
REFLECTIONS ON
NOTECARDS: SEVEN
ISSUES FOR THE
NEXT GENERATION
OF HYPERMEDIA

NoteCards, developed by a team at Xerox PARC, was designed to support the
task of transforming a chaotic collection of unrelated thoughts into an integrated,
orderly interpretation of ideas and their interconnections. This article presents
NoteCards as a foil against which to explore some of the major limitations of the
current generation of hypermedia systems, and characterizes the issues that must
be addressed in designing the next generation systems.

FRANK G. HALASZ

Hypermedia is a style of building systems for informa-
tion representation and management around a network of
multi-media nodes connected together by typed links.
Such systems have recently become quite popular due
to their potential for aiding in the organization and
manipulation of irregularly structured information in
applications ranging from legal research to software
engineering. Moreover, there is something alluring
about navigating through a hypermedia network fol-
lowing links from node to node until you find some
information of interest. But as the current crop of hy-
permedia systems moves into more widespread use, the
limitations of the hypermedia concept are becoming in-
creasingly apparent. The simple node and link model is
just not rich and complete enough to support the infor-
mation representation, management, and presentation
tasks required by many applications. This article pre-
sents the NoteCards system as a foil against which to
examine some of these limitations in the current gener-
ation of hypermedia systems. By examining the major
weaknesses in the design of NoteCards, the article
characterizes seven critical issues that need to be

01988 ACM OOOl-0782/88/0700-0836 $1.50

resolved in designing the next generation of hyper-
media.

NOTECARDS IN BRIEF
NoteCards is a general hypermedia environment that is
fairly typical of the generation of workstation-based
systems that is currently moving from the research lab
into widespread use (e.g., Intermedia [35] and Neptune
[9]), NoteCards was designed to help people work with
ideas. Its intended users are authors, researchers, de-
signers, and other intellectual laborers engaged in ana-
lyzing information, constructing models, formulating
arguments, designing artifacts, and generally processing
ideas. The system provides the user with a network of
electronic notecards interconnected by typed links.
This network serves as a medium in which the user
can represent collections of related ideas. It also func-
tions as a structure for organizing, storing, and retriev-
ing information. The system includes facilities for dis-
playing, modifying, manipulating, and navigating
through this network. NoteCards was developed by
Randall Trigg, Thomas Moran and the present author at
Xerox PARC. A more detailed discussion of the system,
its design goals, and our experiences with its use can be
found in [26].

836 Communications of the ACM July 1988 Volume 31 Number 7

Four Basic Constructs
NoteCards is implemented within the Xerox Lisp pro-
gramming environment and is designed around two
primitive constructs, notecards and links. In the basic
system, these two primitives are augmented by two
specialized types of cards, browsers and @boxes, that
help the user to manage large networks of cards and
links.

l Notecards. A notecard is an electronic generalization
of the 3x5 paper notecard. Each notecard contains an
arbitrary amount of some editable substance such as
a piece of text, a structured drawing, or a bitmap
image. Each card also has a title. On the screen, cards
are displayed using standard Xerox Lisp windows as
shown in Figure 1. Every notecard can be edited, that
is, retrieved from the database and displayed on the
screen in an editor window. There are various types
of notecards, differentiated (in part) by the nature of
the substance (text or graphics) that they contain. In
addition to a set of standard card types, NoteCards
includes a facility for adding new card types, ranging
from small modifications to existing card types (e.g.,
text-based forms) to cards based on entirely different
substances (e.g., animation cards).

; ’ SPEClAl
1 1 ISSUE

PM
l Links. Links are used to interconnect individual note-

cards into networks or structures of related cards.
Each link is a typed, directional connection between
a source card and a destination card. The type of a
link is a user-chosen label specifying the nature of
the relationship being represented. Links are an-
chored by an icon at a specific location in the sub-
stance of their source card, but are anchored to their
destination card as a whole. Clicking the mouse in
the link icon traverses the link, that is, retrieves the
destination card and displays it on the screen. In
Figure 1, each of the two cards contains two em-
bedded link icons.

l Browsers. A browser is a notecard that contains a
structural diagram of a network of notecards. Fig-
ure 2 shows a Browser card for a network composed of
8 cards and 8 links. The cards from this network are
represented in the browser by their title displayed in
a box. The links in the network are represented by
edges between the boxed titles. Different dashing
styles distinguish different types of links. The dia-
grams in Browser cards are computed for the user by
the system. Once created, browsers function like

Even though the weapons in question
replace older weapon3 (the Pershing
IA and the Vulcan bomber), both are
capable of more destruct ion faster
than their predecessors, This is the
result of new radar guidance
systems, with new levels of acc:uracy.
Also have sufficient range to mak.e
vulnerable installations and cities in
the ‘Western USSR, in the case of the

p 2, within a matter of minutes.

373) See)Guicknce of Pershing II

“The new American Pershing II
misuile, fitted with a. ra.dar-hominy
warhead, is designed to be even
more accurate. As it falls b:ack to
earth this c.ompare3 a ra.dar image
of the target with an image stored in
its computer memory. It shoulld
then be able to sdjust its flight path
50 a.3 to hit its taroet with Din-Point

I[/;
I

accuracy .after :a j;urney Jf 1 ,&I]11

I I

$$ produces speeds of 8OOkmjh ov&
::::I:::::;::

~ilon~ctcrs.” (p, 13) I I
;::.:::::::::

;:y: rl:̂ ,-^^^r. -6 3 4=inn I.,.-. ElkA:,,:,, r.orr:aa ,_
::::g::::: :.:.:.:.:a:.:

UIJL~.lkL~J B-II c LlUU r.,II. ~IYIIz.JIIC La, I ,=a a

computer whi&h is programmed with maps
of the areas missile is to fly over, so can
compare actual position with programmed
course and correct cour3e. Computer i3
designed to allow missile to follow a zig-zag

July 1988 Volume 31 Number 7

FIGURE 1. Example NoteCards with Embedded Link Icons

Communications of the ACM 037

Capabilities of New Missiles

-.
Guidance of Pershing U Smith, “Missile Deployments”

--_

I -_
-T

Tomahawk Characteristics ‘& - _ .

Treverton, Nuclear Weapons in Europe

US TNF Missiles

Soviet TNF Missiles

Third-Country Nuclear

NOTE CARDS
US 8. Soviet TNF% (tat

Map: Missile Ranges

Create Card & Node
Create Link S EdgeC
Delete Card 8. Node
Delete Link 8. Edge
Add Label
Add Node
Add Edge
Remove Node
Remove Edge
Move Node
Label Smaller
Label Larger

1,; ;:I 1 Guidance of Pershing II Pi: +;

Pershing II characteristics

GLCM characteristics

Capabilities of New Missiles

US Controls New Missiles

Missile Numbers 1

...
:;:
:*: m;,
:::
:*:
1:;
;j;
:a:
:::
;:;
:::
::;
.:.
:a:
:::
,;,
:::

Pershing II Speed

Accuracy of Pershing I 1

Origins of Pershing Y

Range Increases M Pershing

Pershing 2 Basing in BRD 1

Pershing Capabilities

FIGURE 2. Example Browser Card (top) and Filebox Cards

standard notecards. The boxed titles in the browser
are in fact icons for traversable links between the
browser and the referenced card. Browsers support
two 1eveIs of editing. First, the user can edit the un-
derlying structure of a network of notecards by carry-
ing out operations on the nodes and edges in the
browser. Second, the user can add and delete nodes
and edges in the browser diagram without making
corresponding changes to the underlying NoteCards
structures.

l Fileboxes. Fileboxes are specialized cards that can be
used to organize or categorize large collections of
notecards. They were designed to help users manage
large networks of interlinked notecards by encourag-
ing them to use an additional hierarchical category
structure for storage and retrieval purposes. A filebox

is a card in which other cards, including other file-
boxes, can be filed. NoteCards requires that every
notecard (including fileboxes) must be filed in one
or more fileboxes. Figure 2 shows three fileboxes in
addition to the browser.

Accessing Information in NoteCards
Navigation, whereby the user moves through the net-
work by following links from card to card, is the pri-
mary means for accessing information in NoteCards.
Alternatively, the user can create an overview browser
for some subnetwork and traverse the links from the
browser to the referenced cards. NoteCards also pro-
vides a limited search facility that can locate all cards
matching some user-supplied specification (a particular
string in the card’s title or text, for example).

838 Communications of the ACM july 1988 Volume 31 Number 7

Tailorability
NoteCards is fully integrated into the Xerox Lisp pro-
gramming environment. It includes a widely used pro-
grammer’s interface with over 100 Lisp functions that
allow the user to create new types of cards, develop
programs that monitor or process a network, integrate
Lisp programs (e.g., an animation editor) into the
NoteCards environment, and/or integrate NoteCards
into another Lisp-based environment (e.g., an expert
system). The system also includes a large set of parame-
ters that users can set to tune the exact behavior of the
system (e.g., how links are displayed or the default size
of notecards). For a more extensive discussion of exten-
sibility and tailorability in NoteCards see [51].

NoteCards in Use
From its inception, the design and development of
NoteCards has been driven by the needs of its user
community. Currently there are over 70 registered
users within Xerox. There are, in addition, an undeter-
mined number of users at various university, govern-
ment, and industrial sites outside Xerox. This user
community has provided invaluable feedback on the
strengths and weaknesses of NoteCards as applied to
a variety of tasks including document authoring, legal

; SPlmAl E 1 a
argumentation, development of instructional materials,
design of copier parts, and competitive market analysis.
Perhaps the most common use of NoteCards is as a data-
base for storing miscellaneous personal information.

A typical example of how the system can be used to
support idea structuring and generic authoring is the
network created by a history graduate student who
used the system to research and write a 25 page paper.
Figure 3 shows a browser of the filebox hierarchy cre-
ated during this project. The author made a habit of
keeping this browser on his screen at all times as a way
of speeding up the process of filing and accessing cards.
This hierarchy was made up of 40 fileboxes and con-
tained 268 (nonfilebox) cards.

The cards in Figure 1 are taken from this hierarchy.
In general, cards stored in the hierarchy contain a short
(average of about 100 words) quote or paraphrase taken
from an article or book. About half of the cards have
links embedded in their substance. As a rule, these
were “See” or “Unspecified” links and were placed at
the end of the card’s text preceded by the word “See.”
There are also a few dozen inter-card links of other
types. Further description of this network and the pro-
cess involved in using it to author a paper can be found
in [36] and [26].

TNF Doctrine NATO TNF Docvbm

Criticisms of NATO Oactrime

NATO Nudea- Structure

ESECS Plan for Conventimal Strengthming

Soviet TNF Doctrine

Characteristics of TNF Misdes

Pershino It characteristics

FIGURE 3. Browser of the Filebox Hierarchy from the Public-Policy (NATO-missiles) Notefile

]uly 1988 Volume 31 Number 7 Communications of the ACM 839

NOTECARDS’ NICHE IN THE SPACE
OF HYPERMEDIA SYSTEMS
NoteCards is a fairly typical second generation hyper-
media system. The first generation included systems
such as NLS/Augment [ll], [12], FRESS [54], and ZOG
{33], [40]. These systems were all originally mainframe-
based, focused primarily on text nodes, and used dis-
play technologies with little or no graphics capabilities.
All of these first generation systems, however, included
at least some support for medium to large teams of
workers sharing a common hypermedia network. An
overview of these systems and many others can be
found in [6].

The second and current generation of hypermedia
began in the early 1980s with the emergence of various
workstation-based, research-oriented systems including
NoteCards, Neptune [9], [lo] and Intermedia [Zl], [35].
In addition, KMS [I] is a commercial workstation-based
system that grew out of the first-generation ZOG sys-
tem. These second generation systems are remarkably
similar in concept to the first generation systems. How-
ever, the workstation technology which underlies them
allows for much more advanced user interfaces. In par-
ticular, all of these systems support graphics and even
animation nodes as well as fully-formatted text nodes.
They aiso make heavy use of graphical overviews of the
network structure to aid navigational access. It is inter-
esting to note that these systems are generally designed
for single users or small workgroups and hence do not
support collaborative work to the same degree as the
earIier systems.

These workstation-based, research-oriented systems,
were followed a few years later by a number of prod-
ucts and prototype systems running on personal com-
puters. The PC-based systems, which include Guide [5],
[25] and Hyperties 1431, [44], are more limited in scope
and functionality than the workstation-based systems
but have many of the same features. Unfortunately, one
critical feature not included in these systems is a
graphical overview of the network structure to aid the
user when navigating in and manipulating the hyper-
media.

Table I summarizes the architectural features of the
average (and fictional) current generation hypermedia
system. This system includes typed nodes connected by
labeled, bidirectional links. The nodes are implemented
using an extensible type hierarchy, with at least the
text and graphics node types being provided with the
basic system. The links are labeled but not typed, and
are anchored using icons within the contents of both
the source and destination nodes. In addition to the
standard node and link networks, there is some special
support for hierarchical organizations. Information
access and structure editing is accomplished using
“browsers” containing a graphical map of the network
structure. Query-based access is possible, but it is very
slow and limited to simple string or keyword matching.
The network is stored on a shared relational database
or in standard files, but there is no versioning of the
stored information. Support for simultaneous multi-

a40 Communications of the ACM

TABLE I. Architectural Features of an Average Current
Generation Hypermedia System

Feature Description

Nodes: Typed (text, graphics, . .), implemented

Links:

Overviews:

Hierarchies:
User Interface:
Extensibility:
Search/query:
Distribution:

Versioning:
Storage:

using a type hierarchy
Nodes cannot contain other nodes
Binary, bidirectional
Labeled but not typed
Anchors can be whole nodes or points/re-

gions within the node
Browsers containing node/link diagrams of

the network
Can edit network via browser
Special support for hierarchical networks
Multiple windows; mouse/menu driven
Programmer’s interface
Slow, full-text string match
Single-user or multi-user central server with

limited concurrency control
None
Standard files or relational DBMS

user access to the stored information is limited. Finally,
there is a programmer’s interface that can be used to
extend or tailor the system.

Despite this commonality in basic architecture, the
current generation includes systems that are very di-
verse in their nature and functionality. This diversity
can be characterized by partitioning the space of hyper-
media systems along three fundamental dimensions:
scope, browsing vs. authoring, and target task domain.
Since it is serving as an example against which to as-
sess the entire generation, it is important to understand
where NoteCards lies along these three dimensions.

Scope. Hypermedia has been proposed as the mecha-
nism for storing and distributing the world’s entire
literary output [39], as a common information space
for teams of programmers on Iarge software projects
[19], and as a tool for individuals and small work
groups engaged in authoring and idea processing [26].
Although all of these proposals share the notion that
information should be organized into networks of
nodes and links, they differ radically in scale, e.g., in
the sizes of their expected information bases and user
populations. This extreme variation in scale implies
there will be differences throughout these systems,
ranging from underlying storage mechanisms through
the user interface to conventions for their use.

Browsing versus Authoring. In systems designed pri-
marily for browsing, the hypermedia network is care-
fully created by a relatively small number of special-
ized authors in order to provide an information space
to be explored by a large number of more or less
casual users. These browsing systems are generally
characterized by relatively well-developed tools for
information presentation and exploratory browsing.
Tools for creating and modifying the network tend to
be less evolved. Hypermedia instructional delivery

July 1988 Volume 31 Number 7

environments [Zl] and interactive museum exhibits
[43] are examples of such browsing-oriented systems.
In systems designed primarily for authoring, the hy-
permedia network serves as an information structure
that users create and continuously modify as part of
their ongoing task activities. Hypermedia systems for
idea processing [26], document authoring [45], and
software development [9] are primary examples. In
such systems, the tools for creation and modification
of the network are well-developed. Tools for easy
browsing and sophisticated information display are
present, but tend to be less evolved.

l Target task domain. Many hypermedia systems have
been designed to support a specific task. For example,
WE [45] is an environment designed specifically to
support the professional writer. Similarly, the Docu-
ment Examiner [53] is designed specifically to sup-
port the on-line presentation of technical documen-
tation. Other hypermedia systems provide general
hypermedia facilities to be used in a variety of appli-
cations. Even these generic systems, however, are
usually designed with a target task domain in mind.
The features and capabilities emphasized in the sys-
tem often reflect the requirements of this target. Con-
trast, for example, Intermedia [Zl] and Neptune [9].
Both are general hypermedia systems. But Neptune
was designed to support software engineering and
thus emphasizes versioning [lo] and node/link attri-
butes. In contrast, Intermedia was designed for multi-
user interactive educational applications and thus
emphasizes novel interactive displays [ZO] and anno-
tation facilities.

NoteCards is designed for use by individuals or small
work groups. In this respect, NoteCards is similar to PC-
based systems like Guide [25] and to single-user work-
station systems like WE [45]. Conversely, NoteCards
differs significantly along this dimension from global
systems like Xanadu [39], as well as systems designed
to support larger groups such as ZOG [40] and NLS/
Augment ill]. Although its original design places less
emphasis on multi-user access, NoteCards is very simi-
lar in scope to Neptune [9], Intermedia [35], [21] and
Textnet [49].

NoteCards is first and foremost an authoring system
designed to provide its users with facilities for creating
and modifying hypermedia structures. In this respect,
NoteCards is similar to many of the aforementioned
systems (Augment, Guide, Intermedia, Neptune, WE)
and different from on-line presentation systems such as
the Document Examiner [53], Hyperties [43], [44] and
interfaces to CD/ROM databases [29]. ZOG has a
slightly different flavor, being simultaneously browser-
and author-oriented.

NoteCards is a general purpose hypermedia system,
but it was originally designed to be used as a tool for
idea processing and authoring in a research environ-
ment. Its original goals were very similar to those of
NLS/Augment, although the actual implementations of
the two systems are (on the surface) quite different.

;’ SPECLU
IJ ISSUE

Systems such as WE and Guide were also designed to
support authoring tasks. Intermedia (education) and
Neptune (software engineering) were designed with
very different application domains in mind, although
both systems were designed in part to support docu-
ment authoring tasks.

Overall, NoteCards is most similar to Intermedia and
Neptune despite the differences in their target applica-
tion domains. The three are very similar in scope and
in the type of facilities they provide. This similarity is
reinforced by several factors including a common em-
phasis on extensibility, similar underlying platforms
(i.e., workstations], and a contemporaneous develop-
ment schedule. Although the present article specifically
discusses NoteCards, most of the issues raised are rele-
vant to these two systems and, to a lesser extent, to a
large majority of the other current generation systems.

SEVEN ISSUES FOR THE NEXT GENERATION
OF HYPERMEDIA SYSTEMS
In the three years since its first release, NoteCards has
been observed in use and misuse in a wide range of
situations and applications. These observations have
provided significant insight into the system’s particular
strengths as well as its weak points. A brief but bal-
anced assessment of the system is contained in [26]. For
expository reasons the present article focuses only on
NoteCards weak points, i.e., on the ways in which the
system falls short in meeting the needs and preferences
of its users.

Many of the NoteCards’ problems are specific to its
current implementation and could be corrected by lim-
ited redesign or reimplementation of the existing sys-
tem. However, several of its problems reflect funda-
mental weaknesses in the hypermedia model around
which it is built. It is precisely these fundamental
weaknesses and the mechanisms for their correction
that should form the basis for designing the next gener-
ation of hypermedia. The following sections describe
seven fundamental limitations evident in NoteCards.

Issue 1: Search and Query in a Hypermedia Network
In some sense, hypermedia is navigational access. The
ability to browse around a network by following the
links from node to node is a defining feature of hyper-
media. It is precisely this ability that makes hyperme-
dia a powerful tool for managing loosely structured
information. The NoteCards experience suggests, how-
ever, that navigational access by itself is not sufficient.
Effective access to information stored in a hypermedia
network requires query-based access to complement
navigation.

NoteCards is fairly typical in the facilities it provides
for navigational access. To retrieve information stored
in a network, the typical NoteCards user brings a card
onto the screen, examines its contents and links, and
then traverses the link that is most likely to move
closer to the target information. Fileboxes support such
localized link traversal by providing a hierarchical
structure in which information is located by recursive

July 1988 Volume 31 Number 7 Communications of the ACM 041

descent through an increasingly specific category struc-
ture. Such localized link following is augmented by
global maps of the network contained in browsers.
These maps allow the user to visually scan for and then
directly move to areas of the network in which the
target information is likely to be found.

Navigational access to information has been ade-
quate, and occasionally even ideal, for a large number
of NoteCards applications. These applications can be
divided into three basic classes. First, the navigational
access has proven sufficient for the small authoring,
note taking, and informal knowledge representation
tasks that NoteCards was originally designed to support.
In these tasks, an individual or a small (2 to 3 person)
Workgroup is creating and intensively using a relatively
small network (50 to 250 cards). Because the network is
smaI1 and familiar, users have little problem locating
information.

A second class of navigational applications are the
display-oriented representation tasks in which the net-
work is centered around a single display, usually a
browser, used to represent a structure being designed
or studied. The goal of these tasks is to create and
manipulate this display. In some sense, the network is
secondary to the display and is used only to create the
structure to be displayed and to hide unimportant de-
tails. In these tasks, information access occurs through
the centra1 dispIay, with little direct card-to-card navi-
gation. An example of such a network is described in
P4.

The third class of navigationally-oriented applica-
tions is on-line interactive presentations. In these appli-
cations, the network’s author often includes in each
card navigational instructions to be used by readers of
the network. Such guided on-line presentations are dis-
cussed in [SO]. If no such navigational instructions are
included, then the network is generally designed to be
explored by the user in a nondirected manner.

In contrast to these navigationally-oriented applica-
tions, there are a variety of applications for which
NoteCards’ reliance on navigational access is problem-
atic. These applications are generally characterized by
large, unfamiliar, heterogeneously structured networks.
Even in a 500 node single-user network, navigational
access can be difficult as the network changes and its
structure becomes heterogeneous. In these cases, navi-
gational access is problematic because users tend to get
lost while wandering around in the network looking for
some target information. Often these users can describe
exactly what information they are looking for, but sim-
ply cannot find it in the network.

An incremental solution to the navigational problems
encountered in NoteCards would be to improve and
augment the existing navigation tools. For example,
browsers could be made significantly more effective by
applying techniques such as fish-eye views [17] and
graph flyovers [13]. In addition, new tools such as a
voting scheme similar to Synview [31] could be imple-
mented in NoteCards. Although these changes would

alleviate some of the navigation problems, they would
not eliminate them entirely.

A more fundamental solution is to augment naviga-
tion by a query-based access mechanism. With such a
mechanism, the user could formulate a query encapsu-
lating a description of the target information and then
rely on the system to locate the information in the
network. As described above, NoteCards already pro-
vides a very limited query/search facility. Unfortu-
nately, this search mechanism is too simple and too
poorly implemented to be very useful. For NoteCards to
be useful in managing large heterogeneous networks,
search and query needs to be elevated to a primary
access mechanism on par with navigation.

There are two broad classes of query/search mecha-
nisms needed in a hypermedia system: content search
and structure search. In content search, all nodes and
links in the network are considered as independent en-
tities and are examined individually for a match to the
given query. For example, all the nodes containing the
string “hyper*” would be a content query. Content
search is standard information retrieval applied to a
hypermedia information base. Basic techniques for con-
tent searches are well known (see [42]). In addition,
there are many innovative approaches that could be
fruitfully explored in a hypermedia environment. For
example, rule-based retrieval schemes (e.g., RUBRIC
[Ml], connectionist approaches (e.g., [MI), simple statis-
tical techniques (e.g., n-gram indexing [XL?]), and spe-
cialized search hardware (e.g., [28]) are al1 interesting
candidates for inclusion in a hypermedia content
search engine.

Content search ignores the structure of a hypermedia
network. In contrast, structure search specifically ex-
amines the hypermedia structure for subnetworks that
match a given pattern. For example, the following is a
simple structure query: all subnetworks containing two
nodes connected by a supports link, where the destina-
tion node contains the word “hypertext.” This query
contains a description of node content (i.e., contains the
word “hypertext”). But it also contains a structural de-
scription of a subnetwork (Le., two nodes connected by
a “supports” link). A more complicated structure query,
involving an indefinite sequence of links, would be
something like: a circular structure containing a node
that is indirectly linked to itself via an unbroken se-
quence of “supports” links. This query could be used,
for example, to find circular arguments.

The development of a structure search mechanism
involves two interrelated subtasks. The first is to design
a query language geared toward describing hypermedia
network structures. One approach to this would be to
develop an analog to regular expressions that would
encompass arbitrary network (non-linear) patterns. This
pattern language would need to include the standard
regular expression operators such as associative group-
ing, concatenation, alternates, closure, and negation. In
addition, the language would need some way to express
forking, e.g., an operator with N regular expression

a42 Communications of the ACM /uly 1988 Volume 31 Number 7

arguments which states that the next entity in the
network being matched must be N, not necessarily
distinct, structures each of which matches one of the
argument expressions. The graphical query language
presented in [7] provides a limited start to defining a
network query language of this nature.

An important consideration in designing this query
language is the need for a simple interface that is acces-
sible to the typical hypermedia user, who is unlikely to
be facile with the intricacies of pattern languages. One
approach to designing this interface is a network analog
of Query-by-Example [Xi] in which the user could
graphically depict the target pattern. Figure 4 shows a
simple example that is meant to express the query: find
all subnetworks containing an “Issue” node linked to at
least two “Position” nodes, each of which has no outgo-
ing links. The design of a graphical interface of this sort
is not easy given that operators such as negation (ab-
sence of a structure) and closure need to be included in
the representation.

FIGURE 4. Example of a Graphical Expression of the Query: Find
All Subnetworks Containing an “Issue” Node Linked to at Least Two
“Position” Nodes, Each of Which Has No Outgoing Links

The second major subtask in developing a structure
search facility is the implementation of a search engine
capable of satisfying the queries expressible in the new
language. It is unlikely that efficient search engines can
be developed to implement the full pattern matching
capabilities suggested by the foregoing discussion. Thus,
one of the critical issues for the next generation of
hypermedia systems is to define a restricted pattern
matching capability that could be easily implemented
and yet would satisfy a significant subset of the pattern
matching requirements of the average hypermedia
user.

Once developed, search and query facilities will be
critical components in several aspects of hypermedia
systems beyond their basic task of locating information.
In particular, queries can be used as a filtering mecha-
nism in the hypermedia interface. In this case, users
will specify a query in order to describe the informa-
tion of interest to them. The interface would then dis-
play only those aspects of the network that matched
this query, thereby filtering out irrelevant information.
The NoteCards browser currently operates in this man-
ner, but only with respect to a very limited set of struc-
ture queries. A full-blown query mechanism would al-
low much more interesting browsers to be constructed.
More importantly, the search/query mechanism could
be linked much deeper into the interface providing for

July 1988 Volume 37 Number 7

;’ SPmAL 1 1 fz
a pervasive information filtering mechanism that is
currently absent in NoteCards. Search and query is also
a critical component of the virtual structures mecha-
nism described under Issue 3.

Issue 2: Composites-Augmenting the Basic Node
and Link Model
In accordance with the basic hypermedia model, there
are only two primitive constructs in NoteCards: cards
and links. All other mechanisms in the system, includ-
ing fileboxes and browsers, are built up from these two
constructs. Although this design has been surprisingly
successful, experience suggests that it is insufficient. In
particular, the basic hypermedia model lacks a compo-
sition mechanism, i.e., a way of representing and deal-
ing with groups of nodes and links as unique entities
separate from their components.

Figure 5 shows a typical use for composite structures
in NoteCards. The figure contains a schematic diagram
of a CaseCluster card developed to facilitate the encod-
ing of legal cases into a NoteCards network. When a
CaseCluster is created, ten individual cards are created
and linked together as shown in the figure. Taken to-
gether these ten cards are intended to be a network-
based form that, when filled in and expanded, encodes
the analysis of a single legal case. Eight of the ten cards
are used to contain information about various compo-
nents of the case. The ninth card is a Browser card
showing some important structural relations among a
few of the eight component cards. The tenth card con-
tains no content information; it is simply a head card
used to gather the other nine cards into an ad hoc
grouping. This head card serves an important concep-
tual function. It is used to represent the legal case (the
CaseCluster) as a whole. For example, a user wishing to
create a link to a given legal case creates a link to the
head card of its CaseCluster. Similarly, properties that
are true of the case as a whole are attached to the head
card, rather than to each of the component cards.

1 Text w Rule # Rule 1 1

FIGURE 5. CaseCluster “Card” Developed to Facilitate Encoding
of Legal Cases in NoteCards

Communications of the ACM 043

The use of such head cards is fairly common in
NoteCards. They are an attempt to utilize existing
mechanisms to implement the composition of individ-
ual cards and links into higher-level entities. Unfortu-
nately, the head cards are severely limited as a compo-
sition mechanism. For example, CaseClusters cannot be
treated as single (compound) entities in a browser card.
Browsers can display just the head card, in which case
the links in and out of the component cards are not
displayed. Alternatively, browsers can show all of the
cards in a CaseCluster in the normal manner, in which
case there is no demarcation that the ten cards in the
CaseCluster form a conceptual grouping. In short,
browsers are not able to display CaseClusters appropri-
ately, i.e., as single entities that inherit all of the links
in and out of their component cards, This limitation
and numerous others of a similar nature arise because
the system does not understand the user-imposed
semantics of the head card. The user intends the head
card structure to represent a composition, but the
system has no understanding of compositions.

A similar set of problems arises with NoteCards’ no-
tion of fileboxes. The filebox concept was designed (in
part) to provide some of the characteristics of a compo-
sition mechanism with the intent of encouraging hier-
archical organizational structures. But the concept is
flawed because it fails to take into account the differ-
ences between reference relations and inclusion rela-
tions. In particular, an inclusion relation implies a
part/whole relationship in which characteristics of and
operations on the whole will affect the parts as well.
Reference implies a much looser relationship in which
the participating entities allude to each other but re-
main essentially independent. Fileboxes are imple-
mented using standard links, i.e., using reference rela-
tionships. But the interface and documentation encour-
age the user to think of “filing in a filebox” as an
inclusion relation. Unlike CaseClusters, this “filing as
inclusion” semantics is supported by the system. Unfor-
tunately, this support is only partial. The result is con-
siderable confusion among NoteCards users about the
proper use of fileboxes.

An excellent example of this confusion can be seen
in the task of writing an organized document (e.g., a
technical report) in NoteCards (see [Sl]). In this task,
users typically put the text for each subsection and for
each figure into a separate card. All of the cards for a
single section are then filed in a filebox. These section
fileboxes are filed in the appropriate chapter fileboxes,
which in turn are filed in a single filebox representing
the document. This scheme is workable. Using the
NoteCards document compiler, the user can linearize
the network into a single document card containing all
of the text and graphics for the document. This docu-
ment can then be manipulated as a single entity. There
is a problem, however, in that the document card is a
separate entity from the source cards stored in the doc-
ument’s filebox hierarchy. It contains only copies of
the text/graphics from these source cards. Changes
made to the text/graphics in the document card are

a44 Communications of the ACM

not automatically reflected in the corresponding
source card.

Another problem with this arrangement is that the
user can see the entire document at only one level.
Despite the elaborate filebox hierarchy, there is no way
to zoom in and out of the document structure, examin-
ing its contents at different levels of detail. This capa-
bility is commonly found in outline processors and is a
critical component in many writing and information
organization tasks. As a result, a number of writers
have abandoned NoteCards in favor of outline proces-
sors for their simple authoring tasks.

The solution to these problems with NoteCards is to
add composition as a primitive construct in the basic
hypermedia model. Inclusion should be implemented
within, as opposed to on top of, all hypermedia systems.
Moreover, all aspects of hypermedia should support in-
clusion (or part-of) relations as a construct distinct from
standard (reference) links. Whether or not inclusion
relations share a common implementation mechanism
with standard links is unimportant, so long as the se-
mantics of inclusion, as opposed to reference, are fully
supported.

I I 1-1

FIGURE 6. Proposed CaseComposite to Replace the CaseCluster
shown in Figure 5

Figure 6 shows a schematic example of the Case-
Cluster redesigned to be a CaseComposite. In this rede-
sign, the head card is replaced by a composite node that
directly or indirectly contains all of the components
nodes. One of the nodes it directly contains is a
browser, which itself is a composite that contains the
subnetwork it depicts. Note that this is a significant
change from the NoteCards browser which references,
but does not contain, the subnetwork it depicts.

The display in Figure 6 is very reminiscent of the
displays produced by IGD (Interactive Graphical Docu-
ments) [IQ], [IS], a hypermedia system designed to sup-
port the creation and presentation of electronic techni-
cal manuals. IGD includes a well developed notion of
hierarchical node composition, IGD’s basic nodes are
called pages and serve both as nodes in the hypermedia

July 1988 Volume 31 Number 7

network and as leaf nodes in a composition hierarchy.
Pages contain the textual and graphical content of the
system. The interior nodes in the composition hier-
archy are called chapters and serve to recursively
group pages and chapters into higher level chapters.
The design of IGD paid special attention to the issues of
displaying composites (chapters), including strategies
for using the composition hierarchy to minimize clutter
and hide unnecessary details. Interestingly, many of the
solutions developed in IGD are redeveloped by Hare1
[27] in his higraph formalism,

IGD aside, the current generation of hypermedia sys-
tems generally lacks adequate composition mecha-
nisms. Designing a composition mechanism appropriate
for inclusion in these systems raises a host of interest-
ing questions and issues including, for example:

l Can a given node be inchided in more than one com-
posite?

l Do links necessarily refer to a node per se or can they
refer to a node as it exists within the context of a
given composite? If the latter is possible, what does it
mean to traverse a link?

l How does one handle versions of composite nodes?
Does a new version of an included node necessarily
imply a new version of the composite?

l Should composites be implemented using specialized
links or is a whole new mechanism necessary?

These issues present a challenging design problem for
future hypermedia systems. However, the task is not
impossible. NLS/Augment [ll] has (of course) already
pioneered much of the territory. The goal for the next
generation, then, is to pick up where the pioneers left
off and to further develop the role of composition in
hypermedia systems.

Issue 3: Virtual Structures for Dealing with Changing
Information
Hypermedia systems tend to have difficulty with rap-
idly changing information, This difficulty arises from
the essentially static and fragmentary nature of the
hypermedia data model. By definition hypermedia
encodes information into a collection of independent
nodes interconnected into a static network. This net-
work does not change unless it is explicitly edited by
the user or some other external agent. In particular,
the network cannot reconfigure itself in response to
changes in the information it contains. This lack of
dynamic mechanisms limits the utility of hypermedia
in many task domains.

In NoteCards, the static nature of hypermedia has led
to what can be called “the problem of premature orga-
nization.” NoteCards requires its users to segment their
ideas into individual nuggets to be stored away, one per
card. Each of these cards then needs to be assigned a
title and filed in at least one filebox. Empirical observa-
tions [37] have shown that these three seemingly trivial
tasks pose significant problems for many users. In par-
ticular, a user in the very early stages of working with a
particular set of information may not sufficiently un-

derstand the content and structure of that information.
Knowledge about the critical dimensions of the idea
space, the characteristics which distinguish one idea
from another, and appropriate naming schemes devel-
ops over time as the user becomes familiar with the
information. A problem arises because the segmenta-
tion, titling, and filing tasks all require the user to have
such knowledge up front. As the user’s knowledge of
the information space evolves, previous organizational
commitments (titles and filing categories] become
obsolete.

Experienced NoteCards users get around this prob-
lem by adopting various strategies to delay the segmen-
tation, titling, and filing of information. To avoid pre-
mature segmentation, these users will place the entire
idea stream in a single text card. They will go back and
review the entire stream before segmenting into sepa-
rate cards. To avoid premature filing, experienced users
file all cards in a single filebox and then use a sketch
card to organize their cards into piles based on some
judgment of similarity or belongingness. These piles
can be easily shifted or rearranged when new informa-
tion comes in. When the piles are stable, they can be
transferred into a filebox structure.

These solutions to the problems of premature organi-
zation serve to highlight the difficulties of handling rap-
idly changing information in NoteCards. Even with
these advanced strategies, users’ conceptual structures
have a tendency to change faster than their correspond-
ing NoteCards structures. The result is that the Note-
Cards structures are often obsolete with respect to
the users’ current thinking. To some extent, this situa-
tion is unavoidable because it will always be easier,
quicker, and less tedious to change one’s internal con-
ceptual structures than it will be to update the external
representations of these conceptual structures.

NoteCards’ difficulties in dealing with changing in-
formation could be partially eliminated by improve-
ments in the user interface. Relaxation of the strict
titling and filing requirements is an often requested
NoteCards enhancement that would certainly help
minimize this pressure. Providing less stringent organi-
zational structures such as the similarity piles de-
scribed previously would also provide a more natural
environment for some organizational tasks. Increasing
the ease by which structures could be modified (for
example, improving browser-based editing) would
make it easier for users to track their changing internal
structures.

At a more fundamental level, however, the solution
to the problem of premature organization is a relaxa-
tion of the overly static nature of hypermedia. Specifi-
cally, the hypermedia model needs to be augmented
with a notion of virtual or dynamically-determined
structures. In the current model, nodes and links are
extensionally defined, that is nodes and links are de-
fined by specifying the exact identity of their compo-
nents. In contrast, virtuaI structures are defined inten-
tionally, that is, by specifying a description of their
components. The exact subcomponents of a virtual

July 1988 Volume 31 Number 7 Communications of the ACM 845

structure are determined by a search procedure when- cient to implement arbitrary conditional links. How-
ever the structure is accessed or instantiated. For ex- ever, depending on the exact semantics of the query
ample, a virtual composite node might be defined by a processor being used (in particular on how multiple hits
specification of the form: a subnetwork containing all are ordered), the specific example above could be satis-
nodes created by someone other than me in the last fied by a virtual link whose source is node A and whose
three days. Each time this composite was accessed, its destination is specified by a query of the form: (or (con-
structure and content would be recomputed. tains Q) (contains P)).

The notion of virtual structures for hypermedia is a
direct adaptation of the concept of views (a.k.a. virtual
tables) in the world of relational database systems [8].

In a relational database, a view is a table constructed at
instantiation time by applying a view definition to data
explicitly stored in base (or nonview) tables. The goal
(which is not always realized in implementation) is to
make view-based tables identical to base tables from a
user’s perspective. All the same operations should ap-
ply, including updates. Although virtual structures in a
hypermedia network would be significantly more com-
plex than views in a relational database, the same prin-
ciple of nondifferentiation at the interface should apply.
Any operation possible on a base hypermedia entity
should apply to virtual structures as well.

The notion of virtual links in hypermedia has already
been explored in ZOG [40] which includes a small set
of navigational links that are constructed whenever a
node is accessed and displayed. These links connect the
displayed node to nodes that the user has recently vis-
ited, thereby allowing users the ability to move quickly
back from whence they came. In future systems, the
notion of virtual links should extend far beyond such
simple navigational applications.

The notion of virtual structures in hypermedia would
be possible only in a system that supported a substan-
tial search/query mechanism over the hypermedia net-
work. The definition of the components in virtual
structures are in fact queries. Instantiating a virtual
structure involves satisfying these queries and con-
structing a dynamic entity from the results. Although it
is not a strict requirement, it would make sense for the
query language used for virtual structure descriptions
to be the same as the query language used for searches
and interface filters.

Implementing virtual nodes, links, and composites
will be a difficult task in the next generation of hyper-
media systems, especially when response time is an
important factor. Nevertheless, virtual structures will
provide these systems with an ability to adapt to chang-
ing information in a way that is simply not possible
with the current static hypermedia model. Although
virtual structures will not replace static structures
(since not every relation can be described by a query),
they are certain to be critical components in all future
hypermedia networks.

Virtual structures are a particularly powerful mecha-
nism when combined with the notion of composites. A
virtual composite allows the user to create nodes that
are dynamically constructed at access time from other
nodes, links, and composites that are stored in the net-
work. Such virtual composites are true hypermedia en-
tities and not simply a display of results from a query.
Thus, the user can add links, properties or additional
static descriptions to a virtual composite. Browsers, for
example, could be implemented as virtual composites
built from the results of a structure query.

Issue 4: Computation in (over) Hypermedia Networks
Hypermedia systems are generally passive storage and
retrieval systems. They provide tools for users to de-
fine, store, and manipulate a hypermedia network. In
service of this goal, they do some processing of the
network and the information it contains. For example,
most browsers compute the transitive closure defined
by a root node and a set of link types. Hypermedia
systems, however, do not actively direct the creation
or modification of the network or the information con-
tained therein. Unlike expert systems, for example,
hypermedia systems do not include inference engines
that actively derive new information and enter it into
the network.

Virtual links are also an intriguing possibility. Such
links could, for example, specify their source exten-
sionally and their destination intentionally. Thus one
could link from the “ClaimX” node to “the node con-
taining the currently strongest evidence that supports
ClaimX.” This link could even be created in the ab-
sence of any evidence in support of ClaimX. This
would effectively create a dangling link with the expec-
tation that an appropriate destination node will appear
at some later time. To take the example one step fur-
ther, one NoteCards user requested conditional links,
i.e., links whose specification is of the form: if evidence
Q is present, then link from node A to the node con-
taining Q; otherwise link from node A to the node con-
taining P. In general, a simple virtual link is not suffi-

Although designed as a passive hypermedia system,
NoteCards is frequently augmented by active computa-
tional engines for particular applications. In one case
NoteCards was augmented to function as the delivery
vehicle for computer-assisted instruction [41]. In this
case, the applications developers implemented a driver
that retrieved and interpreted special script cards.
These script cards orchestrated the display of other
cards containing instructional and test material. Stu-
dents were expected to answer the test material and
their answers were stored in special cards in the net-
work. The driver then used these answers together
with the instructions in the script cards to determine
what material to display next. In a more advanced ver-
sion of this application, the driver was a rule-based
system that examined a number of cards in the net-
work, including the cards containing the student’s pre-

848 Communications of the ACM July 1988 Volume 31 Number 7

vious answers, in order to determine the appropriate
material to present.

In the foregoing example there is a clear separation
between NoteCards per se and the computational en-
gine embodied in the driver. The computational engine
is not integrated into NoteCards. Rather it serves to
consume and produce cards and links through the pro-
grammer’s interface in much the same sense that a
(human) user of the system consumes and produces
cards and links through the user interface. Aside from
the programmatic access to information in the network,
NoteCards contains no special support for computa-
tional engines of this sort.

It is unclear whether the level of support that Note-
Cards provides for computational engines is appropriate
for future hypermedia systems. Designers of such sys-
tems could follow the NoteCards model and continue to
support computational engines as separable external
entities that create, access, and modify information via
the standard programmatic interface. Alternatively, one
could design a hypermedia system incorporating a more
active computational component that automatically
processes (makes inferences from) the information
stored in the network. In this case, the hypermedia
system would function more like a knowledge-based
Al system, both storing and actively processing the
information.

The integration of hypermedia and AI technology is
an interesting direction to explore. In many ways, hy-
permedia and knowledge-based systems are a natural
fit. In particular, at a high level of abstraction, hyper-
media systems, frame-based systems [16], and object-
based systems [47] present nearly identical data
models. Each of these technologies is based around the
notion of typed, slotted entities that form a network
structure via inter-entity references. The technologies
differ in the specific aspects of this basic model that are
chosen for further development. Hypermedia systems
focus on heavyweight entities (whole documents) and
inter-entity references (links). Object-based systems
focus on defining the type (class) hierarchy for the enti-
ties and the operations (methods) that can be performed
on the instances of each type. Frame-based systems fo-
cus on issues such as inheritance and defaulting of slot
values, as well as on the integration of truth mainte-
nance, inference engines, and rule-based reasoning
with the frame representations. It is this latter focus on
computational engines that is of most interest in the
present context. A merging of concepts from frame-
based systems into the design of hypermedia systems
would be a sensible way to approach the integration of
hypermedia with rule-based, truth-maintenance, and
other computational engines. In a more general context,
it is clear that a liberal borrowing of ideas from frame-
based and object-based technologies would be very
beneficial to the advancement of hypermedia systems.

To a great extent the choice between a passive and
an active hypermedia system is an efficiency versus
generality trade-off. The ultimate functionality for the

approaches is approximately the same. However, the
distribution of responsibility and effort is different.
Computation built into the hypermedia system is likely
to be more efficient, especially when that computation
involves extensive access to information in the net-
work. In contrast, an external computational engine is
less restricted since no commitment to a particular
computational engine needs to be made when the sys-
tem is implemented. Thus, the choice between an ac-
tive and a passive hypermedia system will be deter-
mined largely by the intended applications and the per-
formance needs of these applications. Whichever
architecture is chosen, it is clear that hypermedia sys-
tems in the next generation will have to accommodate
the integration of hypermedia with computation.

Issue 5: Versioning
Versioning is an important feature in hypermedia sys-
tems. A good versioning mechanism will allow users to
maintain and manipulate a history of changes to their
network. It will also allow users to simultaneously ex-
plore several alternate configurations for a single net-
work. Unfortunately, NoteCards has no versioning
mechanism. Each card and link exists in only one ver-
sion and is altered in place when modified. As a result,
the range of applications that can be easily supported in
NoteCards is severely limited. For example, NoteCards
has never been used for maintaining software due, in
part, to the overwhelming importance of versioning in
configuration management. The lack of versioning has
had a lesser impact on the authoring, argumentation,
and idea processing tasks for which NoteCards was
originally designed. Although users in these applica-
tions frequently request versioning support, they have
been able to make significant progress in its absence.

NoteCards lags behind its cohort systems in this
arena. Both Neptune and Intermedia provide some ver-
sioning support. Neptune, for example, provides a time-
based linear version thread for individual nodes and
links. The system also provides a partitioning scheme
called contexts [lo] that allows users to begin an inde-
pendent version thread for a given set of nodes. Inter-
media, like NoteCards, keeps only a single version of
each node. Intermedia does, however, have a notion of
alternative named versions of the web, i.e., the set of
links that interconnect a collection of documents. This
allows each user, project, or application to work with
its own network structure over a common set of docu-
ment nodes.

PIE [z!] included a more extensive versioning mech-
anism than either Neptune or Intermedia. In the PIE
model, versioning in a hypermedia network occurs at
two levels: the level of individual entities (nodes, links,
composites) and the level of changes to the hypermedia
network considered as a whole. At the lower level,
each entity has its own version history. In PIE the ver-
sion history was a linear thread, but in the general case
it could be a directed acyclic graph. Although the issue
was not specifically addressed in PIE, it is important to

July 1988 Volume 31 Number 7 Communications of the ACM 047

provide (virtual) entities corresponding to both specific
versions of an entity and the differences (deltas) be-
tween successive versions. Both the versions and the
deltas should be addressable within the system, that is,
they should be possible hits for a search. In a software
engineering context it should be possible to search for
either the version that implements Feature X or the set
of changes that implements Feature X. One possibility
would be to treat the deltas between successive ver-
sions as special hypermedia nodes capable of being
annotated and referenced.

Providing a branched version history for all entities
in a hypermedia network raises some very difficult
issues regarding the semantics of references between
entities. In particular, a reference to an entity may refer
to a specific version of that entity, to the newest ver-
sion of that entity, to the newest version of that entity
along a specific branch of the version graph, or to the
(latest) version of the entity that matches some particu-
lar description (query). Which of these reference types
is supported is a decision that affects the entire hyper-
media system. It is an especially critical decision in the
design of links and composites. Moreover, composites
raise the related problem of propagating version
changes from subcomponents to their composites. For
example, a significant change in an individual software
module implies the creation of a new version of the
system of which that module is a part. In contrast, up-
dating the spelling of a few words in a paragraph may
not require the creation of a new version of the docu-
ment(s) containing that paragraph.

Although maintaining a version thread for each indi-
vidual entity is necessary, it is not a complete version-
ing mechanism. In general, users will make coordinated
changes to a number of entities in the network at one
time. A software developer may implement a new fea-
ture by making coordinated changes to a number of
separate modules. The developer may then want to col-
lect the resultant individual versions into a single ver-
sion set for future reference. This set would be a snap-
shot of the collection of entities at some particular point
in time, that in the software domain is often called a
release.

An alternative to version sets, is the layer mechanism
used in PIE. A layer is a coordinated set of changes to
one or more entities in the network. For example, all of
the changes made to various modules in a software
system could be collected into a single layer described
as the changes that implement Feature X. The resulting
layer could then be applied to the prechange versions
of the entities to get the postchange versions.

In a layer-based system, the primary issue is the set
of mechanisms available for managing and for compos-
ing layers. In PIE, there were constructs called contexts
that were essentially sequences of layers. The hyper-
media network for a given context was determined by
applying the first layer to the base network and then
applying the next layer to the result and so on through
the sequence of layers in the context. New contexts
could be created by mixing and matching the layers

from other contexts and then producing a hypermedia
network by successive applications of the layers in the
context. However, not all such constructions made se-
mantic sense. PIE attempted to aid the user in deter-
mining which contexts were sensible and which were
not.

One important application of the notion of contexts is
to provide a collaborative system (see Issue 6) in which
each user maintains a private context through which
the user interacts with the hypermedia network. Each
user’s context contains a base layer that is the public
hypermedia network. On top of this base are one or
more personal layers which alter the base network to
provide a personalized view. At any time a user’s view
can become public by applying the layers in the user’s
view to the layers in the base system (and informing
any collaborators to use this new base network in their
contexts).

Although PIE never emerged from the research proto-
type stage, aspects of the PIE versioning mechanism
later appeared in the Loops knowledge base [z] and in
Definition Groups [?I]. Unfortunately, the lessons of PIE
have been largely ignored by the hypermedia commu-
nity. Although the PIE versioning scheme is not perfect,
it is richer and more complete than those provided by
most hypermedia systems. One of the critical design
issues facing the next generation of systems is a rich
versioning model for hypermedia networks. The PIE
model seems like an appropriate place to start in resolv-
ing this issue.

Issue 6: Support for Collaborative Work
Hypermedia is a natural medium for supporting collab-
orative work. Creating annotations, maintaining multi-
ple organizations of a single set of materials, and trans-
ferring messages between asynchronous users are the
kinds of activities that form the basis of any collabora-
tive effort. These are also activities for which hyper-
media systems are ideally suited.

Unfortunately, NoteCards was originally designed as
a single user system. Collaboration was seen as occur-
ring outside of the system, through face-to-face conver-
sations, electronic mail, or hardcopy documents. In
practice, however, this has rarely been the case. Most
idea processing and information management tasks are
inherently collaborative, with groups of two to ten peo-
ple working on a common project. As detailed in [so],
NoteCards users have to work hard to overcome the
system’s limitations in such collaborative environ-
ments.

Other members of the current generation fare slightly
better than NoteCards in this arena. KMS, Intermedia,
and Neptune all provide simultaneous multiuser access
to their hypermedia networks. Although this access is
supported by some degree of concurrency control, none
of these systems includes the kind of sophisticated con-
currency management necessary for efficient collabora-
tive work. For example, no system includes a mecha-
nism for notifying users of important actions being
taken by other users. More importantly, none of the

a48 Communications of fhe ACM]uIy 1988 Volume 31 Number 7

systems provides support for collaboration beyond the
simple mechanics of sharing data. The social interac-
tions involved in sharing a hypermedia network are
simply not supported.

The next generation of hypermedia needs to drasti-
cally improve support for collaborative work in these
two disparate but interrelated areas: the mechanics of
simultaneous multiuser access to a common network,
and the social interactions involved in collaboratively
using a shared network. Supporting the mechanics of
multiuser access involves extending the standard tech-
nologies for shared databases (e.g., transactions, concur-
rency control, and change notification) to handle the
special requirements engendered by hypermedia. With
respect to transactions, hypermedia systems clearly
need to support long to very long transactions. For ex-
ample, if a network contains large documents, a user
may require anywhere from a few minutes to several
days to make a single update to a node. This update
should be atomic, independent of the duration of the
update. Techniques for handling such long transactions
are areas of active study in the database literature [18]

and should be incorporated into hypermedia systems.
A closely related issue is concurrency control in hy-

permedia networks. Classical hard locking techniques
for concurrency control are generally inappropriate for
multiuser hypermedia. Standard read/write locks tend
to be overly restrictive, preventing multiple users from
working on the same node or link even when it is
appropriate for them to do so. For example, it is often
appropriate for one person to be updating a node while
another is annotating it by creating links. With a simple
read/write locking protocol, the write lock obtained by
the updator would prevent simultaneous link creation
by the annotator. The solution to this particular prob-
lem is to provide locking at a finer grain of activity:
updating the contents of a node should be locked inde-
pendently of creating/updating links into and out of
the node. On a more general level, collaborative use of
hypermedia networks requires softer locking protocols
such as those discussed in [24]. These protocols allow a
greater degree of concurrent work on a single entity
(node or link) at the risk of increasing the number of
conflicting operations on that entity. The impact of the
increase in conflicts is minimized by conflict resolution
schemes that are less drastic than simply aborting one
of the conflicting operations. For example, in a hyper-
media network with a sophisticated versioning model, a
conflicting update could simply create a branch in the
version tree for the affected node (or link) and then
notify the users that there is a conflict to be resolved
offline.

Notification of interested parties when certain critical
events occur is another mechanism of special impor-
tance to collaborative hypermedia. In general, users
should be notified when an important event has oc-
curred on any node, link, or composite of interest to
them. This notification should take place as early as
possible-notification should occur when a user signals
an intention to update a node (by obtaining a write lock

-1
; r
1

SPECIN
ISSUE

pM

on that node) rather than when the updated node is
actually entered into the network [48]. Such early noti-
fication ensures that collaborative users can detect pos-
sible conflicts as early as possible and modify their ac-
tions accordingly. Thus, notification is a partial solution
to the increase in conflicts brought about by soft locks.
More importantly, notification is an automatic mecha-
nism that helps multiple users coordinate their ongoing
work in a shared hypermedia network.

In the area of support for the social interactions in-
volved in collaborative use of a shared network, the
critical notion is mutual intelligibility [SO]. In a collabo-
rative effort, each participant must have some degree of
understanding of the actions and intentions of any col-
laborators. In the hypermedia context, collaborative
users need to understand not only the content of the
collaborative network but also the accepted procedures
to be used to modify that network. Trigg, Suchman, and
Halasz [SO] describe three kinds of collaborative activi-
ties that occur within a shared hypermedia network.
Substantive activities constitute the work at hand, the
writing of the coauthored paper. Annotative activities
involve annotating the substantive work using com-
ments, critiques, questions, etc. Procedural activities in-
volve discussions, decisions, and other actions focusing
on the use of the network and the procedures for col-
laboration. Writing a coauthored paper is a substantive
activity. Commenting on your coauthor’s draft is an
annotative activity. Deciding how to distinguish addi-
tions and deletions as the draft is passed back and forth
is a procedural activity. Trigs et al. suggest that existing
hypermedia systems focus primarily on supporting sub-
stantive and annotative activities. Explicit support for
procedural activities is very rare.

In examining collaborative use of NoteCards, Trigg et
al discovered that even without explicit support, users
engaged in procedural activities including maintaining
history cards detailing changes made during each ses-
sion, creating and maintaining a bulletin board for post-
ing messages between asynchronous collaborators, and
engaging in explicit discussions (within a card) about
proper conventions for carrying out specific tasks in the
network. An example of the latter was a discussion
about how to use font styles to distinguish the specific
contributions of the various collaborators. All of these
procedural activities were supported in NoteCards us-
ing ad hoc structures and labor-intensive procedures.
Clearly, much of this work could be directly supported
by the system. Operations such as maintaining change
histories and message posting areas, tracking and dis-
playing the specific contributions made by each indi-
vidual, and recording decisions about usage conven-
tions could easily be automated or semiautomated
within a hypermedia system.

At a more abstract level, achieving mutual intelligi-
bility in hypermedia-based collaborations will require
the development of a rhetoric of hypermedia. This rhet-
oric will provide guidelines and conventions for creat-
ing hypermedia networks that will be understandable
by others who share the rhetoric. Interestingly, the de-

July 1988 Volume 31 Number 7 Communications of the ACM a49

velopment of these conventions is a crucial issue that
can only be solved by accumulated experience in using
hypermedia systems in real world tasks.

Based on his several years experience in developing
courseware materials for the Intermedia system, Lan-
dow [SO] has developed the beginnings of just such a
rhetoric. Of particular interest is Landow’s observation
that materials developed for nonlinear presentation in a
hypermedia system require special discourse tech-
niques to accommodate the process of link traversal.
These techniques, which Landow calls the rhetoric of

arrival and the rhetoric of departure, are needed to pro-
vide the reader with information about the relationship
being indicated by the link. The departure rhetoric has
to convey information about why the link should be
followed, while the arrival rhetoric needs to convey
information about how the node just arrived at relates
to the context from which the user departed. These
new rhetorical devices, and many more like them, are
needed to help users deal with the difficult issues en-
gendered by the ability to create documents that no
longer have a fixed linear ordering. As our experience
with hypermedia increases, many more such devices
should evolve.

The next generation of hypermedia needs to focus
equally on improvements in the technologies for shared
databases and on improvements in the support for the
social interactions involved in the collaborative use of a
shared network. Both are necessary if hypermedia is to
realize its potential as an ideal vehicle for supporting
collaborative work.

Issue 7: Extensibility and Tailorability
The broad applicability of hypermedia systems stems
from the inherent flexibility of the basic hypermedia
model. The hypermedia model provides a set of very
general abstractions, nodes, links, and composites. The
user is responsible for properly applying these abstrac-
tions to the task at hand. In this sense, a hypermedia
system is just a tool for creating, manipulating, and
displaying nodes of information embedded into a net-
work structure. To the system, all nodes and links are
essentially the same: objects to be stored, retrieved, dis-
played, interconnected, etc. To the user, nodes and
links are filled with meaningful contents and organized
into meaningful structures. The system cannot operate
directly on this meaning. It simply provides a collection
of generic tools that can be used to manipulate net-
works in meaningful ways.

This generic nature of hypermedia systems is both a
blessing and a curse. It is a blessing because it allows
hypermedia to be useful in a wide variety of task do-
mains and user populations. It is a curse because ge-
neric hypermedia is not particularly well suited to any
specific task or style of use. Thus, hypermedia users are
faced with a tool that is clearly useful but not particu-
larly well adapted to the specific task at hand. In the
NoteCards user community, for example, the most fre-
quent complaint is the lack of a strategy manual with

examples showing successful uses of the system in spe-
cific tasks. The problem is that each new NoteCards
user is faced with a significant database design task.
The user has a familiar collection of information that
must be translated into some NoteCards structure. This
representation task is not always straightforward since
the familiar structure of the information may be very
different from the cards, links, and fileboxes provided
by the system. For example, in a legal application the
user might have entities such as cases, briefs, evidence,
citations, etc. that need to be filed and interconnected
in accordance with a standard set of legal relationships.
To the casual user it is not obvious how to do this.
Should each case be a text card or a filebox? Should
evidence be stored in the same card as the case or in a
separate card connected to the case by a link? What
type of link? In large database systems, such design
problems are usually assigned to a professional data-
base designer. In hypermedia systems, these problems
are frequently left in the laps of individual users.

To offset the difficulties caused by their generic
nature, most hypermedia systems are designed to be
extensible and tailorable. The expectation is that users
will extend the system with new functionality or tailor
the existing functionality to better match the exact re-
quirements of their application. Users with legal appli-
cations might tailor the system’s user interface to their
specific task by replacing the generic nodes and links
with the appropriately specialized entities such as
cases, briefs, and citations. The CaseCluster shown in
Figure 5 is an example of such a tailored entity.

In NoteCards, as well as in systems such as Interme-
dia and Neptune, the primary mechanism for extensi-
bility and tailorability is a programmer’s interface
which provides programmatic access to all of the sys-
tem’s functionality including the mechanisms for ex-
tending the system’s hierarchy of node and link types.
In practice, the NoteCards programmer’s interface has
been very successful. In addition to the many users
who have done minor tailoring of the NoteCards inter-
face, there have been several major new systems built
on top of NoteCards using the programmer’s interface
[25], [51]. Trigg, Moran, and Halasz [51] describe in
some detail the extensible and tailorable nature of
NoteCards, including examples of its use, problems
with its implementation, and prospects for its improve-
ment.

Despite its success, the NoteCards programmer’s in-
terface failed to meet one of its explicit design goals:
that minor changes to NoteCards should be achievable
with a small amount of work by casual, nonprogram-
ming users. In its current form, the programmer’s inter-
face provides significant functionality only to those
who have a fair degree of expertise in programming
and system implementation. Unfortunately, this is true
of the tailoring interfaces in most of the current genera-
tion of hypermedia systems as well. The challenge,
then, is to design mechanisms for the small tailorability
of hypermedia systems. The goal is to make it easy for
the large majority of nonprogramming users to make

850 Communications of the ACM July 1988 Volume 31 Number 7

1 1 ; SPECIM ISSUE
small changes to the system with a minimal amount of
effort. This goal should be achieved without interfering
with the current facilities that allow expert program-
mers to make major changes or extensions to the sys-
tem.

PW

Acknowledgments. I would like to thank Randy Trigg
and Tom Moran of Xerox PARC and Jeff Conklin,
Michael Begeman, and Eric Gullichsen of MCC. The
ideas presented in this paper were developed during
many discussions with these folks.

GNU Emacs [46] and Apple Hypercard/Hypertalk
[23] are two systems worthy of study. Neither is a true
hypermedia system (although both include some hyper-
media features), but both have a kind of extensibility
and tailorability that should be standard in future hy-
permedia systems. The critical characteristic of both is
that they are built around an interpreter for a fully-
functional programming language that is specially de-
signed for the kind of objects and operations commonly
handled by the system. Aside from a basic kernal, all of
the system’s functionality is implemented using this
programming language. Moreover, the interface to the
language/interpreter has a kind of scalability. Simple
things can be done using single commands or even by
direct manipulation. Yet it is also possible to write large
and complex programs to make major changes or ex-
tensions. In GNU Emacs, this language is a dialect of
Lisp with extensions to handle the common operations
on Emacs objects such as files, buffers, and windows.
Emacs includes mechanisms for incorporating new or
amended Lisp functions into a running system, for eval-
uating single Lisp expressions from the user interface,
and for creating “programs” by enacting the keystrokes
that would normally be used to implement the desired
functionality. The result of these mechanisms is a
highly adaptive system that can be tailored by users
with a wide variety of expertise and requirements.

REFERENCES
1.

2.

3.

4.

Akscyn, R., McCracken, D.L., and Yoder, E. KMS: A distributed
hypertext for sharing knowledge in organizations. Commun. ACM 31,
7 (July 1988), 820-635.
Bobrow, D.G.. and Stefik, M. The Loops Manual. Intelligent Systems
Laboratory, Xerox Palo Alto Research Center, Palo Alto, Calif., 1983.
Bobrow. D.C.. Foeelsone. D.S.. and Miller. MS. Definition arouos:
Making sources into first-class objects. In Research Directions in-
Object-Oriented Programming, B. Sbriver and P. Wegener. Eds. MIT
Press, Cambridge. Mass.. 1987, pp. 129-146.
Brachman, R.J., and Schmolze, J.G. An overview of the KL-ONE
knowledge representation system. Cognitive Science 9. z (1985),
171-216.

5.

6.

7.

6.

9.

10.

11.

12.

The goal of the next generation of hypermedia should
be to develop systems with extension and tailoring fa-
cilities analogous to those currently found in GNU
Emacs and HyperCard. Without these facilities, many
potential users will discover that the problems of deal-
ing with an overly generic system outweigh the many
benefits of using hypermedia.

Brown, P.J. Turning ideas into products: The Guide system. In Pro-
ceedings of the Hypertext ‘87 Workshop (University of North Carolina
at Chapel Hill, Nov.). ACM, New York, 1987.
Conklin, J. Hypertext: A survey and introduction. ZEEE Computer 20.
9 (1987). 17-41.
Cruz. IF., Mendelzon, A.O., and Wood, P.T. A graphical query lan-
guage supporting recursion. In Proceedings of the ACM SIGMOD
Annual Conference (San Francisco, Calif., May). ACM, New York,
1987, pp. 323-330.
Date, C.J. An Introduction to Database Systems vol. 2. Addison-Wesley,
Reading, Mass., 1981.
Delisle, N., and Schwartz, M. Neptune: A hypertext system for CAD
applications. In Proceedings ofACM SIGMOD ‘86 (Washington, D.C.,
May 26-30). ACM, New York, 1986, pp. 132-142.
Dehsle. N., and Schwartz, M. Contexts-a partitioning concept for
hypertext. In Proceedings of the Conference on Computer-Supported
Cooperafive Work (Austin, Texas, Dec. 3-5). 1986. pp. 147-153.
Englebart, D.C., and English, W. A research center for augmenting
human intellect. In Proceedings of 1968 FJCC (San Francisco, Calif.,
Dec. 9-11). AFIPS Press, Montvale. N.J., 1968, pp. 395-410.
Englebart, D.C. Authorship provisions in Augment. In Proceedings of
fhe IEEE COMPCON (San Francisco, Calif., Spring). IEEE, New York,
1984. 465-472.

13.

14.

15.

CONCLUDING REMARKS
The recent surge in the popularity of hypermedia sys-
tems has been accompanied by considerable hype
about the tremendous power and functionality inherent
in hypermedia. Our experiences with NoteCards sug-
gest that there is indeed reason to be excited about the
prospects of using hyermedia networks as a basic infor-
mation management and representation technology for
a wide variety of applications. But the seven unre-
solved issues discussed in this article should serve as a
cautionary note. There is a great deal of difficult design
and implementation to be done before hypermedia sys-
tems can achieve their potential. The seven issues sug-
gest that the current model needs to be extended
beyond simple nodes and links to include compositions,
queries, versioning, computation, and many other fea-
tures. These seven issues thus represent an agenda for
the designers and implementors of the next generation
of hypermedia systems.

16.

17.

18.

19.

20.

Fairchild, K.F., Poltrock, S.E., and Furnas, G.W. SemNet: Three-
dimensional graphic representations of large knowledge bases. In
Cognitive Science and its Applications for Human-Computer Interaction,
R. Guindon, Ed. Lawrence Erlbaum Associates, Hillsdale, N.J., 1988.
Feiner, S., Nagy. S., and van Dam, A. An experimental system for
creating and presenting interactive graphical documents. ACM
Trans. Gravhics I. 1 119821. 59-77.
Feiner. S. ‘Seeing the forest for the trees: Hierarchical display of
hypertext structure. In Proceedings of the Conference on Office Znfor-
mation Systems (Palo Alto, Calif., Mar.). ACM, New York, 1988.
pp. 205-212.
Fikes. R.. and Kehler, T. The role of frame-based representation in
reasoning. Commun. ACM 28. 9 (1985), 904-920.
Furnas. G.W. Generalized fish-eye views. In Proceedings of the I986
ACM Conference of Human Factors in Computing Systems (CHI ‘86)
(Boston. Mass., Apr. 33-17). ACM, New York. 1986, pp. 16-23.
Garcia-Molina, H.. and Salem, K. Sagas. In Proceedings of the ACM
SIGMOD Annual Conference (San Francisco, Calif.. May). ACM, New
York, 1987, pp. 249-259.
Garg. P.K.. and Scacchi, W. A hypertext system to manage software
life cycle documents. In Proceedings of The 21st Hawaii International
Conference on Systems Science (Honolulu, Hawaii, Jan.). 1987.
Garrett, L.N.. and Smith, K.E. Building a time-line editor from pre-
fab Darts: The architecture of an obiect-oriented aoolication. In Pro- . .

21.

22.

23.

ceed;.ngs of the Conference on Object-oriented Programming Systems,
Lan~un~es, and Apvlications (OOPSLA ‘861 (Portland, Oregon, Sept.
29-&t: 2). ACM’SIGPLAN tiot. 21. 11 (1986). pp. 202-213. -
Garrett, L.N.. Smith, K.E.. and Myrowitz, N. Intermedia: Issues,
strategies, and tactics in the design of a hypermedia document sys-
tem. In Proceedings of the Conference on Computer-Supported Coopera-
tive Work (Austin, Texas. Dec. 3-5). 1966. pp. 163-174.
Goldstein, I., and Bobrow, D. A layered approach to software design.
In Inferactive Programming Environments. D. Barstow, H. Shrobe, and
E. Sandewall. Eds. McGraw-Hill, New York, 1987. pp. 387-413.
Goodman, D. The Complete HyperCard Handbook. Bantam Books, New
York, 1987.

24. Greif. I., and Sunil, S. Data sharing in group work. ACM Trans. Office
Info. Sys. 5, 2 (1987), 187-211.

July 1988 Volume 31 Number 7 Communications of the ACM 851

25. Guide Users Manual. Owl International, Bellevue, Wash., 1986.
26. Halasz. F.G.. Moran. T.P.. and Triee. R.H. NoteCards in a Nutshell.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

In Proceedings of the 1987 ACM Conference of Human Factors in Com-
puter Systems (CHI+GI ‘87) (Toronto, Ontario, Apr. 5-9). 1987, pp.
45-52.
Harel, D. On visual formalisms. Commun. ACM 32, 5 (May 1988),
514-530.
Hollaar, L.A. The Utah text retrieval project. Info. Tech.: Res. Dev. 2
(19831, 155-168.
Lambert. S.. and Ropiequet. S., Eds. The New Papyrus. Microsoft
Press, Redmond, Wash., 1986.
Landow. G.P. Relationally encoded links and the rhetoric of hyper-
text. In Proceedings of the Hypertexf ‘87 Workshop (University of North
Carolina at Chapel Hill. Nov.]. 1987.
Lowe, D. SYNVIEW: The design of a system for cooperative structur-
ing of information. In Proceedings of the Conference on Computer-
Supported Cooperative Work [Austin, Texas, Dec. 3-5). 1986, pp. 376-
386.
Mah. C.P.. and D’Amore, R.J. Complete statistical indexing of text by
overlapping word fragments. ACM SZGIR Forum 17, 3 (Winter-Spring
1963), 6-16.
McCracken, D.L., and Akscyn, R. Experience with the ZOG human-
computer interface system. Int. 1. Man-Machine Studies 21, 2 (1984),
293-310.
McCune. B.P.. Tong. R.M., Dean, J.S., and Shapiro, DC. RUBRIC: A
system for rule-based information retrieval. ZEEE Trans. Softw. Eng.
SE-II, 9 (1985). 939-945.
Meyrowitz. N. Intermedia: The architecture and construction of an
object-oriented hypermedia system and applications framework. In
Proceedings of fhe Conference on Object-oriented Programming Systems,
Languages. and Applications (OOPSL.4 ‘86) (Portland, Oregon, Sept.
29-Oct. 2). ACM SICPLAN Not. 21. I1 (1966). pp. 186-201.
Monty. M.L.. and Moran, T.P. A longitudinal study of authoring
using NoteCards. ACM SIGCHI Bulletin 18, 2 (Oct. 19861, 59-60.
Monty, M.L. Temporal context and memory for notes stored in the
computer. ACM SIGCHI Bulletin 78. 2 (Oct. 1986), 50-51.
Mozer, M.C. Inductive Information Retrieval Using Parallel Distributed
Computation. Tech. Rep. C-015. Institute for Cognitive Science, Uni-
versity of California, San Diego, Calif., 1984.
Nelson, T.H. Literary Machines. T.H. Nelson, Swarthmore, Penn..
1981.
Robertson. G.. McCracken. D., and Newell. A. The ZOG approach to
man-machine communication. Int. I. Man-Machine Studies 14 (1981),
461-488.
Russell, D.M.. Moran, T.P.. and Jordan, D.S. The instructional
design environment. In Intelligent Tutoring Systems: Lessons Learned,
J. Psotka. L.D. Massey, & S.A. Muter, Eds. Lawrence Erlbaum
Associates, Hillsdale, N.J., 1987.
Salton, G.. and McGill, M.J. Infrodurtion to Modern Information
Retrieval. McGraw-Hill, New York. 1983.
Shneiderman, B. User interface design for the Hyperties electronic
encyclopedia. In Proceedings of the Hypertext ‘87 Workshop (Univer-
sity of North Carolina at Chapel Hill. Nov.). 1987.
Shneiderman, B. User interface design and evaluation for an elec-
tronic encyclopedia. Tech. Rep. CS-TR-1819. Dept. of Computer Sci-
ence, University of Maryland, College Park. Maryland, Mar. 1987.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Smith. J.B.. Weiss, SF., Ferguson. G.J., Bolter, I.D., Lansman, M., and
Bea, D.V. WE: A writing environment for professionals. Tech. Rep. 86-
025. Dept. of Computer Science, University of North Carolina.
Chapel Hill. N.C.. Aug. 1986.
Stallman, R.M. GNU Emacs Manual. Free Software Foundation, Cam-
bridge, Mass., 1985.
Stefik, M., and Bobrow, D. Object-oriented programming: Themes
and variations. AI Magazine 6, 4 (1986). 40-62.
Stefik, M., Foster, G., Bobrow, D.G., Kahn, K., Lanning, S., and Such-
man, L. Beyond the chalkboard: Computer support for collaboration
and problem solving in meetings. Commun. ACM 30, 1 (1987), 32-47.
Trigg. R.H., and Weiser. M. TEXTNET: A network-based approach to
text handling. ACM Trans. Office fnfo. Sys. 4, 1 (Jan. 1986), l-23.
Trigg. R., Suchman. L.. and Halasz. F. Supporting collaboration in
NoteCards. In Proceedings of the Conference on Computer-Supported
Cooperative Work (Austin, Texas, Dec. 3-5). 1986, pp. 147-153.
Trigg, R.H.. Moran. T.P., and Halasz, F.G. Tailorability in NoteCards.
In Proceedings of Interact ‘87 2nd IFIP Conference on Human-Computer
Znteraction (Stuttgart, West Germany, Aug.), Bullinger, H.J., and
Shackel, B. (Eds.). North-Holland, Amsterdam. 1987.
VanLehn. K. Theory reform caused by an nrgumentation tool. Tech.
Rep. Xerox Palo Alto Research Center. Palo Alto, Calif.. ISL-11.
1965.
Walker, J. Document Examiner: Delivery interface to hypertext doc-
uments. In Proceedings of the Hypertext ‘87 Workshop (University of
North Carolina at Chapel Hill. Nov.). 1987.
Yankelovich. N., Meyrowitz. N.. and van Dam, A. Reading and writ-
ing the electronic book. IEEE Computer 18, 10 (19851, 15-30.
Zloof, M.M. Design aspects of the Query-by-example data base
management language. In Databases: Improving Usability and Respon-
siveness. B. Schneiderman. Ed. Academic Press, New York, 1978.

CR Categories and Subject Descriptors: H.1.2 [Models and Princi-
ples]: User/Machine Systems-human factors: H.2.4 [Database Manage-
ment]: Systems-distributed systems, query processing: H.4.2 [Information
Systems Applications]: Types of Systems; 1.7.m [Text Processing]: Mis-
cellaneous

General Terms: Design, Experimentation, Human Factors
Additional Key Words and Phrases: Collaborative work, hypermedia,

hypertext

Author’s Present Address: Frank G. Halasz, Microelectronics and Com-
puter Technology Corp. (MCC). 3500 West Balcones Center Dr.. Austin.
TX 78759-6509.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish, requires a fee and/or specific permission.

ACM Algorithms
Colkcted Algorithms born ACM (CALGO) now includes quar-
terty issues of complete algorithm listings on microfiche as part
of the regular CALGO supplement service.

The ACM Algorithms Distribution Service now offers microfiche
containing complete listings of ACM algorithms, and also offers
compilations of algorithms on tape as a substitute for tapes
containing single algorithms. The fiche and tape compilations
are available by quarter and by year. Tape compilations covering
fwe years will also be available.

To subscribe to CALGO, request an order form and a free
ACM Publications Catalog from the ACM Subscription De-
partment, Association for Computing Machinery, 11 West
42nd Street, New York, NY 10036. To order from the ACM
Algorithms Distributions Service, refer to the order form that
appears in every issue of ACM Transactions on Mathematical
Software.

852 Communications of the ACM [uly 1988 Volume 31 Number 7

