elements 

Empty elements are declared with the keyword EMPTY inside the parentheses: 
<!ELEMENT elementName  (EMPTY)> 

As an example, <!ELEMENT br (EMPTY)> declares that br is an empty 

element. 

2.3.1.2 Elements with data 

Elements with data are declared with the data type inside parentheses in one of 

the following forms: 
<!ELEMENT elementName (#CDATA)> 

<!ELEMENT elementName (#PCDATA)> 

<!ELEMENT elementName (ANY)> 

#CDATA means the element contains character data that is not supposed to be 

parsed by a parser for nested elements. 

#PCDATA means that the element contains data that is going to be parsed by a 

parser for nested elements. If a #PCDATA section contains elements, these 

elements must also be declared. 

The keyword ANY declares an element with any content as its value.  

As an example, <!ELEMENT index (#PCDATA)> declares a new index 

element type that the XML parsers will further identify and process XML 

elements nested in values of this type of elements. 

 

2.3.1.3 Elements with children (sequences) 

An element with one or more nested children elements as its value are defined 

with the names of the children elements inside the parentheses: 

 



58  XML – the „X‟ in Ajax 

 

<!ELEMENT elementName (childElementNames)> 

where childElementNames is a sequence of child element names separated by 

commas. These children must appear in the same sequence in XML documents 

adopting this DTD declaration. In a full declaration, the child elements must also 

be declared, and the children can also have children. 

As an example, <!ELEMENT index  (term, pages)> declares a type of 

elements named index whose value contains a term element and a pages 

element in the same order.  

As another example, <!ELEMENT footnote (message)> declares a type 

of elements named footnote that can only contain exactly one message 

element as its value. 

For declaring zero or more occurrences of the same element as the value of a 

new element type, use syntax 
<!ELEMENT  elementName  (childName*)> 

Here symbol * indicates that the previous element should occur zero or more 

times, a notation originally adopted by regular expressions. 

For example, <!ELEMENT footnote  (message*)> declares that 

elements of type footnote should contain zero or more occurrences of 

message elements. 

If you change the symbol * to symbol + in the above syntax, then elements of 

the new element type should have one or more occurrences of the child element. 

For declaring zero or one occurrence of an element as the value of a new 

element type, use syntax 
<!ELEMENT elementName  (childName?)> 

Here the ? symbol declares that the previous element can occur zero or one 

time, also a notation originated from regular expressions. 

For example, <!ELEMENT footnote  (message?)> declares that a 

footnote element should contain either none elements or one message element 

as its value. 

If an element can contain alternative elements, you can use the pipe symbol | 

to separate the alternatives. For example, DTD declaration 
<!ELEMENT  section  (section1 | section2)? 

specifies that a section element contains either a section1 element or a 

section2 element, but not both. 

2.3.1.4 Declaring mixed content 

As an example, look at declaration  
<!ELEMENT email (to+,from,header,message*,#PCDATA)>  

The example above declares that the element email must contain in the same 

order at least one to child element, exactly one from child element, exactly one 

header element, zero or more message elements, and some other parsed 

character data as well. 



59 

                                                                                                 

 

2.3.2 Declaring Attributes 

In DTD, XML element attributes are declared with an ATTLIST declaration. An 

attribute declaration has the following syntax: 

 
<!ATTLIST elementName attributeName attributeType  

  defaultValue>  

 

As you can see from the syntax above, the ATTLIST declaration specifies the 

element which can have the attribute, the name of the attribute, the type of the 

attribute, and the default attribute value. 

The attribute-type can have values including the following ones: 

 

Value Explanation 

CDATA The value is character data 

(eval1|eval2|…) The value must be one of the enumerated 

ID The value is a unique id 

IDREF The value is the id value of another element 

ENTITY The value is an entity 

 

The attribute default-value can have the following values: 

 

Value Explanation 

Default-value The attribute is optional and has this default value 

#REQUIRED The attribute value must be included in the  

element 

#IMPLIED The attribute is optional 

#FIXED value The attribute value is fixed to the one specified 

 

DTD example:  
<!ELEMENT circle EMPTY> 

<!ATTLIST circle radius CDATA "1"> 

XML example: 
<circle radius="10"></circle> <circle /> 

In the above example the element circle is defined to be an empty element 

with the attribute radius of type CDATA. The radius attribute has a default 

value of 1.  The first circle element has radius 10, and the second circle 

element has the default radius 1. 

If you want to make an attribute optional but you don‟t want to provide a 

default value for it, you can use the special value #IMPLIED. In the above 

example, if you change the attribute declaration to 
<!ATTLIST circle radius CDATA #IMPLIED> 



60  XML – the „X‟ in Ajax 

 

then the second circle element above will have no radius value. 

On the another hand, if you change the above attribute declaration to 
<!ATTLIST circle radius CDATA #REQUIRED> 

then the second circle element above is not valid and will be rejected by XML 

validating parsers since it misses a required value for its radius attribute. 

If you change the above attribute declaration to  
<!ATTLIST circle radius CDATA #FIXED "10"> 

then all circle elements must specify 10 as its radius value, and the second 

circle element above is not valid and will be rejected by XML validating 

parsers since it misses the required value 10 for its radius attribute. 

The following line declares a type attribute for circle elements 
<!ATTLIST circle type (solid|outline) "solid"> 

which can take on either solid or outline as its value. If a circle element 

doesn‟t have a type attribute value specified, it would have the default type 

value solid. 

2.3.3 Declaring Entity Names 

An entity name can be declared as a nickname or shortcut for a character or a 

string. It is mainly used to represent special characters that must be specified with 

Unicode, or long strings that repeat multiple times in XML documents. 

To declare an entity name, use the following syntax: 
<!ENTITY  entityName  "entityValue"> 

where entityName can be any string consisting of a letter followed by an 

optional sequence of letters or digits. The following two declarations define euro 

as an entity name for the Euro symbol (€) and “cs” as an entity name for string 

“Computer Science”. 
<!ENTITY euro "&#8364;"> 

<!ENTITY cs "Computer Science"> 

 

XML documents can use syntax &entityName; in its text to represent the 

character or string associated with entityName. For example, if an XML 

document includes the above two DTD declarations, then &euro; and &cs; in 

its text will be read by XML parsers as the same as € and Computer Science. 

Table 1 on page 11 listed the popular HTML entities. The entity numbers in the 

third column can be used in XML documents too, but only the first five entity 

names are predefined in XML specifications. 

2.4 Associating DTD Declarations to XML Documents 

To specify that an XML document is an instance of an XML dialect specified by 

a set of DTD declarations, you can either include the set of DTD declarations 



61 

                                                                                                 

 

inside the XML document, which is less useful but convenient for teaching 

purpose; or save the DTD declarations in a separate DTD file and link the XML 

document to it, which is common practice. 

If the DTD declarations are to be included in your XML document, they 

should be wrapped in a DOCTYPE definition with the following syntax 
<!DOCTYPE rootElementTag [DTD-Declarations]> 

and the DOCTYPE definition should be between the XML declaration and the root 

element of an XML document. 

For example, file “dvd_embedded_dtd.xml” has the following contents: 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE library [ 

<!ELEMENT library (dvd+)> 

<!ELEMENT dvd (title, format, genre)> 

<!ELEMENT title (#PCDATA)> 

<!ELEMENT format (#PCDATA)> 

<!ELEMENT genre (#PCDATA)> 

<!ATTLIST dvd id CDATA #REQUIRED> 

]> 

<library> 

  <dvd id="1"> 

  <title>Gone with the Wind</title> 

  <format>Movie</format> 

  <genre>Classic</genre> 

  </dvd> 

  <dvd id="2"> 

  <title>Star Trek</title> 

  <format>TV Series</format> 

  <genre>Science fiction</genre> 

  </dvd> 

</library> 

 

To link a DTD declaration file to an XML document, use the following 

DOCTYPE definition between the XML declaration and the root element: 
<!DOCTYPE rootElementTag SYSTEM DTD-URL> 

where DTD-URL can be either a file system path for the DTD file on the local 

file system, or a URL for the DTD file deployed on the Internet. 

The following contents of file dvd_dtd.xml shows how it links to the DTD 

file dvd.dtd next to it in the local file system. 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE library SYSTEM "dvd.dtd"> 

<library> 

  <dvd id="1"> 

  <title>Gone with the Wind</title> 

  <format>Movie</format> 



62  XML – the „X‟ in Ajax 

 

  <genre>Classic</genre> 

  </dvd> 

  <dvd id="2"> 

  <title>Star Trek</title> 

  <format>TV Series</format> 

  <genre>Science fiction</genre> 

  </dvd> 

</library> 

 

2.5 XML Schema  

While DTD is part of XML specification and supported by any XML processors, 

it is weak in its expressiveness for defining complex data structures. XML 

Schema (http://www.w3.org/XML/Schema) is an alternative industry standard 

for defining XML dialects.  XML Schema itself is an XML dialect, thus it can 

take advantage of many existing XML techniques and processors. It also has a 

much more detailed way to define what the data can and cannot contain, and 

promotes declaration reuse so common declarations can be factored out and 

referenced by multiple element or attribute declarations.   

The following is an example XML Schema declaration for the earlier XML 

DVD dialect; and file dvd.xsd contains this declaration. 

 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema   

    xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

  <xs:element name="library"> 

    <xs:complexType> 

    <xs:sequence> 

      <xs:element name="dvd" minOccurs="0"  

            maxOccurs="unbounded"> 

        <xs:complexType> 

     <xs:sequence> 

       <xs:element name="title"  

                 type="xs:string"/> 

       <xs:element name="format"  

                 type="xs:string"/> 

       <xs:element name="genre"  

                 type="xs:string"/> 

     </xs:sequence> 

     <xs:attribute name="id"  

             type="xs:integer" use="required"/> 

        </xs:complexType> 



63 

                                                                                                 

 

      </xs:element> 

    </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

</xs:schema> 

2.5.1 XML Namespace 

For convenient usage, XML element and attribute names are supposed to be short 

and meaningful. Therefore XML dialects declared by different people or 

companies have the tendency of adopting the same names. If an XML document 

uses elements from more than one of these dialects, then naming conflict may 

happen. XML namespace is introduced to avoid XML name conflicts. 

A set of XML elements, attributes and data types can be associated with a 

namespace, which could be any unique string. For easier to be unique, 

namespaces are normally related to the declaring company or institution‟s URL. 

For example “http://www.w3.org/2001/XMLSchema” is the namespace for the 

2001 version of XML Schema, and “http://www.w3.org/1999/xhtml” is the 

namespace for XHTML 1.0 Transitional, as specified in all the XHTML 

examples in the previous chapter (refer to Section Error! Reference source not 

found.). String “http://csis.pace.edu” could be another example namespace for 

XML Schemas declared by Pace University‟s School of Computer Science and 

Information Systems. While namespaces normally look like URLs, they don‟t 

need be. There are usually no Web resources corresponding to namespaces. 

To specify XML elements, attributes or data types of a namespace in an 

XML document, they are supposed to be qualified by their namespace. Since 

namespaces are normally long to be unique, namespace prefixes, which are 

normally one to four characters long, could be declared to represent the full 

namespaces. Each XML document can choose its own namespace prefixes. In the 

above example, “xs” is an XML prefix representing namespace 

“http://www.w3.org/2001/XMLSchema”. The association between a namespace 

prefix and a namespace is specified in the opening tag of the root element in the 

form of attribute specification, except the namespace prefix has its own prefix 

“xmlns:”. For example, to specify that “xs” is the namespace prefix for 

namespace “http://www.w3.org/2001/XMLSchema”, the following two lines in 

the example XML document are used: 
<xs:schema  

    xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

In an XML document, if an element is qualified by its namespace prefix, as 

“xs:element” for element element declared in namespace 

“http://www.w3.org/2001/XMLSchema”, its attributes and nested elements by 

default belong to the same namespace. 

If an XML document uses several namespaces, but the majority of the 

elements and attributes use the same namespace, you can use attribute xmlns to 



64  XML – the „X‟ in Ajax 

 

declare the default namespace in the start tag of the root element so that those 

elements, attributes or data types not qualified by namespace prefixes will be 

assumed to belong to this default namespace. As an example, if an XML 

document has the following attribute declaration in the start tag of its root 

element,  
xmlns="http://csis.pace.edu" 

then all unqualified elements and attributes in this document are supposed to 

belong to namespace “http://csis.pace.edu”. 

If an XML Schema document declares an XML dialect belonging to a 

particular namespace, its root element should contain a targetNamespace 

attribute to specify the target namespace for elements, attributes and data types 

declared in this dialect. As an example, if an XML Schema document‟s root 

element includes attribute targetNamespace like 
<xs:schema targetNamespace="http://csis.pace.edu" 

    ……> 

then all elements, attributes and data types declared in this document belong to 

namespace “http://csis.pace.edu”. Example file dvd-ns.xsd contains the same 

contents as file dvd.xsd but it declares all elements and attributes under 

namespace “http://csis.pace.edu”. Without such a targetNamespace attribute 

in the XML Schema root element, the XML dialect does not belong to any 

namespace, as in the previous example. 

All XML Schema declarations for elements and data types immediately 

nested in the root schema element are called global declarations. Normally, the 

declarations of attributes are nested inside the declarations of their elements, and 

the declarations of the nested elements are nested inside the declaration of their 

hosting element. The proper usage of global declarations can promote declaration 

reuse, as you will see soon. 

In the following examples, namespace prefix “xs” is assumed for the XML 

Schema namespace. 

2.5.2 Declaring Simple Elements and Attributes 

A simple element is an XML element that can contain only text based on simple 

data types defined in XML Schema specification (including string, decimal, 

integer, positiveInteger, boolean, date, time, anyType), those 

derived from such simple data types, or user custom types. It cannot contain any 

other elements or attributes. The following are some examples. 

To declare element color that can take on any string value, use 
<xs:element name="color" type="xs:string"/> 

As a result, element <color>blue</color> will have value “blue”, and 

element <color /> will have no value. 

 



65 

                                                                                                 

 

To declare element color that can take on any string value with “red” to be 

its default value, use 
<xs:element name="color" type="xs:string"  

    default="red"/> 

As a result, element <color>blue</color> will have value “blue”, and 

element <color /> will have the default value “red”. 

 

To declare element color that can take on only the fixed string value “red”, 

use 
<xs:element name="color" type="xs:string"  

     fixed="red"/> 

As a result, element <color>red</color> will be correct, element 

<color>blue</color> will be invalid, and element <color /> will have the 

fixed (default) value “red”. 

 

While simple elements cannot have attributes, the syntax for declaring 

attributes in XML Schema is very similar to that for simple elements. You just 

need to change “xs:element” to “xs:attribute” in the above examples. For 

example,  
<xs:attribute name="lang" type="xs:string"  

    default="EN"/> 

declares that lang is an attribute of type xs:string, and its default value is 

“EN”. Such attribute declarations are always embedded in the declarations of 

complex elements to which they belong. 

Attributes are optional by default. You can use attribute element‟s use 

attribute to specify that the declared attribute is required for its hosting element. 

For example, if the above attribute lang doesn‟t have a default value but it must 

be specified for its hosting element, you can use the following declaration: 
<xs:attribute name="lang" type="xs:string"  

    use="required"/> 

 

2.5.3 Declaring Complex Elements 

A complex element is an XML element that contains other elements and/or 

attributes. There are four kinds of complex elements: 

 empty elements  

 elements that contain only other elements  

 elements that contain only customized simple types or attributes  

 elements that contain both other elements and text 

 

To declare that product is an empty element type with optional integer-

typed attribute pid, you can use: 



66  XML – the „X‟ in Ajax 

 

<xs:element name="product"> 

  <xs:complexType> 

    <xs:attribute name="pid" type="xs:integer"/> 

  </xs:complexType> 

</xs:element> 

Example product elements include <product /> and <product 

pid="1">. 

The following example declares that an employee element‟s value is a 

sequence of two nested elements: a firstName element followed by a 

lastName element, both of type string. 
<xs:element name="employee"> 

  <xs:complexType> 

    <xs:sequence> 

      <xs:element name="firstName"  

          type="xs:string"/> 

      <xs:element name="lastName"  

          type="xs:string"/> 

    </xs:sequence> 

  </xs:complexType> 

</xs:element> 

The following is an example employee element: 
<employee> 

  <firstName>Tom</firstName> 

  <lastName>Sawyer</lastName> 

</employee> 

Such nested element declarations have two problems. First, the width of 

paper or computer display will make deep element nesting hard to declare and 

read. Second, what if you also need to declare a manager element that also 

contains a sequence of firstName and lastName elements? The type 

declaration for the employee and manager elements would be duplicated. 

Fortunately you can use global declarations and XML Schema element 

element‟s type attribute to resolve the above two problems. The following is the 

above employee element declaration in global declaration format as well as the 

declaration of a new manager element type.  
<xs:element name="employee" type="fullName"/> 

<xs:element name="manager" type="fullName"/> 

<xs:complexType name="fullName"> 

  <xs:sequence> 

    <xs:element name="firstName" type="xs:string"/> 

    <xs:element name="lastName" type="xs:string"/> 

  </xs:sequence> 

</xs:complexType> 

 



67 

                                                                                                 

 

The following example declares a complexType element, shoeSize. The 

content is defined as an integer value, and the shoeSize element also contains 

an attribute named country: 

 
<xs:element name="shoeSize"> 

  <xs:complexType> 

    <xs:simpleContent> 

      <xs:extension base="xs:integer"> 

        <xs:attribute name="country"  

            type="xs:string" /> 

      </xs:extension> 

    </xs:simpleContent> 

  </xs:complexType> 

</xs:element>  

An example shoeSize element is <shoeSize 

country="france">35</shoeSize>. 

 

A mixed complex type element can contain attributes, elements, and text. 

You use attribute mixed="true" of the complexType element to specify that 

the value is a mixture of elements and text. The following declaration is for a 

letter element that can have a mixture of elements and text as its value: 
<xs:element name="letter"> 

  <xs:complexType mixed="true"> 

    <xs:sequence> 

      <xs:element name="name" type="xs:string"/> 

      <xs:element name="orderID"  

          type="xs:positiveInteger"/> 

      <xs:element name="shipDate" type="xs:date"/> 

    </xs:sequence> 

  </xs:complexType> 

</xs:element> 

The following is an example letter element: 
<letter> 

Dear Mr.<name>John Smith</name>, 

Your order <orderID>1032</orderID> 

will be shipped on <shipDate>2008-09-23</shipDate>. 

</letter> 

2.5.4 Controlling Element Order and Repetition 

For elements that contain other elements, the application of the sequence 

element (sequence, all and choice are called order indicators of XML 

Schema) enforces an order of the nested elements, as is the case for the previous 

employee element in which the nested lastName element must follow the 



68  XML – the „X‟ in Ajax 

 

firstName element. If you need to stipulate that each of the nested elements can 

occur exactly once but in any order, you can replace the sequence element with 

the all element, as in the following modified employee example: 
<xs:element name="employee"> 

  <xs:complexType> 

    <xs:all> 

      <xs:element name="firstName"  

          type="xs:string"/> 

      <xs:element name="lastName"  

          type="xs:string"/> 

    </xs:all> 

  </xs:complexType> 

</xs:element> 

If you need to specify that an employee element need contain either a 

firstName element or a lastName element, but not both, you can replace the 

all element with the choice element in the above example.  

Occurrence indicators are used to define how many occurrences that an 

element can be used. XML Schema has two occurrence indicators, maxOccurs 

and minOccurs, both are attributes of XML Schema element element. 

Attribute maxOccurs specifies up to how many times that its hosting 

element can occur at that location. It takes on a non-negative integer or 

“unbounded” as the upper limit.  Its default value is unbounded (unlimited). 

Attribute minOccurs specifies at least how many times that its hosting 

element should occur at that location. It takes on a non-negative integer as the 

lower limit.  Its default value is 1. 

As an example, the following declaration specifies that the dvd element can 

occur zero or unlimited number of times. 
<xs:element name="dvd" minOccurs="0"   

    maxOccurs="unbounded"> 

 

2.5.5 Referencing XML Schema Specification in an XML Document 

Not like DTD declarations, XML Schema declarations are always put in files 

separated from their instance document files. When you create an XML 

document, you may want to declare that the document is an instance of an XML 

dialect specified by an XML Schema file. The method of such association 

depends on whether the XML Schema declaration uses target namespaces. 

 



69 

                                                                                                 

 

2.5.5.1 Specifying an XML Schema without Target Namespace 

Assume that an XML dialect is specified with an XML Schema file 

schemaFile.xsd without using a target namespace, and the Schema file has URL 

schemaFileURL, which is either a local file system path like “schemaFile.xsd” or 

a Web URL like “http://csis.pace.edu/schemaFile.xsd”. The instance 

documents of this dialect can be associated with its XML Schema declaration 

with the following structure, where rootTag is the name of a root element, xsi is 

defined as the namespace prefix for XML Schema Instance, and the latter 

includes a noNamespaceSchemaLocation attribute for specifying the location 

of the XML Schema file that does not use a target namespace. 

 
<rootTag 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema- 

  instance" 

  xsi:noNamespaceSchemaLocation="schemaFileURL" 

> 

 

2.5.5.2 Specifying an XML Schema with Namespace 

Assume that an XML dialect is specified with an XML Schema file 

schemaFile.xsd using target namespace namespaceString (say 

“http://csis.pace.edu”, and the Schema file has URL schemaFileURL, which is 

either a local file system path like “schemaFile.xsd” or a Web URL like 

“http://csis.pace.edu/schemaFile.xsd”. The instance documents of this 

dialect can be associated with its XML Schema declaration with the following 

structure, where rootTag is the name of a root element, xsi is defined as the 

namespace prefix for XML Schema Instance, and the latter includes a 

schemaLocation attribute for specifying the location of the XML Schema file 

that uses a target namespace. 

 
<rootTag 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema- 

  instance" 

  xsi:schemaLocation= 

      "namaspaceString schemaFileURL" 

> 

 



70  XML – the „X‟ in Ajax 

 

2.6 XML Parsing and Validation with SAX and DOM 

Most XML applications need to read in an XML document, analyze its data 

structure, and activate events when some language features are found. SAX 

(Simple API for XML) and DOM (Document Object Model) are two popular 

XML parsers for parsing and processing XML documents. SAX works as a 

pipeline. It reads in the input XML document sequentially, and fires events when 

it detects the start or end of language features like elements and attributes. The 

application adopting a SAX parser needs to write an event handler class that has 

a processing method for each of the event types, and the methods are invoked by 

the SAX parser when corresponding types of events are fired. Since the XML 

document doesn‟t need be stored completely in computer memory, SAX is very 

efficient for some types of applications that don‟t need to search information 

backwards in an XML document. 

On another hand, a DOM parser builds a complete tree data structure in the 

computer memory so it can be more convenient for detailed document analysis 

and language transformation. Even though DOM parsers use more computer 

memory, it is the main type of XML parser that supports the Ajax technology. 

Both SAX and DOM can work in validation mode. As part of the parsing 

process, they can check whether the input XML document is well-formed. 

Furthermore, if the parser is fed both the XML dialect specification in DTD or 

XML Schema as well as an XML document, the parser can check whether the 

XML document is an instance of the XML dialect. 

Since SAX is not used in Ajax, it will not be discussed further in this book. 

DOM parsing will be discussed in the following chapter. 

2.7 XML Transformation with XSLT 

As intermediate language representation of business data, it is critically important 

for XML instance documents being able to be transformed into other XML 

dialects, or into XHTML documents for customized Web presentation.  

The World Wide Web Consortium (W3C) specified XSL (Extensible 

Stylesheet Language) as the standard language for writing stylesheets to 

transform XML documents among different dialects or into other languages.  

XSL stylesheets themselves are pure XML documents so they can be processed 

by the standard XML tools. XSL includes three components: XSLT (XSL 

Transformation) as an XML dialect for specifying XML transformation rules or 

stylesheets, XPath as a standard notation system for specifying subsets of 

elements in an XML document, and XSL-FO for formatting XML documents. 

This section briefly introduces XPath and XSLT. Most recent Web browsers 

support XPath and XSLT, and so is Sun‟s recent JDK versions. 



71 

                                                                                                 

 

Most examples in this section are based on file “dvd.xml” with the following 

contents: 

 
<?xml version="1.0" encoding="UTF-8"?> 

<!-- This XML document describes a DVD library --> 

<library> 

 <dvd id="1"> 

  <title>Gone with the Wind</title> 

  <format>Movie</format> 

  <genre>Classic</ genre > 

 </dvd> 

 <dvd id="2"> 

  <title>Star Trek</title> 

  <format>TV Series</format> 

  <genre>Science fiction</genre> 

 </dvd> 

</library> 

 

2.7.1 Identifying XML Nodes with XPath 

Before you can specify transformation rules for an XML dialect, you need to be 

able to specify subsets of XML elements that will be transformed based on some 

rules. You can visualize all components in an XML document, including the 

elements, attributes and text, as graph nodes, and describe an XML document as 

a tree growing downward in which a node is connected to another node under it 

if the latter is immediately nested in the former or is a parameter or text value of 

the former. This is basically a DOM tree for representing an XML document in 

computer memory. The parameter names have symbol @ as their prefix in such a 

tree. The sibling nodes are ordered as they appear in the XML document. As an 

example, the contents of file “dvd.xml” can be described by the following tree. 

 

 
XPath uses path expressions to select nodes in an XML document. The node 

is selected by following a path similar to file system paths. The most useful path 

expressions include:   
Expression Description 

nodeName Selects all child nodes of the named node 

/ Selects from the root node 

// Selects nodes in the document from the current node that match the 

library 

dvd 

title format genre @id 

dvd 

title format genre @id 



72  XML – the „X‟ in Ajax 

 

selection no matter where they are 

. Selects the current node 

.. Selects the parent of the current node 

@ Selects attributes 

text() Selects the text value of the current element 

* Selects any element nodes 

@* Selects any attribute node 

node() Selects any node of any kind (elements, attributes, …) 

 

Relative to the previous XML document dvd.xml, path expression 

library selects all the child nodes of the library element; /library selects the 

root element library; library/dvd selects all dvd elements that are children 

of library; //dvd selects all dvd elements no matter where they are in the 

document (no matter how many levels they are nested in other elements);  

library//title selects all title elements that are descendants of the 

library element no matter where they are under the library element; //@id 

selects all attributes that are named “id”; and /library/dvd/title/text() 

selects the text values of all the title elements of the dvd elements. 

Predicates in square brackets can be used to further narrow down the subset 

of chosen nodes. For example, /library/dvd[1] selects the first dvd child 

element of library (IE5 and later uses [0] for the first child); 

/library/dvd[last()] selects the last dvd child element of library; 

/library/dvd[last()-1] selects the last but one dvd child element of 

library; /library/dvd[position()<3] selects the first two dvd child 

elements of library; //dvd[@id] selects all dvd elements that have an id 

attribute; //dvd[@id='2'] selects the dvd element that has an id attribute with 

value 2; /library/dvd[genre='Classic'] selects all dvd child elements of 

library that have “Classic” as their genre value; and 

/library/dvd[genre='Classic']/title selects all title elements of 

dvd elements of library that have “Classic” as their genre value. Path 

expression predicates can use many popular binary operators in the same 

meaning as they are used in programming languages, including +, -, *, div 

(division), = (equal), != (not equal), <, <=, >, >=, or (logical disjunction), and 

(logical conjunction), and mod (modulus). 

You can use XPath wildcard expressions *, @* and node() to select 

unknown XML elements. For example, for the previous XML document 

dvd.xml, /library/* selects all the child nodes of the library element; //* 

selects all elements in the document; and //dvd[@*] selects all dvd elements 

that have any attribute. 

Several path expressions can also be combined by the disjunctive operator | 

for logical or. For example, //title | //genre selects all title and genre elements in 

the previous document.  



73 

                                                                                                 

 

XPath also defines a set of XPath axes for specifying node subsets relative to 

the current node in a particular direction in the XML document‟s tree 

representation. The following table lists the popular XPath axis names and their 

meanings. 
Axis Name Result 

ancestor Selects all ancestors (parent, grandparent, etc.) of the current node 

ancestor-or-self Selects all ancestors (parent, grandparent, etc.) of the current node 

and the current node itself 

attribute Selects all attributes of the current node 

child Selects all children of the current node 

descendant Selects all descendants (children, grandchildren, etc.) of the current 

node 

descendant-or-self Selects all descendants (children, grandchildren, etc.) of the current 

node and the current node itself 

following Selects everything in the document after the end tag of the current 

node 

following-sibling Selects all siblings after the current node 

namespace Selects all namespace nodes of the current node 

parent Selects the parent of the current node 

preceding Selects everything in the document that is before the start tag of the 

current node 

preceding-sibling Selects all siblings before the current node 

self Selects the current node 

 

There are two ways to specify a path expression for the location of a set of 

nodes: absolute or relative. An absolute location path starts with a slash / and has 

the general form of  
/step/step/… 

and a relative location path does not start with a slash / and has the general form 

of 
       step/step/… 
 

In both cases, the path expression is evaluated from left to right, and each 

step is evaluated in the current node set. Each step has the following general form 

(items in square brackets are optional): 

 
[axixName::]nodeTest[predicate] 

 

where the optional axis name specifies the tree-relationship between the selected 

nodes and the current node; the node test identifies a node within an axis; and 

zero or more predicates are for further refining the selected node set. As 

examples relative to the XML document “dvd.xml”, child::dvd selects all dvd 

nodes that are children of the current node; attribute::id selects the id 

attribute of the current node; child::* selects all children of the current node; 

attribute::* selects all attributes of the current node; child::text() 

selects all text child nodes of the current node; child::node() selects all child 



74  XML – the „X‟ in Ajax 

 

nodes of the current node; descendant::dvd selects all dvd descendants of the 

current node; ancestor::dvd selects all dvd ancestors of the current node; and 

child::*/child::title selects all title grandchildren of the current node. 

2.7.2 Transforming XML Documents to XHTML Documents 

XSLT is the major component of XSL, and it allows you to use the XML syntax 

to transform the instance documents of a particular XML dialect into those of 

another XML dialect, or into other document types like PDF. One of the popular 

functions of XSLT is to transform XML documents into HTML ones for Web-

based presentation, which is the context for the examples in this section. 

XSLT is based on DOM tree representation in computer memory. A common 

way to describe the transformation process is to say that XSLT transforms an 

XML source tree into an XML result tree. In the transformation process, XSLT 

uses XPath expressions to define parts of the source document that should match 

one or more predefined templates. When a match is found, XSLT will transform 

the matching part of the source document into the result document. 

XSLT is an XML dialect which is declared under namespace 

“http://www.w3.org/1999/XSL/Transform”. Its root element is stylesheet 

or transform, and its current version is 1.0. The following is the contents of 

file “dvdToHTML.xsl” that can transform XML document “dvd.xml” into an 

HTML file. 
<?xml version="1.0" encoding="UTF-8"?> 

<xsl:stylesheet version="1.0"  

  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 

  <xsl:output method="html" version="4.0"/> 

  <xsl:template match="/"> 

    <html> 

      <head> 

        <title>DVD Library Listing</title> 

        <link rel="stylesheet" type="text/css"  

          href="style.css"/> 

      </head> 

      <body> 

        <table border="1"> 

          <tr> 

            <th>Title</th> 

            <th>Format</th> 

            <th>Genre</th> 

          </tr> 

          <xsl:for-each select="/library/dvd"> 

            <xsl:sort select="genre"/> 

            <tr> 

              <td> 



75 

                                                                                                 

 

                <xsl:value-of select="title"/> 

              </td> 

              <td> 

                <xsl:value-of select="format"/> 

              </td> 

              <td> 

                <xsl:value-of select="genre"/> 

              </td> 

            </tr> 

          </xsl:for-each> 

        </table> 

      </body> 

    </html> 

  </xsl:template> 

</xsl:stylesheet> 

 

The root element stylesheet declares a namespace prefix “xsl” for 

XSL namespace “http://www.w3.org/1999/XSL/Transform”. This root element 

could also be transform. The 4th line‟s xsl:output element specifies 

that the output file of this transformation should follow the specification of 

HTML v4.0. Each xsl:template element specifies a transformation rule: if 

the document contains nodes satisfying the XPath expression specified by the 

xsl:template‟s match attribute, then they should be transformed based on 

the value of this xsl:template element. Since this particular match attribute 

has value “/” selecting the root element of the input XML document, the rule 

applies to the entire XML document. The template element‟s body (element 

value) dumps out an HTML template linked to an external CSS stylesheet named 

“style.css”. After generating the HTML table headers, the XSLT template uses 

an xsl:for-each element to loop through the dvd elements selected by the 

xsl:for-each element‟s select attribute. In the loop body, the selected dvd 

elements are first sorted based on their genre value. Then the xsl:value-of 

elements are used to retrieve the values of the elements selected by their 

select attributes. 

To use a Web browser to transform the earlier file dvd.xml with this XSLT 

file dvdToHTML.xsl into HTML, you can add the following line after the 

XML declaration: 

 
  <?xml-stylesheet type="text/xsl" href="dvdToHTML.xsl"?> 

 

The resultant XML file is dvd_XSLT.xml and its entire contents is shown 

below. 

 
<?xml version="1.0" encoding="UTF-8"?> 



76  XML – the „X‟ in Ajax 

 

<?xml-stylesheet type="text/xsl"  

  href="dvdToHTML.xsl"?> 

<library> 

  <dvd id="1"> 

    <title>Gone with the Wind</title> 

    <format>Movie</format> 

    <genre>Classic</genre> 

  </dvd> 

  <dvd id="2"> 

    <title>Star Trek</title> 

    <format>TV Series</format> 

    <genre>Science fiction</genre> 

  </dvd> 

</library> 

 

The following CSS file style.css is used for formatting the generated 

HTML file: 
body, td 

{ 

  font-weight: normal; 

  font-size: 12px; 

  color: purple; 

  font-family: Verdana, Arial, sans-serif; 

} 

th { 

  font-weight: bold; 

  font-size: 12px; 

  color: green; 

  font-family: Verdana, Arial, sans-serif; 

  text-align: left; 

} 

 

The following screen capture shows the Web browser presentation of the 

HTML file generated by this XSLT transformation. 

 

 



77 

                                                                                                 

 

Element xsl:value-of can also be used to retrieve the value of attributes. 

For example, to retrieve the value of attribute id of the first dvd element, you 

can use 
<xsl:value-of select="/library/dvd[1]/@id"/> 

2.8 Summary 

XML technologies are at the core of supporting platform and language 

independent system and data integration across the networks. They support the 

portable approaches of defining customized languages for describing business 

data structures, parsing and validating business data, and transforming business 

data among various forms. 

2.9 Self-Review Questions 

1. XML is mainly used for specifying business data in platform and 

programming language independent way. 

 

a.   True   

b.   False   

 

2. An XML document can contain multiple root elements. 

 

a.   True   

b.   False   

 

3. An XML dialect is a special XML document type that uses a predefined set 

of tag and attribute names and follows a predefined set of syntax rules; and 

it is for specifying the data structure of a particular type of documents. 

 

a.   True   

b.   False   

 

4. DTD and XML Schema are the main mechanisms are declaring XML 

dialects. 

 

a.   True   

b.   False   

 

5. XML Schema is more expressiveness in declaring XML dialects. 

 

a.   True   



78  XML – the „X‟ in Ajax 

 

b.   False   

 

6. An XML instance document can be claimed valid without referring to its 

dialect specification in DTD or XML Schema. 

 

a.   True   

b.   False   

 

7. The value of an attribute must be inside a pair of double quotes or a pair of 

single quotes. 

 

a.   True   

b.   False   

 

8. Namespace is for avoiding naming conflicts for element or attribute names 

so several XML dialects can be used in a single XML instance document. 

 

a.   True   

b.   False   

 

9. If a namespace string is in the form of a URL, then there must be a 

corresponding Web resource deployed at the URL location. 

 

a.   True   

b.   False   

 

10. SAX can always parse large XML documents more efficiently. 

 

a.   True   

b.   False   

 

11. Each template element in an XSL document functions like a 

transformation rule. 

 

a.   True   

b.   False   

 

12. XML processing tools are part of the latest Web browsers and Sun Java 

JDKs. 

 

a.   True   

b.   False   

 



79 

                                                                                                 

 

2.10 Keys to the Self-Review Questions 

(To be provided later) 

 

2.11 Exercises 

1. What are the main functions of XML in today‟s IT technologies? 

2. What kinds of XML documents are well-formed? 

3. What kinds of XML documents are valid? 

4. Why namespaces are important in XML technologies? 

5. What are the similarities and differences of SAX and DOM parsers? 

6. List some XML language features that can be specified with XML Schema 

but not with DTD? 

7. What are the major differences between CSS and XSL stylesheets? 

8. What is the function of XPath in XSLT? 

 

2.12 Programming Exercises 

1. Declare an XML dialect for specifying a subset of student course 

registration information with DTD. 

2. Declare an XML dialect for specifying a subset of student course 

registration information with XML Schema. 

3. Write an XSLT document to transform the instance documents of the above 

XML dialect into HTML through a Web browser. 

 

2.13 References 

1. Michael Morrison. Sams Teach Yourself XML in 24 Hours, 2
nd

 Edition, 

Sams, 2002. ISBN 0-672-32213-7 

2. Paul Whitehead, Earnest Friedman-Hill and Emily Vander Veer. Java and 

XML, Wiley Publishing, Inc., 2002. ISBN 0-7645-3683-4 

3. W3C. Extensible Markup Language (XML) 1.0 (Fourth Edition). 

http://www.w3.org/TR/xml/ 

4. W3C. XML Schema. http://www.w3.org/XML/Schema/ 

5. W3C. The Extensible Stylesheet Language Family (XSL). 

http://www.w3.org/Style/XSL/ 

6. SAX. http://www.saxproject.org/ 



80  XML – the „X‟ in Ajax 

 

7. W3C. Document Object Model (DOM). http://www.w3.org/DOM/ 

8. XML Tutorial. http://www.w3schools.com/xml/ 

9. Sun Microsystems. Simple API for XML. 

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JAXPSAX.html 

10. XML DOM Tutorial. http://www.w3schools.com/dom/ 

11. XSLT Tutorial. http://www.w3schools.com/xsl/ 

12. XPath Tutorial. http://www.w3schools.com/xpath/ 



 

 

Index 

#CDATA, 57 

#PCDATA, 57 

a:active, 25 

a:hover, 25 

a:link, 25 

a:visited, 25 

absolute location path, 73 

absolute paths, 13 

action, 36 

all, 67 

alt, 17 

anchors, 14 

application server, 2 

ATTLIST, 59 

attribute, 55 

attributes, 5 

b, 7 

background-color, 12 

blink, 24 

body, 6 

bold, 23 

bolder, 23 

border, 16, 21 

border-color, 21 

border-style, 21 

border-width, 21 

box model, 21 

BPEL, 52 

buffer overflow, 43 

Business Process Execution Language, 52 

caption, 15 

Cascading style sheets, 19 

Cascading Style Sheets, 2 

character encoding, 54 

checkbox, 42 

Checkbox, 42 

choice, 67 

circle, 9 

class, 25 

clear, 18 

code points, 54 

collapsed margins, 22 

color, 12, 23 

colspan, 16 

complex element, 65 

complexType, 67 

Content-length, 38 

cookie, 44 

cookies, 3 

CSS, 2, 19 

dashed, 21 

data integration, 51 

decimal, 9 

disc, 9 

div, 26 

Division-Based Layout, 30 

DNS, 35 

DOCTYPE, 6 

Document Object Model, 70 

Document Type Definition, 56 

DOM, 70 

domain name, 34 

domain name server, 35 

domain-name, 13 

dotted, 21 

double, 21 

DTD, 56 

element, 4 

ELEMENT, 57 

element value, 4 

elements, 53 

Empty elements, 57 

end tag, 4, 54 

entities, 11 

entity, 55 

ENTITY, 60 

entity body, 38 

entity name, 11, 55, 60 

entity number, 11 

entity references, 55 

entity referencing, 55 

Extensible Hypertext Markup Language, 2 

eXtensible Markup Language, 52 

Extensible Stylesheet Language, 70 

Firefox, 4 

float, 18 

font family, 22 

font-size, 23 

font-style, 23 

font-weight, 23 

form, 34, 36 

frameborder, 32 

ftp, 34 

GIF, 16 

global declarations, 64 

graphic, 16 



82  Index 

 

Graphic Interchange Format, 16 

groove, 21 

h1, 7 

h2, 7 

h3, 7 

h4, 7 

h5, 7 

h6, 7 

head, 6, 19 

header lines, 38 

height, 17 

hidden, 43 

Hidden Field, 43 

hidden fields, 45 

href, 14 

html, 6 

HTML, 1, 4 

HTML entities, 11 

HTML form, 36 

HTML skeleton, 6 

HTML version 4, 1 

HTTP, 2, 34 

HTTP GET, 36, 43 

HTTP POST, 36, 43 

https, 34 

hyperlinks, 13 

Hypertext Markup Language, 1 

Hypertext Transfer Protocol, 2 

HyperText Transfer Protocol, 34 

i, 7 

id, 24 

iframe, 32 

image, 17 

input, 40 

input controls, 37 

Input Controls, 40 

inset, 21 

Internet Explorer v7, 4 

IP address, 13, 34 

Joint Photographic Experts Group, 17 

JPEG, 17 

JPG, 17 

JSP, 3 

large, 23 

leading, 24 

left, 18 

letter-spacing, 24 

li, 9 

lighter, 23 

line-height, 24 

line-through, 24 

link, 19 

list-style-type, 9 

localhost, 35 

lower-alpha, 9 

lower-roman, 9 

mailto, 14 

margin area, 21 

maxOccurs, 68 

medium, 23 

meta-characters, 11 

method, 36 

MIME, 39 

minOccurs, 68 

mixed complex type element, 67 

multiple, 41 

Multipurpose Internet Mail Extension, 39 

name, 37 

namespace, 6, 63 

namespace prefixes, 63 

nested elements, 5 

noNamespaceSchemaLocation, 69 

none, 21, 24 

normal, 23 

occurrence indicators, 68 

ol, 9 

onclick, 30 

option, 41 

order indicators, 67 

ordered list, 9 

outset, 21 

overline, 24 

p, 7 

padding area, 21 

Password Control, 41 

path expressions, 71 

pixel, 16 

PNG, 17 

port number, 35 

Portable Network Graphics, 17 

position, 28 

pre, 7 

Predicates, 72 

process, 35 

pseudo-classes, 25 

query string, 35, 43 

query strings, 45 

radio, 41 

Radio Buttons, 41 

Referer, 38 

regular expressions, 58 

relative, 28 

relative location path, 73 

relative path, 13 

reset, 42 

Reset Button, 42 



83 

                                                                                                 

 

resource, 34 

ridge, 21 

right, 18 

root element, 6 

SAX, 70 

schemaLocation, 69 

scrolling, 33 

select, 41, 75 

Select Control, 41 

selected, 41 

sequence, 67 

server applications, 35 

server computer, 35 

Service Oriented Architecture Protocol, 52 

servlet, 3 

session, 44 

session data, 44 

session ID, 45 

session objects, 45 

SGML, 52 

Simple API for XML, 70 

Simple Object Access Protocol, 52 

size, 41 

small, 23 

SOAP, 52 

software component, 3 

solid, 21 

span, 26 

square, 9 

src, 17 

start, 9 

start tag, 4, 54 

style, 9, 12 

Style Rule Format, 20 

style rules, 20 

stylesheet, 74 

stylesheets, 70 

subdomains, 34 

Submission Button, 42 

submit, 42 

table, 15 

tag name, 4, 54, 57 

target, 14, 17 

targetNamespace, 64 

TCP/IP, 3 

td, 15 

Text Area, 40 

Text Field, 40 

text-align, 23 

textarea, 40 

text-indent, 24 

th, 15 

title, 14, 17 

tooltip, 14, 17 

top-level domain names, 34 

top-level element, 53 

tr, 15 

transform, 74 

tt, 7 

ul, 9 

unbounded, 68 

underline, 24 

Unicode, 54 

Unicode Encoding, 54 

Unicode Transformation Format, 54 

Uniform Resource Locator, 34 

universal resource identifier, 6 

universal resource location, 13 

unordered list, 9 

URI, 6 

URL, 13, 34 

URL encoding, 35 

UTF-16, 54 

UTF-32, 54 

UTF-8, 54 

value, 41 

value of the element, 54 

W3C, 70 

Web applications, 3 

Web Architecture, 2 

Web browser, 1 

Web browser sandbox, 3 

Web server, 1 

well-formed XML document, 56 

white-space characters, 5, 7 

width, 17 

word-spacing, 24 

World Wide Web Consortium, 70 

XHTML, 2, 4, 6 

XML, 52 

XML comment, 53 

XML declaration, 53, 54 

XML dialect, 52, 57 

XML document, 53 

XML namespace, 63 

XML parser, 70 

XML Schema, 62 

xmlns, 63 

XPath, 70, 71 

XPath axes, 73 

xs:attribute, 65 

xs:element, 63 

xs:schema, 64 

XSL, 70 

XSL Transformation, 70 

xsl:for-each, 75 



84  Index 

 

xsl:output, 75 

xsl:template, 75 

xsl:value-of, 75 

XSL-FO, 70 

XSLT, 70, 74 

 


