
Adapting Single-User Visualization Software for Collaborative Use

Francis T. Marchese, Jude Mercado, and Yi Pan
Department of Computer Science

Pace University
New York, NY 10038
fmarchese@pace.edu

Abstract
This paper presents our experiences with adapting sin-

gle-user visualization software for web-based collabora-
tion. Sun’s Java JXTA API was used to adapt an open-
source molecular visualization program called Jmol. It
was found that by focusing on the program’s graphical
user interface the software could be quickly transformed
into a peer-to-peer application. Our positive experience
implies that many useful single-user programs should be
transformable into tools that make collaboration across
the web easier to initiate, more spontaneous, and sup-
ported by a wide range of visualization software.

1. Introduction
The Internet has made it possible for individuals or

groups to collaborate at a distance. Collaborative virtual
environments (CVEs) have been developed to support a
wide range of collaborative activities including gaming,
immersive virtual reality systems for military training,
scientific visualization, and engineering design [1]. Col-
laborative visualization software systems include VisAD
[2], COVISA [3], Sieve [4], and others [5-7]. In general,
these programs have been developed to provide a generic
set of collaborative tools for data sharing, representation,
and visualization. However, many domain-specific appli-
cations do not easily adapt to a more general class of
visualization programs. Yet there are many single-user
programs that not only would be useful collaborative tools
but also could be adapted for collaborative use. Finally,
many collaborative systems require dedicated hardware
and software, even though many collaborations may be
infrequent, of short duration, take place at odd hours, or
employ an amalgam of mainstream conferencing and
problem-specific software products.

Therefore, we decided to investigate these issues by
adapting a domain-specific, single-user program for col-
laborative use. The goal was to create web-based software
that did not rely on special hardware and could be used at
any time, in any place. We selected an open-source mo-

lecular visualization program written in Java called Jmol
[8] and Sun’s Java peer-to-peer (P2P) toolkit – JXTA [9 -
11]. When the project began, we had little experience
with peer-to-peer systems and had never seen Jmol’s
source code. Some of our experiences are presented
herein.

The following section contains the background for the
project. Section 3 contains a discussion of peer-to-peer
computing with JXTA. Section 4 presents the process of
adapting Jmol for collaborative use, and Section 5 a sam-
ple session for running Jmol in peer-to-peer collaboration.
Discussion and conclusions are found in Section 6. Sec-
tion 7 makes suggestions for future work.

2. Background
Molecular visualization is a traditional example of a

domain-specific visualization application. Molecular
visualization environments tightly integrate data genera-
tion, visualization, and analysis. Moreover, they rely on
graphical representations not found in main stream visu-
alization systems. The process of displaying electron den-
sities, molecular vibrations, and protein structures has
evolved since the early days of computer graphics in the
mid-1960s. Today, individual or small clusters of single-
user, PC-based molecular visualization systems can com-
pute and render molecular structure and dynamics in near
real-time.

A number of collaborative molecular visualization sys-
tems have been built, including PaulingWorld [12], Chi-
mera [13], and Mice [14]. PaulingWorld is a virtual real-
ity application designed to work on SGI workstations with
immersive hardware systems such as CAVEs, Collabora-
tive Workbenches, and head mounted displays. Alterna-
tively, MICE (Molecular Interactive Collaborative Envi-
ronment) is a web-based, client-server system built on
Java3D and CORBA. Users translate molecular structure
data into VRML geometry files and load them onto the
server. These files are then collaboratively viewed
through Java clients. Finally, Chimera is a client-server
collaborative system that wraps a collection of legacy

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

molecular analysis and visualization programs within a
GUI.

These systems illustrate a number of issues related to
collaborative systems. First, many CVEs require special
purpose hardware and software. This is the case with
PaulingWorld, which runs only on SGI computers at-
tached to VR hardware. Second, CVEs may require non-
native data models. For example, Mice transforms mo-
lecular structure into VRML objects comprised of geo-
metric primitives such as polygon meshes and surface
patches. This loss of original geometry means there is no
way to quantitatively interrogate the source data; thus
leaving collaborators with only the ability to rotate, trans-
late, or scale objects. Finally, although many CVEs allow
users to directly manipulate source data, they are client-
server applications. Chimera allows users access to the
original molecular data, but like Mice, it is a client-server
application, and as such, its collaborative use is subject to
constraints. Since the server is responsible for data trans-
mission, it must have a resolvable IP address for clients to
make a connection. The Internet’s growth has left fewer
machines with static IP addresses, resulting in powerful
computing systems assigned dynamic IP addresses that
may inhibit their abilities to be used as servers. And cli-
ent-server applications cannot traverse firewalls. Firewall
technology is designed to protect private information.
However, there is a need for users to communicate
through a firewall in order to perform collaborative re-
search.

Hence, collaborative molecular visualization software
should support direct access to source data and metadata,
manipulation of native visual representations, interactive
data query and update, and anytime-anywhere collabora-
tion. One possible way to create such an application is to
begin with a pre-existing single user visualization system
and adapt it for P2P use. Because molecular scientists
typically recreate their software with each new generation
of technology, there are many molecular visualization
applets written in Java, used to embed molecular visuali-
zations within web pages [8, 15-16]. One such program is
Jmol [8].

JMol is an open-source molecular visualization pro-
gram. Chemical scientists use Jmol as a visualization and
measurement tool. It is capable of animating the results of
simulations and can perform transformations (rotation,
translation, scaling) upon a molecular structure. In addi-
tion, the application can also measure inter-atomic dis-
tances, bond angles, and dihedral angles, as well as print
and export captured images. A snapshot of a Jmol session
is displayed in Figure 1.

The advantage of using a Java-based program is that it
can be paired with JXTA, Sun’s Java peer-to-peer proto-
col that allows any network-connected device to commu-
nicate and collaborate. Peer-to-peer networking solves
client-server problems by interconnecting machines so

that each node acts as both server and client. There is no
single center in a P2P network as there is in a client-
server network. P2P services are distributed, promoting
the robustness of the entire network by eliminating the
static IP address requirement for data transmission. In
addition, with multiple protocols to select for P2P appli-
cations and certain types of peers in use, P2P application
users can communicate through a firewall.

3. JXTA Background
JXTA is a P2P networking framework, which consists

of three layers: Platform, Services, and Applications. Pla-
form is the core layer with the elements for every P2P
solution. Services provide the access to JXTA protocols.
Applications use services to access the JXTA network and
utilities.

JXTA’s goal is to support P2P programming on any de-
vice from a PDA to a toaster regardless of where it may
be located. Conceptually, it is designed to organize peers
and provide an infrastructure for communication. JXTA
does this with protocols expressed in XML.

JXTA is founded on the following basic concepts: peer,
peer group, endpoint, pipe, network transport, advertise-
ments, protocols, and discoveries.

A peer is a virtual communication point. There are three
basic types of peers: simple peer, rendezvous peer, and
router peer. A simple peer has the least functionality, and
is used behind a firewall. A rendezvous peer processes
queries from other peers, and is used when content trans-
mission is required. A router peer enables peers to com-
municate with other peers separated by a firewall.

A peer group organizes peers, and provides specific ser-
vices to group members. Data may be shared within the
group’s scope, and peers may check another peer’s status

Figure 1 Jmol GUI showing a molecular represen-
tation with VCR controls for displaying molecular
dynamics

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

before it is allowed to join the group, subject to security
requirements.

Network transport manages data transmission over the
network. JXTA allows peers to choose different protocols
to fit specific needs. HTTP protocols are used for peers to
communicate through firewalls, while TCP is chosen for
intranets.

A network transport system is composed of endpoints,
pipes, and messages. An endpoint refers to an address of a
peer. A pipe is a unidirectional, asynchronous, and virtual
connection of two or more endpoints. Messages contain
the data being transmitted. Transmitted data is packed
into a message, which is then sent over the output pipe. At
the other end of the pipe, a peer receives the message
from its input pipe and extracts the transmitted data.

An advertisement is a structured representation of an en-
tity, service, or resource made available by a peer or peer
group as a part of a P2P network. It is an XML document
in JXTA, containing the description of a message, peer,
peer group, or service. Peers discover advertisements on
the network to find other peers. They can use a cached
advertisement, rendezvous peer, or router peer to discover
each other within a LAN or through a firewall.

JXTA has a number of protocols for advertising, send-
ing, routing, propagating, and securing messages. These
protocols are used to join a peer group, find another peer,
create pipes between peers, and propagate messages
among peers. These protocols are used to effect peer-to-
peer collaboration.

A typical scenario for P2P collaboration using JXTA is
as follows:

1. Start JXTA
2. Create and publish pipe advertisements
3. Locate and use the created pipe advertisement
4. Send outgoing and listen for incoming messages.

An application initiates collaboration by joining the
Net peer group. The default Net group gives access to the
basic JXTA services. When the JXTA platform is started,
it searches for certain configuration files, most impor-
tantly the PlatformConfig file. PlatformConfig is an XML
file that records network settings specific to the peer. If
this file is not present a JXTA Configuration screen is
shown (Figure 2). It is here that the username, password
and advanced network specifications can be configured.

A Pipe Advertisement is created using the Advertise-
mentFactory class. The Pipe Advertisement is an XML
file that contains the type of pipe, the Pipe ID, and possi-
bly an optional name for the pipe. Once created, peers
bind to the pipe’s input and output endpoints to create
instances of the InputPipe and OutputPipe class.

4. Implementation
Jmol is an event-driven system with its graphical user

interface (GUI) controlling most events. Jmol’s GUI is
based on Java’s Swing interface toolkit (JDK 1.2 and

later), a refined version of Java’s Abstract Window Tool-
kit (AWT) found in Java’s JDK 1.1 and later. Each inter-
face component, or widget, is linked to a listener interface
that captures a unique event. Thus, when the mouse is
moved, or a button is pushed, or a dropdown menu item is
selected, an event occurs that is captured and acted upon.
And Java’s listener interface provides specific methods in
which to embed actions to be taken once an event has
been captured.

By finding the Java methods in Jmol that control the lis-
tener interface it should be possible to insert the JXTA
code necessary to transmit an event and its attributes to a
peer. Jmol’s interface events result in loading and saving
files, updating the molecular graphic representation, and
generating geometric data to describe inter-atomic dis-
tances and angles. After the first peer acts on the event by
updating its local state, it should send a unique message to
the second peer for it to replicate the process. For exam-
ple, the sending peer captures combined button and
mouse events for translating the molecular representation,
and redraws it at a new screen location. After translation,
a message is sent to the receiving peer, corresponding to a
translation action. The receiving peer then updates its
state to match the sending peer.

In addition to updating Jmol’s event handling methods,
three other issues needed to be resolved in order to trans-
form Jmol into a collaborative system. First, a database
model needed to be selected. A distributed database
model was assumed in which each site retains a copy of
all files used in Jmol. The advantage is that file replica-
tion reduces transmission times and creates minimal
communication time lag, since only changes in the pro-

Figure 2 Configuration dialog for JXTA applica-
tion

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

gram’s state need be transmitted. The logic behind this is
that most molecular data can be easily downloaded or
transmitted, and collaborative users would already have
these on their machines.

Second, JXTA code must be added to implement the es-
sential JXTA protocols. In particular, communication
channels must be established, incoming messages han-
dled, pipe advertisements discovered, and output pipes
created.

Finally, messages between peers should be compact in
order to minimize communication overhead. For Jmol,
messages only need to include a key specifying an action
and an element containing the attributes of that action. For
example, a translation operation would send the key
“XLATE” along with an element containing the transla-
tion matrix. The receiving peer, upon recognizing the
message, would use the transformation matrix to perform
a translation locally.

With strategy in hand, Jmol was adapted for collabora-
tion by adding code to set up the pipes necessary for
communication channels among peers and modifying the
graphical user interface (GUI) components. Upon analy-
sis, it was found that out of the 270 class files that consti-
tute Jmol, the GUI components are isolated in five files:
DisplayPanel.java, Animate.java, Vibrate.java, and Meas-
ure.java.

DisplayPanel.java contains controls for geometric trans-
formations as well as rendering options. There are action
methods for picking, rotation, zooming, translation, shad-
ing, and the like. Every “Action” method found within
DisplayPanel was modified to send a message to a listen-
ing peer for it to perform the same task.

Animate.java creates the Animate class, which controls
the animation of reaction simulations. It displays VCR
controls that allow the user to start, stop, rewind, forward,
jump to a frame, or speed up the simulation. When a user
chooses to ‘Play,’ ‘Rewind,’ ‘Fast Forward,’ etc., a mes-
sage corresponding to the action is sent to the listening
peer so that it can change the frame on its local applica-
tion.

Vibrate.java displays molecular vibrations as anima-
tions. As with the Animate class, it contains controls to
specify how a sequnce of frames is displayed. The action-
Performed() method, which controls animation playback,
is augmented to send a message for every control action
performed.

Measure.java is responsible for measuring angles, dis-
tances, and dihedrals between atoms. It also maintains a
measurement table containing the various measurements
made by the user. It was modified to send messages that
correspond to a specific “Action.” Actions include meas-
uring or deleting a distance, a bond angle, or dihedral
angle.

Jmol.java is the main Java class. It was modified to es-
tablish communication channels by implementing the-
JXTA interfaces: PipeMsgListener, DiscoveryListener,
and OutputPipeListener. PipeMsgListener is used for
handling incoming messages; DiscoveryListener is used
for discovering pipe advertisements; and OutputPipeLis-
tener is used when an instance of an OutputPipe is cre-
ated.

Finally, Jmol was augmented with a chat facility that
provided for saving chats and reloading for further re-
view.

5. Running Collaborative Jmol
The collaborative version of Jmol is implemented as a

Java application. Once Jmol has been loaded from a
command line prompt, a dialog box appears. For first time
execution, the dialog box sets up user id and security pa-
rameters (Figure 2). Subsequent invocations bring up only
a login dialog. Once logged in, a command line message
requests the user to either create an advertisement for a
new peer session, or find an advertisement for an existing
peer session (Figure 3). To originate peer collaboration,
the former is selected; otherwise the peer will attempt to
find the originating peer on the network. If the user has
selected advertisement, the Jmol GUI will load and adver-
tise to the netgroup (Figure 4); otherwise Jmol will search

Figure 3 Collaborative Jmol searching for peer
advertisement.

Figure 4 Collaborative Jmol GUI and chat loaded
and advertising for a peer.

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

the network looking for a peer connection. When an ad-
vertising peer has been located (Figure 3) the searching
peer has the option to make a connection. Once the con-
nection is made, the Jmol GUI will be displayed.

One peer will load a molecule through the “File” drop-
down menu to begin collaboration. This filename and a
“Draw” message will be sent to the other peer for it to
automatically load the molecule from its local directory.
Either collaborator can transform the molecule, display its
properties, or make measurements. For example, when
one collaborator selects rotation, and drags the mouse
across the molecular representation, both see exactly the
same view, smoothly rotating in three dimensions about
the x and y-axes. When a collaborator selects measure
mode, a table appears that is filled with geometric infor-
mation as the requisite atoms are selected with the mouse
(Figure 5). When the “Add to Measurement List” button
is chosen, the measurement is appended to the image at
both locations. This text is a three-dimensional graphic of
geometric information, and travels along with the mole-
cule as it is rotated, scaled, and translated.

During the course of their engagement, collaborators
may carry on a text chat with the built-in chat facility or
use any other communication tool available for audio or
video conferencing, such as Microsoft’s NetMeeting.
When it is time to end the session, all that is required is to
shut down the application.

6. Discussion and conclusions
The goal of this project was to create a collaborative

visualization application from a single-user program. Its
implementation is consistent with the design objectives
put forth by Wood and coworkers [3]. Collaborative visu-
alization systems should allow users to share program
control, collaborate dynamically, use the software in an
instruction scenario, learn it easily, and exchange data
readily. Collaborative Jmol meets these design goals. Ei-
ther participant may control any of Jmol‘s parameters at
any time, supporting variability in visualization scenarios.
Jmol allows either participant to work as an instructor,
because each peer may take control of the analysis at any
time, and every action in a sequence is replicated on the
collaborating peer. Jmol is easy to learn because the visu-
alization components of the program remain unchanged;
only menu-driven networking components have been
added. Finally, all data is exchanged between peers,
meaning both peers are synchronized in identical collabo-
ration states.

Peer-two-peer bi-directional synchronization is executed
in Jmol using two asynchronous pipes by binding each
peer to the input end of one pipe and the output end of the
other. When a GUI event occurs, the sending peer trans-
mits a keyword designating the GUI operation along with
its numerical operands through the input end of the pipe,
while the receiving peer extracts the message at the pipe’s

output end. Because these pipes act independently, it is
possible for both peers to transmit messages simultane-
ously, possibly corrupting visualizations. Although access
to the shared state may be regulated, the current version
of Jmol assumes a free access model similar to cAVS, in
which any participant may affect the common collabora-
tive state at any time [17]. However, since Jmol will be
used as part of a teleconferencing suite, it is expected that
such problems will be mitigated because both partici-
pants’ actions will be coordinated as part of discussion
and exploration.

The process of adapting Jmol was constrained in two
ways. First, domain experts, not software engineers, cre-
ated Jmol. As such, these individuals typically are less
concerned with a flexible software design that makes for
ease of expansion and adaptation, than with building a
product to meet current visualization needs. Yet, the
modularity of Java’s AWT, and its concomitant isolation
of interface methods, made it relatively straightforward to
embed the requisite JXTA code. Second, JXTA was in
early development when this research began, today, ver-
sion 2 of JXTA is available. Some of its classes were not
implemented, unstable, or undergoing change. Therefore,
it constrained the adaptation process. Despite this,
JXTA’s core functionally was sufficiently well developed
to adapt Jmol for basic collaboration.

Jmol was selected for adaptation because it represented
a useful software product with enough functionality to

Figure 5 Jmol in measurement mode display-
ing the caffeine molecule.

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

embody significant program structure and complexity.
This decision was based on experience using the program,
not on an analysis of the source code. It was only after
Jmol was selected that its source code was examined.
Then the Jmol transformation was achieved by an under-
graduate computer science major.

What this research demonstrates is that within a two-
month period, working part-time, an individual with no
knowledge of the visualization software, and learning
JXTA on the fly, can transform a single-user program into
a functional and useful collaborative application. There-
fore, it follows that a domain expert, who thoroughly un-
derstands the visualization application, could create a
collaborative system within a very short time frame.

In conclusion, the demonstrated ability of JXTA to
quickly create two person, peer-to-peer collaborative
software from single-user visualization systems means
that collaboration across the web will become easier to
initiate, more spontaneous, and be supported by a wide
range of visualization software.

7. Future Work
JXTA offers the opportunity to have many peers col-

laborate, but a design change in Jmol may be required.
Presently, there is no visual or auditory cue from Jmol
that reveals which peer is controlling the interface. The
natural assumption is that the other peer is in control. Ad-
ditional peers create ambiguity. Without some cue from
the software, knowledge of who is in control is uncertain
at best. Even if the collaborators employ audio or video
conferencing software as part of their session, there is no
way of knowing with certainty who is manipulating the
model.

This issue is part of a more general problem with which
designers of large-scale networked collaborative envi-
ronments must contend – how to provide a shared sense
of presence. CVEs should represent all participants and
their actions in the virtual space they share. In Jmol that
would mean at the very least the GUI should convey who
is currently controlling the software. Hence, the next step
in the process of adapting Jmol is to solve this design
problem, so the identity of each user in the collaboration
is clearly conveyed.

8. Acknowledgements
This project was underwritten in part by National Sci-

ence Foundation Grant ANI-0125043. The author would
also like to thank Susan Merritt, Dean of the School of
Computer Science and Information Systems, for her con-
tinued support.

9. References
[1] S. Singhal and M. Zyda. Networked Virtual Environments.
Addison-Wesley, 1999.

[2] W. Hibbard, “VisAD: Connecting People to Computations
and People to People,” Computer Graphics 32,3, 1998, pp. 10-
12.

[3] J. Wood, H. Wright, K. Brodlie, “Collaborative Visualiza-
tion,” IEEE Visualization '97, 1997, pp. 253-260.

[4] P. Isenhour, J. Begole, W.S. Heagy, and C.A. Shaffer,
“Sieve: A Java-Based Collaborative Visualization
Environment,” IEEE Visualization '97 Late Breaking Hot Topics
Proceedings, October 22-24, 1997, pp. 13-16.

[5] A. Pang and C.Wittenbrink, “Collaborative Visualization
with CSPRAY,” IEEE CG&A , (March/April) 1997, pp. 32-41.

[6] C. Bajaj and S. Cutchin, “Web based Collaborative Visu-
alization of Distributed and Parallel Simulations,” Proceedings
of IEEE Parallel Visualization and Graphics Symposium, Octo-
ber 1999, pp. 47-54.

[7] M.Abbott and L.K. Jain, “DOVE: Distributed Objects
based scientific Visualization Environment,” ACM 1998 Work-
shop on Java for High-Performance Network Computing. ACM
Press, 1998.

[8] “Jmol,” http://jmol.sourceforge.net/ (current 23 Mar. 2002).

[9] “Project JXTA,” http://wwws.sun.com/software/jxta/ (cur-
rent 23 Mar. 2003).

[10] D. Brookshier, D. Govoni, N. Krishnan. JXTA: Java P2P
Programming. Sams, 2002.

[11] B. Wilson. JXTA. New Rider’s Publishing, 2002.

[12] S. Su, R. Loftin, D. Chen, Y. Fang, and Ch. Lin, “Distrib-
uted Collaborative Virtual Environment: PaulingWorld.” Pro-
ceedings of 10th International Conference on Artificial Reality
and Telexistence, 2000, pp. 112-117.

[13] C.C. Huang, G.S. Couch, E.F. Pettersen, and T.E. Ferrin,
“Chimera: An Extensible Molecular Modeling Application Con-
structed Using Standard Components,” Pacific Symposium on
Biocomputing 1, 1996, p. 724.

[14] P.E. Bourne, M. Gribskov, G. Johnson, J. Moreland, and H.
Weissig, “A Prototype Molecular Interactive Collaborative En-
vironment (MICE),” Pacific Symposium on Biocomputing, Eds.
R Altman, K. Dunker, L. Hunter, and T. Klein, 1998, pp. 118-
129.

[15] “JMV: Java Molecular Viewer,”
http://www.ks.uiuc.edu/Research/jmv/ (current 23 Mar. 2003).

[16] “Java Mage: Kinemages in your web browser,”
http://kinemage.biochem.duke.edu/javamage/java.html (current
23 Mar. 2003).

[17] “Collaborative AVS,”
http://www.tacc.utexas.edu/cavs/overview.html (current 3 May
2003)

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

