THE DEXTER HYPERTEXT

The Dexter Hypertext Reference
Model is an attempt to capture, both
formally and informally, the impor-
tant abstractions found in a wide
range of existing and future hyper-
text systems.” The goal of the model
is to provide a principled basis for
comparing systems as well as for
developing interchange and inter-
operability standards. The model Is
divided into three layers. The storage
layer describes the network of nodes
and links that is the essence of hyper-
text. The run-time layer describes
mechanisms supporting the user's
interaction with the hypertext. The
within-component layer covers the
content and structures within hyper-
text nodes. The focus of the model is
on the storage layer and the mech-
anisms of anchoring and presen-
tation specification that form the
interfaces hetween the storage and
the storage layer and the within-
component and run-time layers,
respectively.

such as text and graphics can
be placed. Given these two
radically different designs, do
these systems have anything in
common in their notions of
hypertext nodes?

In an attempt to provide a
principled basis for answering
these questions, this article
presents the Dexter Hypertext
Reference Model. The model
provides a standard hypertext
terminology coupled with a
formal model of the important
abstractions commonly found
in a wide range of hypertext
systems.” Thus, the Dexter
model serves as a standard
against which to compare and
contrast the characteristics
and functionality of various
hypertext (and nonhypertext)
systems. The Dexter model
also serves as a principled
basis on which to develop
standards for interoperability

and interchange  among
hypertext systems.
The Dexter reference

model described in this article
was initiated as the result of
two small workshops on
hypertext. The first was held
in 1988 at the Dexter Inn in

What do hypertext’ systems such as
NoteCards [10], Neptune [4], KMS
[1], Intermedia [23] and Augment [6)
have in common? How do they dif-
fer? In what way do these systems dif-
fer from related classes of systems
such as multimedia database systems?
At a very abstract level, each of these
hypertext systems provides its users
with the ability to create, manipulate,
and/or examine a network of informa-
tion-containing nodes interconnected
by relational links. These systems dif-
fer markedly, however, in the specific
data models and sets of functionality
they provide to their users. Augment,
Intermedia, NoteCards, and Neptune,
for example, all provide their users
with a universe of arbitrary-length
documents. KMS and HyperCard, in
contrast, are built around a model of
a fixed-size canvas onto which items

New Hampshire—hence the name of
the model. The workshops had repre-
sentatives from many of the major
existing hypertext systems, and a
large part of the discussion at these
workshops was the elicitation of the
abstractions common to the major
hypertext systems.' The Dexter model
is an attempt to capture, further
develop, and formalize the results of
these discussions.

Another important focus of the
workshops was an attempt to find a
common terminology for the hyper-
text field. This was an extremely diffi-
cult task due to the absence of an
understanding of the common (and
differing) abstractions among the vari-
ous systems. The term “node” turned
out to be especially difficult to define
given the extreme variation in the
use of the term across the various sys-
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tems. By providing a well-defined set
of named abstractions, the Dexter
model provides a solution to the
hypertext terminology problem. It
does so, however, at some cost. In
order to avoid confusion, the model
does not use contentious terms such
as “node,” preferring neutral terms
like “component” for abstractions in
the model.

This article briefly refers to archi-
tectural concepts found in a number
of existing hypertext systems includ-
ing Augment [6], Concordia/Docu
ment Examiner [22], HyperCard [8],
Hyperties [18], IGD |[7], Intermedia
[23], KMS [1], NeptuneHAM [4],
NoteCards [9], the Sun Link Service
[17], and Textnet [20]. Appropriate
background material on these systems
can be found in Conklin [3] and in the
proceedings of the Hypertext 87 [11]
and Hypertext 89 [12] conferences.

An Overview of the Model

The Dexter model divides a hypertext
system into three layers, the run-time
layer, the storage layer and the within
component layer, as illustrated in
Figure 1. The main focus of the model
is on the storage layer, which models
the basic node/link network structure
that is the essence of hypertext. The

"This article is a revision of the original Halasz
and Schwartz paper that appeared in the Pro
ceedings of the Hypertext Workshop (National Insti-
tute of Standards and Technology, Gaithers-
burg, Md, Jan. 16-18, 1990, NIST Special
Publication 500-178, March 1990, pp. 95-133).
Aside from minor editorial modifications, the
main change was the removal of the formal Z
specification [19). Those readers interested in
a formal presentation of the Dexter model and
a precise specification of the interface and in-
tegrity constraints are referred to the original
article.

*The terms hypertext and hypermedia are often
distinguished, with hypertext referring to text-
only systems and hypermedia referring to sys-
tems that support multiple media. This distinc-
tion is not made in this article; the term hyper-
text is used generically 1o refer to both text-only
and multimedia systems.

*See the urigi_ndi NIST pa]?k:r for a Z-based rep-
resentation of the formal model.

*Participants in the two workshops are listed in
the acknowledgments section of this article
Among the systems discussed at the workshops
were: Augment, Concordia/Document Exam-
iner, 1GD, FRESS, Intermedia, HyperCard,
Hyperties, KMS/ZOG, Neptune/HAM, Note-
Cards, the Sun Link Service, and Textnet.







storage layer describes a ‘database’
that is composed of a hierarchy of
data-containing “components” inter-
connected by relational “links.”
Components correspond to what is
typically thought of as nodes in a
hypertext network: cards in Note-
Cards and HyperCard, frames in
KMS, documents in Augment and
Intermedia, or articles in Hyperties.
Components contain the chunks of
text, graphics, images, animations, for
example, that form the basic content
in the hypertext network.’

The storage layer focuses on the
mechanisms by which link and non-
link components are “glued together”
to form hypertext networks. The com-
ponents in this layer are treated as
generic containers of data. No attempt
is made to model any structure within
the container. Thus, the storage layer
does not differentiate between text
components and graphics compo-
nents. And it does not provide any
mechanisms for dealing with the well-
defined structure inherent within a
structured document (e.g., an ODA
document) component.

In contrast, the within-component
layer of the model is specifically con-
cerned with the contents and structure
within the components of the hyper-
text network. This layer is purpose-
fully not elaborated within the Dexter
model. The range of possible con-
tent/structure that can be included in a
component is not restricted. Text,
graphics, animations, simulations,
images, and many more types of data
have been used as components in
existing hypertext systems. It would
- not be realistic to attempt a generic
model covering all of these data types.
Instead, the Dexter model treats
within-component structure as being
outside of the hypertext model per se.
It is assumed that other reference
models designed specifically to model
the structure of particular applica-
tions, documents, or data types
(ODA, IGES, for example) will be
used in conjunction with the Dexter
model to capture the entirety of the
hypertext, including the within-
component content and structure.

*Actually, these are known in Dexter as atomic
components. As will be shown in the next sec-
tion, links and composites, entities formed by
composing components, are also kinds of com-
ponents.

A crincal piece of the Dexter
model is the interface between the
hypertext network and the within-
component content and structure.
The hypertext system requires a
mechanism for addressing (referring
to) locations or items within the con-
tent of an individual component. In
the Dexter model, this mechanism is
known as anchoring. 'The anchoring
mechanism is necessary, for exam-
ple, to support span-to-span links as
found in Intermedia. In Intermedia,
the components are complete struc-
tured documents. Links are possible
not only between documents, but
between spans of characters within
one document and spans of charac-
ters within another document. An-
choring is a mechanism that provides
this functionality while maintaining a
separation between the storage and
within-component layers.

The storage and within-compo-
nent layers treat hypertext as an es-
sentially passive data structure. Hy-
pertext systems, however, go far
beyond this in the sense that they
provide tools for the user to access,
view, and manipulate the network
structure. This functionality is cap-
tured by the run-time layer of the
model. As in the case of within-
component structure, the range of
possible tools for accessing, viewing,
and manipulating hypertext net-
works 1s far too broad and oo di-
verse to allow a simple, generic
model. Hence the Dexter model pro-
vides only a bare-bones model of the
mechanism for presenting a hyper-
text to the user for viewing and edit-
ing. This presentation mechanism
captures the essentials of the dy-
namic, interactional aspects of hy-
pertext systems, but does not auempt
to cover the details of user interac-
tion with the hypertext.

As in the case of anchoring, a criu-
cal aspect of the Dexter model is the
interface between the storage layer
and the run-time layer. In the Dexter
model this is accomplished using the
notion of presentation specifications.
Presentation specifications are a
mechanism by which information
about how a component/network is
to be presented to the user can be
encoded into the hypertext network
at the storage layer. Thus, the way in
which a component is presented to
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the user can be a function not only of
the specitic hypertext tool that is
doing the presentation (i.e., the spe-
cific run-time layer), but can also be a
property of the component itself
and/or of the access path (link) taken
to that component.

Figure 2 illustrates the importance
of the presentation specification
mechanism. In this figure, there is an
animation component taken from a
computer-based training hypertext.
This animation component can be
accessed via two link components.
When following the standard link,
the animation component is brought
up as a running animation. In con-
trast, when following the teacher-
owned “edit” link, the animation is
brought up in editing mode ready to
be altered. To separate these two
cases, the run-time layer needs to
access presentation information en-
coded into the links in the network.
Presentation specifications are a ge-
neric way of doing just this. Like an-
choring, they form an interface that
allows the storage layer to communi-
cate in a generic way with the run-
time layer without violating the sepa-
ration between the two layers.

Figure 3 attempts to give a flavor
of the various layers of the Dexter
model as they are embedded within a
typical hypertext system. The figure
depicts a 4-component hypertext
network. The storage layer contains
four entities: the four components
including the link. The actual con-
tents (text and graphics) of the com-
ponents are located to the right of
the storage layer in the within-
component layer. In the run-time
layer, the single graphics component
is presented to the user. The link
emanating from this component is
marked by an arrowhead located
near the botom of the component’s
window on the computer screen.

Simple Storage Layer Model
The storage layer describes the struc-
ture of a hypertext as a finite set of
components together with two func-
tions, a resolver function and an ac-
cessor function. The accessor and
resolver functions are jointly respon-
sible for “retrieving” components
(i.e., mapping specifications of com-
ponents into the components them-
selves).



The fundamental entity and basic
unit of addressability in the storage
layer is the component. A component
is either an atom, a link, or a compos-
ite entity made from other compo-
nents. Atomic components are prim-
itive in the (storage layer of the)
model. Their substructure is the con-
cern of the within-components layer.
Atomic components are what is typi-
cally thought of as “nodes” in a hy-
pertext system (e.g., cards in Note-
Cards, frames in KMS, documents in
Intermedia, statements in Augment).
Links are entities that represent rela-
tions between other components.
They are basically a sequence of two
or more “end-point specifications”
each of which refers to (a part of) a
component in the hypertext. The
structure of links will be detailed
later. Composite components are
constructed out of other compo-
nents. The composite component
hierarchy created when one compos-
ite component contains another com-
posite is restricted to be a directed-
acyclic graph (DAG), which means a
component can be a subcomponent
of multiple composites, and no com-
posite may contain itself either di-
rectly or indirectly. Composite com-
ponents are relatively rare in the
current generation of hypertext sys-
tems. One exception is the Augment
system, in which a document is a
tree-structured composition of atomic
components called statements.

Every component has a globally
unique identity which is captured by
its unique identifier (UID). UIDs are
primitive in the model, but they are
assumed to be uniquely assigned to
components across the entire uni-
verse of discourse (not just within the
context of a single hypertext). The
accessor function of the hypertext is
responsible for “accessing” a compo-
nent given its UID (i.e., for mapping
a UID into the component “as-
signed” that UID).

Utilizing UIDs provides a guaran-
teed mechanism for addressing any
component in a hypertext. But the
use of UIDs as a basic addressing
mechanism in hypertext may be too
restrictive. For example, it is possible
in the Augment system to create a
link to “the statement containing the
word ‘pollywog.’” The statement
specified by this link may not exist or
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Figure 1. Layers of the Dexter
model

Figure 2. lllustration of the need
for presentation specifications
on the access path (i.e., links) as
well as on the components
themselves

Figure 3. A depiction of the three
layers of the Dexter model as
embedded in an actual hypertext
system
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it may change over time as docu-
ments are edited. Therefore, the link
cannot rely on a specific statement
UID to address the target statement.
Rather, when the link is followed, the
specification must be “resolved,” if
possible, to a UID (or set of UlDs)
which then can be used to access the
correct component(s).

This kind of indirect addressing is
supported in the storage layer, using
component specifications together with
the resolver function. The resolver
function is responsible for “resolv-
ing” a component specification into a
UID, which can then be fed to the
accessor function to retrieve the
specified component. Note, however,
that the resolver function is only a
partial function. A given specifica-
tion may not be resolvable into a UID
(i.e., the component being specified
may not exist). However, it is the case
that for every component there is at
least one specification that will re-
solve to the UID for that component.
In particular, the UID itself may be
used as a specifier, in which case the
resolver function is the identity func-
tion.

Implementing span-to-span links
(e.g., in Intermedia) requires more
than simply specifying entire compo-
nents. Span-to-span linking depends
on a mechanism for specifying sub-
structure within components. But in
order to preserve the boundary be-
tween the hypertext network per se
and the content/structure within the
components, this mechanism cannot
depend in any way on knowledge
about the internal structure of
(atomic) components. In the Dexter
model, this is accomplished by an
indirect addressing entity called an
anchor. An anchor has two parts: an
anchor 1d and an anchor value. The
anchor value is an arbitrary value
that specifies some location, region,
item, or substructure within a com-
ponent. This anchor value is inter-
pretable only by the applications
responsible for handling the content/
structure of the component. It is
primitive and unrestricted from the
viewpoint of the storage layer. The
anchor id is an identifier which
uniquely identifies its anchor within
the scope of its component. Anchors
can therefore be uniquely identified
across the whole universe by a com-

.

ponent UlD-anchor id pair.

The two-part composition of an
anchor is designed to provide a fixed
point of reference for use by the
storage layer, the anchor id, com-
bined with a variable field for use
by the within-component layer, the
anchor value. As a component
changes over time (e.g., when it
is edited within the run-time layer),
the within-component application
changes the anchor value to reflect
changes to the internal structure of
the component or to reflect within-
component movement of the point,
region, or items to which the anchor
is conceptually attached. The anchor
id, however, remains constant, pro-
viding a fixed referent that can be
used to specify a given structure
within a component.®

The mechanism of the anchor id
can be combined with the component
specification mechanism to provide a
way of specifying the end points of a
link. In the model, this is captured by
an entity called a specifier, which con-
sists of a component specification, an
anchor id, and two additional fields:
a direction and a presentation specifica-
tion. A specifier specifies a compo-
nent and an anchor ‘point’ within a
component that can serve as the end-
point of a link. The direction en-
codes whether the specified end
point is to be considered a source of a
link, a destination of a link, both a
source and a destination, or neither a
source nor destination. (These are
encoded by direction values of
FROM, TO, BIDIRECT, and
NONE, respectively.) The presenta-
tion specification is a primitive value
that forms part of the interface be-
tween the storage layer and the run-
time layer. The nature and use of
presentation specifications will be
discussed in conjunction with the
run-time layer.

It is now possible to describe the
structure of link components a bit
more precisely. In particular, a link is

“Because a link is a kind of component, this dis-
cussion suggests the possibility of modeling not
just links whose end points are other links, but a
link end point anchored within another link. If
we consider a link’s content to be its specifiers,
this suggests the idea of anchoring, say, a tex-
tual annotation of a link in one or more of its
specifiers. This might be useful in collaborative
situations in which part of the link structure it-
self becomes the focus of a hypermedia-based
discussion.
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simply a sequence of two or more
specifiers. Note that this provides for
links of arbitrary arity, despite the
fact that binary links are standard in
existing hypertext systems. Direc-
tional links, also standard in existing
systems, are handled using the direc-
tion field in the specifier. In this way,
what appear to be one-way links,
such as HyperCard buttons, can be
modeled as two-way links with the
button end having a DIRECTION
with value NONE and the other end
having a DIRECTION with value
TO. In the most general model, du-
plicate specifiers are allowed. The
only constraint is that at least one
specifier have a direction of TO or
BIDIRECT.

In the foregoing discussion, com-
ponents were described as being ei-
ther atoms, links, or compositions of
other components. In actuality, this
describes what the model calls a base
component. In contrast, components in
the model are complex entities that
contain a base component together
with some associated component infor-
mation. 'The component information
describes the properties of the com-
ponent other than its ‘content.” Spe-
cifically, the component information
contains a sequence of anchors that
index into the component, a presen-
tation specification that contains in-
formation for the run-time layer
about how the component should be
presented to the user, and a set of
arbitrary auribute/value pairs. The
attribute/value pairs can be used to
attach any arbitrary property (and its
value) to a component. For example,
keywords can be attached to a com-
ponent using multiple ‘keyword’ at-
tributes. Similarly, a component type
system can be implemented in the
model by adding to each component
a ‘type’ attribute with an appropriate
type specification as its value.®

In addition to a data model, the
storage layer defines a small set of
operations that can be used to access
and/or modify a hypertext. All of
these operations are defined in a way
that will maintain the invariants of
the hypertext (e.g., the fact that the

"I'he Component-Info block for Link #9981 is
not shown in Figure 4.

*For f:xampF. link t;pc: like those supported
in NoteCards can be implemented in this way.



Atom #3346 Composite #4112
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Attnibutes P , Attributes [ IENENEEEEN
Presentation Spec [ ‘resolves to Presentation Spec N
Anchors | Value 1D ﬂ' Anchors [ Value 1D
e e ——
Content Link #9981 anlent J
Some arbitghry text that 1s Specifier ome "'” here
the m of this node Component Spec \#3346 Atom #332 1 Alom #4499
and 50 on and so on Arcnor 10+ e O A Figure 4. Overall organization of
Drrecton. FROM = the storage layer including speci-
Presentation Spec R Z fiers, links, and anchors. The five
— components shown include
Specifier three atomic components, one
Component Spec #4112 composite component (con- |
Anchor 1D #1  ————] ‘resolves to' structed from two of the atomic

components plus some text),

Direction. TO and one link component repre-
senting a connection from the
anchor in atomic component
#3346 to the anchor in compos-
ite component #4112.

Presentation Spec R

composition hierarchy of compo-
nents/subcomponents is acyclic). The <hypertext>

operations defined in the model in- <component >

clude adding a component (atomic, <type> text </type>
link or composite) to a hypertext, <uid> 21 </uid>

. . <data> This is some text .. </data>
deleting a component from the hy- s

pertext, and modifying the contents Ay A

or ancillary information (e.g., an- <location> d13 </locations>
chors or attributes) of a component. </anchor>

There are also operations for retriev- </component>

ing a component given its UID or Hele e G

any specifier that can be resolved to i g e N ook

. - . <uld> 777 </uid>

its UID. Finally, there are operations <data> This is some other text .. </data>
that help determine the interconnec- <anchors>

tivity of the network structure. <dd> 1 ic/das

LinksTo, given a hypertext and the <location> 13-19 </location>

UID of a component in the hyper- </anchor>
text, returns the UIDs of links resolv- :égsmEEZEES B
ing to that component. LinksToAnchor o4

_— <type> link </type>
returns the set of link UIDs that <uid> 881

. </uid>
refer to an anchor when given the <specifier>
anchor identifier, its containing com- <component uid> 21 </component uids>
ponent’s UID, and a hypertext. <anchor_id> 1 </anchor_id>

Maintaining the invariants of the <direction> FROM </direction>
hypertext requires enforcing the fol- N E e e

. . <specifier>
l()wmg constraints: <component uid> 777 </component uid>
<anchor_id> 1 </anchor_id>
<direction> TO </direction>

® The accessor function must be an
invertible lnatpfp.ing frf)m UIDs to e
components. This implies that every </component >
component must have a UID. </hypertext>

® The resolver function must be able
to produce all possible valid UlDs.
® There are no cycles in the compo-  the link specifiers resolving to the Figure5. Example of asimple in-
nent/subcomponent relationship, component. :ﬁgcr?‘%rzj%el format derived from
that is, no component may be a sub- @ The hypertext must be link-consis-

component (directly or transitively) tent: that is, the component specifiers

of itself. of every link specifier must resolve to

® The anchor ids of a component extant components. (Link-consis-

must be the same as the anchorids of  tency requires, for example, that
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Storage layer functions

Table 1. Storage layer functions and run-time layer operations

CreateComponent

Creates a new component and adds it to the hypertext. Ensures that the range ol the
accessor functuon is extended o include the new component. The resolver function is
also extended so that there is at least one specitier for the new component’s
corresponding UID.

CreateAtomicComponent

Fakes an atom and a pl'('s(‘ul;:linu _\[K't'iﬁ( ation and uses Create( I(nllpnnt'ln locreate a
new atomic component.

CreateLinkComponent

Takes alink and a presentation specification and uses CreateComponent to create a new
link component.

CreateCompositeComponent

Takes a collection of base components and a presentation specification and uses
Create( lnm[mm'lll Lo Create a4 new composite component.

CreateNewComponent

Invoked tfrom the run-time layer, calls one of Create AtomicComponent,
CreateLinkComponent, or CreateCompositeComponent.

DeleteComponent

Deletes a component, ensuring that any links whose specifiers resolve to that component
are removed.

ModityComponent

Modifies a component, ensuring that its associated information remains unchanged, that
its type (atom, link, or« ()I]l[)()hi[(') TEmains une h;mg('(l. and that the resulting h_\‘])vl‘l(‘.\(l
remains link consistent.

GetComponent

Fakes a UID and uses the accessor funcuon to return a component. H the UID represents
alink component, returns either a source or destination specifier for that component.

Attribute Value

Takes a component UID and an attribute and returns the value of the attribute.

SetAttribute Value

Fakes a component ULD, a value and an auribute, and sets the value of the aaribute.

All Attributes

Returns the set of all component attributes.

LinksToAnchor

Fakes an anchor and its containing component, and returns the set of links that reter o
the anchor.

LinksTo

Takes a hypertext and a component UID, and returns the UlLDs of links resolving to that
component,

Run-time layer operations

openSession

Creates a session for a given hypertext. A session begins with no instantiations.

openComponents

Opens a setof new imstantiations on a given set of components.

presentComponent

Takes a specifier and a presentation specification and creates an instantiation for the
associated component.

followLink

Uses openComponents Lo present any components referred to by the “TO” specifiers of
any links with anchors represented by a given link marker.

new(Component

Opens a new instantiation on a newly created component,

unPresent

Removes an instantiation.

editInstantiation

Edits an instantiation. A call to realizeEdits is required to save the changes.

realizeEdits

Saves an instantiation’s editing changes to the corresponding component by calling
ModityComponent.

deleteComponent

Deletes the component associated with a given instantiation. Also removes any other
instantiations for that component.

closeSession

Closes a given session. Note that by default, pending changes to instantiations are not
saved.
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when deleting a component, any
links whose specifiers resolve to that
component must also be deleted.)

Simple Run-time Layer Model
The fundamental concept in the
run-time layer is the instantiation of a
component. An instantiation is a pre-
sentation of the component to the
user. Operationally, an instantiation
should be thought of as a kind of
run-time cache for the component. A
‘copy’ of the component is cached in
the instantiation, the user views and/
or edits this instantiation, and the al-
tered cache is then ‘written’ back into
the storage layer. Note that there can
be more than one simultaneous in-
stantiation for any given component.
Each instantiation is assigned a
unique (within-session, see the fol-
lowing description) instantiation
identifier (I1ID).

Instantiation of a component also
results in instantiation of its anchors.
An instantiated anchor is known as a
link marker. This terminology is con-
gruent with that used in Intermedia,
where the term “anchor” refers to an
attachment point or region and the
term “link marker” refers to the visi-
ble manifestation of that anchor in a
displayed document. In order to ac-
commodate the link marker notion
within the model, an instantiation is
actually a complex entity containing
a base instantiation together with a
sequence of link markers and a func-
tion mapping link markers to the
anchors they instantiate. A base in-
stantiation is a primitive in the model
that represents some sort of presen-
tation of the component to the user.

At any given moment, the user of
a hypertext can be viewing and/or
editing any number of component
instantiations. The run-time layer
includes an entity called a session
which serves to keep track of the
moment-by-moment mapping be-
tween components and their instanti-
ations. Specifically, when a user
wants to access a hypertext, he or she
opens a session on that hypertext.
The user creates instantiations of
components in the hypertext by an
action called presenting the compo-
nent. The user can edit such an in-
stantiation, modify the component
based on accumulated edits to the
instantiation (an action known as re-
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alizng the edits), and finally destroy
the instantiation (called unpresenting
the component). If the user deletes a
component through one of its instan-
tiations, then all other instantiations
are automatically removed. When
the user is finished interacting with
the hypertext, the session is closed.

In the model, the session entity
contains the hypertext being ac-
cessed, a mapping from the 11Ds of
the sessions’s current instantiations
to their corresponding components
in the hypertext, a history, a run-
time resolver function, an instantia-
tor function, and a realizer function.
At any given moment, the history is a
sequence of all operations carried
out since the last open session opera-
tion. In the present version of the
model, this history is used only in
defining the notion of a read-only
session. It is intended to be available,
however, to any operation that needs
to be conditioned on preceding
operations.

The session’s run-time resolver

function is the run-time version of

the storage layer’s resolver function.
Like the resolver, it maps specifiers
into component UIDs. The run-time
resolver, however, can use informa-
tion about the current session, in-
cluding its history, in the resolution
process. The storage resolver layer
has no access to such run-time infor-
mation. For example, a specifier may
refer to “the most recently accessed
component named ‘xyzzy’.” The run-
time resolver is responsible for map-
ping this specifier into the UID
matching this specification. The stor-
age layer resolver would not be able
to handle this specification.® The
run-time resolver is restricted to be a
superset of the storage layer resolver
function; any specifier that the stor-
age layer resolver can resolve to a
UID must be resolved to the same
UID by the run-time resolver.

At the heart of the run-time model
is the session’s instantiator function.
Input to the instantiator consists of a
component (UID) and a presentation
specification. The instantiator re-
turns an instantiation of the compo-
nent as part of the session. The pre-

“This means, for example, that the LinksTo
function will not find links whose component
specifiers are resolvable only at run time—such
links must be captured in the run-time layer.

sentation specification is primitive in
the model, but is intended to contain
information specifying how the com-
ponent being instantiated is to be
“presented” by the system during
this instantiation. Note that the com-
ponent itself has a presentation spec-
ification from the storage layer of the
model. This presentation specifica-
tion is meant to contain information
about the component’s own notion of
how it should be presented. It is the
responsibility of the instantiator
function to adjudicate (by selection
or combination or otherwise) be-
tween the presentation specification
passed to the instantiator and the
presentation specification attached to
the component being instantiated.
The model in its current form does
not make this adjudication explicit.

The instantiator function is the
core of the present component opera-
tion. Present component takes a
component specifier (together with a
session and a presentation specifica-
tion) and calls the instantiator using
the component UID derived from
resolving the specifier.!® Present
component in turn is the core of the
follow link operation. Follow link
takes (the IID of) an instantiation
together with a link marker con-
tained within that instantiation. It
then presents the component(s) that
are at the destination end points (say,
end points whose specifiers have di-
rection TO or BIDIRECT) of all
link(s) that have as an end point the
anchor represented by the given link
marker. In the case in which all links
are binary, this is equivalent to fol-
lowing a link from the link marker
for its source. The result of following
the link is a presentation of its desti-
nation component and anchor.

The instantiator function also has
an “inverse” function called the
realizer function, which takes an in-
stantiation and returns a (new) com-
ponent that “reflects” the current
state of the instantiation (i.e., includ-
ing recent edits to the instantiation).
This is the basic mechanism for
“writing back the cache” after an in-
stantiation has been edited. The
component produced by the realizer

"Because presentComponent has access to the
session, the resulting instantiation can addition-
ally depend on the current set of instantiations.

COMMUNICATIONS OF THE AcM Fbruary 1994/Vol37, No.2 BT



hyper EXEIEN

is used as an argument (o the storage
layer modify-component operation
to replace the component with the
edited component. This operation is
wrapped in the function called realize
edits in the run-time layer.!!

Conformance with the
Reference Model

One reason to have a reference
model for hypertext is to try to ascer-
tain whether a purported hypertext
system actually warrants being called
a hypertext system. So, given an ac-
tual hypertext system how do we
show that it meets, or is conformant
with the model? The best guidance
for answering this question comes
from the VDM experience under the
heading of data reification as de-
scribed, for example, in Cliff Jones's
book [13, Chapter 8] on software
development using VDM. First, we
must exhibit total functions, called
retrieve functions which map the ac-
tual types and functions from the
given (actual) hypertext system to
each of the types and functions of the
model. We must also demonstrate ad-
equacy—that there is at least one ac-
tual representation for each abstract
value. Obviously, the retrieve func-
tions must satisfy the invariants
which are given for the data types
and functions. An informal way of
saying this is that everything which is
expressible or realizable in the model
must be expressible or realizable in
the actual system.

In actuality our model is much
more powerful than necessary. In
particular

¢ By admitting multiway links and
links to links in the model, we put a
fairly heavy burden on any imple-
mentation.

® Many hypertext systems do not
have the notion of composites.

® Some hypertext systems, such as
KMS, do not have links with both an
explicit source and destination. Thus
requiring discrimination among all
the values of type DIRECTION is
too much.

We are currently working on a “mini-
mal” model that addresses these and
other concerns.

"RealizeEdits serves as the hypertext's Save
operation.

Conclusion

Development of the Dexter model is
still in its very early stages. The
model as currently stated is far more
powerful than any existing hypertext
system. The provisions for n-ary
links and for composite components,
for example, are intended to accom-
modate the design of future hyper-
text systems. No existing system that
we have examined includes both
n-ary links and composite compo-
nents. The result is that no existing
system ‘conforms to’ the model in the
sense that it supports all of the mech-
anisms the model supports. The so-
lution to this problem is to make
some mechanisms ‘optional,’” result-
ing in a family of interrelated models
that support differing sets of op-
tional mechanisms. The weakest
model, for example, would have no
composites and only binary links.
The strongest model would be the
Dexter model in the present form.
Conformance to the model could
then be conditioned on the exact set
of mechanisms supported. Systems
would be compared on the basis
of the set of mechanisms they do
support.

A related issue involves a number
of consistency restrictions imposed
by the present model. For example,
when creating a link the model re-
quires that all of its specifiers resolve
to existing components. This restric-
tion prevents the creation of links
that are ‘dangling’ from the outset,
and adequately represents the con-
sistency guarantee of KMS. But it is
overly restrictive for Augment,
which allows creation of initially dan-
gling links. Restrictions of this sort
will have to be made optional in the
model, just as they will with mecha-
nisms. Conformance to the model
can then be conditioned on appro-
priate choices of restrictions. Systems
can be compared on the basis of the
set of restrictions they enforce, in the
same way mechanisms can.

The model has yet to be compared
in detail to the hypertext systems it is
designed to represent. Clearly, a nec-
essary step in the development of the
model is to formally specify (in Z) the
architecture and operation of a num-
ber of ‘reference’ hypertext systems
using the constructs from the Dexter
model. These reference systems

3 February 1994/Vol37, No.? COMMUNICATIONS OF THE ACM

should be chosen to represent a
broad spectrum of designs, intended
application domains, implementa-
tion platforms, and so forth. This
enterprise would provide valuable
feedback regarding the adequacy
and completeness of the model. In
particular, it will help assess whether
the model provides sufficient mecha-
nisms for representing the important
(common) abstractions found in the
reference systems. It will also provide
feedback on the ‘naturalness’ of the
model (i.e., on whether the specifica-
tion of the reference systems in Dex-
ter terms feels ‘natural’ or whether
the abstractions found in certain sys-
tems must be excessively massaged to
fit into the Dexter abstractions).

Despite its early stages of develop-
ment, the model has already been
useful in developing hypertext inter-
change standards. As described in
the panel on interchanging hyper-
texts at the Hypertext '89 Confer-
ence [16], a number of efforts have
been started to operationalize the
abstractions of the Dexter model in
the form of interchange formats.
Figure 5 illustrates one such format.
This format was used for experi-
menting with the interchange of
hypertexts between NoteCards and
HyperCard. The format is a fairly
straightforward rendering of the
entities found in the Dexter model
into a SGML-like syntax. This format
is by no means a well-developed in-
terchange standard. But it does sug-
gest that the Dexter model provides a
good basis from which to develop
such standards. In fact, because the
model is an attempt to provide a
well-defined and comprehensive
model, it is an ideal basis for develop-
ing a comprehensive standard for
interchanging hypertexts between
widely differing systems. @
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