
Paper for XP Universe, Raleigh, NC, 23-25 July 2001

1

Extreme Programming from a CMM Perspective

Mark C. Paulk
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA  15213 USA

+1 412 268-5794
mcp@sei.cmu.edu

ABSTRACT
Extreme Programming (XP) has been advocated recently as
an appropriate programming method for the high-speed,
volatile world of Internet and Web software development.
This popular methodology is reviewed from the perspective
of the Capability Maturity Model  (CMM ) for Software,
a five-level model that prescribes process improvement
priorities for software organizations.  Overviews of both
XP and CMM are provided, and XP is critiqued from a
Software CMM perspective.  The conclusion is that
lightweight methodologies such as XP advocate many good
engineering practices, although some practices may be
controversial and counter-productive outside a narrow
domain.  For those interested in process improvement, the
ideas in XP should be carefully considered for adoption
where appropriate in an organization's business
environment since XP can be used to address many of the
CMM Level 2 and 3 practices.  In turn, organizations using
XP should carefully consider the management and
infrastructure issues described in the CMM.

Keywords
Software CMM, Capability Maturity Model, CMM,
Extreme Programming, XP, agile methodologies,
lightweight processes

1 INTRODUCTION
In recent years, Extreme Programming (XP) has been
advocated as an appropriate programming method for the
high-speed, volatile world of Internet and Web software
development.  XP can be characterized as a "lightweight"
or "agile" methodology.  Although XP is a disciplined
process, some have used it in arguments against rigorous
models for software process improvement, such as the
Capability Maturity Model for Software, a five-level model
that prescribes process improvement priorities for software
organizations developed by the Software Engineering
Institute (SEI).   Many organizations moving into e-

                                                       

  Capability Maturity Model and CMM are registered with the U.S.
Patent and Trademark Office.

    The Software Engineering Institute is a federally funded research and
development center sponsored by the U.S. Department of Defense.

Commerce have existing CMM-based initiatives (and
possibly customers demanding mature processes) and
desire an understanding of whether and how XP can
address CMM practices adequately.

This paper summarizes both XP and CMM and critiques
XP from a CMM perspective.  Although XP can be
characterized as a lightweight methodology that does not
emphasize process definition or measurement to the degree
that models such as the CMM do, a broad range of
processes can be considered valid under the CMM.  The
conclusion is that agile methodologies such as XP advocate
many good engineering practices, although some practices
may be controversial and counter-productive outside a
narrow domain, and that when thoughtfully implemented in
an appropriate environment, XP addresses many CMM
Level 2 and 3 practices.  For those interested in process
improvement, the ideas in XP should be carefully
considered for adoption where appropriate in an
organization's business environment, just as organizations
considering XP should carefully consider the management
and infrastructure issues described in the CMM.

2 THE SOFTWARE CMM
The Capability Maturity Model for Software [5, 6] is a
model for building organizational capability that has been
widely adopted in the software community and beyond.
The Software CMM is a five-level model that describes
good engineering and management practices and prescribes
improvement priorities for software organizations.   The
five maturity levels are summarized in Figure 1.

The Software CMM is intended to be:

§ a common-sense application of process management
and quality improvement concepts to software
development and maintenance -- the CMM practices
are not rocket science (even the statistical process
control concepts at Levels 4 and 5 have been
successfully applied in other industries for decades)

§ a community-developed guide -- input from hundreds
of software professionals was solicited in developing
the current release of the CMM



2

§ a model for organizational improvement -- which
implies a set of priorities that may differ from those of
any specific project, but which have been proven
effective in organizational transformation

§ the underlying structure for reliable and consistent
CMM-based appraisal methods -- assessments and
evaluations based on the Software CMM are widely
used by software organizations for improvement and
customers for understanding the risks associated with
potential suppliers

Level Focus Key Process Areas

5
Optimizing

Continual
process
improvement

Defect Prevention
Technology Change Management
Process Change Management

4
Managed

Product and
process
quality

Quantitative Process Management
Software Quality Management

3
Defined

Engineering
processes and
organizational
support

Organization Process Focus
Organization Process Definition
Training Program
Integrated Software Management
Software Product Engineering
Intergroup Coordination
Peer Reviews

2
Repeatable

Project
management
processes

Requirements Management
Software Project Planning
Software Project Tracking &

Oversight
Software Subcontract Management
Software Quality Assurance
Software Configuration

Management
1

Initial
Competent people and heroics

Figure 1.  An overview of the Software CMM.

Although the CMM is described in a book of nearly 500
pages, the requirements to be a Level 5 organization can be
concisely stated in 52 sentences: the goals of the 18 key
process areas (KPAs) that formally describe the model.
The practices, subpractices, and examples that flesh out the
model are informative material that guide software
professionals in making reasonable, informed decisions
about the adequacy of a broad range of process
implementations – in environments as diverse as 2-3 person
projects in a Web environment and 500 person projects
building hard real-time, life-critical systems.

The informative material in the Software CMM is focused
on large projects and large organizations, primarily in a
custom development or maintenance environment.  Even
so, the degree of interpretation and tailoring required to use
the CMM in radically different environments, such as small
start-up companies, small projects, or e-Commerce
environments, is relatively minor so long as common sense
is applied [7, 4].  The Software CMM’s rating components
are intended to be abstract enough to capture “universal

truths” about high-performance software organizations, at
least from a perspective of organizational excellence, and
are listed in Table 1.

Table 1. Purpose and Goals of Software CMM Key
Process Areas.

Tag KPA Purpose and Goals
Maturity Level 2 – Repeatable

Requirements
Management

…  to establish a common understanding between the
customer and the software project of the customer's
requirements that will be addressed by the software
project.

RM Goal 1 System requirements allocated to software are
controlled to establish a baseline for software
engineering and management use.

RM Goal 2 Software plans, products, and activities are kept
consistent with the system requirements allocated to
software.

Software
Project
Planning

…  to establish reasonable plans for performing the
software engineering and for managing the software
project.

SPP Goal 1 Software estimates are documented for use in planning
and tracking the software project.

SPP Goal 2 Software project activities and commitments are
planned and documented.

SPP Goal 3 Affected groups and individuals agree to their
commitments related to the software project.

Software
Project
Tracking &
Oversight

…  to provide adequate visibility into actual progress
so that management can take effective actions when
the software project's performance deviates
significantly from the software plans.

SPTO Goal 1 Actual results and performance are tracked against the
software plans.

SPTO Goal 2 Corrective actions are taken and managed to closure
when actual results and performance deviate
significantly from the software plans.

SPTO Goal 3 Changes to software commitments are agreed to by the
affected groups and individuals.

Software
Subcontract
Management

…  to select qualified software subcontractors and
manage them effectively.

SSM Goal 1 The prime contractor selects qualified software
subcontractors.

SSM Goal 2 The prime contractor and the software subcontractor
agree to their commitments to each other.

SSM Goal 3 The prime contractor and the software subcontractor
maintain ongoing communications.

SSM Goal 4 The prime contractor tracks the software
subcontractor's actual results and performance against
its commitments.

Software
Quality
Assurance

…  to provide management with appropriate visibility
into the process being used by the software project
and of the products being built.

SQA Goal 1 Software quality assurance activities are planned.
SQA Goal 2 Adherence of software products and activities to the

applicable standards, procedures, and requirements is
verified objectively.

SQA Goal 3 Affected groups and individuals are informed of
software quality assurance activities and results.

SQA Goal 4 Noncompliance issues that cannot be resolved within
the software project are addressed by senior
management.



3

Tag KPA Purpose and Goals
Software
Configuration
Management

…  to establish and maintain the integrity of the
products of the software project throughout the
project's software life cycle.

SCM Goal 1 Software configuration management activities are
planned.

SCM Goal 2 Selected software work products are identified,
controlled, and available.

SCM Goal 3 Changes to identified software work products are
controlled.

SCM Goal 4 Affected groups and individuals are informed of the
status and content of software baselines.
Maturity Level 3 -- Defined

Organization
Process Focus

…  to establish the organizational responsibility for
software process activities that improve the
organization's overall software process capability.

OPF Goal 1 Software process development and improvement
activities are coordinated across the organization.

OPF Goal 2 The strengths and weaknesses of the software
processes used are identified relative to a process
standard.

OPF Goal 3 Organization-level process development and
improvement activities are planned.

Organization
Process
Definition

…  to develop and maintain a usable set of software
process assets that improve process performance
across the projects and provide a basis for cumulative,
long-term benefits to the organization.

OPD Goal 1 A standard software process for the organization is
developed and maintained.

OPD Goal 2 Information related to the use of the organization's
standard software process by the software projects is
collected, reviewed, and made available.

Training
Program

…  to develop the skills and knowledge of individuals
so they can perform their roles effectively and
efficiently.

TP Goal 1 Training activities are planned.
TP Goal 2 Training for developing the skills and knowledge

needed to perform software management and technical
roles is provided.

TP Goal 3 Individuals in the software engineering group and
software-related groups receive the training necessary
to perform their roles.

Integrated
Software
Management

… to integrate the software engineering and
management activities into a coherent, defined
software process that is tailored from the
organization's standard software process and related
process assets.

ISM Goal 1 The project's defined software process is a tailored
version of the organization's standard software
process.

ISM Goal 2 The project is planned and managed according to the
project's defined software process.

Software
Product
Engineering

…  to consistently perform a well-defined engineering
process that integrates all the software engineering
activities to produce correct, consistent software
products effectively and efficiently.

SPE Goal 1 The software engineering tasks are defined, integrated,
and consistently performed to produce the software.

SPE Goal 2 Software work products are kept consistent with each
other.

Tag KPA Purpose and Goals
Intergroup
Coordination

…  to establish a means for the software engineering
group to participate actively with the other
engineering groups so the project is better able to
satisfy the customer's needs effectively and efficiently.

IC Goal 1 The customer's requirements are agreed to by all
affected groups.

IC Goal 2 The commitments between the engineering groups are
agreed to by the affected groups.

IC Goal 3 The engineering groups identify, track, and resolve
intergroup issues.

Peer Reviews …  to remove defects from the software work products
early and efficiently.  An important corollary effect is
to develop a better understanding of the software work
products and of defects that might be prevented.

PR Goal 1 Peer review activities are planned.
PR Goal 2 Defects in the software work products are identified

and removed.
Maturity Level 4 – Managed

Quantitative
Process
Management

…  to control the process performance of the software
project quantitatively. Software process performance
represents the actual results achieved from following a
software process.

QPM Goal 1 The quantitative process management activities are
planned.

QPM Goal 2 The process performance of the project's defined
software process is controlled quantitatively.

QPM Goal 3 The process capability of the organization's standard
software process is known in quantitative terms.

Software
Quality
Management

…  to develop a quantitative understanding of the
quality of the project's software products and achieve
specific quality goals.

SQM Goal 1 The project's software quality management activities
are planned.

SQM Goal 2 Measurable goals for software product quality and
their priorities are defined.

SQM Goal 3 Actual progress toward achieving the quality goals for
the software products is quantified and managed.
Maturity Level 5 – Optimizing

Defect
Prevention

…  to identify the cause of defects and prevent them
from recurring.

DP Goal 1 Defect prevention activities are planned.
DP Goal 2 Common causes of defects are sought out and

identified.
DP Goal 3 Common causes of defects are prioritized and

systematically eliminated.
Technology
Change
Management

…  to identify new technologies (i.e., tools, methods,
and processes) and transition them into the
organization in an orderly manner.

TCM Goal 1 Incorporation of technology changes is planned.
TCM Goal 2 New technologies are evaluated to determine their

effect on quality and productivity.
TCM Goal 3 Appropriate new technologies are transferred into

normal practice across the organization.
Process
Change
Management

…  to continually improve the software processes used
in the organization with the intent of improving
software quality, increasing productivity, and
decreasing the cycle time for product development.

PCM Goal 1 Continuous process improvement is planned.
PCM Goal 2 Participation in the organization's software process

improvement activities is organization wide.
PCM Goal 3 The organization's standard software process and the

projects' defined software processes are improved
continuously.



4

With the exception of Software Subcontract Management,
which is not applicable if an organization does not do
subcontracting, the key process areas and their goals should
be applicable to any software organization.  Companies that
focus on innovation more than operational excellence may
downplay the importance of consistency, predictability, and
reliability, but performance excellence is important even in
highly innovative environments.  It is difficult to identify
any goals in Table 1 that will not provide value to an
organization, if thoughtfully implemented.

3 EXTREME PROGRAMMING
Extreme Programming is a lightweight (or agile) software
methodology (or process) that is usually attributed to Kent
Beck, Ron Jeffries, and Ward Cunningham [2, 3, 8].  XP is
targeted toward small to medium sized teams building
software in the face of vague and/or rapidly changing
requirements.  XP teams are expected to be co-located,
typically with less than ten members.

The critical assumption underlying XP is that the high cost
of change has been (or can be) addressed by technologies
such as objects/patterns, relational databases, and
information hiding.  As a consequence of this assumption,
the resulting XP process is intended to be highly dynamic.
Beck's book is subtitled "embrace change," and the XP
team deals with requirements changes throughout an
iterative life cycle with short loops.  The four basic
activities in the XP life cycle are coding, testing, listening,
and designing.  The dynamism is demonstrated via four
values: continual communication with the customer and
within the team, simplicity by always focusing on the
minimalist solution, rapid feedback via unit and functional
testing (among other mechanisms), and the courage to deal
with problems proactively.

Most of the principles espoused in XP, such as minimalism,
simplicity, an evolutionary life cycle, short cycle times,
user involvement, good coding standards, and so forth, are
commonsense and appropriate practices in any disciplined
process. The "extreme" in XP comes from taking common
sense practices to extreme levels, as summarized in Table
2.  Although some may (improperly) interpret practices
such as "focusing on a minimalist solution" as meaning
hacking, in reality XP is a highly disciplined process.
Simplicity means focusing on the highest priority, most
valuable parts of the system as currently identified rather
than designing solutions to problems that are not yet
needed…  and may never be needed as the requirements and
operating environment change.

Table 2.  The "Extreme" in Extreme Programming.

Common
Sense
Practice

XP Extreme XP
Implementation

Code reviews Review code all the time Pair programming

Testing Test all the time, even by the
customers

Unit testing,
Functional testing

Design Make design part of
everybody's daily business

Refactoring

Simplicity Always leave the system with
the simplest design that
supports its current
functionality

The simplest thing
that could possibly
work

Architecture Everybody will work to refine
the architecture all the time

Metaphor

Integration
testing

Integrate and test several
times a day

Continuous
integration

Short
iterations

Make iterations really, really
short -- seconds and minutes
and hours, not weeks and
months and years

Planning game

XP can be summarized by twelve practices.  Although
many other practices can be considered part of XP, these
twelve are the basic set.

1. Planning game -- quickly determine the scope of the
next release, combining business priorities and
technical estimates.  Tthe customer decides scope,
priority, and dates from a business perspective, while
technical people estimate and track progress.

2. Small releases -- put a simple system into production
quickly.  Release new versions on a very short (two-
week) cycle.

3. Metaphor -- guides all development with a simple,
shared story of how they whole system works.

4. Simple design -- designed as simply as possible at any
given moment.

5. Testing -- continually write unit tests which must run
flawlessly; customers write tests to demonstrate
functions are finished.  "Test then code" means a failed
test case is an entry criterion for writing code.

6. Refactoring -- restructure the system without changing
behavior to remove duplication, improve
communication, simplify, or add flexibility.

7. Pair programming -- all production code written by
two programmers at one machine.

8. Collective ownership -- anyone can improve any code
anywhere in the system at any time.

9. Continuous integration -- integrate and build the
system many times a day, every time a task is finished.
Continual regression testing means no regressions in
functionality as a result of changed requirements.



5

10. 40-hour week -- work no more than 40 hours per week
as a rule; never work overtime two weeks in a row.

11. On-site customer -- real, live user on the team full-time
to answer questions.

12. Coding standards -- rules emphasizing communication
throughout the code.

The planning game and small releases depend on the
customer providing a set of "stories," or short descriptions
of features, that characterize the work to be performed in
each release.  Releases are two weeks apart, and the team
and customer must come to agreement on which stories
(simple use cases) will be implemented within a two-week
period.  A pool of stories characterizes the full functionality
desired by the customer, but only the subset identified as
those features most desired by the customer for next two
week release are being implemented at any time.  New
stories can be added to the pool at any time, thus the
requirements can be highly volatile, but implementation
proceeds in two-week chunks based on the most desired
functions currently in the pool, thus the volatility is
managed.  An on-site customer is needed to support this
style of iterative life cycle.

"Metaphor" provides the overarching vision for the project.
This could be considered a high-level architecture, but XP
emphasizes design while at the same time minimizing
design documentation.  Some have characterized XP as not
allowing documentation outside code [1], but it is probably
more accurate to say that, since XP emphasizes continual
redesign (via refactoring whenever necessary), there is little
value to detailed design documentation…  and maintainers
rarely trust anything other than the code anyway.  Design
documentation is typically thrown away after the code is
written.  The only time design documentation is kept is
when the customer can no longer come up with any new
stories.  Then it is time to put the system in mothballs and
write a five to ten page "mothball tour" of the system.  A
natural corollary of the emphasis on refactoring is to
always implement the simplest solution to satisfy the
immediate need.  Changes in the requirements are likely to
supersede "general solutions" anyway.

Pair programming is one of the more controversial
practices in XP since it has resource consequences for the
managers who decide whether or not the project will use
XP.  Although it may appear that pair programming will
lead to twice the resources, research has shown that pair
programming leads to higher quality and decreased cycle
time [9].  For a jelled team the effort increase may be as
little as 15%, while the reduction in cycle time may be 40-
50%.  For internet-time environments, the increased speed
to market may be well worth the increment in effort.
Collaboration improves the problem-solving process, and
the increase in quality will also have a significant impact on

maintenance costs, which appears likely to more than pay
for any added resource costs over the total life cycle.

Collective ownership means that anyone can change any
piece of code in the system at any time.  The XP emphasis
on continuous integration, continual regression testing, and
pair programming are intended as protections against
problems here.

 “Test then code” is the phrase used to express XP's
emphasis on testing.  It captures the principle that testing
should be planned early and test cases developed in parallel
with requirements analysis, although the traditional
emphasis is on black-box testing.  Thinking about testing
early in the life cycle is a well-known good software
engineering practice, even if too infrequently practiced.

The basic XP management tool is the metric, and the
medium of the metric is the "big visible chart."  In the XP
style, three or four measures are typically all a team can
stand at one time, and those should be actively used and
visible to the team.  "Project velocity," the number of
stories of a given size that can be done in an iteration, is
one recommended XP metric.

When adopting XP, i.e., the XP attitude toward process
improvement, the recommendation is to adopt XP one
practice at a time, always addressing the most pressing
problem for your team.  As one might expect, the XP
attitude towards change is that it's “just rules” -- the team
can change the rules at any time as long as they agree on
how they will assess the effects of the change.  The
advocates of XP recognize that XP is an intensely social
activity, and not everyone can learn it.  Having said this, it
must also be recognized that XP is a "system" or
"methodology" that demonstrates emergent behavior, and
to gain the full benefit of XP a reasonably complete set of
the basic practices is needed.

4 XP, PROCESS RIGOR, AND THE CMM
The values of XP should be captured in any modern
software project, even if the implementation may differ
radically in other environments.  Communication and
simplicity may be stated in other terms (coordination and
elegance, for example), but without them non-trivial
projects face almost insurmountable odds.  The XP
principles of communication and simplicity are
fundamental process design principles for organizations
using the Software CMM also. When defining processes,
organizations should capture the minimum essential
information needed, use good software design principles
(such as information hiding and abstraction) in structuring
the definitions, and emphasize usefulness and usability [7].
Rapid feedback is crucial to real-time process control; it
has even been captured in previous centuries by aphorisms
such as "don’t throw good money after bad," and in the
quantitative sense can be considered the soul of Level 4.
One of the consequences of the Level 1 to 2 culture shift is



6

demonstrating the courage of our convictions by focusing
on realism in our estimates, plans, and commitments.

Much of the formalism that characterizes most CMM-based
process improvement is an artifact of large projects and/or
severe reliability requirements, especially for life-critical
systems.  The hierarchical structure of the Software CMM
is intended to support a broad range of implementations
within the context of the 18 key process areas and 52 goals
that comprise the requirements for a fully mature software
process.

As a system becomes larger, some XP practices become
more difficult to implement. As projects becoming larger,
emphasizing a good architectural “philosophy” becomes
increasingly critical to project success.  Architecture-based
design, designing for change, refactoring, and similar
design philosophies emphasize the need for dealing with
change in a systematic fashion.  Variants of these concepts,
including architecture-based design and integrated product
teams, may be more appropriate in large-project contexts,
perhaps in conjunction with XP within teams.  In a sense,
architectural design that emphasizes flexibility is the goal
of any good object-oriented methodology, so XP (with
refactoring) and object orientation are well-suited to one
another.  Multi-discipline teams are also problematic since
XP is aimed at software-only projects.

The main objection to using XP for process improvement is
that it barely touches the management and organizational
issues that the Software CMM emphasizes.  Putting in
place the kind of highly collaborative environment that XP
assumes requires enlightened management and appropriate
organizational infrastructure.  The argument that process
discipline in the CMM sense -- even to the point of a
rigorous, statistically stable process -- is antithetical to XP
is unconvincing.  XP has disciplined processes, and it is
apparent that the XP process is a “well-defined” process.
CMM and XP can be considered complementary.  The
Software CMM tells what to do in general terms, but does
not say how to do it, while XP is a set of best practices that
contains fairly specific how-to information -- an
implementation model -- for a particular kind of
environment.  XP practices may be compatible with the
intent of a practice (or goal or key process area), even if
they do not completely address it.

At Level 2, Requirements Management is addressed by
stories, on-site customer, and continuous integration.
Software Project Planning is addressed by the planning
game and small releases.  The XP planning strategy
embodies Humphrey's proverb, "If you can't plan well, plan
often."

Software Project Tracking & Oversight is addressed by the
"big visual chart," project velocity, and commitments
(stories) for small releases.  The commitment process for
XP sets clear expectations for both the customer and the XP

team at the tactical level and maximizes flexibility at the
project's strategic level.  The emphasis in XP on 40-hour
weeks is a general management concern that is not
addressed in the CMM but is considered a best practice.
XP also emphasizes open workspaces, a similar "people
issue" that is outside the scope of the CMM.  Software
Subcontract Management is not addressed by XP (and is
likely to be not applicable in the target environment).

While an independent SQA group is unlikely to be a part of
an XP culture, Software Quality Assurance could be
addressed by the culture of pair programming; assuring
conformance to coding standards is a typical SQA
responsibility that is handled by peer pressure in an XP
environment.  However implemented, a CMM-based
process has mechanisms for objectively verifying
adherence to requirements, standards, and procedures.  The
XP reliance on peer pressure, while effective in most
environments, may be vulnerable to external pressures, and
this vulnerability should be considered at the organizational
level.

Software Configuration Management is partially addressed
via collective ownership, small releases, and continuous
integration.  While not completely and explicitly addressed,
configuration management is implicit in these XP practices.
Collective ownership may be problematic for large
systems, where communication channels need to be more
formalized to be effective, and could lead to SCM failures.

At Level 3, Organization Process Focus is addressed at the
team level rather than the organizational level, but the
philosophy behind adopting XP one practice at a time and
“just rules” implies a focus on process issues.  Since XP
focuses on the software engineering process rather than the
organizational infrastructure issues, this and other
organization-level processes are areas that needs to be
addressed by organizations adopting XP, whether in a
CMM-based context or not. Similarly, Organization
Process Definition and Training Program are partially
addressed by the various books, articles, courses, and Web
sites on XP, but organizational assets are outside the scope
of XP.  As a consequence, Integrated Software
Management cannot be addressed since there may not be
any organizational assets to tailor.

Software Product Engineering is well-addressed in many
ways by the XP methodology with metaphor, simple
design, refactoring, the “mothball” tour, coding standards,
unit testing, and functional testing.  The lack of design
documentation would be a concern in many environments,
such as hard real-time systems, large systems, or virtual
teams.  In such environments, good designs are crucial to
success, and the refactoring strategy would be high risk.
For example, refactoring after a system has been proven to
satisfy hard real-time requirements by a technique such as
rate monotonic analysis would mean that the analysis
would need to be re-done -- the assumption that change



7

does not have a high cost would be invalid in such an
environment.

Intergroup Coordination is addressed by the on-site
customer and pair programming.  XP's emphasis on
communication appears to result in as comprehensive a
solution to intergroup coordination as integrated product
and process development (and could be judged an effective
IPPD approach), although the software-only context
ignores multi-discipline environments.

Peer Reviews is addressed by pair programming.  Pair
programming may be more powerful than peer reviews, in
the sense of code-reading and literate programming,
although the lack of structure may lessen its effectiveness.
The empirical data on pair programming is currently sparse
[9] but promising.  Contrasting and comparing pair
programming and peer review techniques remains an area
needing empirical research as a basis for making informed
trade-off decisions.

Few of the Level 4 and 5 key process areas are addressed
by XP in a rigorous statistical sense, although Defect
Prevention may be partially addressed by feedback during
rapid cycles. Potential satisfaction of CMM key process
areas by XP is summarized in Table 3, at least within the
appropriate domain for XP.

Table 3. Satisfaction of Software CMM Key Process
Areas by XP.

Level 2
KPAs

Satis-
faction

Level 3
KPAs

Satis-
faction

High
Maturity
KPAs

Satis-
faction

RM  √ √ OPF  √ QPM --
SPP  √ √ OPD  √ SQM --
SPTO √ √ TP --
SSM -- ISM -- DP  √
SQA  √ SPE  √ √ TCM --
SCM  √ IC  √ √ PCM --

PR  √ √
√ partially addressed in XP
√ √ largely addressed in XP (perhaps by inference)

(in the appropriate environment)

Many of the key process areas partially covered or not
addressed in XP are undoubtedly  addressed in real
projects.  XP cannot survive without management and
infrastructure support, even if it is not explicitly called out.
It seems fair to say that XP focuses on the technical work,
where the CMM focuses on the management work, but a
concern with "cultural issues" is evident in both.

5 CONCLUSION
Most of XP consists of good practices that should be
thoughtfully considered for any environment.  While the
merits of any of these practices can be debated in
comparison with other ways of dealing with the same
issues, none of them should be arbitrarily rejected.

Putting these practices together as a methodology may be a
paradigm shift in the same sense that concurrent
engineering is.  The concepts in concurrent engineering
have been around for decades; integrating those concepts as
a system results in a paradigm shift in how to build
products.  In a similar manner, XP provides a systems
perspective on programming (if not the only one), just as
the Software CMM provides a systems perspective on
organizational process improvement.  Organizations that
want to improve their capability should take advantage of
the good ideas in both and exercise common sense in
selecting and implementing those ideas.

The Software CMM focuses on the management issues
associated with putting effective and efficient processes in
place, along with systematic process improvement.  XP is a
specific set of practices -- a “methodology” -- that is
effective within its context of small, co-located teams.
Both have good ideas that can be synergistic, particularly in
conjunction with other good engineering and management
practices.  It is questionable whether XP, as published,
should be used for life critical or high reliability systems.
The lack of design documentation and the de-emphasis on
architecture would be judged risky decisions by most
knowledgeable professionals, but one of the virtues of XP
is that it can be changed / improved for different
environments…

The risk in changing XP is that the emergent properties
providing value in its proper context may not emerge.  Still,
the emphasis in choosing and improving software processes
should be to let common sense prevail -- and to use data
whenever possible to provide insight when answering
challenging questions.

ACKNOWLEDGEMENTS
I would like to thank Kent Beck and Laurie Williams for
their comments on a draft of this paper.  Their contribution
is gratefully acknowledged.

REFERENCES
1. Allen, P.  XP Explained. The Cutter Edge (June 5,

2001).

2. Beck, K.  Extreme Programming Explained: Embrace
Change.  Addison-Wesley, Reading, MA, 1999.

3. Beck, K.  Embracing Change with Extreme
Programming. IEEE Computer, 32, 10 (October 1999)
70-77.

4. Johnson, D.L. and Brodman, J.G.  Applying CMM
Project Planning Practices to Diverse Environments.
IEEE Software, 17, 4 (July/August 2000) 40-47.

5. Paulk, M.C., B. Curtis, M.B. Chrissis, and C.V.
Weber. Capability Maturity Model, Version 1.1.  IEEE
Software, 10, 4 (July 1993) 18-27.



8

6. Paulk, M.C., B. Curtis, M.B. Chrissis, and C.V.
Weber. The Capability Maturity Model: Guidelines for
Improving the Software Process. Addison-Wesley,
Reading, MA, 1995.

7. Paulk, M.C. Using the Software CMM With Good
Judgment.  ASQ Software Quality Professional. 1, 3
(June 1999) 19-29.

8. Siddiqi, J. (ed).  eXtreme Programming Pros and
Cons: What Questions Remain? IEEE Computer
Society Dynabook (November 2000).  Web Site On-
line at http://computer.org/seweb/dynabook/Index.htm.

9. Williams, L., R.R. Kessler, W. Cunningham, and R.
Jeffries.  Strengthening the Case for Pair
Programming.  IEEE Software, 17, 4 (July/August
2000) 19-25.


