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Hypermedia is a style of building systems for informa- 
tion representation and management around a network of 
multi-media nodes connected together by typed links. 
Such systems have recently become quite popular due 
to their potential for aiding in the organization and 
manipulation of irregularly structured information in 
applications ranging from legal research to software 
engineering. Moreover, there is something alluring 
about navigating through a hypermedia network fol- 
lowing links from node to node until you find some 
information of interest. But as the current crop of hy- 
permedia systems moves into more widespread use, the 
limitations of the hypermedia concept are becoming in- 
creasingly apparent. The simple node and link model is 
just not rich and complete enough to support the infor- 
mation representation, management, and presentation 
tasks required by many applications. This article pre- 
sents the NoteCards system as a foil against which to 
examine some of these limitations in the current gener- 
ation of hypermedia systems. By examining the major 
weaknesses in the design of NoteCards, the article 
characterizes seven critical issues that need to be 
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resolved in designing the next generation of hyper- 
media. 

NOTECARDS IN BRIEF 
NoteCards is a general hypermedia environment that is 
fairly typical of the generation of workstation-based 
systems that is currently moving from the research lab 
into widespread use (e.g., Intermedia [35] and Neptune 
[9]), NoteCards was designed to help people work with 
ideas. Its intended users are authors, researchers, de- 
signers, and other intellectual laborers engaged in ana- 
lyzing information, constructing models, formulating 
arguments, designing artifacts, and generally processing 
ideas. The system provides the user with a network of 
electronic notecards interconnected by typed links. 
This network serves as a medium in which the user 
can represent collections of related ideas. It also func- 
tions as a structure for organizing, storing, and retriev- 
ing information. The system includes facilities for dis- 
playing, modifying, manipulating, and navigating 
through this network. NoteCards was developed by 
Randall Trigg, Thomas Moran and the present author at 
Xerox PARC. A more detailed discussion of the system, 
its design goals, and our experiences with its use can be 
found in [26]. 
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Four Basic Constructs 
NoteCards is implemented within the Xerox Lisp pro- 
gramming environment and is designed around two 
primitive constructs, notecards and links. In the basic 
system, these two primitives are augmented by two 
specialized types of cards, browsers and @boxes, that 
help the user to manage large networks of cards and 
links. 

l Notecards. A notecard is an electronic generalization 
of the 3x5 paper notecard. Each notecard contains an 
arbitrary amount of some editable substance such as 
a piece of text, a structured drawing, or a bitmap 
image. Each card also has a title. On the screen, cards 
are displayed using standard Xerox Lisp windows as 
shown in Figure 1. Every notecard can be edited, that 
is, retrieved from the database and displayed on the 
screen in an editor window. There are various types 
of notecards, differentiated (in part) by the nature of 
the substance (text or graphics) that they contain. In 
addition to a set of standard card types, NoteCards 
includes a facility for adding new card types, ranging 
from small modifications to existing card types (e.g., 
text-based forms) to cards based on entirely different 
substances (e.g., animation cards). 
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l Links. Links are used to interconnect individual note- 

cards into networks or structures of related cards. 
Each link is a typed, directional connection between 
a source card and a destination card. The type of a 
link is a user-chosen label specifying the nature of 
the relationship being represented. Links are an- 
chored by an icon at a specific location in the sub- 
stance of their source card, but are anchored to their 
destination card as a whole. Clicking the mouse in 
the link icon traverses the link, that is, retrieves the 
destination card and displays it on the screen. In 
Figure 1, each of the two cards contains two em- 
bedded link icons. 

l Browsers. A browser is a notecard that contains a 
structural diagram of a network of notecards. Fig- 
ure 2 shows a Browser card for a network composed of 
8 cards and 8 links. The cards from this network are 
represented in the browser by their title displayed in 
a box. The links in the network are represented by 
edges between the boxed titles. Different dashing 
styles distinguish different types of links. The dia- 
grams in Browser cards are computed for the user by 
the system. Once created, browsers function like 
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FIGURE 1. Example NoteCards with Embedded Link Icons 
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FIGURE 2. Example Browser Card (top) and Filebox Cards 

standard notecards. The boxed titles in the browser 
are in fact icons for traversable links between the 
browser and the referenced card. Browsers support 
two 1eveIs of editing. First, the user can edit the un- 
derlying structure of a network of notecards by carry- 
ing out operations on the nodes and edges in the 
browser. Second, the user can add and delete nodes 
and edges in the browser diagram without making 
corresponding changes to the underlying NoteCards 
structures. 

l Fileboxes. Fileboxes are specialized cards that can be 
used to organize or categorize large collections of 
notecards. They were designed to help users manage 
large networks of interlinked notecards by encourag- 
ing them to use an additional hierarchical category 
structure for storage and retrieval purposes. A filebox 

is a card in which other cards, including other file- 
boxes, can be filed. NoteCards requires that every 
notecard (including fileboxes) must be filed in one 
or more fileboxes. Figure 2 shows three fileboxes in 
addition to the browser. 

Accessing Information in NoteCards 
Navigation, whereby the user moves through the net- 
work by following links from card to card, is the pri- 
mary means for accessing information in NoteCards. 
Alternatively, the user can create an overview browser 
for some subnetwork and traverse the links from the 
browser to the referenced cards. NoteCards also pro- 
vides a limited search facility that can locate all cards 
matching some user-supplied specification (a particular 
string in the card’s title or text, for example). 
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Tailorability 
NoteCards is fully integrated into the Xerox Lisp pro- 
gramming environment. It includes a widely used pro- 
grammer’s interface with over 100 Lisp functions that 
allow the user to create new types of cards, develop 
programs that monitor or process a network, integrate 
Lisp programs (e.g., an animation editor) into the 
NoteCards environment, and/or integrate NoteCards 
into another Lisp-based environment (e.g., an expert 
system). The system also includes a large set of parame- 
ters that users can set to tune the exact behavior of the 
system (e.g., how links are displayed or the default size 
of notecards). For a more extensive discussion of exten- 
sibility and tailorability in NoteCards see [51]. 

NoteCards in Use 
From its inception, the design and development of 
NoteCards has been driven by the needs of its user 
community. Currently there are over 70 registered 
users within Xerox. There are, in addition, an undeter- 
mined number of users at various university, govern- 
ment, and industrial sites outside Xerox. This user 
community has provided invaluable feedback on the 
strengths and weaknesses of NoteCards as applied to 
a variety of tasks including document authoring, legal 
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argumentation, development of instructional materials, 
design of copier parts, and competitive market analysis. 
Perhaps the most common use of NoteCards is as a data- 
base for storing miscellaneous personal information. 

A typical example of how the system can be used to 
support idea structuring and generic authoring is the 
network created by a history graduate student who 
used the system to research and write a 25 page paper. 
Figure 3 shows a browser of the filebox hierarchy cre- 
ated during this project. The author made a habit of 
keeping this browser on his screen at all times as a way 
of speeding up the process of filing and accessing cards. 
This hierarchy was made up of 40 fileboxes and con- 
tained 268 (nonfilebox) cards. 

The cards in Figure 1 are taken from this hierarchy. 
In general, cards stored in the hierarchy contain a short 
(average of about 100 words) quote or paraphrase taken 
from an article or book. About half of the cards have 
links embedded in their substance. As a rule, these 
were “See” or “Unspecified” links and were placed at 
the end of the card’s text preceded by the word “See.” 
There are also a few dozen inter-card links of other 
types. Further description of this network and the pro- 
cess involved in using it to author a paper can be found 
in [36] and [26]. 
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NOTECARDS’ NICHE IN THE SPACE 
OF HYPERMEDIA SYSTEMS 
NoteCards is a fairly typical second generation hyper- 
media system. The first generation included systems 
such as NLS/Augment [ll], [12], FRESS [54], and ZOG 
{33], [40]. These systems were all originally mainframe- 
based, focused primarily on text nodes, and used dis- 
play technologies with little or no graphics capabilities. 
All of these first generation systems, however, included 
at least some support for medium to large teams of 
workers sharing a common hypermedia network. An 
overview of these systems and many others can be 
found in [6]. 

The second and current generation of hypermedia 
began in the early 1980s with the emergence of various 
workstation-based, research-oriented systems including 
NoteCards, Neptune [9], [lo] and Intermedia [Zl], [35]. 
In addition, KMS [I] is a commercial workstation-based 
system that grew out of the first-generation ZOG sys- 
tem. These second generation systems are remarkably 
similar in concept to the first generation systems. How- 
ever, the workstation technology which underlies them 
allows for much more advanced user interfaces. In par- 
ticular, all of these systems support graphics and even 
animation nodes as well as fully-formatted text nodes. 
They aiso make heavy use of graphical overviews of the 
network structure to aid navigational access. It is inter- 
esting to note that these systems are generally designed 
for single users or small workgroups and hence do not 
support collaborative work to the same degree as the 
earIier systems. 

These workstation-based, research-oriented systems, 
were followed a few years later by a number of prod- 
ucts and prototype systems running on personal com- 
puters. The PC-based systems, which include Guide [5], 
[25] and Hyperties 1431, [44], are more limited in scope 
and functionality than the workstation-based systems 
but have many of the same features. Unfortunately, one 
critical feature not included in these systems is a 
graphical overview of the network structure to aid the 
user when navigating in and manipulating the hyper- 
media. 

Table I summarizes the architectural features of the 
average (and fictional) current generation hypermedia 
system. This system includes typed nodes connected by 
labeled, bidirectional links. The nodes are implemented 
using an extensible type hierarchy, with at least the 
text and graphics node types being provided with the 
basic system. The links are labeled but not typed, and 
are anchored using icons within the contents of both 
the source and destination nodes. In addition to the 
standard node and link networks, there is some special 
support for hierarchical organizations. Information 
access and structure editing is accomplished using 
“browsers” containing a graphical map of the network 
structure. Query-based access is possible, but it is very 
slow and limited to simple string or keyword matching. 
The network is stored on a shared relational database 
or in standard files, but there is no versioning of the 
stored information. Support for simultaneous multi- 
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TABLE I. Architectural Features of an Average Current 
Generation Hypermedia System 

Feature Description 

Nodes: Typed (text, graphics, . .), implemented 

Links: 

Overviews: 

Hierarchies: 
User Interface: 
Extensibility: 
Search/query: 
Distribution: 

Versioning: 
Storage: 

using a type hierarchy 
Nodes cannot contain other nodes 
Binary, bidirectional 
Labeled but not typed 
Anchors can be whole nodes or points/re- 

gions within the node 
Browsers containing node/link diagrams of 

the network 
Can edit network via browser 
Special support for hierarchical networks 
Multiple windows; mouse/menu driven 
Programmer’s interface 
Slow, full-text string match 
Single-user or multi-user central server with 

limited concurrency control 
None 
Standard files or relational DBMS 

user access to the stored information is limited. Finally, 
there is a programmer’s interface that can be used to 
extend or tailor the system. 

Despite this commonality in basic architecture, the 
current generation includes systems that are very di- 
verse in their nature and functionality. This diversity 
can be characterized by partitioning the space of hyper- 
media systems along three fundamental dimensions: 
scope, browsing vs. authoring, and target task domain. 
Since it is serving as an example against which to as- 
sess the entire generation, it is important to understand 
where NoteCards lies along these three dimensions. 

Scope. Hypermedia has been proposed as the mecha- 
nism for storing and distributing the world’s entire 
literary output [39], as a common information space 
for teams of programmers on Iarge software projects 
[19], and as a tool for individuals and small work 
groups engaged in authoring and idea processing [26]. 
Although all of these proposals share the notion that 
information should be organized into networks of 
nodes and links, they differ radically in scale, e.g., in 
the sizes of their expected information bases and user 
populations. This extreme variation in scale implies 
there will be differences throughout these systems, 
ranging from underlying storage mechanisms through 
the user interface to conventions for their use. 

Browsing versus Authoring. In systems designed pri- 
marily for browsing, the hypermedia network is care- 
fully created by a relatively small number of special- 
ized authors in order to provide an information space 
to be explored by a large number of more or less 
casual users. These browsing systems are generally 
characterized by relatively well-developed tools for 
information presentation and exploratory browsing. 
Tools for creating and modifying the network tend to 
be less evolved. Hypermedia instructional delivery 
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environments [Zl] and interactive museum exhibits 
[43] are examples of such browsing-oriented systems. 
In systems designed primarily for authoring, the hy- 
permedia network serves as an information structure 
that users create and continuously modify as part of 
their ongoing task activities. Hypermedia systems for 
idea processing [26], document authoring [45], and 
software development [9] are primary examples. In 
such systems, the tools for creation and modification 
of the network are well-developed. Tools for easy 
browsing and sophisticated information display are 
present, but tend to be less evolved. 

l Target task domain. Many hypermedia systems have 
been designed to support a specific task. For example, 
WE [45] is an environment designed specifically to 
support the professional writer. Similarly, the Docu- 
ment Examiner [53] is designed specifically to sup- 
port the on-line presentation of technical documen- 
tation. Other hypermedia systems provide general 
hypermedia facilities to be used in a variety of appli- 
cations. Even these generic systems, however, are 
usually designed with a target task domain in mind. 
The features and capabilities emphasized in the sys- 
tem often reflect the requirements of this target. Con- 
trast, for example, Intermedia [Zl] and Neptune [9]. 
Both are general hypermedia systems. But Neptune 
was designed to support software engineering and 
thus emphasizes versioning [lo] and node/link attri- 
butes. In contrast, Intermedia was designed for multi- 
user interactive educational applications and thus 
emphasizes novel interactive displays [ZO] and anno- 
tation facilities. 

NoteCards is designed for use by individuals or small 
work groups. In this respect, NoteCards is similar to PC- 
based systems like Guide [25] and to single-user work- 
station systems like WE [45]. Conversely, NoteCards 
differs significantly along this dimension from global 
systems like Xanadu [39], as well as systems designed 
to support larger groups such as ZOG [40] and NLS/ 
Augment ill]. Although its original design places less 
emphasis on multi-user access, NoteCards is very simi- 
lar in scope to Neptune [9], Intermedia [35], [21] and 
Textnet [49]. 

NoteCards is first and foremost an authoring system 
designed to provide its users with facilities for creating 
and modifying hypermedia structures. In this respect, 
NoteCards is similar to many of the aforementioned 
systems (Augment, Guide, Intermedia, Neptune, WE) 
and different from on-line presentation systems such as 
the Document Examiner [53], Hyperties [43], [44] and 
interfaces to CD/ROM databases [29]. ZOG has a 
slightly different flavor, being simultaneously browser- 
and author-oriented. 

NoteCards is a general purpose hypermedia system, 
but it was originally designed to be used as a tool for 
idea processing and authoring in a research environ- 
ment. Its original goals were very similar to those of 
NLS/Augment, although the actual implementations of 
the two systems are (on the surface) quite different. 
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Systems such as WE and Guide were also designed to 
support authoring tasks. Intermedia (education) and 
Neptune (software engineering) were designed with 
very different application domains in mind, although 
both systems were designed in part to support docu- 
ment authoring tasks. 

Overall, NoteCards is most similar to Intermedia and 
Neptune despite the differences in their target applica- 
tion domains. The three are very similar in scope and 
in the type of facilities they provide. This similarity is 
reinforced by several factors including a common em- 
phasis on extensibility, similar underlying platforms 
(i.e., workstations], and a contemporaneous develop- 
ment schedule. Although the present article specifically 
discusses NoteCards, most of the issues raised are rele- 
vant to these two systems and, to a lesser extent, to a 
large majority of the other current generation systems. 

SEVEN ISSUES FOR THE NEXT GENERATION 
OF HYPERMEDIA SYSTEMS 
In the three years since its first release, NoteCards has 
been observed in use and misuse in a wide range of 
situations and applications. These observations have 
provided significant insight into the system’s particular 
strengths as well as its weak points. A brief but bal- 
anced assessment of the system is contained in [26]. For 
expository reasons the present article focuses only on 
NoteCards weak points, i.e., on the ways in which the 
system falls short in meeting the needs and preferences 
of its users. 

Many of the NoteCards’ problems are specific to its 
current implementation and could be corrected by lim- 
ited redesign or reimplementation of the existing sys- 
tem. However, several of its problems reflect funda- 
mental weaknesses in the hypermedia model around 
which it is built. It is precisely these fundamental 
weaknesses and the mechanisms for their correction 
that should form the basis for designing the next gener- 
ation of hypermedia. The following sections describe 
seven fundamental limitations evident in NoteCards. 

Issue 1: Search and Query in a Hypermedia Network 
In some sense, hypermedia is navigational access. The 
ability to browse around a network by following the 
links from node to node is a defining feature of hyper- 
media. It is precisely this ability that makes hyperme- 
dia a powerful tool for managing loosely structured 
information. The NoteCards experience suggests, how- 
ever, that navigational access by itself is not sufficient. 
Effective access to information stored in a hypermedia 
network requires query-based access to complement 
navigation. 

NoteCards is fairly typical in the facilities it provides 
for navigational access. To retrieve information stored 
in a network, the typical NoteCards user brings a card 
onto the screen, examines its contents and links, and 
then traverses the link that is most likely to move 
closer to the target information. Fileboxes support such 
localized link traversal by providing a hierarchical 
structure in which information is located by recursive 
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descent through an increasingly specific category struc- 
ture. Such localized link following is augmented by 
global maps of the network contained in browsers. 
These maps allow the user to visually scan for and then 
directly move to areas of the network in which the 
target information is likely to be found. 

Navigational access to information has been ade- 
quate, and occasionally even ideal, for a large number 
of NoteCards applications. These applications can be 
divided into three basic classes. First, the navigational 
access has proven sufficient for the small authoring, 
note taking, and informal knowledge representation 
tasks that NoteCards was originally designed to support. 
In these tasks, an individual or a small (2 to 3 person) 
Workgroup is creating and intensively using a relatively 
small network (50 to 250 cards). Because the network is 
smaI1 and familiar, users have little problem locating 
information. 

A second class of navigational applications are the 
display-oriented representation tasks in which the net- 
work is centered around a single display, usually a 
browser, used to represent a structure being designed 
or studied. The goal of these tasks is to create and 
manipulate this display. In some sense, the network is 
secondary to the display and is used only to create the 
structure to be displayed and to hide unimportant de- 
tails. In these tasks, information access occurs through 
the centra1 dispIay, with little direct card-to-card navi- 
gation. An example of such a network is described in 
P4. 

The third class of navigationally-oriented applica- 
tions is on-line interactive presentations. In these appli- 
cations, the network’s author often includes in each 
card navigational instructions to be used by readers of 
the network. Such guided on-line presentations are dis- 
cussed in [SO]. If no such navigational instructions are 
included, then the network is generally designed to be 
explored by the user in a nondirected manner. 

In contrast to these navigationally-oriented applica- 
tions, there are a variety of applications for which 
NoteCards’ reliance on navigational access is problem- 
atic. These applications are generally characterized by 
large, unfamiliar, heterogeneously structured networks. 
Even in a 500 node single-user network, navigational 
access can be difficult as the network changes and its 
structure becomes heterogeneous. In these cases, navi- 
gational access is problematic because users tend to get 
lost while wandering around in the network looking for 
some target information. Often these users can describe 
exactly what information they are looking for, but sim- 
ply cannot find it in the network. 

An incremental solution to the navigational problems 
encountered in NoteCards would be to improve and 
augment the existing navigation tools. For example, 
browsers could be made significantly more effective by 
applying techniques such as fish-eye views [17] and 
graph flyovers [13]. In addition, new tools such as a 
voting scheme similar to Synview [31] could be imple- 
mented in NoteCards. Although these changes would 

alleviate some of the navigation problems, they would 
not eliminate them entirely. 

A more fundamental solution is to augment naviga- 
tion by a query-based access mechanism. With such a 
mechanism, the user could formulate a query encapsu- 
lating a description of the target information and then 
rely on the system to locate the information in the 
network. As described above, NoteCards already pro- 
vides a very limited query/search facility. Unfortu- 
nately, this search mechanism is too simple and too 
poorly implemented to be very useful. For NoteCards to 
be useful in managing large heterogeneous networks, 
search and query needs to be elevated to a primary 
access mechanism on par with navigation. 

There are two broad classes of query/search mecha- 
nisms needed in a hypermedia system: content search 
and structure search. In content search, all nodes and 
links in the network are considered as independent en- 
tities and are examined individually for a match to the 
given query. For example, all the nodes containing the 
string “hyper*” would be a content query. Content 
search is standard information retrieval applied to a 
hypermedia information base. Basic techniques for con- 
tent searches are well known (see [42]). In addition, 
there are many innovative approaches that could be 
fruitfully explored in a hypermedia environment. For 
example, rule-based retrieval schemes (e.g., RUBRIC 
[Ml], connectionist approaches (e.g., [MI), simple statis- 
tical techniques (e.g., n-gram indexing [XL?]), and spe- 
cialized search hardware (e.g., [28]) are al1 interesting 
candidates for inclusion in a hypermedia content 
search engine. 

Content search ignores the structure of a hypermedia 
network. In contrast, structure search specifically ex- 
amines the hypermedia structure for subnetworks that 
match a given pattern. For example, the following is a 
simple structure query: all subnetworks containing two 
nodes connected by a supports link, where the destina- 
tion node contains the word “hypertext.” This query 
contains a description of node content (i.e., contains the 
word “hypertext”). But it also contains a structural de- 
scription of a subnetwork (Le., two nodes connected by 
a “supports” link). A more complicated structure query, 
involving an indefinite sequence of links, would be 
something like: a circular structure containing a node 
that is indirectly linked to itself via an unbroken se- 
quence of “supports” links. This query could be used, 
for example, to find circular arguments. 

The development of a structure search mechanism 
involves two interrelated subtasks. The first is to design 
a query language geared toward describing hypermedia 
network structures. One approach to this would be to 
develop an analog to regular expressions that would 
encompass arbitrary network (non-linear) patterns. This 
pattern language would need to include the standard 
regular expression operators such as associative group- 
ing, concatenation, alternates, closure, and negation. In 
addition, the language would need some way to express 
forking, e.g., an operator with N regular expression 
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arguments which states that the next entity in the 
network being matched must be N, not necessarily 
distinct, structures each of which matches one of the 
argument expressions. The graphical query language 
presented in [7] provides a limited start to defining a 
network query language of this nature. 

An important consideration in designing this query 
language is the need for a simple interface that is acces- 
sible to the typical hypermedia user, who is unlikely to 
be facile with the intricacies of pattern languages. One 
approach to designing this interface is a network analog 
of Query-by-Example [Xi] in which the user could 
graphically depict the target pattern. Figure 4 shows a 
simple example that is meant to express the query: find 
all subnetworks containing an “Issue” node linked to at 
least two “Position” nodes, each of which has no outgo- 
ing links. The design of a graphical interface of this sort 
is not easy given that operators such as negation (ab- 
sence of a structure) and closure need to be included in 
the representation. 

FIGURE 4. Example of a Graphical Expression of the Query: Find 
All Subnetworks Containing an “Issue” Node Linked to at Least Two 
“Position” Nodes, Each of Which Has No Outgoing Links 

The second major subtask in developing a structure 
search facility is the implementation of a search engine 
capable of satisfying the queries expressible in the new 
language. It is unlikely that efficient search engines can 
be developed to implement the full pattern matching 
capabilities suggested by the foregoing discussion. Thus, 
one of the critical issues for the next generation of 
hypermedia systems is to define a restricted pattern 
matching capability that could be easily implemented 
and yet would satisfy a significant subset of the pattern 
matching requirements of the average hypermedia 
user. 

Once developed, search and query facilities will be 
critical components in several aspects of hypermedia 
systems beyond their basic task of locating information. 
In particular, queries can be used as a filtering mecha- 
nism in the hypermedia interface. In this case, users 
will specify a query in order to describe the informa- 
tion of interest to them. The interface would then dis- 
play only those aspects of the network that matched 
this query, thereby filtering out irrelevant information. 
The NoteCards browser currently operates in this man- 
ner, but only with respect to a very limited set of struc- 
ture queries. A full-blown query mechanism would al- 
low much more interesting browsers to be constructed. 
More importantly, the search/query mechanism could 
be linked much deeper into the interface providing for 
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a pervasive information filtering mechanism that is 
currently absent in NoteCards. Search and query is also 
a critical component of the virtual structures mecha- 
nism described under Issue 3. 

Issue 2: Composites-Augmenting the Basic Node 
and Link Model 
In accordance with the basic hypermedia model, there 
are only two primitive constructs in NoteCards: cards 
and links. All other mechanisms in the system, includ- 
ing fileboxes and browsers, are built up from these two 
constructs. Although this design has been surprisingly 
successful, experience suggests that it is insufficient. In 
particular, the basic hypermedia model lacks a compo- 
sition mechanism, i.e., a way of representing and deal- 
ing with groups of nodes and links as unique entities 
separate from their components. 

Figure 5 shows a typical use for composite structures 
in NoteCards. The figure contains a schematic diagram 
of a CaseCluster card developed to facilitate the encod- 
ing of legal cases into a NoteCards network. When a 
CaseCluster is created, ten individual cards are created 
and linked together as shown in the figure. Taken to- 
gether these ten cards are intended to be a network- 
based form that, when filled in and expanded, encodes 
the analysis of a single legal case. Eight of the ten cards 
are used to contain information about various compo- 
nents of the case. The ninth card is a Browser card 
showing some important structural relations among a 
few of the eight component cards. The tenth card con- 
tains no content information; it is simply a head card 
used to gather the other nine cards into an ad hoc 
grouping. This head card serves an important concep- 
tual function. It is used to represent the legal case (the 
CaseCluster) as a whole. For example, a user wishing to 
create a link to a given legal case creates a link to the 
head card of its CaseCluster. Similarly, properties that 
are true of the case as a whole are attached to the head 
card, rather than to each of the component cards. 

1 Text w Rule # Rule 1 1 

FIGURE 5. CaseCluster “Card” Developed to Facilitate Encoding 
of Legal Cases in NoteCards 

Communications of the ACM 043 



The use of such head cards is fairly common in 
NoteCards. They are an attempt to utilize existing 
mechanisms to implement the composition of individ- 
ual cards and links into higher-level entities. Unfortu- 
nately, the head cards are severely limited as a compo- 
sition mechanism. For example, CaseClusters cannot be 
treated as single (compound) entities in a browser card. 
Browsers can display just the head card, in which case 
the links in and out of the component cards are not 
displayed. Alternatively, browsers can show all of the 
cards in a CaseCluster in the normal manner, in which 
case there is no demarcation that the ten cards in the 
CaseCluster form a conceptual grouping. In short, 
browsers are not able to display CaseClusters appropri- 
ately, i.e., as single entities that inherit all of the links 
in and out of their component cards, This limitation 
and numerous others of a similar nature arise because 
the system does not understand the user-imposed 
semantics of the head card. The user intends the head 
card structure to represent a composition, but the 
system has no understanding of compositions. 

A similar set of problems arises with NoteCards’ no- 
tion of fileboxes. The filebox concept was designed (in 
part) to provide some of the characteristics of a compo- 
sition mechanism with the intent of encouraging hier- 
archical organizational structures. But the concept is 
flawed because it fails to take into account the differ- 
ences between reference relations and inclusion rela- 
tions. In particular, an inclusion relation implies a 
part/whole relationship in which characteristics of and 
operations on the whole will affect the parts as well. 
Reference implies a much looser relationship in which 
the participating entities allude to each other but re- 
main essentially independent. Fileboxes are imple- 
mented using standard links, i.e., using reference rela- 
tionships. But the interface and documentation encour- 
age the user to think of “filing in a filebox” as an 
inclusion relation. Unlike CaseClusters, this “filing as 
inclusion” semantics is supported by the system. Unfor- 
tunately, this support is only partial. The result is con- 
siderable confusion among NoteCards users about the 
proper use of fileboxes. 

An excellent example of this confusion can be seen 
in the task of writing an organized document (e.g., a 
technical report) in NoteCards (see [Sl]). In this task, 
users typically put the text for each subsection and for 
each figure into a separate card. All of the cards for a 
single section are then filed in a filebox. These section 
fileboxes are filed in the appropriate chapter fileboxes, 
which in turn are filed in a single filebox representing 
the document. This scheme is workable. Using the 
NoteCards document compiler, the user can linearize 
the network into a single document card containing all 
of the text and graphics for the document. This docu- 
ment can then be manipulated as a single entity. There 
is a problem, however, in that the document card is a 
separate entity from the source cards stored in the doc- 
ument’s filebox hierarchy. It contains only copies of 
the text/graphics from these source cards. Changes 
made to the text/graphics in the document card are 
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not automatically reflected in the corresponding 
source card. 

Another problem with this arrangement is that the 
user can see the entire document at only one level. 
Despite the elaborate filebox hierarchy, there is no way 
to zoom in and out of the document structure, examin- 
ing its contents at different levels of detail. This capa- 
bility is commonly found in outline processors and is a 
critical component in many writing and information 
organization tasks. As a result, a number of writers 
have abandoned NoteCards in favor of outline proces- 
sors for their simple authoring tasks. 

The solution to these problems with NoteCards is to 
add composition as a primitive construct in the basic 
hypermedia model. Inclusion should be implemented 
within, as opposed to on top of, all hypermedia systems. 
Moreover, all aspects of hypermedia should support in- 
clusion (or part-of) relations as a construct distinct from 
standard (reference) links. Whether or not inclusion 
relations share a common implementation mechanism 
with standard links is unimportant, so long as the se- 
mantics of inclusion, as opposed to reference, are fully 
supported. 

I I 1-1 

FIGURE 6. Proposed CaseComposite to Replace the CaseCluster 
shown in Figure 5 

Figure 6 shows a schematic example of the Case- 
Cluster redesigned to be a CaseComposite. In this rede- 
sign, the head card is replaced by a composite node that 
directly or indirectly contains all of the components 
nodes. One of the nodes it directly contains is a 
browser, which itself is a composite that contains the 
subnetwork it depicts. Note that this is a significant 
change from the NoteCards browser which references, 
but does not contain, the subnetwork it depicts. 

The display in Figure 6 is very reminiscent of the 
displays produced by IGD (Interactive Graphical Docu- 
ments) [IQ], [IS], a hypermedia system designed to sup- 
port the creation and presentation of electronic techni- 
cal manuals. IGD includes a well developed notion of 
hierarchical node composition, IGD’s basic nodes are 
called pages and serve both as nodes in the hypermedia 
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network and as leaf nodes in a composition hierarchy. 
Pages contain the textual and graphical content of the 
system. The interior nodes in the composition hier- 
archy are called chapters and serve to recursively 
group pages and chapters into higher level chapters. 
The design of IGD paid special attention to the issues of 
displaying composites (chapters), including strategies 
for using the composition hierarchy to minimize clutter 
and hide unnecessary details. Interestingly, many of the 
solutions developed in IGD are redeveloped by Hare1 
[27] in his higraph formalism, 

IGD aside, the current generation of hypermedia sys- 
tems generally lacks adequate composition mecha- 
nisms. Designing a composition mechanism appropriate 
for inclusion in these systems raises a host of interest- 
ing questions and issues including, for example: 

l Can a given node be inchided in more than one com- 
posite? 

l Do links necessarily refer to a node per se or can they 
refer to a node as it exists within the context of a 
given composite? If the latter is possible, what does it 
mean to traverse a link? 

l How does one handle versions of composite nodes? 
Does a new version of an included node necessarily 
imply a new version of the composite? 

l Should composites be implemented using specialized 
links or is a whole new mechanism necessary? 

These issues present a challenging design problem for 
future hypermedia systems. However, the task is not 
impossible. NLS/Augment [ll] has (of course) already 
pioneered much of the territory. The goal for the next 
generation, then, is to pick up where the pioneers left 
off and to further develop the role of composition in 
hypermedia systems. 

Issue 3: Virtual Structures for Dealing with Changing 
Information 
Hypermedia systems tend to have difficulty with rap- 
idly changing information, This difficulty arises from 
the essentially static and fragmentary nature of the 
hypermedia data model. By definition hypermedia 
encodes information into a collection of independent 
nodes interconnected into a static network. This net- 
work does not change unless it is explicitly edited by 
the user or some other external agent. In particular, 
the network cannot reconfigure itself in response to 
changes in the information it contains. This lack of 
dynamic mechanisms limits the utility of hypermedia 
in many task domains. 

In NoteCards, the static nature of hypermedia has led 
to what can be called “the problem of premature orga- 
nization.” NoteCards requires its users to segment their 
ideas into individual nuggets to be stored away, one per 
card. Each of these cards then needs to be assigned a 
title and filed in at least one filebox. Empirical observa- 
tions [37] have shown that these three seemingly trivial 
tasks pose significant problems for many users. In par- 
ticular, a user in the very early stages of working with a 
particular set of information may not sufficiently un- 

derstand the content and structure of that information. 
Knowledge about the critical dimensions of the idea 
space, the characteristics which distinguish one idea 
from another, and appropriate naming schemes devel- 
ops over time as the user becomes familiar with the 
information. A problem arises because the segmenta- 
tion, titling, and filing tasks all require the user to have 
such knowledge up front. As the user’s knowledge of 
the information space evolves, previous organizational 
commitments (titles and filing categories] become 
obsolete. 

Experienced NoteCards users get around this prob- 
lem by adopting various strategies to delay the segmen- 
tation, titling, and filing of information. To avoid pre- 
mature segmentation, these users will place the entire 
idea stream in a single text card. They will go back and 
review the entire stream before segmenting into sepa- 
rate cards. To avoid premature filing, experienced users 
file all cards in a single filebox and then use a sketch 
card to organize their cards into piles based on some 
judgment of similarity or belongingness. These piles 
can be easily shifted or rearranged when new informa- 
tion comes in. When the piles are stable, they can be 
transferred into a filebox structure. 

These solutions to the problems of premature organi- 
zation serve to highlight the difficulties of handling rap- 
idly changing information in NoteCards. Even with 
these advanced strategies, users’ conceptual structures 
have a tendency to change faster than their correspond- 
ing NoteCards structures. The result is that the Note- 
Cards structures are often obsolete with respect to 
the users’ current thinking. To some extent, this situa- 
tion is unavoidable because it will always be easier, 
quicker, and less tedious to change one’s internal con- 
ceptual structures than it will be to update the external 
representations of these conceptual structures. 

NoteCards’ difficulties in dealing with changing in- 
formation could be partially eliminated by improve- 
ments in the user interface. Relaxation of the strict 
titling and filing requirements is an often requested 
NoteCards enhancement that would certainly help 
minimize this pressure. Providing less stringent organi- 
zational structures such as the similarity piles de- 
scribed previously would also provide a more natural 
environment for some organizational tasks. Increasing 
the ease by which structures could be modified (for 
example, improving browser-based editing) would 
make it easier for users to track their changing internal 
structures. 

At a more fundamental level, however, the solution 
to the problem of premature organization is a relaxa- 
tion of the overly static nature of hypermedia. Specifi- 
cally, the hypermedia model needs to be augmented 
with a notion of virtual or dynamically-determined 
structures. In the current model, nodes and links are 
extensionally defined, that is nodes and links are de- 
fined by specifying the exact identity of their compo- 
nents. In contrast, virtuaI structures are defined inten- 
tionally, that is, by specifying a description of their 
components. The exact subcomponents of a virtual 
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structure are determined by a search procedure when- cient to implement arbitrary conditional links. How- 
ever the structure is accessed or instantiated. For ex- ever, depending on the exact semantics of the query 
ample, a virtual composite node might be defined by a processor being used (in particular on how multiple hits 
specification of the form: a subnetwork containing all are ordered), the specific example above could be satis- 
nodes created by someone other than me in the last fied by a virtual link whose source is node A and whose 
three days. Each time this composite was accessed, its destination is specified by a query of the form: (or (con- 
structure and content would be recomputed. tains Q) (contains P)). 

The notion of virtual structures for hypermedia is a 
direct adaptation of the concept of views (a.k.a. virtual 
tables) in the world of relational database systems [8]. 

In a relational database, a view is a table constructed at 
instantiation time by applying a view definition to data 
explicitly stored in base (or nonview) tables. The goal 
(which is not always realized in implementation) is to 
make view-based tables identical to base tables from a 
user’s perspective. All the same operations should ap- 
ply, including updates. Although virtual structures in a 
hypermedia network would be significantly more com- 
plex than views in a relational database, the same prin- 
ciple of nondifferentiation at the interface should apply. 
Any operation possible on a base hypermedia entity 
should apply to virtual structures as well. 

The notion of virtual links in hypermedia has already 
been explored in ZOG [40] which includes a small set 
of navigational links that are constructed whenever a 
node is accessed and displayed. These links connect the 
displayed node to nodes that the user has recently vis- 
ited, thereby allowing users the ability to move quickly 
back from whence they came. In future systems, the 
notion of virtual links should extend far beyond such 
simple navigational applications. 

The notion of virtual structures in hypermedia would 
be possible only in a system that supported a substan- 
tial search/query mechanism over the hypermedia net- 
work. The definition of the components in virtual 
structures are in fact queries. Instantiating a virtual 
structure involves satisfying these queries and con- 
structing a dynamic entity from the results. Although it 
is not a strict requirement, it would make sense for the 
query language used for virtual structure descriptions 
to be the same as the query language used for searches 
and interface filters. 

Implementing virtual nodes, links, and composites 
will be a difficult task in the next generation of hyper- 
media systems, especially when response time is an 
important factor. Nevertheless, virtual structures will 
provide these systems with an ability to adapt to chang- 
ing information in a way that is simply not possible 
with the current static hypermedia model. Although 
virtual structures will not replace static structures 
(since not every relation can be described by a query), 
they are certain to be critical components in all future 
hypermedia networks. 

Virtual structures are a particularly powerful mecha- 
nism when combined with the notion of composites. A 
virtual composite allows the user to create nodes that 
are dynamically constructed at access time from other 
nodes, links, and composites that are stored in the net- 
work. Such virtual composites are true hypermedia en- 
tities and not simply a display of results from a query. 
Thus, the user can add links, properties or additional 
static descriptions to a virtual composite. Browsers, for 
example, could be implemented as virtual composites 
built from the results of a structure query. 

Issue 4: Computation in (over) Hypermedia Networks 
Hypermedia systems are generally passive storage and 
retrieval systems. They provide tools for users to de- 
fine, store, and manipulate a hypermedia network. In 
service of this goal, they do some processing of the 
network and the information it contains. For example, 
most browsers compute the transitive closure defined 
by a root node and a set of link types. Hypermedia 
systems, however, do not actively direct the creation 
or modification of the network or the information con- 
tained therein. Unlike expert systems, for example, 
hypermedia systems do not include inference engines 
that actively derive new information and enter it into 
the network. 

Virtual links are also an intriguing possibility. Such 
links could, for example, specify their source exten- 
sionally and their destination intentionally. Thus one 
could link from the “ClaimX” node to “the node con- 
taining the currently strongest evidence that supports 
ClaimX.” This link could even be created in the ab- 
sence of any evidence in support of ClaimX. This 
would effectively create a dangling link with the expec- 
tation that an appropriate destination node will appear 
at some later time. To take the example one step fur- 
ther, one NoteCards user requested conditional links, 
i.e., links whose specification is of the form: if evidence 
Q is present, then link from node A to the node con- 
taining Q; otherwise link from node A to the node con- 
taining P. In general, a simple virtual link is not suffi- 

Although designed as a passive hypermedia system, 
NoteCards is frequently augmented by active computa- 
tional engines for particular applications. In one case 
NoteCards was augmented to function as the delivery 
vehicle for computer-assisted instruction [41]. In this 
case, the applications developers implemented a driver 
that retrieved and interpreted special script cards. 
These script cards orchestrated the display of other 
cards containing instructional and test material. Stu- 
dents were expected to answer the test material and 
their answers were stored in special cards in the net- 
work. The driver then used these answers together 
with the instructions in the script cards to determine 
what material to display next. In a more advanced ver- 
sion of this application, the driver was a rule-based 
system that examined a number of cards in the net- 
work, including the cards containing the student’s pre- 
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vious answers, in order to determine the appropriate 
material to present. 

In the foregoing example there is a clear separation 
between NoteCards per se and the computational en- 
gine embodied in the driver. The computational engine 
is not integrated into NoteCards. Rather it serves to 
consume and produce cards and links through the pro- 
grammer’s interface in much the same sense that a 
(human) user of the system consumes and produces 
cards and links through the user interface. Aside from 
the programmatic access to information in the network, 
NoteCards contains no special support for computa- 
tional engines of this sort. 

It is unclear whether the level of support that Note- 
Cards provides for computational engines is appropriate 
for future hypermedia systems. Designers of such sys- 
tems could follow the NoteCards model and continue to 
support computational engines as separable external 
entities that create, access, and modify information via 
the standard programmatic interface. Alternatively, one 
could design a hypermedia system incorporating a more 
active computational component that automatically 
processes (makes inferences from) the information 
stored in the network. In this case, the hypermedia 
system would function more like a knowledge-based 
Al system, both storing and actively processing the 
information. 

The integration of hypermedia and AI technology is 
an interesting direction to explore. In many ways, hy- 
permedia and knowledge-based systems are a natural 
fit. In particular, at a high level of abstraction, hyper- 
media systems, frame-based systems [16], and object- 
based systems [47] present nearly identical data 
models. Each of these technologies is based around the 
notion of typed, slotted entities that form a network 
structure via inter-entity references. The technologies 
differ in the specific aspects of this basic model that are 
chosen for further development. Hypermedia systems 
focus on heavyweight entities (whole documents) and 
inter-entity references (links). Object-based systems 
focus on defining the type (class) hierarchy for the enti- 
ties and the operations (methods) that can be performed 
on the instances of each type. Frame-based systems fo- 
cus on issues such as inheritance and defaulting of slot 
values, as well as on the integration of truth mainte- 
nance, inference engines, and rule-based reasoning 
with the frame representations. It is this latter focus on 
computational engines that is of most interest in the 
present context. A merging of concepts from frame- 
based systems into the design of hypermedia systems 
would be a sensible way to approach the integration of 
hypermedia with rule-based, truth-maintenance, and 
other computational engines. In a more general context, 
it is clear that a liberal borrowing of ideas from frame- 
based and object-based technologies would be very 
beneficial to the advancement of hypermedia systems. 

To a great extent the choice between a passive and 
an active hypermedia system is an efficiency versus 
generality trade-off. The ultimate functionality for the 

approaches is approximately the same. However, the 
distribution of responsibility and effort is different. 
Computation built into the hypermedia system is likely 
to be more efficient, especially when that computation 
involves extensive access to information in the net- 
work. In contrast, an external computational engine is 
less restricted since no commitment to a particular 
computational engine needs to be made when the sys- 
tem is implemented. Thus, the choice between an ac- 
tive and a passive hypermedia system will be deter- 
mined largely by the intended applications and the per- 
formance needs of these applications. Whichever 
architecture is chosen, it is clear that hypermedia sys- 
tems in the next generation will have to accommodate 
the integration of hypermedia with computation. 

Issue 5: Versioning 
Versioning is an important feature in hypermedia sys- 
tems. A good versioning mechanism will allow users to 
maintain and manipulate a history of changes to their 
network. It will also allow users to simultaneously ex- 
plore several alternate configurations for a single net- 
work. Unfortunately, NoteCards has no versioning 
mechanism. Each card and link exists in only one ver- 
sion and is altered in place when modified. As a result, 
the range of applications that can be easily supported in 
NoteCards is severely limited. For example, NoteCards 
has never been used for maintaining software due, in 
part, to the overwhelming importance of versioning in 
configuration management. The lack of versioning has 
had a lesser impact on the authoring, argumentation, 
and idea processing tasks for which NoteCards was 
originally designed. Although users in these applica- 
tions frequently request versioning support, they have 
been able to make significant progress in its absence. 

NoteCards lags behind its cohort systems in this 
arena. Both Neptune and Intermedia provide some ver- 
sioning support. Neptune, for example, provides a time- 
based linear version thread for individual nodes and 
links. The system also provides a partitioning scheme 
called contexts [lo] that allows users to begin an inde- 
pendent version thread for a given set of nodes. Inter- 
media, like NoteCards, keeps only a single version of 
each node. Intermedia does, however, have a notion of 
alternative named versions of the web, i.e., the set of 
links that interconnect a collection of documents. This 
allows each user, project, or application to work with 
its own network structure over a common set of docu- 
ment nodes. 

PIE [z!] included a more extensive versioning mech- 
anism than either Neptune or Intermedia. In the PIE 
model, versioning in a hypermedia network occurs at 
two levels: the level of individual entities (nodes, links, 
composites) and the level of changes to the hypermedia 
network considered as a whole. At the lower level, 
each entity has its own version history. In PIE the ver- 
sion history was a linear thread, but in the general case 
it could be a directed acyclic graph. Although the issue 
was not specifically addressed in PIE, it is important to 
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provide (virtual) entities corresponding to both specific 
versions of an entity and the differences (deltas) be- 
tween successive versions. Both the versions and the 
deltas should be addressable within the system, that is, 
they should be possible hits for a search. In a software 
engineering context it should be possible to search for 
either the version that implements Feature X or the set 
of changes that implements Feature X. One possibility 
would be to treat the deltas between successive ver- 
sions as special hypermedia nodes capable of being 
annotated and referenced. 

Providing a branched version history for all entities 
in a hypermedia network raises some very difficult 
issues regarding the semantics of references between 
entities. In particular, a reference to an entity may refer 
to a specific version of that entity, to the newest ver- 
sion of that entity, to the newest version of that entity 
along a specific branch of the version graph, or to the 
(latest) version of the entity that matches some particu- 
lar description (query). Which of these reference types 
is supported is a decision that affects the entire hyper- 
media system. It is an especially critical decision in the 
design of links and composites. Moreover, composites 
raise the related problem of propagating version 
changes from subcomponents to their composites. For 
example, a significant change in an individual software 
module implies the creation of a new version of the 
system of which that module is a part. In contrast, up- 
dating the spelling of a few words in a paragraph may 
not require the creation of a new version of the docu- 
ment(s) containing that paragraph. 

Although maintaining a version thread for each indi- 
vidual entity is necessary, it is not a complete version- 
ing mechanism. In general, users will make coordinated 
changes to a number of entities in the network at one 
time. A software developer may implement a new fea- 
ture by making coordinated changes to a number of 
separate modules. The developer may then want to col- 
lect the resultant individual versions into a single ver- 
sion set for future reference. This set would be a snap- 
shot of the collection of entities at some particular point 
in time, that in the software domain is often called a 
release. 

An alternative to version sets, is the layer mechanism 
used in PIE. A layer is a coordinated set of changes to 
one or more entities in the network. For example, all of 
the changes made to various modules in a software 
system could be collected into a single layer described 
as the changes that implement Feature X. The resulting 
layer could then be applied to the prechange versions 
of the entities to get the postchange versions. 

In a layer-based system, the primary issue is the set 
of mechanisms available for managing and for compos- 
ing layers. In PIE, there were constructs called contexts 
that were essentially sequences of layers. The hyper- 
media network for a given context was determined by 
applying the first layer to the base network and then 
applying the next layer to the result and so on through 
the sequence of layers in the context. New contexts 
could be created by mixing and matching the layers 

from other contexts and then producing a hypermedia 
network by successive applications of the layers in the 
context. However, not all such constructions made se- 
mantic sense. PIE attempted to aid the user in deter- 
mining which contexts were sensible and which were 
not. 

One important application of the notion of contexts is 
to provide a collaborative system (see Issue 6) in which 
each user maintains a private context through which 
the user interacts with the hypermedia network. Each 
user’s context contains a base layer that is the public 
hypermedia network. On top of this base are one or 
more personal layers which alter the base network to 
provide a personalized view. At any time a user’s view 
can become public by applying the layers in the user’s 
view to the layers in the base system (and informing 
any collaborators to use this new base network in their 
contexts). 

Although PIE never emerged from the research proto- 
type stage, aspects of the PIE versioning mechanism 
later appeared in the Loops knowledge base [z] and in 
Definition Groups [?I]. Unfortunately, the lessons of PIE 
have been largely ignored by the hypermedia commu- 
nity. Although the PIE versioning scheme is not perfect, 
it is richer and more complete than those provided by 
most hypermedia systems. One of the critical design 
issues facing the next generation of systems is a rich 
versioning model for hypermedia networks. The PIE 
model seems like an appropriate place to start in resolv- 
ing this issue. 

Issue 6: Support for Collaborative Work 
Hypermedia is a natural medium for supporting collab- 
orative work. Creating annotations, maintaining multi- 
ple organizations of a single set of materials, and trans- 
ferring messages between asynchronous users are the 
kinds of activities that form the basis of any collabora- 
tive effort. These are also activities for which hyper- 
media systems are ideally suited. 

Unfortunately, NoteCards was originally designed as 
a single user system. Collaboration was seen as occur- 
ring outside of the system, through face-to-face conver- 
sations, electronic mail, or hardcopy documents. In 
practice, however, this has rarely been the case. Most 
idea processing and information management tasks are 
inherently collaborative, with groups of two to ten peo- 
ple working on a common project. As detailed in [so], 
NoteCards users have to work hard to overcome the 
system’s limitations in such collaborative environ- 
ments. 

Other members of the current generation fare slightly 
better than NoteCards in this arena. KMS, Intermedia, 
and Neptune all provide simultaneous multiuser access 
to their hypermedia networks. Although this access is 
supported by some degree of concurrency control, none 
of these systems includes the kind of sophisticated con- 
currency management necessary for efficient collabora- 
tive work. For example, no system includes a mecha- 
nism for notifying users of important actions being 
taken by other users. More importantly, none of the 
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systems provides support for collaboration beyond the 
simple mechanics of sharing data. The social interac- 
tions involved in sharing a hypermedia network are 
simply not supported. 

The next generation of hypermedia needs to drasti- 
cally improve support for collaborative work in these 
two disparate but interrelated areas: the mechanics of 
simultaneous multiuser access to a common network, 
and the social interactions involved in collaboratively 
using a shared network. Supporting the mechanics of 
multiuser access involves extending the standard tech- 
nologies for shared databases (e.g., transactions, concur- 
rency control, and change notification) to handle the 
special requirements engendered by hypermedia. With 
respect to transactions, hypermedia systems clearly 
need to support long to very long transactions. For ex- 
ample, if a network contains large documents, a user 
may require anywhere from a few minutes to several 
days to make a single update to a node. This update 
should be atomic, independent of the duration of the 
update. Techniques for handling such long transactions 
are areas of active study in the database literature [18] 

and should be incorporated into hypermedia systems. 
A closely related issue is concurrency control in hy- 

permedia networks. Classical hard locking techniques 
for concurrency control are generally inappropriate for 
multiuser hypermedia. Standard read/write locks tend 
to be overly restrictive, preventing multiple users from 
working on the same node or link even when it is 
appropriate for them to do so. For example, it is often 
appropriate for one person to be updating a node while 
another is annotating it by creating links. With a simple 
read/write locking protocol, the write lock obtained by 
the updator would prevent simultaneous link creation 
by the annotator. The solution to this particular prob- 
lem is to provide locking at a finer grain of activity: 
updating the contents of a node should be locked inde- 
pendently of creating/updating links into and out of 
the node. On a more general level, collaborative use of 
hypermedia networks requires softer locking protocols 
such as those discussed in [24]. These protocols allow a 
greater degree of concurrent work on a single entity 
(node or link) at the risk of increasing the number of 
conflicting operations on that entity. The impact of the 
increase in conflicts is minimized by conflict resolution 
schemes that are less drastic than simply aborting one 
of the conflicting operations. For example, in a hyper- 
media network with a sophisticated versioning model, a 
conflicting update could simply create a branch in the 
version tree for the affected node (or link) and then 
notify the users that there is a conflict to be resolved 
offline. 

Notification of interested parties when certain critical 
events occur is another mechanism of special impor- 
tance to collaborative hypermedia. In general, users 
should be notified when an important event has oc- 
curred on any node, link, or composite of interest to 
them. This notification should take place as early as 
possible-notification should occur when a user signals 
an intention to update a node (by obtaining a write lock 
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on that node) rather than when the updated node is 
actually entered into the network [48]. Such early noti- 
fication ensures that collaborative users can detect pos- 
sible conflicts as early as possible and modify their ac- 
tions accordingly. Thus, notification is a partial solution 
to the increase in conflicts brought about by soft locks. 
More importantly, notification is an automatic mecha- 
nism that helps multiple users coordinate their ongoing 
work in a shared hypermedia network. 

In the area of support for the social interactions in- 
volved in collaborative use of a shared network, the 
critical notion is mutual intelligibility [SO]. In a collabo- 
rative effort, each participant must have some degree of 
understanding of the actions and intentions of any col- 
laborators. In the hypermedia context, collaborative 
users need to understand not only the content of the 
collaborative network but also the accepted procedures 
to be used to modify that network. Trigg, Suchman, and 
Halasz [SO] describe three kinds of collaborative activi- 
ties that occur within a shared hypermedia network. 
Substantive activities constitute the work at hand, the 
writing of the coauthored paper. Annotative activities 
involve annotating the substantive work using com- 
ments, critiques, questions, etc. Procedural activities in- 
volve discussions, decisions, and other actions focusing 
on the use of the network and the procedures for col- 
laboration. Writing a coauthored paper is a substantive 
activity. Commenting on your coauthor’s draft is an 
annotative activity. Deciding how to distinguish addi- 
tions and deletions as the draft is passed back and forth 
is a procedural activity. Trigs et al. suggest that existing 
hypermedia systems focus primarily on supporting sub- 
stantive and annotative activities. Explicit support for 
procedural activities is very rare. 

In examining collaborative use of NoteCards, Trigg et 
al discovered that even without explicit support, users 
engaged in procedural activities including maintaining 
history cards detailing changes made during each ses- 
sion, creating and maintaining a bulletin board for post- 
ing messages between asynchronous collaborators, and 
engaging in explicit discussions (within a card) about 
proper conventions for carrying out specific tasks in the 
network. An example of the latter was a discussion 
about how to use font styles to distinguish the specific 
contributions of the various collaborators. All of these 
procedural activities were supported in NoteCards us- 
ing ad hoc structures and labor-intensive procedures. 
Clearly, much of this work could be directly supported 
by the system. Operations such as maintaining change 
histories and message posting areas, tracking and dis- 
playing the specific contributions made by each indi- 
vidual, and recording decisions about usage conven- 
tions could easily be automated or semiautomated 
within a hypermedia system. 

At a more abstract level, achieving mutual intelligi- 
bility in hypermedia-based collaborations will require 
the development of a rhetoric of hypermedia. This rhet- 
oric will provide guidelines and conventions for creat- 
ing hypermedia networks that will be understandable 
by others who share the rhetoric. Interestingly, the de- 
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velopment of these conventions is a crucial issue that 
can only be solved by accumulated experience in using 
hypermedia systems in real world tasks. 

Based on his several years experience in developing 
courseware materials for the Intermedia system, Lan- 
dow [SO] has developed the beginnings of just such a 
rhetoric. Of particular interest is Landow’s observation 
that materials developed for nonlinear presentation in a 
hypermedia system require special discourse tech- 
niques to accommodate the process of link traversal. 
These techniques, which Landow calls the rhetoric of 

arrival and the rhetoric of departure, are needed to pro- 
vide the reader with information about the relationship 
being indicated by the link. The departure rhetoric has 
to convey information about why the link should be 
followed, while the arrival rhetoric needs to convey 
information about how the node just arrived at relates 
to the context from which the user departed. These 
new rhetorical devices, and many more like them, are 
needed to help users deal with the difficult issues en- 
gendered by the ability to create documents that no 
longer have a fixed linear ordering. As our experience 
with hypermedia increases, many more such devices 
should evolve. 

The next generation of hypermedia needs to focus 
equally on improvements in the technologies for shared 
databases and on improvements in the support for the 
social interactions involved in the collaborative use of a 
shared network. Both are necessary if hypermedia is to 
realize its potential as an ideal vehicle for supporting 
collaborative work. 

Issue 7: Extensibility and Tailorability 
The broad applicability of hypermedia systems stems 
from the inherent flexibility of the basic hypermedia 
model. The hypermedia model provides a set of very 
general abstractions, nodes, links, and composites. The 
user is responsible for properly applying these abstrac- 
tions to the task at hand. In this sense, a hypermedia 
system is just a tool for creating, manipulating, and 
displaying nodes of information embedded into a net- 
work structure. To the system, all nodes and links are 
essentially the same: objects to be stored, retrieved, dis- 
played, interconnected, etc. To the user, nodes and 
links are filled with meaningful contents and organized 
into meaningful structures. The system cannot operate 
directly on this meaning. It simply provides a collection 
of generic tools that can be used to manipulate net- 
works in meaningful ways. 

This generic nature of hypermedia systems is both a 
blessing and a curse. It is a blessing because it allows 
hypermedia to be useful in a wide variety of task do- 
mains and user populations. It is a curse because ge- 
neric hypermedia is not particularly well suited to any 
specific task or style of use. Thus, hypermedia users are 
faced with a tool that is clearly useful but not particu- 
larly well adapted to the specific task at hand. In the 
NoteCards user community, for example, the most fre- 
quent complaint is the lack of a strategy manual with 

examples showing successful uses of the system in spe- 
cific tasks. The problem is that each new NoteCards 
user is faced with a significant database design task. 
The user has a familiar collection of information that 
must be translated into some NoteCards structure. This 
representation task is not always straightforward since 
the familiar structure of the information may be very 
different from the cards, links, and fileboxes provided 
by the system. For example, in a legal application the 
user might have entities such as cases, briefs, evidence, 
citations, etc. that need to be filed and interconnected 
in accordance with a standard set of legal relationships. 
To the casual user it is not obvious how to do this. 
Should each case be a text card or a filebox? Should 
evidence be stored in the same card as the case or in a 
separate card connected to the case by a link? What 
type of link? In large database systems, such design 
problems are usually assigned to a professional data- 
base designer. In hypermedia systems, these problems 
are frequently left in the laps of individual users. 

To offset the difficulties caused by their generic 
nature, most hypermedia systems are designed to be 
extensible and tailorable. The expectation is that users 
will extend the system with new functionality or tailor 
the existing functionality to better match the exact re- 
quirements of their application. Users with legal appli- 
cations might tailor the system’s user interface to their 
specific task by replacing the generic nodes and links 
with the appropriately specialized entities such as 
cases, briefs, and citations. The CaseCluster shown in 
Figure 5 is an example of such a tailored entity. 

In NoteCards, as well as in systems such as Interme- 
dia and Neptune, the primary mechanism for extensi- 
bility and tailorability is a programmer’s interface 
which provides programmatic access to all of the sys- 
tem’s functionality including the mechanisms for ex- 
tending the system’s hierarchy of node and link types. 
In practice, the NoteCards programmer’s interface has 
been very successful. In addition to the many users 
who have done minor tailoring of the NoteCards inter- 
face, there have been several major new systems built 
on top of NoteCards using the programmer’s interface 
[25], [51]. Trigg, Moran, and Halasz [51] describe in 
some detail the extensible and tailorable nature of 
NoteCards, including examples of its use, problems 
with its implementation, and prospects for its improve- 
ment. 

Despite its success, the NoteCards programmer’s in- 
terface failed to meet one of its explicit design goals: 
that minor changes to NoteCards should be achievable 
with a small amount of work by casual, nonprogram- 
ming users. In its current form, the programmer’s inter- 
face provides significant functionality only to those 
who have a fair degree of expertise in programming 
and system implementation. Unfortunately, this is true 
of the tailoring interfaces in most of the current genera- 
tion of hypermedia systems as well. The challenge, 
then, is to design mechanisms for the small tailorability 
of hypermedia systems. The goal is to make it easy for 
the large majority of nonprogramming users to make 
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small changes to the system with a minimal amount of 
effort. This goal should be achieved without interfering 
with the current facilities that allow expert program- 
mers to make major changes or extensions to the sys- 
tem. 
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GNU Emacs [46] and Apple Hypercard/Hypertalk 
[23] are two systems worthy of study. Neither is a true 
hypermedia system (although both include some hyper- 
media features), but both have a kind of extensibility 
and tailorability that should be standard in future hy- 
permedia systems. The critical characteristic of both is 
that they are built around an interpreter for a fully- 
functional programming language that is specially de- 
signed for the kind of objects and operations commonly 
handled by the system. Aside from a basic kernal, all of 
the system’s functionality is implemented using this 
programming language. Moreover, the interface to the 
language/interpreter has a kind of scalability. Simple 
things can be done using single commands or even by 
direct manipulation. Yet it is also possible to write large 
and complex programs to make major changes or ex- 
tensions. In GNU Emacs, this language is a dialect of 
Lisp with extensions to handle the common operations 
on Emacs objects such as files, buffers, and windows. 
Emacs includes mechanisms for incorporating new or 
amended Lisp functions into a running system, for eval- 
uating single Lisp expressions from the user interface, 
and for creating “programs” by enacting the keystrokes 
that would normally be used to implement the desired 
functionality. The result of these mechanisms is a 
highly adaptive system that can be tailored by users 
with a wide variety of expertise and requirements. 
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