
Chapter 9 – Software Evolution 

Summary 

1 Chapter 9 Software evolution 



Topics covered 

• Evolution processes 

– Change processes for software systems  

• Program evolution dynamics 

– Understanding software evolution 

• Software maintenance 

– Making changes to operational software systems 

• Legacy system management 

– Making decisions about software change  

2 Chapter 9 Software evolution 



Software change 

• Software change is inevitable 
– New requirements emerge when the software is used; 

– The business environment changes; 

– Errors must be repaired; 

– New computers and equipment is added to the system; 

– The performance or reliability of the system may have to be improved. 

• A key problem for all organizations is implementing and 
managing change to their existing software systems. 

3 Chapter 9 Software evolution 



Importance of evolution 

• Organisations have huge investments in their 
software systems - they are critical business 
assets. 

• To maintain the value of these assets to the 
business, they must be changed and updated. 

• The majority of the software budget in large 
companies is devoted to changing and 
evolving existing software rather than 
developing new software. 

4 Chapter 9 Software evolution 



A spiral model of development and 
evolution  

5 Chapter 9 Software evolution 



Evolution and servicing  

6 Chapter 9 Software evolution 



Evolution and servicing 

• Evolution 
– The stage in a software system’s life cycle where it is in 

operational use and is evolving as new requirements are 
proposed and implemented in the system. 

• Servicing 
– At this stage, the software remains useful but the only 

changes made are those required to keep it operational i.e. 
bug fixes and changes to reflect changes in the software’s 
environment. No new functionality is added. 

• Phase-out 
– The software may still be used but no further changes are 

made to it. 

7 Chapter 9 Software evolution 



Evolution processes 

• Software evolution processes depend on 
– The type of software being maintained; 
– The development processes used; 
– The skills and experience of the people involved. 

• Proposals for change are the driver for system 
evolution. 
– Should be linked with components that are affected 

by the change, thus allowing the cost and impact of 
the change to be estimated. 

• Change identification and evolution continues 
throughout the system lifetime. 

8 Chapter 9 Software evolution 



Change identification and evolution 
processes  

9 Chapter 9 Software evolution 



The software evolution process  

10 Chapter 9 Software evolution 



Change implementation  

11 Chapter 9 Software evolution 



Change implementation 

• Iteration of the development process where the 
revisions to the system are designed, implemented and 
tested. 

• A critical difference is that the first stage of change 
implementation may involve program understanding, 
especially if the original system developers are not 
responsible for  the change implementation.  

• During the program understanding phase, you have to 
understand how the program is structured, how it 
delivers functionality and how the proposed change 
might affect the program.  

 
12 Chapter 9 Software evolution 



Urgent change requests 

• Urgent changes may have to be implemented 
without going through all stages of the 
software engineering process 
– If a serious system fault has to be repaired to 

allow normal operation to continue; 

– If changes to the system’s environment (e.g. an OS 
upgrade) have unexpected effects; 

– If there are business changes that require a very 
rapid response (e.g. the release of a competing 
product). 

13 Chapter 9 Software evolution 



The emergency repair process 

14 Chapter 9 Software evolution 



Agile methods and evolution 

• Agile methods are based on incremental 
development so the transition from development 
to evolution is a seamless one. 

– Evolution is simply a continuation of the development 
process based on frequent system releases. 

• Automated regression testing is particularly 
valuable when changes are made to a system. 

• Changes may be expressed as additional user 
stories. 

15 Chapter 9 Software evolution 



Handover problems 

• Where the development team have used an agile 
approach but the evolution team is unfamiliar with 
agile methods and prefer a plan-based approach.  
– The evolution team may expect detailed documentation to 

support evolution and this is not produced in agile 
processes.  

• Where a plan-based approach has been used for 
development but the evolution team prefer to use 
agile methods.  
– The evolution team may have to start from scratch 

developing automated tests and the code in the system 
may not have been refactored and simplified as is 
expected in agile development.   

 
16 Chapter 9 Software evolution 



• Program evolution dynamics is the study of the 
processes of system change. 

• After several major empirical studies, Lehman 
and Belady proposed that there were a number 
of ‘laws’ which applied to all systems as they 
evolved. 

• There are sensible observations rather than laws. 
They are applicable to large systems developed 
by large organisations.  
– It is not clear if these are applicable to other types of 

software system. 

Program evolution dynamics 

17 Chapter 9 Software evolution 



• The system requirements are likely to change  
while the system is being developed because  
the environment is changing. Therefore a  
delivered system won't meet its requirements! 

• Systems are tightly coupled with their environment. When a 
system is installed in an  
environment it changes that environment and  
therefore changes the system requirements. 

• Systems MUST be changed if they  
are to remain useful in an environment. 

Change is inevitable 

18 Chapter 9 Software evolution 



Lehman’s laws  

Law Description 

Continuing change A program that is used in a real-world environment must necessarily 

change, or else become progressively less useful in that 

environment. 

Increasing 

complexity 

As an evolving program changes, its structure tends to become more 

complex. Extra resources must be devoted to preserving and 

simplifying the structure. 

Large program 

evolution 

Program evolution is a self-regulating process. System attributes 

such as size, time between releases, and the number of reported 

errors is approximately invariant for each system release. 

Organizational 

stability 

Over a program’s lifetime, its rate of development is approximately 

constant and independent of the resources devoted to system 

development. 

19 Chapter 9 Software evolution 



Lehman’s laws 

Law Description 

Conservation of familiarity Over the lifetime of a system, the incremental change in each 

release is approximately constant. 

Continuing growth The functionality offered by systems has to continually 

increase to maintain user satisfaction. 

Declining quality The quality of systems will decline unless they are modified to 

reflect changes in their operational environment. 

Feedback system Evolution processes incorporate multiagent, multiloop 

feedback systems and you have to treat them as feedback 

systems to achieve significant product improvement. 

20 Chapter 9 Software evolution 



Applicability of Lehman’s laws 

• Lehman’s laws seem to be generally applicable to 
large, tailored systems developed by large 
organisations. 
– Confirmed in early 2000’s by work by Lehman on the 

FEAST project. 

• It is not clear how they should be modified for 
– Shrink-wrapped software products; 
– Systems that incorporate a significant number of COTS 

components; 
– Small organisations; 
– Medium sized systems. 

21 Chapter 9 Software evolution 



Key points 

• Software development and evolution can be thought of 
as an integrated, iterative process that can be 
represented using a spiral model. 

• For custom systems, the costs of software maintenance 
usually exceed the software development costs. 

• The process of software evolution is driven by requests 
for changes and includes change impact analysis, 
release planning and change implementation.  

• Lehman’s laws, such as the notion that change is 
continuous, describe a number of insights derived from 
long-term studies of system evolution. 

 
22 Chapter 9 Software evolution 



• Modifying a program after it has been put into 
use. 

• The term is mostly used for changing custom 
software. Generic software products are said to 
evolve to create new versions. 

• Maintenance does not normally involve major 
changes to the system’s architecture. 

• Changes are implemented by modifying existing 
components and adding new components to the 
system. 

Software maintenance 

23 Chapter 9 Software evolution 



• Maintenance to repair software faults 
– Changing a system to correct deficiencies in the way meets its 

requirements. 

• Maintenance to adapt software to a different operating 
environment 
– Changing a system so that it operates in a different environment 

(computer, OS, etc.) from its initial implementation. 

• Maintenance to add to or modify the system’s functionality 
– Modifying the system to satisfy new requirements. 

Types of maintenance 

24 Chapter 9 Software evolution 



Figure 9.8  Maintenance effort 
distribution  

25 Chapter 9 Software evolution 



• Usually greater than development costs (2* to  
100* depending on the application). 

• Affected by both technical and non-technical  
factors. 

• Increases as software is maintained.  
Maintenance corrupts the software structure so  
makes further maintenance more difficult. 

• Ageing software can have high support costs  
(e.g. old languages, compilers etc.). 

Maintenance costs 

26 Chapter 9 Software evolution 



Figure 9.9  Development and 
maintenance costs  

27 Chapter 9 Software evolution 



• Team stability 
– Maintenance costs are reduced if the same staff are involved with 

them for some time. 

• Contractual responsibility 
– The developers of a system may have no contractual responsibility for 

maintenance so there is no incentive to design for future change. 

• Staff skills 
– Maintenance staff are often inexperienced and have limited domain 

knowledge. 

• Program age and structure 
– As programs age, their structure is degraded and they become harder 

to understand and change. 

Maintenance cost factors 

28 Chapter 9 Software evolution 



Maintenance prediction 

• Maintenance prediction is concerned with assessing which 
parts of the system may cause problems and have high 
maintenance costs 
– Change acceptance depends on the maintainability of the components 

affected by the change; 

– Implementing changes degrades the system and reduces its 
maintainability; 

– Maintenance costs depend on the number of changes and costs of 
change depend on maintainability. 

29 Chapter 9 Software evolution 



Maintenance prediction  

30 Chapter 9 Software evolution 



Change prediction 

• Predicting the number of changes requires and understanding 
of the relationships between a system and its environment. 

• Tightly coupled systems require changes whenever the 
environment is changed. 

• Factors influencing this relationship are 
– Number and complexity of system interfaces; 

– Number of inherently volatile system requirements; 

– The business processes where the system is used. 

31 Chapter 9 Software evolution 



Complexity metrics 

• Predictions of maintainability can be made by assessing the 
complexity of system components. 

• Studies have shown that most maintenance effort is spent on 
a relatively small number of system components. 

• Complexity depends on 
– Complexity of control structures; 

– Complexity of data structures; 

– Object, method (procedure) and module size. 

32 Chapter 9 Software evolution 



Process metrics 

• Process metrics may be used to assess 
maintainability 
– Number of requests for corrective maintenance; 

– Average time required for impact analysis; 

– Average time taken to implement a change 
request; 

– Number of outstanding change requests. 

• If any or all of these is increasing, this may 
indicate a decline in maintainability. 

33 Chapter 9 Software evolution 



System re-engineering 

• Re-structuring or re-writing part or all of a  
legacy system without changing its  
functionality. 

• Applicable where some but not all sub-systems  
of a larger system require frequent  
maintenance. 

• Re-engineering involves adding effort to make  
them easier to maintain. The system may be re-structured and 
re-documented. 

 

34 Chapter 9 Software evolution 



Advantages of reengineering 

• Reduced risk 

– There is a high risk in new software development. 
There may be development problems, staffing 
problems and specification problems. 

• Reduced cost 

– The cost of re-engineering is often significantly 
less than the costs of developing new software. 

 

35 Chapter 9 Software evolution 



The reengineering process  

36 Chapter 9 Software evolution 



Reengineering process activities 

• Source code translation 
– Convert code to a new language. 

• Reverse engineering 
– Analyse the program to understand it; 

• Program structure improvement 
– Restructure automatically for understandability; 

• Program modularisation 
– Reorganise the program structure; 

• Data reengineering 
– Clean-up and restructure system data. 

37 Chapter 9 Software evolution 



Reengineering approaches  

38 Chapter 9 Software evolution 



Reengineering cost factors 

• The quality of the software to be 
reengineered. 

• The tool support available for reengineering. 

• The extent of the data conversion which is 
required. 

• The availability of expert staff for 
reengineering.  
– This can be a problem with old systems based on 

technology that is no longer widely used. 

39 Chapter 9 Software evolution 



Preventative maintenance by 
refactoring 

• Refactoring is the process of making improvements to 
a program to slow down degradation through change. 

• You can think of refactoring as ‘preventative 
maintenance’ that reduces the problems of future 
change.  

• Refactoring involves modifying a program to improve 
its structure, reduce its complexity or make it easier to 
understand.  

• When you refactor a program, you should not add 
functionality but rather concentrate on program 
improvement.  

40 Chapter 9 Software evolution 



Refactoring and reengineering 

• Re-engineering takes place after a system has 
been maintained for some time and maintenance 
costs are increasing. You use automated tools to 
process and re-engineer a legacy system to create 
a new system that is more maintainable.  

• Refactoring is a continuous process of 
improvement throughout the development and 
evolution process. It is intended to avoid the 
structure and code degradation that increases 
the costs and difficulties of maintaining a system.  

41 Chapter 9 Software evolution 



‘Bad smells’ in program code 

• Duplicate code  
– The same or very similar code may be included at different 

places in a program. This can be removed and implemented as a 
single method or function that is called as required. 

• Long methods 
–  If a method is too long, it should be redesigned as a number of 

shorter methods. 

• Switch (case) statements  
– These often involve duplication, where the switch depends on 

the type of a value. The switch statements may be scattered 
around a program. In object-oriented languages, you can often 
use polymorphism to achieve the same thing. 

42 Chapter 9 Software evolution 



‘Bad smells’ in program code 

• Data clumping  
– Data clumps occur when the same group of data 

items (fields in classes, parameters in methods) 
re-occur in several places in a program. These can 
often be replaced with an object that 
encapsulates all of the data. 

• Speculative generality  
– This occurs when developers include generality in 

a program in case it is required in the future. This 
can often simply be removed.  

 
43 Chapter 9 Software evolution 



Legacy system management 

• Organisations that rely on legacy systems must choose a 
strategy for evolving these systems 
– Scrap the system completely and modify business processes so that it 

is no longer required; 

– Continue maintaining the system; 

– Transform the system by re-engineering to improve its maintainability; 

– Replace the system with a new system. 

• The strategy chosen should depend on the system quality and 
its business value. 

44 Chapter 9 Software evolution 



An example of a legacy system 
assessment  

45 Chapter 9 Software evolution 



Legacy system categories 

• Low quality, low business value 
– These systems should be scrapped.  

• Low-quality, high-business value 
– These make an important business contribution but are expensive to 

maintain. Should be re-engineered or replaced if a suitable system is 
available. 

• High-quality, low-business value 
– Replace with COTS, scrap completely or maintain. 

• High-quality, high business value 
– Continue in operation using normal system maintenance. 

46 Chapter 9 Software evolution 



Business value assessment 

• Assessment should take different viewpoints 
into account 
– System end-users; 

– Business customers; 

– Line managers; 

– IT managers; 

– Senior managers. 

• Interview different stakeholders and collate 
results. 

47 Chapter 9 Software evolution 



Issues in business value assessment 

• The use of the system  
– If systems are only used occasionally or by a small number of 

people, they may have a low business value.  

• The business processes that are supported  
– A system may have a low business value if it forces the use of 

inefficient business processes.  

• System dependability  
– If a system is not dependable and the problems directly affect 

business customers, the system has a low business value. 

• The system outputs  
– If the business depends on system outputs, then the system has 

a high business value.  

 

48 Chapter 9 Software evolution 



System quality assessment 

• Business process assessment 
– How well does the business process support the 

current goals of the business? 

• Environment assessment 
– How effective is the system’s environment and 

how expensive is it to maintain? 

• Application assessment 
– What is the quality of the application software 

system? 

49 Chapter 9 Software evolution 



Business process assessment 

• Use a viewpoint-oriented approach and seek answers from 
system stakeholders 
– Is there a defined process model and is it followed? 

– Do different parts of the organisation use different processes for the 
same function? 

– How has the process been adapted? 

– What are the relationships with other business processes and are 
these necessary? 

– Is the process effectively supported by the legacy application 
software? 

• Example - a travel ordering system may have a low business 
value because of the widespread use of web-based ordering. 

50 Chapter 9 Software evolution 



Factors used in environment 
assessment  

Factor Questions 

Supplier stability Is the supplier still in existence? Is the supplier financially stable and 

likely to continue in existence? If the supplier is no longer in business, 

does someone else maintain the systems?  

Failure rate Does the hardware have a high rate of reported failures? Does the 

support software crash and force system restarts?  

Age How old is the hardware and software? The older the hardware and 

support software, the more obsolete it will be. It may still function 

correctly but there could be significant economic and business 

benefits to moving to a more modern system. 

Performance Is the performance of the system adequate? Do performance 

problems have a significant effect on system users? 

51 Chapter 9 Software evolution 



Factors used in environment 
assessment 

Factor Questions 

Support requirements What local support is required by the hardware and 

software? If there are high costs associated with this 

support, it may be worth considering system replacement. 

Maintenance costs What are the costs of hardware maintenance and support 

software licences? Older hardware may have higher 

maintenance costs than modern systems. Support software 

may have high annual licensing costs. 

Interoperability Are there problems interfacing the system to other systems? 

Can compilers, for example, be used with current versions 

of the operating system? Is hardware emulation required? 

52 Chapter 9 Software evolution 



Factors used in application assessment  

Factor Questions 

Understandability How difficult is it to understand the source code of the current 

system? How complex are the control structures that are used? 

Do variables have meaningful names that reflect their function? 

Documentation What system documentation is available? Is the documentation 

complete, consistent, and current? 

Data Is there an explicit data model for the system? To what extent is 

data duplicated across files? Is the data used by the system up to 

date and consistent? 

Performance Is the performance of the application adequate? Do performance 

problems have a significant effect on system users? 

53 Chapter 9 Software evolution 



Factors used in application assessment 

Factor Questions 

Programming language Are modern compilers available for the programming 

language used to develop the system? Is the programming 

language still used for new system development? 

Configuration 

management 

Are all versions of all parts of the system managed by a 

configuration management system? Is there an explicit 

description of the versions of components that are used in 

the current system? 

Test data Does test data for the system exist? Is there a record of 

regression tests carried out when new features have been 

added to the system?  

Personnel skills Are there people available who have the skills to maintain the 

application? Are there people available who have experience 

with the system?  

54 Chapter 9 Software evolution 



System measurement 

• You may collect quantitative data to make an 
assessment of the quality of the application 
system 

– The number of system change requests;  

– The number of different user interfaces used by 
the system; 

– The volume of data used by the system. 

55 Chapter 9 Software evolution 



Key points 

• There are 3 types of software maintenance, namely bug 
fixing, modifying software to work in a new environment, 
and implementing new or changed requirements. 

• Software re-engineering is concerned with re-structuring 
and re-documenting software to make it easier to 
understand and change.  

• Refactoring, making program changes that preserve 
functionality, is a form of preventative maintenance. 

• The business value of a legacy system and the quality of the 
application should be assessed to help decide if a system 
should be replaced, transformed or maintained.  

56 Chapter 9 Software evolution 


