

Secure Web Application Development

Sample Teaching Modules

Li-Chiou Chen and Lixin Tao

Pace University

June, 2011

Update materials are available at http://csis.pace.edu/~lchen/sweet/.

http://csis.pace.edu/~lchen/sweet/

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | ii

Copyright

Copyright© 2009-2011 Lixin Tao (ltao@pace.edu) and Li-Chiou Chen

(lchen@pace.edu), Pace University. Permission is granted to copy, distribute and/or

modify this document under the terms of the GNU Free Documentation License, Version

1.3 or any later version published by the Free Software Foundation. A copy of the license

is available at http://www.gnu.org/copyleft/fdl.html.

Acknowledgement

The authors would like to acknowledge the support from the National Science

Foundation’s Course Curriculum, and Laboratory Improvement (CCLI) program under

Grant No. 0837549. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation.

mailto:ltao@pace.edu
mailto:lchen@pace.edu

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | iii

Contents

Copyright .. ii
Acknowledgement .. ii
Contents ... iii

1. Introduction ... 1
2. Virtual Machine Setup for Laboratory Exercises ... 3

Exercise 2.1: Virtual Machine Installation ... 3
Exercise 2.2: Boot up Linux Virtual Machine .. 3
Exercise 2.3: Basic Linux Commands .. 5
Exercise 2.4 Turn off Virtual Machines ... 6

3. Web Server Security Testing .. 7
Security Practices for Software Verification .. 7
Software Security Testing ... 7
Laboratory Exercises .. 8
Exercise 3.1 Setup the Proxy Server ... 8
Exercise 3.2 Crawling Web Pages and Hidden Web Directories 9
Exercise 3.3 Scanning For Known Vulnerabilities ... 10
Exercise 3.4 Accessing More Hidden Pages ... 11
Exercise 3.5 Privilege Elevation via Parameter Tampering 12
Exercise 3.6 Compromising Passwords .. 13

4. Java Security ... 15
Basic Terminology .. 16
Java Security Framework .. 17
Key Management .. 19
Laboratory Exercises .. 19
Exercise 4.1 Reviewing Java Security Framework ... 20
Exercise 4.2 Creating Public/Private Keys and Digital Certificates 21
Exercise 4.3 Securing File Exchange with Java Security Utilities 24
Exercise 4.4 Granting Special Rights to Applets Based on Code Location 26
Exercise 4.5 Creating a Certificate Chain to Implement a Trust Chain.................. 34

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 1

1. Introduction

This manual discusses security issues in web application development and demonstrates a

set of teaching modules in this area through hands-on exercises. These teaching modules

are developed by a research project called SWEET (Secure WEb dEvelopment

Teaching). The computing environment needed for the exercises is pre-configured in

Ubuntu Linux virtual machines, included in the DVD attached with the manual. This

manual will begin with instructions to utilize the Ubuntu virtual machine and then

provide sample exercises in both web server security testing and Java security.

SWEET features virtualized web servers and a development platform that allows

instructors to teach the security issues in web application development using stand-alone

computers in either Windows or MacOS. It includes teaching modules consisted of the

lecture materials and hands-on exercises. Instructors can visit the SWEET project website

at http://csis.pace.edu/~lchen/sweet/ to download the most recent teaching materials

developed by the project. For further course adoption support, instructors are welcome to

contact either Li-Chiou Chen (lchen@pace.edu, 914-7733907) or Lixin Tao

(ltao@pace.edu) at Pace University.

The DVD in the manual includes the following sub-directories:

 Modules: All SWEET teaching modules including hands-on laboratory exercises.

The modules cover the following topics:

 Introduction to Web Technologies: The module covers HTML form and its

various supported GUI components; URL structure and URL rewrite; HTTP

basic requests; the four-tiered web architecture and web server architecture

and configuration; session management with cookies, hidden fields, and

server session objects; Java servlet/JSP web applications. Laboratory

exercises guide students to setup a web server and observe HTTP traffic via a

web proxy.

 Introduction to Cryptography: This module covers basic concepts of private

key encryption, public key encryption, hash function, digital signature and

digital certificates. Laboratory exercises guide students to perform private key

and public encryption using GPG on an Ubuntu Linux virtual machine.

 Secure Web Transactions: The module covers Secure Socket Layer (SSL)

protocols; certificate authority and X.509; certification validation and

revocation; online certification status protocol; OpenSSL utilities. Laboratory

exercises guide students to configure SSL on a web server and to create and

sign server certificates.

 Web Application Threat Assessment: The lecture covers attacks exploiting

vulnerabilities occurred during construction of web application, such as SQL

injection, cross site scripting (XSS), and poor authentication. Laboratory

exercises guides students to understand various vulnerabilities and

countermeasures via a preconfigured vulnerable web server utilizing OWASP

WebGoat.

http://csis.pace.edu/~lchen/sweet/
mailto:lchen@pace.edu
mailto:ltao@pace.edu

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 2

 Web Server Security Testing: The lecture covers application penetration

testing; web server load balancing; and distributed denial of service attacks.

Laboratory exercises guide students to conduct penetration testing to an

intentionally vulnerable web server on a local virtual machine, BadStore.com.

 Vulnerability Management: The lecture covers basic concepts on software

vulnerability database and vulnerability discovery. The countermeasures to

two web specific vulnerabilities, SQL injection and XSS, are discussed.

Laboratory exercises guide students to investigate and to modify the Perl CGI

script of a web server that has both the SQL injection and XSS vulnerabilities.

 Introduction to Web Services: The lecture covers service-oriented

computing and architecture; web service for integrating heterogeneous

information systems across the networks; service interface methods and

method invocation data with XML dialects WSDL and SOAP. Laboratory

exercises guide students to configure and secure a simple web service

application.

 Java Security: This lecture introduces the concepts and tools for supporting

Java security framework and key management. The laboratory exercises guide

students to review Java security framework, secure file exchange using Java

security API and keys, and protect their computers from insecure Java

applications.

 VM: SWEET virtual machines in Ubuntu.

 Ubuntu VM for SWEET (ubuntu10tm.zip): This virtual machine includes all

the software and configurations that are needed to run the exercises in the

tutorials and the SWEET teaching modules. It includes Ubuntu Linux 10 with

Apache, Tomcat, Java, WebGoat, Badstore, ZAP, Paros, OpenSSL and other

security software.

 Ubuntu VM basic (ubuntu10.zip): A clean-slat Ubuntu Linux 10 virtual

machine with no additional web applications and security tools. Students can

learn to install web applications and tools from scratch.

 Tutorials: Linux tutorial and HTML tutorial. The two tutorials introduce students

to web application development and Linux. Students with limited background in

these two areas can learn the fundamental concepts in a nutshell.

 Linux Tutorials: This tutorial introduces students to basic concepts in Linux

utilizing an Ubuntu Linux virtual machine. Laboratory exercises guide

students to be familiar with basic commands and applications in Ubuntu

Linux.

 HTML-XML Tutorials: This tutorial provides the fundamental concepts of

Web computing, XHTML and Cascading Style Sheets. It also explains how

HTTP protocol supports Web browser and Web server interactions and

different ways of maintaining session data. Laboratory exercises guide

students to build simple web pages using HTML-XML and to observe HTTP

transactions.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 3

2. Virtual Machine Setup for Laboratory Exercises

Exercise 2.1: Virtual Machine Installation

1. Download and install either VMware player (for Windows) or VMware Fusion (for

MacOS) from http://downloads.vmware.com/.

2. Copy all DVD materials to your computer where you will run the exercises.

Alternatively, you can download updated materials from

http://csis.pace.edu/~lchen/sweet/.

3. On your computer, under the folder VM, extract unbuntu10tm.zip to obtain the virtual

machine.

Exercise 2.2: Boot up Linux Virtual Machine

1. After VMware Player (or VMware Fusion) is installed, run the software and you

should see a blue VMware Player Window pops up. Click on “Open a Virtual

Machine” and select “Ubuntu10tm.vmx” from the “ubuntu10tm” folder under the

ubuntu10tm folder.

2. Click on “play virtual machine”. When being asked “Did you move this virtual

machine, or did you copy it?” check “copy it”.

3. When being asked “Would you like an attempt to be made to connect this virtual

device every time you power on the virtual machine?”, press “No” to avoid

connecting to a virtual floppy.

4. When being asked if you would like to download VMware tools for Linux, answer

“remind me later.” Linux will boot up in about 2-3 minutes.

5. Login Linux using username “ubuntu10tm” and password “123456”. After logging

in, you will see Ubuntu 10 GNOME interface. The virtual machine runs Linux as if it

is an independent computer. Actually, the Linux is run in the memory of the

computer and simulate another physical machine that the virtual machine (VM) was

created.

http://downloads.vmware.com/
http://csis.pace.edu/~lchen/sweet/

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 4

6. Once you logging in the system, you will see the Linux desktop, which looks like the

screen below.

7. Below are some basic skills to use a virtual machine

 To start directing mouse and keyboard input to a running virtual machine, type

Ctr+g or click anywhere in the virtual machine window.

 To start directing mouse and keyboard input to the host PC, type Ctr+Alt.

 To get the logon window for Windows, use Ctr+Alt+Insert, instead of

Ctr+Alt+Delete.

 Scroll the bar on the right and at the bottom of the virtual machine window to see

a wider screen.

 To transfer files between the host and a running Windows virtual machine, just

drag-and-drop the files.

 USB disk is also a convenient way for transferring files between the host PC and

a virtual machine. Inserting a USB disk to your PC when the virtual machine is

active will attach the USB disk to the virtual machine.

8. Check out the menu bar for Linux GUI on the top panel of the window. The menu bar

includes Applications (similar to Windows Start Panel), Places (all devices and

storages), and System (Linux system functions).

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 5

Exercise 2.3: Basic Linux Commands
1. Click on Applications, Accessories and Terminal (You may need to scroll the

window down to see Terminal if your screen is not big enough).

2. It opens up a Linux command prompt like the screen below.

3. Try Linux commands under the command prompt “user@ubuntu~$” (we will use $

referring the command prompt for all the instructions below). We will practice

several basic Linux commands. For more Linux commands, please read the Linux

Tutorial.

4. Try the following to see the files in this directory.

 $ls -al

 Question 1: What are your results from “ls –al”? Copy and past the last three lines

below.

Question 2: What does each line above mean? Please explain it. (Hint: In Linux, if

you do not what a command mean, simply type “man command-name” to figure it

out. For example, in this case, you can type “man ls”)

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 6

Exercise 2.4 Turn off Virtual Machines

1. If you plan to continue the exercises, you come back later for instructions to turn off

the virtual machine once you are done. Otherwise, turn off your virtual machine as

instructed in this exercise.

2. After finishing the exercise, you should reset and close all applications, which may

include the following:

 Firefox proxy setting should be reset so that it stops using the proxy server.

Otherwise you would not be able to visit web sites without running the proxy

server at port 8088. To do so, Launch your Firefox web browser, and follow its

menu item path “Edit|Preferences|Advanced|network Tab|Settings button” to

reach the “Connection Settings” window. Check the “Use System Proxy Settings”

checkbox.

 Close all applications, such as Firefox, ZAP, Paros, Web Scarab, etc.

 Close Terminal Windows (type “exit” under command line.)

3. Click on the power button on the VM and turn it off.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 7

3. Web Server Security Testing

Security Practices for Software Verification

Security practices in OpenSAMM
1
 are incorporated in four stages of software

development: governance, construction, verification, and deployment. This document

will introduce the security practices to be performed in the verification stage and provide

laboratory exercises illustrating some of the practices. Based on OpenSAMM,

verification is focused on

“the processes and activities related to how an organization checks and tests artifacts

produced throughout software development. This typically includes quality assurance

work such as testing, but it can also include other review and evaluation activities.”

The purpose of verification is to inspect the software for security vulnerabilities before it

is deployed. The security practices for this stage include design review, code review and

security testing. All three practices are used to identify specific security vulnerabilities

embedded in the software but each examines the software at a different level respectively.

Design review assesses the design and architecture of the software while code review

examines the source codes and security testing inspects the software at the runtime

environment. Design review includes reviewing the software design for potential security

risks and attacks, examining security mechanisms embedded in the design, and reviewing

data-flow diagrams to protect sensitive information assets. Code review includes

reviewing source codes against a list of security requirements, applying automatic code

review tools and customizing code review for application specific concerns. Security

testing include testing software security using test cases derived from known security

requirements, conducting penetration testing and utilizing automatic tools for testing

application specific concerns. We will focus on the activities and tools that can be used to

conduct these security testing.

Software Security Testing

Security testing assesses a software system from attackers’ perspective. It evaluates if

your software performs as it is not supposed to do and if its security mechanism works as

it is supposed to be. For example, when testing the security of a web server, the tester

needs to evaluate the security mechanisms utilized by the server, such as HTTPS for

server authentication and login method for client authentication, and to assess if the

server is subject to vulnerabilities such SQL injection or cross site scripting.

The most commonly used security testing method is penetration testing, which discovers

software vulnerabilities by breaking into it. In this case, testers assume the role of

attackers to create testing scenarios based on their knowledge to break into the software

1
 The Open Web Application Project (OWASP), Software Assurance Maturity Model, Version 1.0,

released March 25, 2009, , available at http://www.opensamm.org/.

http://www.opensamm.org/

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 8

system using customized scripts or automatic tools. The effectiveness of penetration

testing in terms of uncovering vulnerabilities depends on the experience of the testers

since the development of the testing scenarios could be objective.

Fault injection and fuzzing are two common methods for conducting penetration testing.

Both fault injection and fuzzing utilize unexpected inputs to observe how a software

system would perform. While fault injection specifically crafts malformed inputs based

pre-defined threat models or error handling paths, fuzzing enumerates all possible inputs,

either valid or invalid. These two terms sometimes are used interchangeably in the

industry.

Web application security testing involves examining the security of HTTP and HTTPS

protocols, reviewing input validations and error handling, and evaluating authentication

methods and the vulnerabilities of web protocols used, such as XML related protocols.

OWASP’s Application Security Verification Standard
2
 provides a guideline for putting

web application verification in place. There are various automatic tools to conduct web

application security testing, such as SPIKE Proxy
3
, WebScarab

4
, Paros

5
, BurpIntruder

6
,

and ZAP
7
 etc.

Laboratory Exercises

From this lab, you will learn about

 How to discover vulnerabilities, such as authentication weakness or hidden

pages, on a web server

 Investigate fixes to these vulnerabilities

Exercise 3.1 Setup the Proxy Server

We will investigate the web traffic between your browser and the BadStore.net using a web proxy

called ZAP on a same virtual machine. All web communication between the browser and the Web

server will be sent to ZAP (the proxy server) first before it reaches the appropriate destination.

We will be browsing BadStore.net or investigate its vulnerabilities.

Step 1: Make sure Tomcat server is not running, otherwise go to Select Applications >

Accessories > Terminal. Run following command in the terminal window to shut down tomcat

 tomcat-stop

2
 The standard is available at

http://www.owasp.org/index.php/OWASP_Application_Security_Verification_Standard_%28ASVS%29.
3
 Available at http://www.immunitysec.com/resources-freesoftware.shtml.

4
 Available at http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project.

5
 Available at http://www.parosproxy.org/.

6
 Available at http://www.portswigger.net/intruder/.

7
 Available at http://code.google.com/p/zaproxy/.

http://www.owasp.org/index.php/OWASP_Application_Security_Verification_Standard_%28ASVS%29
http://www.immunitysec.com/resources-freesoftware.shtml
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.parosproxy.org/
http://www.portswigger.net/intruder/
http://code.google.com/p/zaproxy/

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 9

Step 2: Open a Firefox browser to browse BadStore.net by typing the IP address of the VM in

Exercise I in the URL e.g http:// IP ADDRESS/badstore (DO NOT browse www.badstore.net

directly since it will redirect you to original website if you have an Internet connection).

Step3: We will then use ZAP to investigate the web traffic. To start ZAP, run these commands in

the terminal window:

 cd ~/tools/zap

 sh zap.sh

The Java-based ZAP will execute and you will be greeted with its interface.

Step4: Now, you will need to change the proxy server settings in Firefox to redirect the web

traffic to the proxy server. The proxy server is run under localhost (127.0.0.1) and port 8088.

1) Go back to your browser. Select Edit > Preferences > Advanced > Network Tab > Settings.

2) Select the Manual Proxy Configuration radio button.

3) Enter these values into the fields: HTTP: 127.0.0.1 Port: 8088

4) If there are any values in the No Proxy For: text field, delete them. This is important to make

the proxy work successfully.

Step5: Refresh your browser. You should see that ZAP has intercepted the transactions between

the browser and the Badstore site. You have just enabled all HTTP traffic generated by Firefox to

be sent to the running ZAP proxy server which can analyze HTTP traffic before it is sent off to its

final destination.

Exercise 3.2 Crawling Web Pages and Hidden Web Directories
 In order for an attacker to successfully plan and execute an attack, the attacker

must know the website’s layout and all the pages that might be available for exploitation.

While manual web crawling is an option, it is a very time consuming process. An

automated web crawler application will speed up the mapping process significantly.

1. You will use ZAP to crawl the BadStore website IP address so you can see what

pages are available.

2. Switch to the ZAP application and click File > New Session and click OK to

have ZAP start a new session and purge itself from any logged content.

3. In the Sites panel on the left will be all the websites that ZAP is logging. It is

currently blank, change to the Firefox application and refresh BadStore web page

(You may have to clear recent browsing history first to reload the page. Tools >

Clear Recent History)

http://www.badstore.net/

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 10

4. Switch back to ZAP and you will see an arrow next to Sites that is point to the

right. Click the arrow to un-collapse the logged websites. You will see the IP

address of BadStore website.

5. Click on the small arrow on the left of the Badstore IP address to collapse

everything on this site. You should be able to see badstore as a sub-directory.

Right click on badstore and select Attack and Spider site to crawl through the

Badstore site.

6. Once crawling has begun, the main ZAP window will begin to populate with web

pages and images that are hosted within BadStore.

In the bottom pane of the main screen, you will see a URL found during crawl:

panel. Notice that it is located under the Spider tab near the bottom.

7. Looking through the entries, you will notice that most the web cgi pages are

located in the /cgi-bin/ directory but some are not. List one other directory that

ZAP had crawled and one file under this directory

Directory name:__________________

File name: __________________

8. Briefly explain what information one might obtain by crawling a web site.

9. What is the potential risk for a web site being crawled?

Exercise 3.3 Scanning For Known Vulnerabilities

 In the previous exercise, you have mapped BadStore.net; in this exercise you will

execute a vulnerability scan on BadStore.net.

1. In the ZAP Sites panel, right click on BadStore. Click on Attack and Active Scan Site.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 11

2. Once the scan is finished, the results can be viewed on the bottom panel of the ZAP

application under the Alerts tab. Click on the Alerts tab to see the vulnerabilities

discovered.

3. The vulnerabilities are called alerts and are classified as High, Low, and Medium. List

two vulnerabilities from the report and explain the countermeasures to fix them.

10. Vulnerability 1:

__

Countermeasure 1: ___

Vulnerability 2:

__

Countermeasure 2:

__

4. Not all web crawlers and web vulnerability scanners are as robust. Commercial web

crawlers and vulnerability scanners may perform a much more complete crawl and may

list more potential vulnerabilities.

Exercise 3.4 Accessing More Hidden Pages

 Looking at the BadStore.net webpage structure you will find nothing that really

stands out. This is because there is a hidden webpage which provides the administrative

console. Web crawlers will only crawl the pages that are available through links. The

process of finding these hidden web pages is called Forced Browsing and there are

special tools to perform this task automatically. The process can also be done manually

but can be very time consuming. For the sake of time, the hidden administrative webpage

is provided to you in this exercise.

1. The hidden webpage reside under the cgi-bin directory of BadStore.net. For an attacker

to be able to discover this hidden webpage he/she would need to understand URL

structure and syntax and all the technologies that comprise a web application.

2. Since most of the links on the left panel of BadStore.net have the same URL prefix, the

only part of the URL that is changed is what follows after action=

3. What do you think happens when you append admin to action= ?

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 12

If you are browsing Badstore.com on a different VM, browse

http:// IP ADDRESS /cgi-bin/badstore.cgi?action=admin

4. What is the result of this URL ?

5. List 3 actions that administrators can take.

__a.__

__b.__

__c.__

6. Select an action and click Do It. What happens?

__

7. Somehow we must gain administrative privileges to perform these actions. The ability to

perform these actions is very lucrative to attackers. The ability to gain administrative

privileges will be demonstrated in the next exercise.

Exercise 3.5 Privilege Elevation via Parameter Tampering

 In this exercise you will examine the vulnerability present with parameters that

are set and sent from the client to the server. This vulnerability was not present in the

ZAP vulnerability assessment. You will capture a server request that is sent when you

register for an account. You will modify that hidden parameter that is contained in the

request to escalate your account from the users privilege group to the administrators

privilege group.

1. With Firefox on the BadStore.net webpage, visit the Login/Register link in the left pane.

2. You are going to register for a new account, but before you register you are going to

switch to ZAP and configure the application proxy to capture the register HTTP request

as it leaves the browser so that you are able to manipulate the request’s parameters before

it continues to the BadStore.net server.

3. In ZAP, click on the set break bottom (the green round button under the top menu).

The button will change from green to red once set. This will trap any request that is sent

from the Firefox browser.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 13

4. Go back to the BadStore.net website and start filling out the registration form to Register

for a New Account. Write down your registration information below for reference.

Full Name: ___

Email Address: ___

Password: ___

5. Once every field is filled, click Register and switch back to ZAP.

6. Once you switch back to ZAP, clicking on the break tab, you will see the register HTTP

request that was intercepted by ZAP. There will be a hidden Parameter Name “role”. Its

current value is “U”, which refers to regular user privilege. Replace “U” with “A” and

uncheck the Trap request checkbox. Hit Continue (the blue right arrow under the top

menu) to let the HTTP request reach the server.

(Note: if you put the view in tabular view, and change the role to "A" it will not register,

but if you leave it in Raw View and just scroll down to the role section and change the

"U" to an "A" it works.)

7. Switch back to the BadStore.net website. Everything looks the same but the Welcome

banner, which welcomes whatever account you had created. So how do you use your

newly escalated administrative rights? Go back to the hidden administrative page.

Exercise 3.6 Compromising Passwords

 You have access to all the administrative abilities listed on the secret

administration page. In this exercise you will concentrate on the Show Current Users

ability. You will be compromising user’s passwords to create a backdoor.

1. Having your account privileges escalated, visit the hidden administrator’s web page.

http:// IP ADDRESS /cgi-bin/badstore.cgi?action=admin

2. From the drop down menu, select Show Current Users and click Do It.

3. You have just hit the jackpot. You will see all the registered user’s email addresses,

hashed passwords, password hints, full names and roles.

4. You want to get the account passwords for all the other administrative users since regular

users (role U) and suppliers (role S) are trivial.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 14

5. List the password hash of the administrator.

Password Hash: ___

6. The passwords are hashed using the MD5 algorithm. MD5 is known as a weak hash

function than can be easily cracked using the hash databases. There are many freeware

programs that will try MD5 hashes of common words and compare them to the MD5

hash that you provide in order to find a match. Once you find a match you know that you

have cracked the password.

7. There is an online MD5 cracker that has the world’s largest MD5 hash database. Visit

http://www.cmd5.org/default.aspx if you have an Internet connection. Otherwise, use the

table below to crack the MD5 hashes that you have recorded above.

Password MD5 hash

welcome 40be4e59b9a2a2b5dffb918c0e86b3d7

admin123 0192023a7bbd73250516f069df18b500

apple 1f3870be274f6c49b3e31a0c6728957f

Welcome 83218ac34c1834c26781fe4bde918ee4

badpass123 909d49a643874753d1a68ea87f379925

8. What is the password? ________________

9. Go back to Login/Register page on Badstore site. Use “admin” as the email address and

the password you discovered before to login. You should be able to login as the “Master

System Administrator”.

10. Explain briefly how the MD5 cracker works in order to crack the above password.

11. Explain briefly the vulnerability of the web server which you have just exploited in this

exercise.

12. Explain briefly how you exploit the vulnerability in this exercise.

13. Describe a countermeasure to fix the vulnerability.

http://www.cmd5.org/default.aspx

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 15

4. Java Security

Java is a popular programming language for server-side computing for two main reasons.

First it is among the first languages that support the more efficient light-weight threads,

instead of the heavy-weight processes, to support multi-tasking and multi-processor

computing which have important impact on server performance. Second as an interpreted

language it could check each bytecode instruction for security vulnerabilities just before

the instruction is scheduled to run. At the same time Java is also popular on client

platforms. Java JRE plug-ins enable web browsers to run Java applets to extend browser

functionality, and standalone Java applications provide GUI-rich services running

directly on the operating systems. This tutorial introduces the concepts and tools for

supporting Java security.

Since the Java applets are downloaded from the web and not explicitly activated by the

users, they introduce severe security concerns. By default all applets always run under the

constraints of a Java security manager. The example constraints for applets include

 Applets cannot access user computer resources like keyboard and files.

 Applets can only communicate with the web site from which they were

downloaded.

In this tutorial you will learn how to assign special rights to secure applets so they could

provide more functionality.

On the other hand, by default Java applications are usually activated by the users and thus

considered safe and not constrained by the Java security manager. But if an application is

downloaded from the web, we would not be sure of its security. In this tutorial you will

learn how to run such stand-alone applications under the supervision of the Java security

manager so you could control which resources of yours could be used by the applications.

In the tutorial “Introduction to Cryptography” you learned how to use GPG (GNU

version of PGP) to generate public/secret keys and digital signatures to secure data

communications. Java has utilities to accomplish the similar tasks. Java also has

application programming interfaces (API) to secure applications. In this tutorial you will

learn how to secure your applets and applications with Java security utilities, and review

sample Java code to see how selected security tasks could be accomplished with the Java

APIs.

Question 1: Why is Java popular for server-side or enterprise computing?

Question 2: What are the main differences between Java applications and Java applets?

Question 3: Why the Java platform normally trusts applications but not applets?

Question 4: What are the differences between Java utilities and Java API?

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 16

Basic Terminology

Encryption/decryption algorithms are the basic tools for computer security. To encrypt a

plain document, we need a key, which is a small piece of fixed-length data. The

encryption algorithm reads the plain document and a key and produces the encrypted

document. The decryption algorithm reads the encrypted document and a corresponding

key to regenerate the original plain document. There are two categories of

encryption/decryption algorithms. The symmetric or secret key algorithms use the same

key for encryption and decryption. These algorithms are more efficient for

encrypting/decrypting large volume of data. The public key algorithms use a pair of

public and private keys: if a document is encrypted by one of the two keys, the other key

can be used to decrypt the document. These algorithms are mainly for secret key

exchange, identity authentication and data validation.

For a person to distribute a document secretly, he could first generates a pair of

private/public keys as his own identity (he could reuse these keys), use the private key to

encrypt the document, and send the encrypted document and the public key to the

receiver. The receiver then can use the public key to decrypt the document, and be

assured that the document is from the sender (identity authentication) and the document

has not been modified (data validation). But here we assume that the public key itself has

been distributed in a secure way, which is normally implemented with digital signatures

and certificates explained below.

Sometimes the document contents are public, and we just need to assure the document

receiver that the document is originated from the right sender and it has not been

modified along the way. In this case you could use digital signatures to achieve sender

identity authentication and data validation without the time-consuming

encryption/decryption process for the document itself. The document is first transformed

by a hash function (typically MD5 or SHA1) into a fixed-length short sequence of bytes,

called a fingerprint, so that each byte of the fingerprint depends on many characters of the

document and any change to the document would change the fingerprint with high

probability. The fingerprint is then encrypted with the sender’s private key into a fixed-

length digital signature. As long as the receiver gets a copy of the plain document, its

digital signature, and the sender’s public key, the sender could reproduce the fingerprint

from the digital signature and the sender’s public key, generate his own copy of

fingerprint from the plain document, and compare the two fingerprints. If they are the

same, the document was originated from the sender and it has not been compromised

along the way. Otherwise the document should not be trusted.

Now we can consider the earlier problem of how we could securely distribute the public

keys, a critical step in identity authentication and data validation. A digital certificate is

used to certify the identity and public key of a digital signer, who is a person or a

company and needs to assure other people of the authenticity of his documents or

applications). A certificate is a small record containing the digital signer’s public key and

identity information (work unit, company, address), and the digital signature of the public

key and identity information generated with a private key of the certifier, the person or

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 17

company that certifies the authenticity of information in this certificate. If the certifier is

the digital signer himself, the certificate is self-certified and it does not authenticate the

information in the certificate. If the certifier is another person or company trusted by a

user of the certificate, then the user’s trust to the certifier can now be used to authenticate

the information in the certificate. A few certificate authority (CA) companies, including

VeriSign and GTE, are set up and supposed to be trusted by the public, and their self-

certified certificates are distributed to user computers as trusted certificates either by

software (OS or application) installation, or by the user’s agreement. To distribute his

public key to the public, a signer generates a self-certified certificate containing his

public key and identity information, sends it with payment to one of the CAs to apply for

certifying the certificate by the CA for a period of time (six month or longer). The CA

would verify the signer’s information, replace the self-certified certificate with the one

certified by the CA, and send it back to the signer for distribution. The trust chain

described here could be extended: If A certifies B, B certifies C, and C certifies D; and

the user trusts A, then the user can trust B, C and D too.

From the above discussion you can see that the key/certificate management is critical to

the security of a computer.

Question 5: What is identity authentication?

Question 6: What is data validation?

Question 7: What is the most important task in computer security based on cryptography?

Question 8: What is the difference between a fingerprint and a signature of a document?

Question 9: What is the difference between a public key and its digital certificate?

Java Security Framework

A computer may have multiple users. Each user has its own home folder. Let us assume

that a user John has login name “john”. If the computer runs Windows, John has

“C:\users\john” as his home folder, which has “file://C:/users/john” as its URL. If the

computer runs Linux, John has “/home/john” as his home folder, which has

“file:///home/john” as its URL.

When you install Java JDK on a Linux computer, the folder holding the JDK installation

is called the Java home (we represent it with [Java home] in this document), and the

folder “jre” nested inside the Java home is called the Java JRE (Java runtime

environment) home (we represent it with [JRE home] in this document). If you install

Java JDK on a Windows computer, by default your Java home folder is “C:\Program

Files\Java\jdk1.x_y” (where x and y specify version numbers); if you also see a folder

“C:\Program Files\Java\jre#” (where # is a number), your Java JRE home folder is

“C:\Program Files\Java\jre#” (replacing # with the actual digit). Most Java utilities for

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 18

security management are in folder “[Java home]/bin”, so it is important to include this

“bin” folder in the operating system “PATH” value. Most Java security policy related

files are in folder “[JRE home]/lib/security”.

The security manager is the main mechanism for Java to assign access rights to Java

programs. All applets always run under the control of the Java security manager and there

is no way to opt out. A Java application, Java program that runs outside of a web

browser, by default doesn’t run under the control of a security manager so it has full

rights on the computer. If you don’t completely trust this application, you should run the

application under the control of the Java security manager with a Java command-line

switch as shown below:

Java -Djava.security.manager [Java Class Name]

Following the principle of separating policies from the mechanisms, the Java security

manager does not hard code access rights to Java programs. When an applet or a

application using Java security manager starts, Java security manager first reads file

“[JRE home]/lib/security/java.security” to find where to load the java security policy files

in the order specified by lines similar to

policy.url.1=file:${java.home}/lib/security/java.policy

policy.url.2=file:${user.home}/.java.policy

where the value of “policy.url.1” specifies the default security policy in file “[JRE

home]/lib/security/java.policy” (SUN chose a bad name “java.home” to indicate what we

call JRE home) for all users; and the value of “policy.url.2” specifies that the security

policy in file “[user home]/.java.policy” (don’t forget the leading period); if user name is

“john”, “[user home]” is “home/john” or “~” on a Linux computer, and “C:\users\john”

on a Windows computer) for a particular user. You could also insert lines like

policy.url.3=file:${user.home}/john.policy

to add the extra Java policy files with decreasing priority. A policy file loaded later could

override policies specified in a policy file loaded earlier.

While you are not supposed to modify file “[JRE home]/lib/security/java.policy”, you

could freely modify file “[user home]/.java.policy” to modify existing policies and add

new policies. The contents of Java security policy files have strict syntax requirements so

it is easier to use the graphic user interface of Java utility “policytool” to review, edit,

insert and delete policies.

Question 10: What is the home folder of user on the ubuntu10 VM? How to write it in URL

format?

Question 11: What is your home folder on your Windows PC if your login name is “john”?

How to write is in URL format?

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 19

Question 12: What is the difference between Java JRE and Java JDK?

Question 13: Which folder holds the most important Java security files?

Question 14: Which file specifies the location of your Java security policy files?

Question 15: Which is your default personal Java security policy file?

Question 16: Which Java utility is for helping you create Java security policy files?

Question 17: What is the Java security manager? When is it used?

Key Management
Java maintains public/private key pairs and digital certificates in keystore files with any

file names and at any file system locations. A computer can have multiple keystore files.

You can use Java utility “keytool” to create a new public/private key pair and insert it

into an existing keystore file, or create a new keystore file first if necessary. A keystore

file is protected by a keystore password. Each public/private key pair in the keystore is

also protected by its own key password, which could be the same as the keystore

password. When you create a new public/private key pair, you assign an alias or

nickname to the pair for you later referring to the pair.

For more information on Java security, please visit the “Java SE Security” page at

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html.

Question 18: Where are public/private keys normally stored?

Question 19: Which Java utility helps you maintain keystores?

Laboratory Exercises
In this lab you will

1. Learn and practice how to review your current Java policies;

2. Learn and practice how to create a Java applet, observe how it is limited in

accessing system resources, and create a policy to enable it to access some system

resources;

3. Learn and practice how to run a Java application with Java security manager, and

create a policy to enable it to access some system resources;

4. Learn and practice how to use a Java utility to create public/private key pairs and

digital certificates;

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 20

Exercise 4.1 Reviewing Java Security Framework
1. Start a terminal window in home folder ~ with menu item

“Applications|Accessories|Terminal”.

2. Run “cd ~/JavaSecurityLab” to change the work folder to “~/JavaSecurityLab”.

3. Run “gedit GetProperties.java” to review the source code of file

“GetProperties.java” as shown below:

class GetProperties {

 public static void main(String[] args) {

 String s;

 try {

 s = System.getProperty("os.name", "not specified");

 System.out.println(" Your operating system is: " + s);

 s = System.getProperty("java.version", "not specified");

 System.out.println(" Your Java version is: " + s);

 s = System.getProperty("user.home", "not specified");

 System.out.println(" Your user home directory is: " + s);

 s = System.getProperty("java.home", "not specified");

 System.out.println(" Your JRE installation directory is: " +

s);

 s = System.getProperty("java.ext.dirs", "not specified");

 System.out.println(" Your Java extension directories are: " +

s);

 } catch (Exception e) {

 System.err.println("Caught exception: " + e);

 }

 }

}

“os.name”, “java.version”, “user.home”, “java.home” and “java.ext.dirs” are Java

property names for OS name, Java version, user home folder, Java JRE home

folder, and Java extension folders. Method “String System.getProperty(String

name, String defaultValue)” returns the value of the specified Java property name,

or the default value if the property name is not defined.

4. Run “javac GetProperties.java” to compile the source code into bytecode file

“GetProperties.class”.

5. Run “java GetProperties” to execute file “GetProperties.class”. You will see the

following printout:

 Your operating system is: Linux

 Your Java version is: 1.6.0_16

 Your user home directory is: /home/user

 Your JRE installation directory is:

/home/user/tools/jdk1.6.0_16/jre

 Your Java extension directories are:

/home/user/tools/jdk1.6.0_16/jre/lib/ext:/usr/java/packages/lib/ext

6. Click on menu item “Places|Home Folder” to launch the file explorer, and click to

drill down to folder “/home/user/tools/jdk1.6.0_16/jre/lib/security”.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 21

7. Right-click on file “java.security” and choose “Open with gedit” to review the

contents of the file. Scroll to find the following two lines.

policy.url.1=file:${java.home}/lib/security/java.policy

policy.url.2=file:${user.home}/.java.policy

8. Right-click on file “java.policy” and choose “Open with gedit” to review the

contents of the file. The following first “grant” statement

grant codeBase "file:${{java.ext.dirs}}/*" {

 permission java.security.AllPermission;

};

grants all permission to all Java Jar files in Java extension folders. The second

“grant” statement enables all Java programs to read selected Java properties.

Java has two folders for extending its functions. Folder “[JRE home]/lib/ext” is

for holding Jar files (zipped Java classes) used when these classes are not found in

the standard Java library. The folder “[JRE home]/lib/endorsed” is for holding Jar

files overriding the same named classes in the standard Java library.

9. Run “cd ~” to change work folder to be the user home folder. Run “ls -alg” to

verify that there is no file “.java.policy” in the user home folder yet.

Question 20: What are the two major vulnerabilities of Java security framework?

Question 21: How should you resolve the vulnerabilities of Java security framework?

Exercise 4.2 Creating Public/Private Keys and Digital Certificates

1. Launch the Ubuntu VM with username “user” and password 12345678.

2. Start a terminal window in home folder ~ with menu item

“Applications|Accessories|Terminal”.

3. Run “cd ~/JavaSecurityLab” to change the work folder to “~/JavaSecurityLab”.

4. Run Java utility “keytool” as in the following line (on the same line, no line

break) to create a pair of public/private keys, assign alias “PaceKey” to this pair

of keys, assign key password “Seidenberg” to this air of keys, create a new

keystore file “PaceKeystore” and set its keystore password to be “Pace” if there is

no such a file in the current folder yet, access keystore file “PaceKeystore” with

keystore password “PaceUniversity”, and insert the new key pair in the keystore.

 keytool -genkey -alias PaceKey -keypass Seidenberg -keystore

 PaceKeystore -storepass PaceUniversity

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 22

When prompted, enter “John Smith” as first and last names, “Seidenberg” for

organizational unit, “Pace University” as organization, “New York” as city, “NY”

as state, “US” as name of two-letter country code, and “y” to confirm your

information. The information that you just entered interactively is called your

distinguished-name information. Since you don’t have a keystore file

“PaceKeystore” in the current folder, this file is created in the current folder. This

command also stored in this keystore a pair of new public/private keys and a self-

certified digital certificate that includes the public key and the distinguished-name

information. This certificate will be valid for 90 days, the default validity period if

you don’t specify a –validity option. The certificate is associated with the

public/private key pair in a keystore entry referred to by the alias “PaceKey”.

user@ubuntu:~/JavaSecurityLab$ keytool -genkey -alias PaceKey -

keypass Seidenberg -keystore PaceKeystore -storepass PaceUniversity

What is your first and last name?

 [Unknown]: John Smith

What is the name of your organizational unit?

 [Unknown]: Seidenberg

What is the name of your organization?

 [Unknown]: Pace University

What is the name of your City or Locality?

 [Unknown]: New York

What is the name of your State or Province?

 [Unknown]: NY

What is the two-letter country code for this unit?

 [Unknown]: US

Is CN=John Smith, OU=Seidenberg, O=Pace University, L=New York,

ST=NY, C=US correct?

 [no]: y

 If you don’t specify the keystore file name, “keytool” will use the default file “[user

 home]/.keystore”.

5. Run the following command to export a copy of your newly generated public key,

with alias “PaceKey”, in a self-certifying digital certificate file “PaceKey.cer”.

keytool -export -keystore PaceKeystore -alias PaceKey -file

PaceKey.cer

“keytool” will ask you for the keystore password “PaceUniversity”, and then

generate the new certificate file “PaceKey.cer”.

user@ubuntu:~/JavaSecurityLab$ keytool -export -keystore

PaceKeystore -alias PaceKey -file PaceKey.cer

Enter keystore password: PaceUniversity

Certificate stored in file <PaceKeys.cer>

6. Run “keytool -printcert -file PaceKey.cer” to review the contents of the certificate

in file “PaceKey.cer”, and “keytool” will print out the following information:

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 23

user@ubuntu:~/JavaSecurityLab$ keytool -printcert -file PaceKey.cer

Owner: CN=John Smith, OU=Seidenberg, O=Pace University, L=New York,

ST=NY, C=US

Issuer: CN=John Smith, OU=Seidenberg, O=Pace University, L=New York,

ST=NY, C=US

Serial number: 4ca4dd45

Valid from: Thu Sep 30 11:56:05 PDT 2010 until: Wed Dec 29 10:56:05

PST 2010

Certificate fingerprints:

 MD5: CA:09:3C:EC:12:D9:5D:20:E8:1E:6A:FB:88:CE:B2:18

 SHA1:

F7:CD:4B:18:66:55:C8:2B:BB:9E:AD:92:A8:DF:54:9A:F7:96:93:E7

 Signature algorithm name: SHA1withDSA

 Version: 3

Note the certificate fingerprints in MD5 and SHA1 formats. If you send this

certificate to a friend, you could both run this command to find the fingerprints of

this certificate, and compare them to see whether the certificate (signed public

key) has been compromised in transit.

7. If you were doing the real work, you may now contact one of the CAs, send it

your self-signed certificate file “PaceKey.cer” with your payment, and the CA

will verify your distinguished-name information and send back to you your digital

certificate signed by the CA. The CA certified certificate is the one that you are

supposed to distribute to your partners. In this tutorial we skip this step and just

distribute the self-certified certificate in file “PaceKey.cer”.

8. In the real situation, your digital certificate should be distributed to your partners,

and imported to your partners’ keystores. In this tutorial you will also act as your

partner. You will import the newly generated digital certificate in file

“PaceKey.cer” into a new keystore file named “receiverKeystore” in the current

folder with the following command

keytool -import -alias Pace -file PaceKey.cer -keystore

receiverKeystore

Upon being asked for keystore password, enter “123456”. When being asked

whether you trust this certificate, respond with “y” for yes.

user@ubuntu:~/JavaSecurityLab$ keytool -import -alias Pace -file

PaceKey.cer -keystore receiverKeystore

Enter keystore password: 123456

Re-enter new password: 123456

Owner: CN=John Smith, OU=Seidenberg, O=Pace University, L=New York,

ST=NY, C=US

Issuer: CN=John Smith, OU=Seidenberg, O=Pace University, L=New York,

ST=NY, C=US

Serial number: 4ca4dd45

Valid from: Thu Sep 30 11:56:05 PDT 2010 until: Wed Dec 29 10:56:05

PST 2010

Certificate fingerprints:

 MD5: CA:09:3C:EC:12:D9:5D:20:E8:1E:6A:FB:88:CE:B2:18

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 24

 SHA1:

F7:CD:4B:18:66:55:C8:2B:BB:9E:AD:92:A8:DF:54:9A:F7:96:93:E7

 Signature algorithm name: SHA1withDSA

 Version: 3

Trust this certificate? [no]: y

Certificate was added to keystore

Question 22: What is the more secure way to run keytool to generate the public/private keys?

Exercise 4.3 Securing File Exchange with Java Security Utilities

In this lab you study how to use the public/private keys and the digital certificate in the

last lab to securely send a document. The receiver of the document should be able to

verify that the document was from the right person (identity authentication), and the

document has not been modified in transit (data validation).

First let us recall what you have done in your second lab in this tutorial. You have created

a pair of public/private keys in keystore file “~/JavaSecurityLab/PaceKeystore”, assigned

alias “PaceKey” to this pair of keys, exported the self-signed digital certificate for the

public key, imported the digital certificate for the public key into another keystore file

“~/JavaSecurityLab/receiverKeystore”, and assigned alias “Pace” to this certificate. In

this lab the imaginary document sender will use the private key with alias “PaceKey” in

keystore file “~/JavaSecurityLab/PaceKeystore” to sign the Jar file of a sample

document, and the imaginary document receiver will perform identity authentication and

data validation for the received document using the public key with alias “Pace” in

keystore file “~/JavaSecurityLab/receiverKeystore”.

1. Launch the Ubuntu VM with username “user” and password 123456.

2. Start a terminal window in home folder ~ with menu item

“Applications|Accessories|Terminal”.

3. Run “cd ~/JavaSecurityLab” to change work folder to “~/JavaSecurityLab”.

4. Run “more GettysburgAddress.txt” to review its contents. You use file

“GettysburgAddress.txt” as example of a secret document for file exchange.

5. Run “jar cvf doc.jar GettysburgAddress.txt” to generate a Jar file “doc.jar” for

transmission.

6. Run “7z l doc.jar” to review the contents of file “doc.jar” (“l” is for listing).

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 25

7. Now run the following command to sign file “doc.jar” with the private key with

alias “PaceKey” in keystore file “PaceKeystore”:

jarsigner -keystore PaceKeystore -signedjar signedDoc.jar doc.jar

PaceKey

When asked for “passphrase for keystore”, enter “PaceUniversity”. When asked

for “key password for PaceKey”, enter “Seidenberg”.

8. Now you will function as the document receiver. You just received file

“signedDoc.jar”, and you have the digital certificate for the document signer in

your keystore file “receiverKeystore” (you created them in the previous lab). Run

the following command to authenticate the signer and make sure the Jar file has

not been tampered with:

jarsigner -verify -verbose -keystore receiverKeystore

signedDoc.jar

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 26

The message shows that the Jar file was signed by the right person and the jar file

has not been tampered with.

9. Run the following commands to retrieve file “GettysburgAddress.txt” from file

“signedDoc.jar”

a. “mkdir temp” to create a new folder “temp”;

b. “cp signedDoc.jar temp” to copy file “signedDoc.jar” into folder temp;

c. “cd temp” to change work folder to “temp”;

d. “jar xf signedDoc.jar” to extract the contents of file “signedDoc.jar”;

e. “ls” to list the files in folder “temp”.

You will see that the file “GettysburgAddress.txt” has been extracted.

This concludes your lab for securely exchanging files.

Exercise 4.4 Granting Special Rights to Applets Based on Code
Location

1. Launch the Ubuntu VM with username “user” and password 123456.

2. Start a terminal window in home folder ~ with menu item

“Applications|Accessories|Terminal”.

3. Run “cd ~/JavaSecurityLab/applet1” to change work folder to

“~/JavaSecurityLab/applet1”.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 27

4. Run “gedit WriteFile.java” to review the contents of the applet source file.

import java.awt.*;

import java.applet.*;

import java.io.*;

public class WriteFile extends Applet {

 public void paint(Graphics g) {

 try {

 String fileName = System.getProperty("user.home") +

 System.getProperty("file.separator") + // / or \

 "data.txt";

 File f = new File(fileName);

 PrintWriter output = new PrintWriter(new FileWriter(f), true); //

auto-flush

 output.println(new java.util.Date() + ": Pace University Java

Tutorial");

 g.drawString("Data were successfully written to file \"" + fileName +

 "\"", 10, 10);

 }

 catch (SecurityException e) {

 g.drawString("WriteFile: security exception is caught", 10, 10);

 e.printStackTrace(); // print error messages to terminal window

 // for debugging

 }

 catch (IOException ioe) {

 g.drawString("WriteFile: i/o exception is caught", 10, 10);

 }

 }

}

An applet is a Java program that is embedded in an HTML file and run inside a

web browser. An applet class always extends the base class “Applet”. Its method

“paint(Graphics g)” executes every time the web page containing it is reloaded.

This applet first opens the file “[user home]/data.txt” (creating the file first if there

is no such a file yet), and replaces its contents with the current time followed by “:

Pace University Java Tutorial”. If for some reason the file cannot be opened or

write fails, an exception will be thrown and displayed. Method call

“System.getProperty("file.separator")” finds out whether the file separator in a file

path is “/” or “\” so this applet could run on either Windows or Linux. Method

call “g.drawString("string", 10, 10)” displays “string” in the applet area of the

web browser 10 pixels to the right and 10 pixels down relative to the origin of the

applet area specified with the “width” and “height” attributes of the <applet>

element in an HTML file.

5. Shutdown the gedit editor.

6. Run “javac WriteFile.java” to compile the source code into bytecode file

“WriteFile.class”.

7. Run “gedit appletWrite.html” to review the contents of file “appletWrite.html”.

<html>

<head>

<title>Test Java Applet File Writing</title>

</head>

<body>

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 28

<p>The following is a Java applet trying to write the current time

and

"Pace University Java Tutorial" in file "data.txt" of your home

folder.</p>

<applet code="WriteFile.class" width=420 height=100>

</applet>

</body>

</html>

An applet is embedded in an HTML file with the “applet” tag. The applet element

can use attribute “code” to specify the applet bytecode file path relative to the

folder containing the current HTML file, and the “width” and “height” attributes

to specify the display area of the applet in a web browser.

8. Shutdown the gedit editor.

9. Double-click on file “appletWrite.html” to display it in a web browser, and you

will see the security exception error message for the applet failing to access file

“[user home]/data.txt”:

The applets always run under the Java security manager, which disables applets to

access local files and many other resources. Since you didn’t launch the web page

with a terminal window, you cannot read the exception message printed by the

“e.printStackTrace();” statement of the applet.

10. Now you will launch the web page with Java utility “appletviewer” so you could

read more information about exceptions. Shutdown the web browser. Run

“appletviewer appletWrite.html” to see the following applet window running

the applet:

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 29

11. From the terminal window you could see a long list of error messages. You

should focus on the first few lines, which told us that the applet has problem in

accessing Java property “user.home”. Actually the exception only pointed out the

first security problem. The second one is that the applet could not access local file

“[user home]/data.txt”.

12. Now you will grant special rights for this applet to complete its task. Run Java

utility “policytool” to launch the following Policy Tool window.

If you see contents in the “Policy File” textbox, it just means you already have a

Java policy file for your account, and you can still continue in this lab.

13. Click on the button “Add Policy Entry” to pop up the following “Policy Entry”

window.

14. You can use the CodeBase textbox to specify special rights to all Java code in a

folder (CodeBase, specified with an absolute path) or its subfolders (terminating

the CodeBase path with “/-”), or use the SignedBy textbox to specify special

rights to all Java code signed by a particular private key where the SignedBy

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 30

textbox holds the alias for the corresponding digital certificate stored in a

keystore, or use both of the CodeBase and the SignedBy textboxes to specify

special rights only to those Java code signed by a specific private key and located

in a specific folder or its subfolders. In this exercise you only use the CodeBase

textbox.

15. In the CodeBase textbox type “file:///home/user/JavaSecurityLab/applet1”, the

URL for folder “~/JavaSecurityLab/applet1”. This will allow you to specify rights

for all code in this folder. (If you add “/-“ to the end of the URL, leading to

“file:///home/user/JavaSecurityLab/applet1/-”, code in folder “applet1” or its

subfolders have the same special rights.)

16. Click on button “Add Permission” to get the following “Permissions” window.

17. Click on the “Permission” drop-down list and select “FilePermission”. Type file

name “${user.home}/data.txt” in the textbox to the right of the “Target Name”

drop-down list. Click on the “Actions” drop-down list and select “write”.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 31

18. Click on the “OK” button. The new permission displays in a line in the Policy

Entry window.

19. Now you will add the second policy to allow the applet to read the value of Java

property “user.home”. Click on the “Add Permission” button again to launch the

Permissions window. Choose “PropertyPermission” for “Permission”, type

“user.home” for “Target name”, choose “read” for “Actions”, and then click on

the OK button to close the Permissions window.

20. Now you see the following Policy Entry window:

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 32

21. Click on the “Done” button to return to the “Policy Tool” window.

22. Click on menu item “File|Save As”, enter “/home/user/” followed by the Enter

key in the “Enter path or folder name” textbox, and enter “.java.policy” in the

“Enter file name” textbox.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 33

23. Click on the “Save” button to close the “Save As” window.

24. Click on menu item “File|Exit” to shut down the Policy Tool window.

25. Run “more ~/.java.policy” to review the contents of the Java policy file:

grant codeBase "file:///home/user/JavaSecurityLab/applet1" {

 permission java.io.FilePermission "${user.home}/data.txt", "write";

 permission java.util.PropertyPermission "user.home", "read";

};

If you know the syntax for granting rights to Java code, you could directly edit the

policy file. The utility “policytool” is optional to make the task of granting rights

easier.

26. In folder “/home/user/JavaSecurityLab/applet1”, double click on file

“appletWrite.html” and display it in a web browser, and this time you see the

applet message “Data were successfully written to file “/home/user/data.txt” ”.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 34

27. Run “more ~/data.txt” to review the contents of file “data.txt”.

28. Now you will launch the web page with Java utility “appletviewer” again. Run

“appletviewer appletWrite.html” to see the following applet window running

the applet successfully:

Now you have successfully granted security rights to an applet located at a specific

location so it could write to a local file.

Question 23: Should you use relative path or absolute path to specify CodeBase?

Question 24: Should you use relative path or absolute path to specify a file as the value of the

Target Name of the Permissions window?

Question 25: What is the meaning of “${user.home}”?

Exercise 4.5 Creating a Certificate Chain to Implement a Trust Chain

In this lab you will work as a CA (Certificate Authority) to sign another certificate

SchoolKey. You will show that if your computer trusts code signed by the CA, it will

also trust code signed by SchoolKey. Therefore the certificate chain supports a trust

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 35

chain. You will use a Java program “SignCertificate.java” to sign a certificate with the

private key associated with another certificate. Due to the complexity we will not explain

this program and just use it as a tool.

1. Launch the Ubuntu VM with username “user” and password 123456.

2. Start a terminal window in home folder ~ with menu item

“Applications|Accessories|Terminal”.

3. Run “cd ~/JavaSecurityLab/cert-chain” to change the work folder to

“~/JavaSecurityLab/cert-chain”.

4. Run “javac SignCertificate.java” to compile the program into bytecode file

“SignCertificate.class”. You will see 39 warnings for the compilation, but it is

harmless.

5. Run “more WriteFile.java” and “more appletWrite2.html” to review the contents

of the two files. They are the same ones that you used in the last lab.

6. Run “javac WriteFile.java” to compile the program into bytecode file

“WriteFile.class”. This is the same class you used in the previous lab.

7. Run “jar cvf WriteFile.jar WriteFile.class” to create the Jar file, as you did in

the last lab.

8. Now you are going to function as the CA (certificate authority) to create the CA’s

public/private key pair and its corresponding self-certified certificate in a new

keystore with name “keystore” in the current folder. Run the following command

on the same line:
keytool -genkey -alias CA -keypass 123456 -keystore keystore -storepass

123456 -validity 365 -keyalg RSA

Argument “-validity 365” specifies that the certificate would be valid for 365

days. Argument “-keyalg RSA” specifies that the key generation algorithm would

be RSA. Here you use trivial password 123456 to ease your typing. You would

type “Certificate Authority” for the first and last names, “ITS” for organizational

unit, “Pace University” for organization, “New York” for city, “NY” for state, and

“US” for country code.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 36

9. Now you will function as an IT staff of Seidenberg School of Pace University to

create the master public/private key pair and certificate for the School in the same

keystore. You will associate the keys and certificate with alias “SchoolKey”. Run

the following command:
keytool -genkey -alias SchoolKey -keypass 123456 -keystore keystore -

storepass 123456 -validity 365 -keyalg RSA

You would type “Lab” for the first and last names, “Seidenberg School” for

organizational unit, “Pace University” for organization, “New York” for city,

“NY” for state, and “US” for country code.

10. Run “java SignCertificate keystore CA SchoolKey SchoolKeySigned” to use

the private key with alias “CA” to sign the certificate with alias “SchoolKey”, and

associate alias “SchoolKeySigned” with the signed certificate in the keystore.

Enter 123456 for all the three required passwords.

11. Run “keytool -export -alias SchoolKeySigned -keystore keystore -file

SchoolKeySigned.cert” to export the certificate associated with

“SchoolKeySigned” into file “SchoolKeySigned.cert”. Upon request enter 123456

for keystore password.

12. Run “keytool -import -alias SchoolKey -keystore keystore -file

SchoolKeySigned.cert” to import the certificate in file “SchoolKeySigned.cert”

back in the keystore entry associated with alias “SchoolKey”. Upon request enter

123456 for keystore password.

13. Run “keytool -list -v -keystore keystore” to review the contents of the keystore.

Upon request enter 123456 as keystore password. You will see the following

output:

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 37

user@ubuntu:~/JavaSecurityLab/cert-chain$ keytool -list -v -keystore

keystore

Enter keystore password: 123456

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 3 entries

Alias name: schoolkeysigned

Creation date: Oct 18, 2010

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=Lab, OU=Seidenberg School, O=Pace University, L=New York, ST=NY,

C=US

Issuer: CN=Certificate Authority, OU=ITS, O=Pace University, L=New York,

ST=NY, C=US

Serial number: 4cbd3110

Valid from: Mon Oct 18 22:48:00 PDT 2010 until: Tue Oct 18 22:48:00 PDT 2011

Certificate fingerprints:

 MD5: CD:FD:F7:48:6E:A1:95:DD:87:76:02:5F:08:DA:3B:8B

 SHA1: F5:6E:E4:FA:E1:C6:62:9A:0F:E8:43:C1:17:43:98:A2:18:E2:B3:B8

 Signature algorithm name: MD5withRSA

 Version: 3

Alias name: ca

Creation date: Oct 18, 2010

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=Certificate Authority, OU=ITS, O=Pace University, L=New York,

ST=NY, C=US

Issuer: CN=Certificate Authority, OU=ITS, O=Pace University, L=New York,

ST=NY, C=US

Serial number: 4cbd2e03

Valid from: Mon Oct 18 22:34:59 PDT 2010 until: Tue Oct 18 22:34:59 PDT 2011

Certificate fingerprints:

 MD5: 0B:B7:B1:48:36:30:FE:DB:E3:EA:35:17:6C:02:9C:C0

 SHA1: BF:E3:0C:C1:1B:4C:36:BD:41:81:24:C4:7A:E2:2A:24:F6:4A:89:B9

 Signature algorithm name: SHA1withRSA

 Version: 3

Alias name: schoolkey

Creation date: Oct 18, 2010

Entry type: PrivateKeyEntry

Certificate chain length: 2

Certificate[1]:

Owner: CN=Lab, OU=Seidenberg School, O=Pace University, L=New York, ST=NY,

C=US

Issuer: CN=Certificate Authority, OU=ITS, O=Pace University, L=New York,

ST=NY, C=US

Serial number: 4cbd3110

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 38

Valid from: Mon Oct 18 22:48:00 PDT 2010 until: Tue Oct 18 22:48:00 PDT 2011

Certificate fingerprints:

 MD5: CD:FD:F7:48:6E:A1:95:DD:87:76:02:5F:08:DA:3B:8B

 SHA1: F5:6E:E4:FA:E1:C6:62:9A:0F:E8:43:C1:17:43:98:A2:18:E2:B3:B8

 Signature algorithm name: MD5withRSA

 Version: 3

Certificate[2]:

Owner: CN=Certificate Authority, OU=ITS, O=Pace University, L=New York,

ST=NY, C=US

Issuer: CN=Certificate Authority, OU=ITS, O=Pace University, L=New York,

ST=NY, C=US

Serial number: 4cbd2e03

Valid from: Mon Oct 18 22:34:59 PDT 2010 until: Tue Oct 18 22:34:59 PDT 2011

Certificate fingerprints:

 MD5: 0B:B7:B1:48:36:30:FE:DB:E3:EA:35:17:6C:02:9C:C0

 SHA1: BF:E3:0C:C1:1B:4C:36:BD:41:81:24:C4:7A:E2:2A:24:F6:4A:89:B9

 Signature algorithm name: SHA1withRSA

 Version: 3

user@ubuntu:~/JavaSecurityLab/cert-chain$

You can see that there are two certificates associated with alias “SchoolKey”. The

first one is for the CA’s private key to sign the “SchoolKey” certificate. The

second one is for the CA private key to sign its own certificate. This is your chain

of certificates.

14. Now run “jarsigner -keystore keystore -signedjar signedWriteFile.jar

WriteFile.jar CA” to sign the Jar file with the private key of the CA. The signed

Jar file is “signedWriteFile.jar”. Upon request enter 123456 for keystore

password.

15. Double-click on file “appleteWrite2.html” in file explorer and choose to display

it. You will be asked whether you trust the applet signed by CA.

S e c u r e W e b A p p l i c a t i o n D e v e l o p m e n t | 39

16. Check “Always trust content from this publisher” and click on the “Run” button,

and the applet will succeed in writing data to file “~/data.txt”.

17. Run “jarsigner -keystore keystore -signedjar signedWriteFile.jar WriteFile.jar

SchoolKey” to resign the Jar file with the private key associated with

“SchoolKey”. Upon request enter 123456 for keystore password.

18. Double-click on file “appleteWrite2.html” in file explorer and choose to display

it. You will NOT be asked whether you trust the applet signed by SchoolKey, and

the applet will succeed in writing data to file “~/data.txt”. This is because you

already told the computer that you always trust code signed by the CA. Since the

certificate for “SchoolKey” is signed by the CA, your trust to the CA is transfer to

your trust to the certificate for “SchoolKey”.

This lab provides clear idea and hands-on knowledge on how a CA signs your

certificates, and how a certificate chain implements a trust chain. While your chain has

only two certificates, it could be extended to any length.

