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Abstract. Research on ontology is becoming increasingly widespread in the com-
puter science community, and its importance is being recognized in a multiplicity of
research fields and application areas, including knowledge engineering, database design
and integration, information retrieval and extraction. We shall use the generic term “in-
formation systems”, in its broadest sense, to collectively refer to these application per-
spectives. We argue in this paper that so-called ontologies present their own methodo-
logical and architectural peculiarities: on the methodological side, their main peculiar-
ity is the adoption of a highly interdisciplinary approach, while on the architectural
side the most interesting aspect is the centrality of the role they can play in an infor-
mation system, leading to the perspective of ontology-driven information systems.

1 Introduction

Research on ontology is becoming increasingly widespread in the computer science com-
munity. While this term has been rather confined to the philosophical sphere in the past, it
is now gaining a specific role in Artificial Intelligence, Computational Linguistics, and Da-
tabase Theory. In particular, its importance is being recognized in research fields as diverse
as knowledge engineering [20,45,15,18], knowledge representation [23,2,42], qualitative
modelling [19,9,13], language engineering [31,5], database design [11,47], information
modelling [3,53], information integration [55,7,35], object-oriented analysis [51,39], in-
formation retrieval and extraction [24,6,34,54], knowledge management and organization
[40], agent-based systems design1. Current applications areas are disparate, including en-
terprise integration [22,46], natural language translation [30,33], medicine [16], mechani-
cal engineering [10], standardization of product knowledge [8,4,26], electronic commerce
[32], geographic information systems [12], legal information systems2, biological infor-
mation systems3. I shall use the generic term information systems, in its broadest sense, to
collectively refer to these fields and application areas.

In some cases, the term “ontology” is just a fancy name denoting the result of familiar
activities like conceptual analysis and domain modelling, carried out by means of standard
methodologies. In many cases, however, so-called ontologies present their own methodo-
logical and architectural peculiarities. On the methodological side, the main peculiarity is the
adoption of a highly interdisciplinary approach, where philosophy and linguistics play a
fundamental role in analyzing the structure of a given reality at a high level of generality and
in formulating a clear and rigorous vocabulary. On the architectural side, the most interest-
                                                
1 See the recent FIPA (Federation for Intelligent Physical Agents) call for proposals in the area of ontology
management at http://drogo.cselt.it/fipa/palo_alto/cfp4.htm
2 See the proceedings of the LEGONT’97 workshop at http://www.csc.liv.ac.uk/~pepijn/legont.html
3 See the forthcoming workshop on “Semantic Foundations for Molecular Biology: Schemata, Controlled
Vocabularies and Ontologies” at http://www-lbit.iro.umontreal.ca/ISMB98/anglais/ontology.html



ing aspect is the centrality of the role that an ontology can play in an information system,
leading to the perspective of ontology-driven information systems.

I have stressed elsewhere [23,24] the importance of an interdisciplinary approach in
the practice of ontological engineering, underlying in particular the role played by formal
ontology. Since this topic is going to be addressed in more detail in the present volume
[41,50], I will avoid here any further comment.

Rather, I will first propose the most recent elaboration of the clarification work on the
way the term “ontology” is being used in computer science originally presented in [27].
Although some progress has been made, I believe there still a good deal of terminological
and conceptual confusion, and I will try therefore to further clarify – with respect to the
past work – the notions of ontology, ontological commitment, and conceptualization.  I
shall then introduce the perspective of ontology-driven information systems, showing how
ontologies can play a central role by impacting the main components of an information
system: information resources, user interfaces, and application programs.

2. Ontology and ontologies

Since this paper is deliberately addressed to an interdisciplinary audience, it is advisable to
pay attention to some preliminary terminological clarifications, especially because some
crucial terms appear to be used with different senses in different communities4. Let us first
consider the distinction between “Ontology” (with the capital “o”), as in the statement
“Ontology is a fascinating discipline” and “ontology” (with the lowercase “o”), as in the
expressions “Aristotle’s ontology” or “CYC’s ontology”. The same term has an uncount-
able reading in the former case, and a countable reading in the latter. While the former
reading seems to be reasonably clear (as referring to a particular philosophical discipline),
two different senses are assumed by the philosophical community and the Artificial Intelli-
gence community (and, in general, the whole computer science community) for the latter
term.

In the philosophical sense, we may refer to an ontology as a particular system of cate-
gories accounting for a certain vision of the world. As such, this system does not depend
on a particular language: Aristotle’s ontology is always the same, independently of the lan-
guage used to describe it. On the other hand, in its most prevalent use in AI, an ontology
refers to an engineering artifact, constituted by a specific vocabulary used to describe a
certain reality, plus a set of explicit assumptions regarding the intended meaning of the vo-
cabulary words. This set of assumptions has usually the form of a first-order logical the-
ory5, where vocabulary words appear as unary or binary predicate names, respectively
called concepts and relations. In the simplest case, an ontology describes a hierarchy of
concepts related by subsumption relationships; in more sophisticated cases, suitable axioms
are added in order to express other relationships between concepts and to constrain their
intended interpretation.

The two readings of “ontology” described above are indeed related each other, but in
order to solve the terminological impasse we need to choose one of them, inventing a new
name for the other: we shall adopt the AI reading, using the word conceptualization to refer
to the philosophical reading. So two ontologies can be different in the vocabulary used
(using English or Italian words, for instance) while sharing the same conceptualization.
                                                
4 I elaborate here on some material already published in [27]
5 In this case, an ontology is sometimes called a formal ontology, although we shall use the expression
“formal ontology” only to refer to a philosophical research field.



2.1 What is a conceptualization.

The notion of conceptualization introduced above requires however a suitable formaliza-
tion, since it may generate some confusions. Indeed, a conceptualization has been defined
in a well-known AI textbook [17] as a structure <D,R>, where D is a domain and R is a
set or relevant relations on D6. This definition has been then used by Tom Gruber, who
defined an ontology as “a specification of a conceptualization” [21]. Together with Pier-
daniele Giaretta, I have discussed such a definition in [27], arguing that, in order for it to
have some sense, a different, intensional account of the notion of conceptualization has to
be introduced. I try here to further clarify these notions, making clear the relationship be-
tween an ontology, its intended models, and a conceptualization.

The problem with Genesereth and Nilsson’s notion of conceptualization is that it refers
to ordinary mathematical relations on D, i.e. extensional relations. These relations reflect a
particular state of affairs: for instance, in the blocks world, they may reflect a particular ar-
rangement of blocks on the table. We need instead to focus on the meaning of these rela-
tions, independently of a state of affairs: for instance, the meaning of the “above” relation
lies in the way it refers to certain couples of blocks according to their spatial arrangement.
We need therefore to speak of intensional relations: we shall call them conceptual relations,
reserving the simple term “relation” to ordinary mathematical relations.

A standard way to represent intensions (and therefore conceptual relations) is to see
them as functions from possible worlds into sets. This has some disadvantages7, but
works fairly well for our purposes. While ordinary relations are defined on a certain do-
main, conceptual relations are defined on a domain space. We shall define a domain space
as a structure <D, W>, where D is a domain and W is a set of maximal states of affairs of
such domain (also called possible worlds). For instance, D may be a set of blocks on a ta-
ble and W can be the set of all possible spatial arrangements of these blocks. Given a do-
main space <D, W>, we shall define a conceptual relation ρn of arity n on <D, W> as a
total function ρn:W→2Dn

 from W into the set of all n-ary (ordinary) relations on D. For a
generic conceptual relation ρ, the set Eρ = {ρ(w) | w∈W} will contain the admittable exten-
sions of ρ. A conceptualization for D can be now defined as an ordered triple C = <D, W,
ℜ>, where ℜ is a set of conceptual relations on the domain space <D, W>8. We can say
therefore that a conceptualization is a set of conceptual relations defined on a domain space.

Consider now the structure <D, R> introduced in [17]. Since it refers to a particular
world (or state of affairs), we shall call it a world structure. It is easy to see that a concep-
tualization contains many of such world structures, one for each world: they shall be called
the intended world structures according to such conceptualization.

Let C = <D, W, ℜ> be a conceptualization. For each possible world w∈W, the in-
tended structure of w  according to C is the structure S wC = <D, RwC>, where
RwC={ρ(w) | ρ∈ℜ } is the set of extensions (relative to w) of the elements of ℜ. We shall
denote with S C the set {S wC | w∈W} all the intended world structures of C.

                                                
6 In a subsequent paper [37], Nils Nilsson stresses the importance of the conceptualization for a modeling
task.
7 For instance, the two relations “trilateral” and “triangle” turn out to be the same, as they have the same
extension in all possible worlds.
8 In the following, symbols denoting structures and sets of sets appear in boldface.



Let us consider now a logical language L, with a vocabulary V. Rearranging the stan-
dard definition, we can define a model for L as a structure <S , I>, where S = <D, R> is a
world structure and I: V→D∪R is an interpretation function assigning elements of D to
constant symbols of V, and elements of R to predicate symbols of V. As well known, a
model fixes therefore a particular extensional interpretation of the language. Analogously,
we can fix an intensional interpretation by means of a structure <C, ℑ>, where C = <D,
W, ℜ> is a conceptualization and ℑ: V→D∪ℜ is a function assigning elements of D to
constant symbols of V, and elements of ℜ to predicate symbols of V. We shall call this in-
tensional interpretation an ontological commitment for L. If K = <C, ℑ> is a an ontological
commitment for L, we say that L commits to C by means of K, while C is the underlying
conceptualization of K9.

Given a language L with vocabulary V, and an ontological commitment K = <C, ℑ>
for L, a model <S , I> will be compatible  with K if: i) S∈S C; ii) for each constant c, I(c) =
ℑ(c); iii) there exists a world w   such that10 , for each predicate symbol p, I maps such
predicate into an admittable extension of ℑ(p), i.e. there exists a conceptual relation ρ such
that ℑ(p) = ρ ∧ ρ(w) = I(p). The set IK(L) of all models of L that are compatible with K
will be called the set of intended models  of L according to K.

In general, there will be no way to reconstruct the ontological commitment of a lan-
guage from a set of its intended models, since a model does not necessarily reflect a par-
ticular world: in fact, since the relevant relations considered may not be enough to com-
pletely characterize a state of affairs, a model may actually describe a situation common to
many states of affairs. This means that it is impossible to reconstruct the correspondence
between worlds and extensional relations established by the underlying conceptualization.
A set of intended models is therefore only a weak characterization  of a conceptualization: it
just excludes some absurd interpretations, without really describing the “meaning” of the
vocabulary.

2.2 What is an ontology

We can now clarify the role of an ontology, considered as a set of logical axioms designed
to account for the intended meaning of a vocabulary. Given a language L with ontological
commitment K, an ontology for L is a set of axioms designed in a way such that the set of
its models approximates as best as possible the set of intended models of L according to K
(Fig. 1). In general, it is not easy (nor always convenient) to find the right set of axioms,
so that an ontology will admit other models besides the intended ones. Therefore, an ontol-
ogy can “specify” a conceptualization only in a very indirect way, since i) it can only ap-
proximate a set of intended models; ii) such a set of intended models is only a weak char-
acterization of a conceptualization11 . We shall say that an ontology O for a language L ap-
proximates a conceptualization C if there exists an ontological commitment K = <C, ℑ>
such that the intended models of L according to K are included in the models of O. An

                                                
9 The expression “ontological commitment” has been sometimes used to denote the result of the commit-
ment itself, i.e., in our terminology, the underlying conceptualization.
10  There is a mistake in the version of this paper published on the FOIS'98 proceedings, due to an errone-
ous quantification on possible worlds. The present version is the correct one. The point is that a compati-
ble model must pick up a single possible world.
11  This statement clarifies a possible confusion arising from [25], where I stated that the definition “an on-
tology is an explicit, partial account of a conceptualization” can be rephrased as “an ontology is an explicit,
partial account of the intended models of a logical language”. We have seen that a conceptualization is not
equivalent to a set of intended models, so the two statements are not equivalent (although the former im-
plies the latter).



ontology commits to C if i) it has been designed with the purpose of characterizing C, and
ii) it approximates C. A language L commits to an ontology O if it commits to some con-
ceptualization C such that O agrees on C. With these clarifications, we come up to the fol-
lowing definition, which refines Gruber’s definition by making clear the difference be-
tween an ontology and a conceptualization:

An ontology is a logical theory accounting for the intended meaning of a formal vo-
cabulary12 , i.e. its ontological commitment to a particular conceptualization of the
world. The intended models of a logical language using such a vocabulary are con-
strained by its ontological commitment. An ontology indirectly reflects this commit-
ment (and the underlying conceptualization) by approximating these intended models.

The relationships between vocabulary, conceptualization, ontological commitment and
ontology are illustrated in Fig. 1. It is important to stress that an ontology is language-
dependent, while a conceptualization is language-independent. In its de facto use in AI, the
term “ontology” collapses the two aspects, but a clear separation between them becomes
essential to address the issues related to ontology sharing, fusion, and translation, which in
general imply multiple vocabularies and multiple conceptualizations.  

Fig .  1 . The intended models of a logical language reflect its commitment to a conceptualization. An on-
tology indirectly reflects this commitment (and the underlying conceptualization) by approximating this set

of intended models.

2.3 Coarse vs. fine-grained ontologies

As an ontology only indirectly accounts for a conceptualization, we may wonder how much
can it get close to that. In fact, we can classify ontologies according to their accuracy in
characterizing the conceptualization they commit to. There are two possible ways an ontol-
ogy can get closer to a conceptualization: by developing a richer axiomatization, and by
adopting a richer domain and/or a richer set of relevant conceptual relations. In the first

                                                
12  Not necessarily this formal vocabulary will be part of a logical language: for example, it may be a pro-
tocol of communication between agents.



case, the distance between the set of ontology models and the set of intended models is re-
duced. In the second case, it is possible – at least in principle – to include in the set of rele-
vant conceptual relations (some of) those relations that characterize a world state, extending
at the same time the domain in order to include the entities involved by such relations: for
instance, in the case of the blocks world, we may consider the spatial location of a block as
a relevant conceptual relation, including therefore locations in the domain, and considering
a relation like on(x,y) as completely derivable from the locations of x and y. Since every
model now carries the information concerning the state of the world it refers to, the under-
lying conceptualization can be reconstructed from the set of its intended models. In this
case, if an ontology is axiomatized in such a way to have exactly the same models, then it
would be a “perfect” ontology.

Another possibility to increase the accuracy of an ontology consists of either adopting
a modal logic, which allows one to express constraints across worlds, or just reifying
worlds as ordinary objects of the domain. Of course, there is a tradeoff between a coarse
and a fine-grained ontology committing to the same conceptualization: the latter gets closer
to specifying the intended meaning of a vocabulary (and therefore may be used to establish
consensus about sharing that vocabulary, or a knowledge base which uses that vocabu-
lary), but it may be hard to develop and to reason on, both because the number of axioms
and the expressiveness of the language adopted. A coarse ontology, on the other hand, may
consist of a minimal set of axioms written in a language of minimal expressivity, to support
only a limited set of specific services, intended to be shared among users which already
agree on the underlying conceptualization. We can distinguish therefore between detailed
reference ontologies and coarse shareable ontologies, or maybe between off-line and on-
line ontologies: the former are only accessed from time to time for reference purposes,
while the latter support core system’s functionalities.

2.4 The Ontology Integration Problem

As we have seen in the introduction, information integration is a major application area for
ontologies. As well known, even if two systems adopt the same vocabulary, there is no
guarantee that they can agree on a certain information unless they commit to the same con-
ceptualization. Assuming that each system has its own conceptualization, a necessary con-
dition in order to make an agreement possible is that the intended models of the original
conceptualizations overlap (Fig. 2).

M(L)

IA(L)

IB(L)

Fig .  2 .  Two systems A and B using the same language L can communicate only if the set of intended
models IA(L) and IB(L) associated to their conceptualizations overlap.



Supposing now that these two sets of intended models are approximated by two dif-
ferent ontologies, it may be the case that the two ontologies overlap while the intended
models do not (Fig. 3). This means that a bottom-up approach to systems integration based
on the integration of multiple local ontologies may not work, especially if the local ontolo-
gies are only focused on the conceptual relations relevant to a specific context, and there-
fore they are only weak and ad hoc approximations of the intended models. Hence, it
seems more convenient to agree on a single top-level ontology rather than relying on
agreements based on the intersection of different ontologies.

M(L)

IA(L)

IB(L)

Fig .  3 . The sets of models of two different axiomatizations, corresponding to different ontologies, may
intersect while the sets of intended models do not.

The considerations above suggest the opportunity to develop different kinds of ontol-
ogy according to their level of generality, as shown in Fig. 4 below (see [25] for a more
detailed discussion).

top-level ontology

domain ontology task ontology

application ontology

Fig .  4 . Kinds of ontologies, according to their level of dependence on a particular task or point of view.
Thick arrows represent specialization relationships. From [24].

• Top-level ontologies describe very general concepts like space, time, matter, object,
event, action, etc., which are independent of a particular problem or domain: it seems
therefore reasonable, at least in theory, to have unified top-level ontologies for large
communities of users.



• Domain ontologies and task ontologies describe, respectively, the vocabulary related to
a generic domain (like medicine, or automobiles) or a generic task or activity (like diag-
nosing or selling), by specializing the terms introduced in the top-level ontology.

• Application ontologies describe concepts depending both on a particular domain and
task, which are often specializations of both the related ontologies. These concepts of-
ten correspond to roles played by domain entities while performing a certain activity,
like replaceable unit or spare component.

As a final consideration, it may be important to make clear the difference between an
application ontology and a knowledge base. The answer is related to the purpose of an on-
tology, which is a particular knowledge base, describing facts assumed to be always true
by a community of users, in virtue of the agreed-upon meaning of the vocabulary used. A
generic knowledge base, instead, may also describe facts and assertions related to a par-
ticular state of affairs or a particular epistemic state. Within a generic knowledge base, we
can distinguish therefore two components: the ontology (containing state-independent in-
formation) and the “core” knowledge base (containing state-dependent information).

3 Towards Ontology-Driven Information Systems

Every (symbolic) information system (IS) has its own ontology, since it ascribes meaning
to the symbols used according to a particular view of the world. I shall discuss here the
specific, peculiar role an explicit ontology can play within an information system, arguing
in favor of an architectural perspective where this role is a central one, and the ontology
profitably "drives" all aspects and all components of an IS, so that we can speak of ontol-
ogy-driven information systems.

An IS consists of components of three different types: application programs, informa-
tion resources like databases and/or knowledge bases, and user interfaces. These compo-
nents are integrated in such a way as to accomplish a concrete (business) purpose. When
discussing the impact an ontology can have on an IS, we can distinguish two orthogonal
dimensions: a temporal dimension, concerning whether an ontology is used at development
time or at run time (i.e., for an IS or within an IS), and a more structural dimension, con-
cerning the particular way an ontology can affect the main IS components. I shall first dis-
cuss some general aspects concerning the first dimension, while analyzing then in more
detail the specific impact of ontologies on the IS components, both at development time and
at run time.

3.1 The temporal dimension: using ontologies at development time vs. run time

Before focusing on the specific IS components, let us first discuss in general the role that
ontologies can have at development time and run time. Note that these two notions are rela-
tive to the IS and not to the ontology, which we assume to be a finished product: yet, at the
development time, we have to adapt the “finished” ontology at our disposal to the specific
requirements of our IS. When the ontology is used by an IS at run time, we speak of an
"ontology-driven IS" proper; when it is used at development time, we speak of "ontology-
driven IS development".

3.1.1 Using an ontology at development time.  In this context, we can distinguish two dif-
ferent scenarios. In the first scenario, we have a set of reusable ontologies at our disposal,
organized in an ontology library containing domain and task ontologies [49]. In the second



scenario, the degree of reusability is very limited, as we only have a very generic ontology,
consisting of coarse domain-level distinctions among the basic entities of the world and
meta-level distinctions about kinds of class and kinds of relation.

In the first scenario, the semantic content expressed by the ontology (or ontologies)
selected from the ontology library gets transformed and translated into an IS component,
reducing the costs of conceptual analysis and assuring – on the assumption of a correct
ontology – the ontological adequacy of the IS. If the IS to be built is a traditional one, such
a content will be just embedded in the standard components; if it is going to be an ontology-
driven IS, then the result of this development phase will be a separate component, namely
an application ontology like the one depicted in Fig. 4, which can be seen as a specializa-
tion of both a domain ontology and a task ontology. See [25,48] for a discussion of the
relationships between an application ontology and an ontology library. An important benefit
of using an ontology at development time is that it enables the developer to practice a
"higher" level of reuse than is usually the case in software engineering (i.e. knowledge re-
use instead of software reuse). Moreover, it enables the developer to reuse and share appli-
cation domain knowledge using a common vocabulary across heterogeneous software plat-
forms. It also enables the developer to concentrate on the structure on the domain and the
task at hand and protects him from being bothered too much by implementation details. Un-
fortunately, the availability of off the shelf ontologies to be used in this way is today ex-
tremely limited (see for instance [44] for an example of reuse of an ontology of physical
measures). In my opinion, the reason is that these ontologies are not general enough to be
effectively specialized for various applications. Moreover, in those cases where an integra-
tion of several off-the-shelf ontologies would be necessary, we would encounter the prob-
lems discussed in section 2.4.

The second scenario depicted above appears therefore much more realistic. The quan-
tity of ontological knowledge available may be modest, but it is its quality, i.e. the nature of
some fundamental ontological distinctions, which can help the designer in his task of con-
ceptual analysis. In practice, the role of the ontology in this case is not that of a building
block going to be adapted and reused, but rather a powerful tool  – analogous to any other
CASE (Computer-Aided Software Engineering) tool – that can increase the quality of the
analysis process. In other words, we can think in this case to develop an application ontol-
ogy with the help of a (relatively small) top-level ontology, without necessarily having an
already-developed domain ontology at hand.

An important point to keep in mind in ontology-driven IS development is that an on-
tology not only can be used to build a new IS (IS engineering), but it can also be used
equally profitably for IS re-engineering, in order to increase reuse and maintainability. In
this way large software investments done in the past can be protected and leveraged. See
for instance [38] for a good example of using ontological principles for systems re-
engineering.

3.1.2 Using an ontology at run time. We must distinguish here an ontology-aware IS from
an ontology-driven IS: in the first case, an IS component is just aware of the existence of a
(possibly remote) ontology and can use it (i.e., query it) for whatever specific application
purpose is needed. In the second case, the ontology is just another component (typically
local to the IS), cooperating at run time towards the "higher" overall IS goal.

An important reason for using an ontology at run time is enabling the communication
between software agents. Software agents are communicating with each other via messages
that contain expressions formulated in terms of an ontology (ontology-driven communica-



tion). In order for a software agent to understand the meaning of these expressions, the
agent needs access to the ontology they commit to.
3.2 The structural dimension: impact of ontologies on IS components

Each of the components of an IS – application programs, databases, user interfaces – can
use an ontology in its own specific way. In the following, we deal with each of these com-
ponents in turn, investigating the specific role an ontology can play, and distinguishing
between development time and runtime aspects.

3.2.1 Using an ontology for the database component. The most obvious use of an ontology
is in connection with the database component. In fact, an ontology can be compared with
the schema component of a database.

At the development time, an ontology can play an important role in the requirement
analysis and conceptual modelling phase, especially if integrated with lexical resources like
WordNet [36] in order to support the analysis of natural language informal specifications
[29,1,11,47]. The resulting conceptual model can be represented as a computer processable
ontology and from there mapped to concrete target platforms. These aspects have been ex-
tensively studied in the ESPRIT IDEA project [14], especially for what concerns the map-
ping of the “knowledge specification” (the ontology) to schemes for many different types
of databases (relational, object-oriented, deductive, active). Another example of use of on-
tologies at development time is information integration: a common conceptual schema to be
used for instance in a data warehousing application can be built by (semi-automatically)
mapping heterogeneous conceptual schemes on a common top-level ontology (see [7] for a
preliminary step in this direction).

At run time, there are many ways in which ontologies and databases can cooperate.
The availability of explicit ontologies for information resources (i.e., run-time accessible
database schemas) is at the core of the mediation-based approach to information integration
[55]. Ontologies can support “intensional queries” regarding the content of a particular da-
tabase, or dynamic management of queries involving multiple databases.

3.2.2 Using an ontology for the user interface component. Maybe not so obvious, but nev-
ertheless very important, is the use of an ontology in connection with the user interface
component. Since ontologies embody semantic information on the constraints imposed on
the classes and relationships used to model a given domain and task, they have been suc-
cessfully used in the Protégé Project13  to generate form-based interfaces that check for con-
straints violation.

At run time, the first role an ontology can play within the user interface is to allow it-
self to be queried and browsed by the user. In this case, the user is aware of the ontology,
and uses (i.e. queries) it as part of his normal use of the IS. In this way, the user can
browse the ontology in order to better understand the vocabulary used by the IS, being able
therefore to formulate queries at the desired level of specificity. If the ontology in question
is a sufficiently large one, i.e. a “top-level” linguistic ontology like WordNet, Mikrokos-
mos [33], or Pangloss [43], then another useful task it can play in the context of a user in-
terface is vocabulary detaching: the user is free to adopt his own natural language terms,
which are mapped (after a possible disambiguation step) to the IS vocabulary with the help
of the ontology. See [28] for an example of this use.

                                                
13  URL: http://smi-web.stanford.edu/projects/prot-nt/documentation/



3.2.3 Using an ontology for the application program component. Application programs are
still an important part of many ISs. They usually contain a lot of domain knowledge,
which, for various reasons, is not explicitly stored in the database. Some parts of this
knowledge are encoded in the static part of the program in the form of type or class decla-
rations, other parts (like for example business rules) are implicitly stored in the (sometimes
obscure) procedural part of the program.

At the development time, an IS developer can – in principle – generate the static part of
a program with help of an ontology. Moreover, ontologies integrated with linguistic re-
sources can be used to support the development of object-oriented software like we have
seen in the case of databases, but I am not aware of any contribution in this field (although
some proposals to use ontological principles for object-oriented design have been made
[52,39]).

At run time, we may decide to represent explicitly all the domain knowledge implicitly
encoded in the application program, turning the program in a knowledge-based system. As
well known, this has large benefits from the point of view of ease-of-maintenance, extensi-
bility and flexibility. In this case, the knowledge base could be constituted by a core
knowledge base plus an ontology. One may object that there could be good reasons to keep
the core, “strategic” knowledge in a non-explicit form, either for security reasons, or be-
cause of legacy problems: in this case, however, at least the ontological commitment  of the
application program should be made explicit, in order to facilitate its accessibility, maintain-
ability, and integrability. Ontologies can help therefore to increase the transparency of ap-
plication software.

Conclusions

After many papers mainly devoted to the philosophical foundations of ontology develop-
ment, I have focused here on the application side, trying to offer a systematic account of the
central role ontologies may play in future information systems. The revisitation of the re-
cent definitions concerning the notion of ontology was not planned in advance, but I real-
ized that some further work on this issue was still necessary only while writing this paper
with an interdisciplinary audience in mind. Once again, the interdisciplinary perspective has
paid off.

The material presented in section 3 has been developed in the framework of a recently
started Research Program on Ontology-Driven Information Systems (ODIS), in co-
operation with Bert Fitié (AnalyTech Consulting, Den Haag). I am indebted to Claudio Ma-
solo for his helpful comments on an earlier draft of this work.
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