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Abstract—Application-layer multicast supports group appli-
cations without the need for a network-layer multicast protocol.
Here, applications arrange themselves in a logical overlay network
and transfer data within the overlay. In this paper, we present an
application-layer multicast solution that uses a Delaunay triangu-
lation as an overlay network topology. An advantage of using a
Delaunay triangulation is that it allows each application to locally
derive next-hop routing information without requiring a routing
protocol in the overlay. A disadvantage of using a Delaunay trian-
gulation is that the mapping of the overlay to the network topology
at the network and data link layer may be suboptimal. We present
a protocol, called Delaunay triangulation (DT protocol), which
constructs Delaunay triangulation overlay networks. We present
measurement experiments of the DT protocol for overlay networks
with up to 10 000 members, that are running on a local PC cluster
with 100 Linux PCs. The results show that the protocol stabilizes
quickly, e.g., an overlay network with 10 000 nodes can be built in
just over 30 s. The traffic measurements indicate that the average
overhead of a node is only a few kilobits per second if the overlay
network is in a steady state. Results of throughput experiments of
multicast transmissions (using TCP unicast connections between
neighbors in the overlay network) show an achievable throughput
of approximately 15 Mb/s in an overlay with 100 nodes and 2 Mb/s
in an overlay with 1000 nodes.

Index Terms—Application-layer multicasting, Delaunay trian-
gulation, group communication, multicasting.

I. INTRODUCTION

DUE TO the lack of a widely available IP multicast ser-
vice, recent research has examined implementing multi-

cast services in the application layer. The general approach is to
have applications self organize into a logical overlay network,
and transfer data along the edges of the overlay network using
unicast transport services. Here, each application communicates
only with its neighbors in the overlay network. Multicasting is
implemented by forwarding messages along trees that are em-
bedded in the virtual overlay network.

Application-layer multicast has several attractive features:
1) there is no requirement for multicast support in the layer-3
network; 2) there is no need to allocate a global group identifier,
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such as an IP multicast address; and 3) since data is sent via
unicast, flow control, congestion control, and reliable delivery
services that are available for unicast can be exploited. A
drawback of application-layer multicast is that, since data is
forwarded between end systems, end-to-end latencies can be
high. Another drawback is that, if multiple edges of the overlay
are mapped to the same network link, multiple copies of the
same data may be transmitted over this link, resulting in an
inefficient use of bandwidth. Thus, the relative increase of
end-to-end latencies and the increase in bandwidth require-
ments as compared with network-layer multicast, are important
performance measures for overlay network topologies for
application-layer multicast.

Most overlay topologies for application-layer multicast fall
into three groups. Topologies in the first group consist of a
single tree [8], [9], [12], [15], [26], [29]. A drawback of using
a single tree is that the failure of a single application may
cause a partition of the overlay topology. The second group of
topologies are mesh graphs, where data is transmitted along
spanning trees which are embedded in the mesh graph [3], [4].
A drawback of mesh graphs is that the calculation of spanning
trees requires running a multicast routing protocol (e.g.,
distance vector multicast routing protocol [DVMRP]) within
the overlay, which adds complexity to the overlay network.
Generally, in the aforementioned topologies, nodes in the
overlay network send probe messages to each other to measure
network-layer latencies. These measurements are used to build
an overlay network that is a good fit for the network-layer
topology. The third group of topologies assigns to members
of the overlay network logical addresses from some abstract
coordinate space, and builds the overlay network with the help
of these logical addresses. For example, the overlay in [19]
assigns each member of the overlay network a binary string and
builds an overlay network with a hypercube topology. In [28],
logical addresses are obtained from-dimensional Cartesian
coordinates on an -torus. An advantage of building overlay
networks with logical addresses is that, for good choices of the
address space and the topology, next-hop routing information
for unicast and multicast transmissions can be encoded in the
logical addresses. A disadvantage of building overlay networks
using a logical address space is that the overlay network may
not be a good match for the network-layer topology. Note that
recent proposals for location services in peer-to-peer networks
have adopted logical coordinate spaces that assign logical
addresses to data items, e.g., [27], [31], [32]. Even though
lookup services and application-layer multicast services have
different objectives, some logical coordinate spaces can be
applied in both contexts [28].
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In this paper, we present an application-layer multicast
solution that is suitable for very large group sizes with many
thousand nodes. Our approach is to use aDelaunay triangu-
lation (DT) as overlay network topology. The choice of the
overlay topology falls into the third group of application-layer
multicast solutions, which draw logical addresses from a
coordinate space. Specifically, each member of an overlay
network is assigned logical coordinates in a plane. We
show that Delaunay triangulations can be built in a distributed
fashion, and that multicast trees can be embedded in a Delaunay
triangulation overlay without requiring a routing protocol in the
overlay. A disadvantage of a Delaunay triangulation overlay is
that the mapping of a Delaunay triangulation overlay network
to the network-layer infrastructure can be poor, especially if the
logical coordinates of a member in the overlay network are not
well matched to the underlying network topology.

We present a protocol, calledDT protocol, which creates and
maintains a Delaunay triangulation overlay of applications on
the Internet. The DT protocol achieves scalability through a
distributed implementation where no entity maintains knowl-
edge of the entire group. We evaluate the DT protocol through
measurement experiments for overlay networks with up to
10 000 members on a cluster of PCs. The results show that the
DT protocol can maintain a Delaunay triangulation overlay for
a multicast group with dynamically changing group member-
ship. In other experiments, we evaluated the performance of
the overlay’s topology using multicast batch file transfers to
groups with up to 1000 members.

The contribution of the presented Delaunay triangulation and
the DT protocol is that we can build and maintain very large
overlay networks with relatively low overhead, at the cost of
suboptimal resource utilization due to a possibly poor match of
the overlay network to the network-layer infrastructure. Hence,
in terms of John Chuang’s taxonomy of scalable services [5], the
Delaunay triangulation overlay network trades off economy-of-
scale for increased scalability.

The remaining sections are organized as follows. In
Section II, we define Delaunay triangulations and Delaunay
triangulation overlay networks. In Section III, we compare
Delaunay triangulation overlay networks with other proposed
overlay network topologies. In Section IV, we describe the DT
protocol. In Section V, we present measurement experiments
that evaluate the performance of our implementation of the DT
protocol. In Section VI, we present brief conclusions.

II. DELAUNAY TRIANGULATION AS AN

OVERLAY NETWORK TOPOLOGY

A Delaunay triangulation for a set of vertices is a trian-
gulation graph with the defining property that for each circum-
scribing circle of a triangle formed by three vertices in, no
vertex of is in the interior of the circle. In Fig. 1, we show a
Delaunay triangulation and the circumscribing circles of some
of its triangles. Delaunay triangulations have been studied ex-
tensively in computational geometry [7] and have been applied
in many areas of science and engineering, including communi-
cation networks, e.g., [1], [10], [14], [18], [23].

Fig. 1. Delaunay triangulation.

A. Delaunay Triangulation Overlay Network

In order to establish a Delaunay triangulation overlay, each
application, henceforth called “node,” is associated with a
vertex in the plane with given coordinates. The coordi-
nates are assigned via some external mechanisms (e.g., GPS
or user input) and can be selected to reflect the geographical
locations of nodes. Two nodes have a logical link in the overlay
network, i.e., areneighbors, if their corresponding vertices
are connected by an edge in the Delaunay triangulation that
consists of all vertices associated with the nodes of the overlay.

The Delaunay triangulation has several properties that make
it attractive as an overlay topology for application-layer multi-
cast. First, Delaunay triangulations generally have a set of al-
ternate nonoverlapping routes between any pair of vertices. The
existence of such alternate paths can be exploited by an applica-
tion-layer overlay when nodes fail. Second, the number of edges
at a vertex in a Delaunay triangulation is generally small. The
average number of edges at each vertex is less than six. Even
though, in the worst-case, the number of edges at a vertex is

1, the maximum number of edges is usually small.1 Third,
once the topology is established, packet forwarding information
is encoded in the coordinates of a node, without the need for a
routing protocol. Finally, the Delaunay triangulation can be es-
tablished and maintained in a distributed fashion. We elaborate
on the last two properties in the next subsections.

B. Compass Routing

Multicast and unicast forwarding in the Delaunay triangula-
tion is done along the edges of a spanning tree that is embedded
in the Delaunay triangulation overlay, and that has the sender
as the root of the tree. In the Delaunay triangulation, each node
can locally determine its child nodes with respect to a given tree,
using its own coordinates, the coordinates of its neighbors, and
the coordinates of the sender.

Local forwarding decisions at nodes are done usingcompass
routing[17]. The basic building block of compass routing is that
a node , for a root node , computes a node as the parent in
the tree, if is the neighbor with the smallest angle to. This
is illustrated in Fig. 2. Compass routing in general planar graphs

1The worst case is created whenn � 1 vertices form a circle and thenth
vertex is in the center of the circle.
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Fig. 2. Compass routing. NodeA has two neighbors,B andC. A computes
B as the parent in the tree with rootR, since the angleRAB = 15 is smaller
than the angle RAC = 30 .

Fig. 3. Compass routing. NodeA determines that it is the parent for nodeC,
since the angle RCA is smaller than anglesRCD and RCB. Likewise,
B andD determine that they are not the parents of nodeC, since RCA <

RCB and RCA < RCD.

Fig. 4. Locally equiangular property. The property holds for triangles4abc

and4abd if the minimum internal angle is at least as large as the minimum
internal angle of triangles4acd and4cdb.

may result in routing loops [16]. However, compass routing in
Delaunay triangulations does not result in loops [17]. Compass
routing is also used for determining a multicast routing tree,
where nodes calculate their child nodes in the multicast routing
tree in a distributed fashion. Specifically, a nodedetermines
that a neighbor is a child node with respect to a tree with root

, if the edge is a border of two triangles, say and
(see Fig. 3), and if selecting leads to a smaller angle

from to , than selecting and . If each node performs the
above steps for determining child nodes, then the nodes compute
a spanning tree with root node.

C. Building Delaunay Triangulations With Local Properties

Delaunay triangulations can be defined in terms of a locally
enforceable property. A triangulation is said to belocally
equiangular[30] if, for every convex quadrilateral formed by
triangles and that share a common edge, the
minimum internal angle of triangles and is at least
as large as the minimum internal angle of triangles and

. This is illustrated in Fig. 4. In [30], it was shown that a
locally equiangular triangulation is a Delaunay triangulation.

In a graph that is a triangulation, each nodecan enforce
the locally equiangular property for all quadrilaterals formed

Fig. 5. Locally equiangular property for a nodeN and its neighbors. Node
N can enforce the equiangular property for all quadrilaterals formed byN and
its neighborsA, B, C, D, E, andF . Here,N can determine that the locally
equiangular property is violated for triangles4NBC and4NCD. Thus, the
edgeNC should be replaced by an edgeDB.

by and its neighbors. In Fig. 5, node can detect that the
locally equiangular property is violated for triangles
and , and that the edge should be removed and
replaced by an edge . Thus, can remove node as one
of its neighbors.

The protocol described in Section IV builds and maintains a
Delaunay triangulation overlay by enforcing the locally equian-
gular property for each node and its neighbors.

III. COMPARATIVE EVALUATION OF OVERLAY TOPOLOGIES

We next present a comparative evaluation of overlay network
topologies for multicasting. The purpose of the evaluation is
to determine how well the Delaunay triangulation and other
overlay topologies can match the network layer infrastructure.
The basis for our evaluation is a software tool for network
topology generation [2]. We present results for aTransit Stub
topology, which generates a network with a two-layer hierarchy
of transit networks and stub networks. The parameters for the
topology are as follows. The network consists of four transit
domains, each with 16 routers. The routers of each transit
domain are randomly distributed over a 10241024 grid.
There are 64 stub domains, each with 15 routers spread over a
32 32 grid. Each stub domain is connected to a transit domain
router. Links between routers in transit and stub domains are
set using the Waxman method [2]. The average number of links
per router is approximately three. Hosts are connected to a
router of a stub domain and are distributed over a four by four
grid with the stub domain router at the center of the grid. The
total number of hosts in the entire network is varied from two
to 512 hosts, and incremented by powers of two. The hosts are
distributed uniformly over the stub domains.

We assume that all unicast traffic is carried on the shortest-
delay path between two hosts, where the delay between two
hosts is determined by the length of the shortest path in the
generated topology. For each generated network topology, we
construct a set of overlay networks. Each host participates in
an overlay network as a single node. We consider the following
overlay topologies.

1) TheDelaunay triangulationas described in Section II. The
coordinates of the nodes are the grid coordinates of the hosts in
the generated graph.

2) A Minimum Spanning Tree (MST)is an overlay network
which builds a shared tree with minimum total delay, as is done
in the ALMI protocol [26].



LIEBEHERRet al.: APPLICATION-LAYER MULTICASTING WITH DELAUNAY TRIANGULATION OVERLAYS 1475

(a) (b)

Fig. 6. Stress. (a) Average. (b) 90th percentile.

(a) (b)

Fig. 7. RDP. (a) Average. (b) 90th percentile.

3) A Degree-3 minimum spanning treerepresents a topology
which is generated by the Yoid protocol [9]. In this overlay,
each node has at most three links. We select a binary tree as an
initial topology and use the update procedures described in [9]
to improve the tree. We use overlay networks that are the result
of 720 rounds of updates.

4) A Degree-6 graphrepresents an overlay network that is
similar to those created by the Narada protocol [4]. The al-
gorithm establishes a mesh network where each node has at
most six logical links. For multicast delivery, the method uses
a DVMRP routing algorithm for building per-source trees [6].
The protocol performs periodic unicast delay measurements and
improves the mesh, based on these measurements. We show re-
sults for overlay networks which are obtained after 720 rounds
of improvements.

5) TheHypercubeassigns nodes a binary string and arranges
nodes in a logical incomplete hypercube. This topology com-
pletely ignores the network topology [19]. Data is disseminated
using trees which are embedded in the hypercube [21].

For a performance comparison of overlay networks we use
the performance metricsrelative delay penalty (RDP)and
stress, which have been used in the related literature (e.g., [4]).

The RDP for two hosts is the ratio of the delay in the overlay
to the delay of the shortest-delay unicast path.

Thestressof a network-layer link is the number of identical
copies of a packet that traverse the link for a given spanning tree
embedded in an overlay network. For network-layer multicas-
ting, e.g., IP multicast, both RDP and link stress are equal to

one. We point out that there are many other measures which can
be used to evaluate overlay networks, such as the robustness of
the topology to link or node failures, the speed of convergence
of the overlay topology, and the overhead of the routing protocol
in terms of computation and bandwidth needs.

It is important to note that the results for stress and relative
delay penalty are dependent on the randomly generated network
topology. To account for some of the randomness we present all
numerical data as averages from five randomly generated net-
work topologies, where identical parameters are used for each
network topology.

In Fig. 6, we show the stress values for various overlays when
the number of hosts is varied between two and 512. The re-
sults show the average values [Fig. 6(a)], and the 90th percentile
values [Fig. 6(b)] for the stress of links. With the exception of the
hypercube topology, all overlay topologies show similar values
for stress. Fig. 7 depicts the RDP values for all pairs of hosts,
as averages [Fig. 7(a)], and 90th percentile values [Fig. 7(b)].
The results show that overlay networks which take into consid-
eration the network-layer topology incur a lower RDP than De-
launay triangulations. In summary, we observe that tree-based or
mesh-based overlays improve the mapping of the logical overlay
network to the network topology, if compared with Delaunay
triangulations and hypercubes. On the other hand, considering
that the presented Delaunay triangulations merely account for
the geographical position of a node, but do not perform delay
measurements between nodes in the overlay network, the results
for Delaunay triangulations are encouraging.
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IV. THE DT PROTOCOL

In this section, we describe a network protocol which estab-
lishes and maintains a set of applications in a logical Delaunay
triangulation. The protocol, referred to as DT protocol, has been
implemented and tested as part of the HyperCast overlay soft-
ware [11].2 The network protocol implements a distributed in-
cremental algorithm for building a Delaunay triangulation.

In the following sections, we will refer to the protocol entities
that execute the DT protocol asnodes. Each node has a logical
address and a physical address. The logical address of a node is
represented by coordinates in a plane, which identify the
position of a vertex in a Delaunay triangulation. The length of

and coordinates are represented by numbers set to 32 bits
each. The logical address of a node is a configuration parameter,
and can be assigned to a node, or derived from the geographical
location or the IP address of a node. The physical address of a
node is a globally unique identifier on the Internet, consisting
of an IP address and a UDP port number.

We will denote the coordinates of a nodeas
. We define an ordering of nodes where
, if , or and .

A. Neighbors and Neighbor Test

We say two nodes are neighbors if the edge connecting the
two nodes appears in the Delaunay triangulation graph. Each
node maintains aneighborhood tablewhich contains its neigh-
bors in the Delaunay triangulation overlay.

The protocol operations at a node mainly consists of adding
and removing neighbors to and from its neighborhood table.
To add or remove a node to or from its neighborhood table, a
node needs to know if that node is eligible to be its neighbor in
the overlay network topology. We next describe theneighbor
test algorithm we developed for this purpose. The neighbor
test is based on thelocally equiangularproperty described in
Section II-C.

Before describing this algorithm, we first introduce the
notions of clockwise (CW) and counterclockwise (CCW)
neighbors of a given node, say node, with respect to another
node, say node . A neighbor of node is said to be the
CW (or CCW) neighbor with respect to node, if 1) it forms
the smallest clockwise or counterclockwise angle to node
with node as the pivot and 2) the smallest clockwise or
counterclockwise angle is less than 180. The notions of CW
and CCW neighbors are illustrated in Fig. 8, where we show
the CW and CCW neighbors of node with respect to node

. In Fig. 8(a), node is the CW neighbor of with respect
to , and is denoted as . On the other hand, in
Fig. 8(b), node is not regarded as the CW neighbor since
the clockwise angle is larger than 180. In this case, we say
node has no CW neighbor with respect to node. In both
Fig. 8(a) and (b), node is the counterclockwise neighbor of

with respect to , and is denoted as .
We now describe theneighbor test. In the neighbor test, a

testing node determines if another (the tested) node should

2In addition to building overlay networks, the HyperCast software provides
a socket-style API for transmitting data in an overlay network and tools that
collect data from the nodes of an overlay network.

(a)

(b)

Fig. 8. CW and CCW neighbors ofM with respect toA areM ’s neighbors
that form the smallest CW and CCW angles toA, takingM as the pivot. (a)B =
CW (M) andD = CCW (M). CW angle<180 . (b) NodeB is not the
CW neighbor since the clockwise angle is greater an 180. CW angle�180 .

or should not be its neighbor. The testing node performs the
neighbor test by looking at the coordinates of its current
neighbors and the tested node. The test covers all possible
locations of the tested node, relative to the testing node and the
neighbors of the testing node.3

In the following description, denotes the testing node and
denotes the tested node. Essentially, the neighbor test veri-

fies thelocally equiangularproperty for convex quadrilaterals
from Section II-C. That is, if has CW and CCW neighbors
with respect to , and , and the quadri-
lateral formed by , , , and is convex,

passes the neighbor test at, if the edge maximizes
the minimum internal angle. Otherwise, does not pass the
neighbor test at .

However, there are several cases to consider where the above
test cannot be made. In these cases,passes the neighbor test
at , if adding results in a triangulation. The following is a
complete set of all feasible cases.

1) If has a neighbor , such that , and lie on the
same line, passes the neighbor test, if is closer to
than . This is illustrated in Fig. 9(a).

2) If does not have a CW or a CCW neighbor with respect to
, passes the neighbor test. This is illustrated in Fig. 9(b).

Note that this includes the case wherehas neither a CW
nor a CCW neighbor with respect to.

3) If the quadrilateral formed by , , , and
is a triangle [see Fig. 9(c)] or is concave [see

Fig. 9(d)], passes the neighbor test at.
As described, fails the neighbor test at only in two cases:

1) has a neighbor, say node, and , , and are on a
line, and is closer to than and 2) thelocally equiangular
property is violated in the convex quadrilateral formed by,

, , and . For all other cases, passes
the neighbor test at .

3For conciseness, we use “node” and “coordinates of a node” interchangeably.
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(a) (b)

(c) (d)

Fig. 9. Neighbor testat the testing nodeM for a tested nodeA, for cases where thelocally equiangularproperty is not applicable, since it is not feasible to form
a convex quadrilateral of nodesM ,A,CW (M),CCW (M). The depicted scenarios show cases whenA is added as a neighbor ofM . Solid lines showM ’s
current neighbors, and dashed lines are used to indicate the quadrilateral. (a)M has a neighborD, andM ,A, andD are on the same line. (b)M has no CW or
CCW neighbor with respect toA. (c) Quadrilateral degenerates to a triangle. (d) Quadrilateral is concave.

We can argue the correctness of the neighbor test as follows.
The neighbor test is a consequence of thelocally equiangular
property from [30], which states that a triangulation where all
convex quadrilaterals are locally equiangular, is a Delaunay tri-
angulation. The neighbor test enforces the property from [30]
by enforcing two points: 1) whenever a convex quadrilateral is
formed by the nodes , , and , then
the locally equiangular property is enforced and 2) when no
convex quadrilateral can be formed by nodes, ,

, and , i.e., the locally equiangular property is not
applicable, then node passes the neighbor test at if adding

as a neighbor forms a triangulation.
Each node periodically sendsneighbor messagesto nodes in

its neighborhood table. A neighbor message contains the phys-
ical and logical addresses of the sending node, as well as the
logical and physical addresses of its CW and CCW neighbors
with respect to the receiver.

Each entry of the neighborhood table at a node has columns
for the neighbor, the CW neighbor, and the CCW neighbor. For
example, the neighborhood entry at nodefor one of its neigh-
bors has the following form:

Neighborhood table at node

CW CCW
Neighbor neighbor neighbor

Now, when a node receives a neighbor message from node
, it first checks if node is in its neighborhood table. If node

is, then it updates the entry of nodein the neighborhood table,
changing the CW and CCW neighbor fields of the entry if they
are different from the CW and CCW neighbor fields contained
in the neighbor message. If nodeis not a neighbor of , then

runs aneighbor testfor . If passes the neighbor test, it
will be added as a new neighbor in the neighborhood table of.

We say a node is acandidate neighborof another node, if it
is not in the neighborhood table of that node and it passes the
neighbor test at that node. The formal definition of thecandidate

neighborwill be given in Section IV-F. A node can learn about
a candidate neighbor only in two ways: 1) through NewNode
messages described in Section IV-D and 2) from the CW or
CCW neighbor fields in the neighborhood table. If a node has
candidate neighbors, it will send a neighbor message to the
closest candidate neighbor. If the candidate neighbor responds
with a neighbor message, the candidate neighbor is elevated to
the status of a neighbor, i.e., a new entry is created in the neigh-
borhood table.

A neighbor can be removed from the neighborhood table for
any one of the following reasons: 1) the neighbor has sent a
message indicating it has left the overlay; 2) no message has
been received from this neighbor for an extended period of time;
or 3) the neighbor has failed a neighbor test.

We say that a node is stable, if all nodes that appear in
the CW or CCW neighbor columns of’s neighborhood table
also appear in the neighbor column of’s neighborhood table.
Otherwise, a node isnot stable. If the overlay is not partitioned
and all nodes are stable, then the set of nodes has established a
logical Delaunay triangulation.

B. Rendezvous Mechanisms With DT Servers and Leaders

Any protocol that builds an overlay network must provide a
rendezvous mechanism that enables nodes which are not mem-
bers of the overlay to communicate with nodes in the overlay.
The rendezvous mechanism is also used when new nodes join
an overlay and when the overlay network has been partitioned
and must be repaired.4

One can think of three methods that can accomplish a
rendezvous between members and nonmembers of an overlay
network: 1) nonmembers have available a broadcast mechanism
to announce themselves to members of the overlay network;
2) nonmembers maintain a list of “likely” members of the
overlay network (a “buddy list”) and contact members from
this list; and 3) nonmembers contact a well-known server to
learn about members of the overlay network.

4We say an overlay network is partitioned if the graph represented by the
overlay has multiple connected components. In a partitioned overlay, some
nodes cannot communicate with each other across the overlay.
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In the DT protocol, we select the third method, i.e., mem-
bers join the overlay and partitioned overlay networks are re-
paired with the help of a server. A reservation against using a
well-known server is that the server may become a performance
bottleneck, and that it constitutes a single point of failure. To
address the performance concern, in our experiments, a single
server was sufficient to manage the workload from 10 000 new
members joining the overlay in a short period of time. The single
point of failure can be avoided by adapting the DT protocol so
that it supports multiple servers. Also, we emphasize that the
effort to create variations of the DT protocol which use broad-
cast announcements or buddy lists is rather small, and that these
variations can preserve the main characteristics of the DT pro-
tocol.

The server component of the DT protocol is calledDT server.
New nodes join the overlay network by sending a request to the
DT server. The server responds with the logical and physical
addresses of some node that is already in the overlay network.
The new node then sends a message to the node identified by
the DT server and, thus, establishes communication with some
node in the overlay network.

The DT server is also engaged in repairing partitions of the
overlay network as follows. In the DT protocol, a node assumes
that it is aLeaderif it does not have a neighbor with a greater
logical address (using the ordering given at the beginning of
this section). Each leader periodically sends messages to the DT
server. The DT server tries to respond to such a message with the
coordinates of a node that is larger than that of a leader. Hence,
if an overlay has a partition and more than one node believes to
be a leader, all but one of these nodes receives node coordinates
from the DT server that are greater than its own coordinates. By
virtue of the Delaunay triangulation, if a nodethat believes to
be a leader, learns about a nodeand ,
then will pass ’s neighbor test, and, consequently,adds
node as a candidate neighbor. Also,no longer believes to be
a leader. Thus, the partition of the overlay network is repaired.

The DT server maintains a list (“cache”) of logical and phys-
ical addresses of other nodes in the overlay. When the DT server
sends the address of a node in the overlay to a newly joining
node, this address is taken from the cache. We set the default
size of the cache to 100 nodes. If a newly joining node contacts
the DT server and the cache is not full, this node will be added to
the cache. The DT server periodically queries nodes in the cache
to verify that these nodes are still members of the overlay. If a
node does not respond to a query it will eventually be removed
from the cache. Also, a node, with the exception of the nodes
in the cache with the highest coordinates, is removed from the
cache after the DT server has selected this node six times as the
“contact node” for a newly joining node.

C. Timers

The DT protocol is a soft-state protocol, that is, all remote
state information is periodically refreshed, and is invalidated if
it is not refreshed. The operations to recalculate and refresh state
are triggered with the help of timers. A node of the DT protocol
uses the following three timers.

Heartbeat Timer: The heartbeat timer determines when a
node sends neighbor messages to its neighbors. The timer runs

in two modes,SlowHeartbeatandFastHeartbeat. A node is in
FastHeartbeat mode when it joins the overlay and when it has
candidate neighbors. Otherwise, it is in SlowHeartbeat mode.
The operation of the heartbeat timer in two modes trades off
the need for fast convergence of the overlay network when
the topology changes, and low bandwidth consumption in a
steady state. In our experiments, we set the timeout value of the
heartbeat timer to 2 s in SlowHeartbeat mode
and to 0.25 s in FastHeartbeat mode. The
DT server also has a Heartbeat Timer with a timeout value of

2 s. Each time the timer expires, the DT server
sends a CachePing message to each node in the node cache.

Neighbor Timer: If a node has not received a neighbor mes-
sage from one of its neighbors for s, the neighbor will
be deleted from the neighborhood table. There is one Neighbor
Timer for each neighbor in the neighborhood table. The default
timeout value of the neighbor timer is set to 10 s.

Backoff Timer: When a node does not receive a reply from
the DT server, it retransmits its request using an exponential
back-off algorithm with a Backoff timer. Initially, the timeout
value of Backoff timer is set to and
doubled after each repeated transmission, until it reaches

( 10 s). If there are alternate DT
servers, the node switches to an alternate DT server when

seconds.
In addition to the abovementioned Heartbeat timer, the DT

server keeps the following two timers.
Cache Timer: If the DT server has not received a CachePong

message from a node in its node cache, in response to CachePing
message for s, the node will be deleted from the cache.
The default timeout value of the timer is 10 s.

Leader Timer: If the DT server has not received a message
from the Leader for seconds, another node from the node
cache will be selected as Leader. The default timeout value of
the leader timer is 10 s.

D. Message Types

The DT protocol has eight types of messages, which are sent
as UDP datagrams. All messages of the DT protocol are unicast
messages. We describe the contents of each message and the op-
erations associated with the transmission and reception of each
message. We refer to [20] for the precise message format.

HelloNeighbor and HelloNotNeighbor Messages:These
messages are used to create and refresh neighborhood tables at
nodes. Each HelloNeighbor5 and HelloNotNeighbor message
contains the logical and physical addresses of the sender. The
receiver of a HelloNeighbor or HelloNotNeighbor message
needs to know the physical address of the sending node, and
the clockwise and counterclockwise neighbors of the sender
with respect to the receiver. Each time the Heartbeat timer
goes off, a node sends a HelloNeighbor messages to each of its
neighbors, and to one of its candidate neighbors, if there is a
candidate neighbor. If there are multiple candidate neighbors,
the message is sent to the candidate neighbor with the “closest”
coordinates.

5Earlier, we referred to HelloNeighbor messages asneighbor messages.
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A HelloNotNeighbor message is sent as an immediate reply
to the reception of a HelloNeighbor message from a node that
fails the neighbor test. The HelloNotNeighbor message serves
three purposes. First, the information in the message is used by
the receiver to update its neighborhood table. Second, the clock-
wise and counterclockwise neighbors in the HelloNotNeighbor
message provide the receiver with additional information about
neighbors in its vicinity. Lastly, HelloNotNeighbor messages
are used to resolve situations where two nodes have the same
logical address.

A special case exists, when two or more nodes have the
same logical address. When a nodelearns about the ex-
istence of a node with , through
any method except a HelloNeighbor message from, then

sends a HelloNeighbor message to. When a node
receives a HelloNeighbor message from a node, and

, then changes its logical address.
When a node has a node in its neighborhood table, and
learns about a node , with , then
sends a HelloNotNeighbor message to. This is discussed in
more detail in Section IV-E.

Goodbye Message:When a node leaves the overlay, it sends
Goodbye messages to the DT server and all its neighbors. If
a node receives a Goodbye message, it removes the sender of
the Goodbye message from the neighborhood table. The DT
server removes the sender of a Goodbye message from its cache.
A node that has sent Goodbye messages, can continue to send
Goodbye messages in response to each message received, until
the process that runs the node is terminated by the application.

ServerRequest and ServerReply Messages:ServerRequest
and ServerReply messages, respectively, are queries to and
replies from the DT server. ServerRequest messages are sent
by newly joining nodes and Leaders. A Leader sends a Server-
Request message every seconds. ServerRequest
messages are retransmitted if no Server Reply is received, using
the exponential backoff outlined above.

Each ServerRequest message contains the logical and phys-
ical addresses of the sender. The same argument holds for the
sender of a ServerRequest message. The physical address of
the sender should be recovered by the receiver of the message.
The ServerReply message contains the logical and physical
addresses of some node in the overlay. More specifically, a
ServerReply sent to node contains the logical and physical
addresses of some node, with .
Newly joining nodes use addresses in the ServerReply message
to find a node that is already in the overlay. Leaders use the
addresses in the ServerReply message to determine if the
overlay has a partition.

NewMode Message:The NewNode message contains the
logical and physical addresses of a new node. When a new node

obtains from the DT server the address of some node in the
overlay, say , then will send a NewNode message to. If

passes the neighbor test at, then becomes a candidate
neighbor at , and responds to with a HelloNeighbor
message. Otherwise, passes the NewNode message to one its
neighbors whose coordinates are closer to those of. In such
a way, the NewNode message is routed through the overlay
toward the coordinates of the new node, until the NewNode

message reaches a node where the new node passes a neighbor
test.

CachePing and CachePong Messages:CachePing and
CachePong messages are used to refresh the contents of the
cache at the DT server. Every seconds, the DT
server sends a CachePing message to every node in the cache.
A node that receives a CachePing message immediately replies
with a CachePong message.

E. Shifting Coordinates

Since the logical address of a node is a configuration param-
eter, it may happen that two nodes have the same coordinates, or
that the coordinates of four nodes lie on a circle. In the former
case, the Delaunay triangulation is not defined, and in the latter
case, the Delaunay triangulation overlay is not unique. In both
cases, the DT protocol forces one of the nodes to change its co-
ordinates by a small amount, thus, ensuring that the Delaunay
triangulation of the nodes is unique.

Whenever a node receives a message from a node with the
same coordinates, the receiver shifts its coordinates by a small
amount, and removes all neighbors that fail the neighbor test
with the new coordinates. If a nodereceives a message from
a node , and a node in ’s neighborhood table has the same
coordinates as node, then node sends a HelloNotNeighbor
message to . Since the HelloNotNeighbor message contains

’s neighbor with ’s logical address, sends the node with
the duplicate logical address a HelloNeighbor message. The re-
ceiver of this HelloNeighbor message notices that the message
was sent by a node with the same coordinates, and changes its
logical address.

If a node receives a HelloNeighbor or HelloNotNeighbor
message from a node such that the sender, the receiver ,
the CW and CCW neighbors of with respect to ,
and , lie on a circle, will shift its coordinates be-
fore processing the message.

Each time a node receives a HelloNeighbor or HelloNot-
Neighbor message from a neighbor, it checks if the neighbor’s
logical address has changed. If the logical address has changed,
the node removes the neighbor’s entry from the neighborhood
table and then processes the message. In most cases, the node
with the shifted coordinates will be added again as a neighbor.

F. States and State Transitions of the DT Protocol

We next discuss the states and state transitions of the DT
protocol. The discussion summarizes our earlier description of
the protocol. The DT protocol has two different finite state ma-
chines, one for a node and one for the DT server. A detailed de-
scription of the state transitions in tabular form is given in [20].

1) Node States:The state of a node is derived from the
neighborhood table. There are no variables that memorize the
states of a node.

A node is in one of five states:Stopped, Leader without
Neighbor, Leader with Neighbor, Not Leader, and Leaving.
Recall that a node is a Leader if the node has no neighbor with
greater coordinates than its own. By definition, a node with
no neighbors is a leader. The statesLeader with Neighborand
Leader without Neighborare distinguished, for the following
reason. When a newly joining node starts up or when a node
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TABLE I
NODE STATE DEFINITIONS

TABLE II
NODE SUBSTATE DEFINITIONS

has no neighbors, it believes itself to be a leader, and it will
generate NewNode Messages when it learns about a node in
the overlay to contact. A node with neighbors does not send
NewNode Messages.

The definitions of the five states are given in Table I.
For nodes in statesLeader with NeighborandNot Leader, we

define three substates:Stable With Candidate Neighbor, Stable
Without Candidate Neighbor, andNot Stable. We say a node

is stable when all nodes that appear in the CW and CCW
neighbor columns of node ’s neighborhood also appear in the
neighbor column; otherwise nodeis not stable. We say a node

has a candidate neighbor, say node, if 1) appears in
the CW or CCW column of ’s neighborhood table, or if
is contained in a NewNode message received by; 2) is
not in the neighbor column of ’s neighborhood table; and 3)

passes the neighbor test at. The definitions of the three
substates are given in Table II.

A new node starts in stateStopped. When it is in stateLeader
With NeighborandNot Leader, the node also has a substate. The
transition diagram of states and substates is shown in Fig. 10.

2) DT Server States:The functions performed by the DT
server are minimal. It is used as rendezvous point when new
nodes join the overlay network and when the overlay Newark
must be repaired after a partition. The DT server has only two
states:Has Leaderand Without Leader. Recall that the DT
server maintains a cache of nodes. The node with the highest
logical address is identified by the DT server as the Leader of
the overlay network. If the node cache is empty, the DT server
has no information about nodes in the overlay network. This
state is referred to asWithout Leader. If the node cache is not
empty, the DT server can identify the Leader of the overlay
network. This state is referred to asHas Leader. The definitions
of the two states are given in Table III.

(a)

(b)

Fig. 10. State transition diagrams for nodes. States are indicated as circles.
State transitions are indicated as arcs. Each arc is labeled with the condition
that triggers the transition. (a) Transition diagram of node states. (b) Transition
diagram for substates.

TABLE III
DT SERVER STATE DEFINITIONS

Fig. 11. DT server state transition diagram.

The state transition diagram of the DT server is shown in
Fig. 11. The DT server starts in stateWithout Leader. When
the first joining node sends a ServerRequest message to the DT
server, this node is added to the node cache, and the DT server
will enter stateHas Leader.

G. Examples

In an overlay network, without any changes for an ex-
tended period of time, there are three types of events: 1) all
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Fig. 12. NodeN with coordinatescoord(N) = (8; 4) joins the overlay network. Note that in (a) and (b), we have omitted some edges from the Delaunay
triangulation for the sake of simplicity, and in (c)–(f), we have omitted nodesX andY .

nodes send HelloNeighbor messages to their neighbors every
seconds; 2) the Leader exchanges ServerRe-

quest and ServerReply messages with the DT server every
seconds; and 3) the server exchanges CachePing

and CachePong messages with the nodes in its cache every
seconds.

In the following, we illustrate the dynamics of the DT pro-
tocol, when a node joins and leaves the Delaunay triangulation.

1) Node Joins: In Fig. 12, we illustrate the steps of the DT
protocol when a new node,, with coord , joins an
overlay network. As shown in Fig. 12(a), first sends a Server-
Request to the DT server, and receives a ServerReply, which
contains the logical and physical addresses of some node
with . Then, node sends a NewNode
message to [Fig. 12(b)]. performs a neighbor test for ,

which fails. Therefore, forwards the NewNode message to
neighbor , which is closer to than . Assuming that fails
the neighbor test at , node forwards the NewNode message
to which is closer to than . At node , passes the
neighbor test and, therefore, makes a candidate neighbor
and sends a HelloNeighbor message to.6 Now, has found
its first neighbor.

Since the HelloNeighbor from in Fig. 12(b) contains
and , nodes and become candi-

date neighbors at . At the next timeout of the Heartbeat timer,
sends a HelloNeighbor message to its’neighbor, and its

closest candidate neighbor[Fig. 12(c)]. As soon as these Hel-
loNeighbor messages are received atand , these nodes will

6Since the NewNode message contains the physical address of nodeN , any
node that receives the NewNode message can send messages toN .
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Fig. 13. NodeN with coordinatescoord(N) = (8; 4) leaves the overlay network.

drop each other from their neighborhood table. In other words,
the link in the overlay between nodesand is removed.

In Fig. 12(d), we assume that the Heartbeat timers expire at
both and . (Note that the sequence of events in this example
is different if the Heartbeat timers expire in a different order.)
Both nodes send HelloNeighbor messages to their neighbors.
When receives the message from, it promotes from a
candidate neighbor to a neighbor. The messages fromto
and, from to , contain as CW or CCW neighbor. Hence,

becomes a candidate neighbor atand .
Assuming that the next Heartbeat timeout occurs at nodes

and , these nodes send HelloNeighbor messages to all their
neighbors and their candidate neighbor[Fig. 12(e)]. When

receives the messages fromand , it adds these nodes as
neighbors. Now, has a correct view of its neighborhood.

At the next Heartbeat timeout at , shown in Fig. 12(f),
sends HelloNeighbor messages to nodes, , , and . When
the respective HelloNeighbor messages arrive atand , these
nodes promote node from candidate neighbor to neighbor.
This completes the procedure for joining nodeto the overlay
network. Subsequently, each node sends HelloNeighbor mes-
sages to its neighbors at each Heartbeat timeout.

2) Node Leaves:In Fig. 13, we illustrate the steps involved
when node leaves the overlay network. When decides to
leave the overlay, it sends Goodbye messages to all its neigh-
bors and the DT server [Fig. 13(a)]. When the server receives
the Goodbye message, it removesfrom the cache. When the
neighbors receive the Goodbye message, they removefrom
the neighborhood table.

However, even though is deleted as neighbor at nodes,
, , and , these nodes have some other neighbor entries,

where is listed as CW or CCW neighbor. For example, since
and , node appears as CW

neighbor of and as CCW neighbor of in ’s neighbor-
hood table. By definition of a candidate neighbor,is now a
candidate neighbor at , , , and , and the nodes will send
HelloNeighbor messages to at their next Heartbeat timeout.7

Let us now assume that all nodes send HelloNeighbor
message to their neighbors, and their candidate neighbor
[Fig. 13(b)]. When receives the messages, it responds with
Goodbye messages, as shown in Fig. 13(c).

The HelloNeighbor messages sent in Fig. 13(b) contain the
updated values of the CW and the CCW neighbors of the nodes.
For instance, ’s message to lists (and no longer ) as the
CW neighbor of with respect to , that is, .
As a result, after Fig. 13(b), node no longer exists as a CW
or CCW neighbor in the neighborhood tables of any node. Fur-
ther, nodes , , , and , know about each other either as
neighbors, or as CW or CCW neighbor of some neighborhood
table entry. When the neighbor tests are executed,fails the
neighbor tests at node, and vice versa. On the other hand,

passes the neighbor test at node, and passes the test
at node . Hence, nodes and add each other as candi-
date neighbors and send HelloNeighbor messages to each other
[Fig. 13(d)]. Once these messages are received, bothand

7These HelloNeighbor messages toN are superfluous. However, avoiding
these messages adds a requirement that nodes remember recently received
Goodbye messages.
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Fig. 14. Network topology of the Centurion cluster. The figure only shows equipment involved in the experiments. Switches 3 to 11 are Ethernet switches with
100 Mb/s ports and one 1-Gb/s uplink. All links are full duplex. Hosts are labeled “centurionN ,” whereN is a number. All hosts have valid IP addresses and
may run other applications at the time of the experiments. At most 100 nodes are involved in any single experiment.

have established each other as neighbors, and, as a result, the
overlay network is repaired.

V. EVALUATION OF THE DT PROTOCOL

We have evaluated the performance characteristics of the DT
protocol in measurement experiments on a cluster of Linux PCs.
The experiments include up to 100 PCs and overlay networks
with up to 10 000 nodes.

The DT protocol was implemented in Java using Sun’s Java
Virtual Machine 1.3.0, which includes the HotSpot just-in-time
compiler. Details of the implementation can be obtained from
[11].

The measurement experiments were conducted on the Centu-
rion computer cluster at the University of Virginia. The exper-
iments use up to 100 PCs from the cluster, each equipped with
two 400-MHz Pentium II processors and 256-MB RAM. The
server of the DT protocol was run on a 933-MHz Pentium III
with 1-GB RAM. All machines run the Linux 2.2.14 operating
system. The network of the Centurion cluster is a switched Eth-
ernet network with a two-level hierarchy, as shown in Fig. 14.
Each PC is connected to a 100 Mb/s port of an Ethernet switch.
Each Ethernet switch has a 1-Gb/s uplink to a Gigabit Ethernet
switch. All machines of the Centurion cluster have valid IP ad-
dresses and are on the same IP subnetwork. Hosts used in the
experiments were not available for exclusive use, and may have
run other applications.

In the experiments, each PC (henceforth referred to as “host”)
executes between one and 100 nodes of the overlay networks, al-
lowing overlay networks with up to 10 000 nodes. The number
of nodes in an experiment are evenly distributed over the 100
hosts of the PC cluster. For instance, in an experiment with 1000
nodes, ten nodes are assigned to each host. In all experiments,
the coordinates of a node in the Delaunay triangulation are as-
signed as a randomly selected point from a 10 000 by 10 000
grid. Results obtained with this random assignment of coordi-
nates can be interpreted as lower bounds for the expected perfor-
mance of any more sophisticated assignment method that con-
siders the topology of the underlying network.

A. Evaluation of the Overlay Graphs

We first evaluate the properties of the overlay graphs gener-
ated by the DT protocol for the network topology in Fig. 14. We
have constructed overlay networks with 100 to 10 000 nodes.
Recall that the coordinates of nodes are randomly assigned, and,
hence, the DT protocol does not consider the network topology
when constructing an overlay network.

We evaluate theoutdegree, defined as the number of neigh-
bors of a node, thepath length, defined as the number of log-
ical overlay edges between a given pair of nodes, and thestress,
where the stress of a network linkwith respect to a multicast
sender is the number of overlay edges in the embedded spanning
tree (with the multicast sender as root of the tree) that pass over
link . Since the outdegree of a node provides an upper bound
for the number of times that any particular message is forwarded
at a node, the outdegree is a measure for the processing load at a
node in the overlay. The path length is an indicator for the delay
in the overlay network. The stress indicates how efficient the
overlay utilizes the available network bandwidth.

The results are shown in Fig. 15. Each data point in the
plots contains the results from five generated overlay networks.
Fig. 15(a) shows the outdegree of nodes when the number
of nodes in the overlay network is increased. The average
outdegree is approximately six, as is expected for any triangu-
lation graph. Although the worst case outdegree of a node in
a Delaunay triangulation is 1, where is the number of
nodes, the maximum outdegree is generally small [13].

Fig. 15(b) shows the path length in the overlay network be-
tween randomly selected pairs of nodes as a function of the
number of nodes in the overlay topology. Each data point in
the graph shows the values from five topologies, where in each
topology, we evaluate 1000 randomly selected pairs of nodes.
(The random selection of paths is justified by the considerable
effort to compute all paths.) The average number of hops closely
matches , where is the number of nodes.

Fig. 15(c) shows the stress values for the links of the net-
work in Fig. 14. (We ignore logical links between nodes that run
on the same host.) With the random assignment of logical ad-
dresses to nodes of the overlay, the links at the Gigabit switch are
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Fig. 15. (a) Outdegree of nodes, path length between two nodes, and stress of links in the overlay network. Each data point shows the results from five generated
graphs. (b) Values for the path length are computed from 1000 randomly selected node pairs. (c) Values for the “stress” of a link are computed for at most1000
randomly selected multicast trees.

expected to have higher stress values than the 100-Mb/s links.
Thus, we plot the stress in Fig. 15(c) separately for 100-Mb/s
links and 1-Gb/s links. Each data point contains the results from
five overlay topologies generated for the network in Fig. 14.
Since the values for stress at a link depend on the selection of the
multicast routing tree, we calculate the stress for the multicast
routing trees of 1000 randomly selected senders (if the number
of nodes is less than 1000, we consider all senders). The results
in Fig. 15(c) show that the stress for 10 000 nodes can exceed
100 at a 100-Mb/s link, and can exceed 1000 at a 1-Gb/s link.
In comparison to Section III, the stress values are significantly
worse. This is due to the random assignment of coordi-
nates, and the star-shaped topology of the network in Fig. 14.
Note that the small difference between the average stress and
the 99th percentile of the stress indicate that the stress is high
for all multicast trees.

B. Performance of the DT Protocol

We now evaluate the performance of the DT protocol by
measuring the time required to form a Delaunay triangulation
overlay network, and to repair the Delaunay triangulation after
nodes depart. Later, we examine the steady state bandwidth
requirements of the protocol at the nodes and at the DT server.

To measure the time to build an overlay network, we set up
an initial Delaunay triangulation overlay network withnodes,
and add new nodes at the beginning of the experiment. The
rate at which new nodes are generated is limited by the computa-
tional power and number of the hosts. In our experiments, each
hosts spawns off new nodes as fast as possible. Then we measure
the time delay until the overlay network of nodes has

formed a Delaunay triangulation. TheTime-to-Stabilizeis mea-
sured from the time the first new node joins the overlay until the
overlay network has become stable after the last node has been
added. In all experiments, nodes are evenly distributed over 100
hosts of the PC cluster.

The measurements of delays and bandwidth requirements
heavily depend on the selection of the timer values of the
protocols. In all our experiments, we use the values given in
Section IV-C.

Fig. 16(a) shows the Time-to-Stabilize for experiments with
0, 1000, 2000, 5000, 7500 and 50 to 10 000 nodes.

We consider overlay networks with up to 10 000 nodes, that is,
10 000. Each data point shows the average of five

repetitions of the same experiment. Since the coordinates are
randomly assigned, each repetition of an experiment is likely to
result in a different overlay topology. Fig. 16(a) contains five
curves, one plot for each value of . Each curve shows the
Time-to-Stabilize, measured in seconds, as a function of ,
i.e., the final number of nodes. The figure shows that a Delaunay
triangulation with 10 000 nodes is formed in less than 35 s.

Fig. 16(b) shows the time to stabilize when nodes leave the
overlay network. We assume that there is an overlay network
with nodes, where 1000, 2000, 5000, 10 000. At the be-
ginning of each experiment, nodes depart from the overlay
network. We measure the time until the resulting overlay net-
work of stabilizes to a Delaunay triangulation. Each data
point presents an average of five repetitions of an experiment.
As before, we present one curve for each value of, and depict
the Time-to-Stabilize as a function of . The results show
that the Delaunay triangulation is quickly repaired even when a
large number of nodes depart. When almost all nodes leave the
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Fig. 16. Time-to-stabilize when nodes join or leave the overlay network. (a)M new nodes are added to an overlay ofN nodes. The time to stabilize is the time
until the resulting overlay network ofN +M nodes has formed a Delaunay triangulation. (b) There areN nodes initially, andM nodes depart at the beginning
of the experiment. Here, the time to stabilize is the time until the resulting overlay network ofN �M nodes has formed a Delaunay triangulation.

Fig. 17. Bandwidth requirements of nodes and the DT server in an experiment whereM nodes are added to an initially empty overlay network. Measurements
are taken for intervals of the length of the Heartbeat timer until the Delaunay triangulation is completed. (a) Peak bandwidth of nodes is presented asaverage, 99th
percentile, and maximum over all nodes. (b) Average and peak bandwidth requirements at the DT server are presented.

overlay network, that is, when is small, the overlay net-
work stabilizes on the average in less than 10 s for all considered
values of .

We also measured the peak bandwidth requirements when
nodes are added to an overlay network, by counting the max-
imum number of sent and received messages between any two
expirations of the Heartbeat timer at nodes and the DT server.
Recall that Heartbeat timers are set to either or

seconds. We present the data in terms of bits per
second, but we only account for the payload size of messages
and do not account for the UDP header, IP header, or Ethernet
headers. Since messages are at most 61-bytes long, the band-
width requirements at the data link layer are up to 75% higher
than shown in the graphs.

Fig. 17 shows the bandwidth requirements of nodes in an ex-
periment which builds a Delaunay triangulation withnodes,
starting with an overlay network with 0 nodes. The figure
depicts the bandwidth requirements as a function of. The
measurements are taken over the entire length of the experi-
ment, that is, until the Delaunay triangulation of nodes is
completed. Fig. 17(a) illustrates that the peak bandwidth, aver-
aged over all nodes, is below 38 kb/s for all values of. The
99th percentile of the peak bandwidth at nodes is below 70 kb/s.
However, the node with the highest peak bandwidth, was mea-
sured at 485 kb/s, corresponding to 249 messages in a time pe-
riod of 0.25 s.

Fig. 17(b) shows the peak and average bandwidth require-
ments at the DT server during the same experiment. The average

bandwidth requirements at the DT server are below 400 kb/s,
even when 10 000 nodes want to join the overlay network. The
peak bandwidth requirement at the DT server is about 1300 kb/s.
Since each node that joins the overlay network sends a message
to the DT server, the bandwidth requirements at the DT server
should increase with . The fact that the peak bandwidth does
not increase for 2000 nodes indicates that the rate at which
new nodes are generated is limited by the rate at which the hosts
can start new overlay nodes.

C. Bandwidth Requirements of DT Protocol in Steady State

We have performed measurements of the bandwidth require-
ments by the DT protocol in a steady state, that is, when no
nodes are added or removed from the Delaunay triangulation
overlay. We use an overlay network with 10 000 nodes and mea-
sure the number of messages transmitted by each node. For each
overlay network topology, we take measurements over a period
of one hour. We repeat each experiment five times. Fig. 18(a)
shows a histogram which depicts the distribution of the number
of transmitted and received messages for all five repetitions of
the experiment. Since, in a steady state, the number of mes-
sages at nodes consists mostly of HelloNeighbor messages, the
amount of traffic at a node largely depends on the outdegree of
the node. To support this observation, we include in Fig. 18(b)
a histogram which depicts the distribution of the outdegree of
nodes. A comparison of Fig. 18(a) and (b) makes clear that the
traffic at a node indeed correlates with the number of neigh-
bors. Recall that in a triangulation graph, each node has on
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Fig. 18. Distribution of the number of messages (sent and received) of a node and the number of neighbors per node in an overlay network with 10 000 nodes.
The histogram in (a) shows the average number of messages sent and received by a node in a one-second time interval.

the average six neighbors. Thus, with the Heartbeat timer set
to 2 s, we expect that each node sends and
receives 12 messages over a period of 2 s. With 61 bytes per
HelloNeighbor message (not counting UDP, IP, and Ethernet
headers), the bandwidth requirements per node are less than 3
kb/s. In all measurements of overlay networks in steady state,
no node sent or received more than 23 messages per second, or
more than 11.2 kb/s of traffic.

As a final comment, the steady state traffic at the DT server
consists mostly of CachePing and CachePong messages to the
nodes in the cache. If the cache has a size of 100 nodes, the
steady state bandwidth requirement at the DT server is approx-
imately 50 kb/s.

D. Measurements of Multicast Bulk Transfers

We tested the application-level performance by measuring the
throughput and delay of multicasting bulk data in the overlay
network. Recall from Section II that a node in a Delaunay
triangulation overlay forward a multicast message from source
node to a neighbor node , if is the next hop on the (com-
pass routed) path from to . Thus, once the overlay network
is established, no routing protocol is needed.

We present measurements from an experiment where multi-
cast data is carried over (unicast) TCP links between neighbors
in the overlay. We assume that all data is partitioned into mes-
sages with 16-kB payload and 16 bytes of header information.8

The header information contains, among others, the logical ad-
dress of the sender of the multicast message.

The measurements of multicast transmissions are performed
for overlay networks with 2 to 1000 nodes. In the measure-
ment experiments we run one or ten nodes on each host, and the
number of hosts involved in an experiment is varied between
two and 100. In experiments with one overlay node per host,
the multicast sender performs a bulk transfer of 100 MB (6400
messages). For experiments with 10 nodes per host, the multi-
cast sender performs a bulk transfer of 10 MB of data (640
messages).

We measure the throughput in multicast trees for ten ran-
domly selected senders, with the exception of 2, where
we only have two senders. The throughput is measured at all

8A description of the message format used by the protocol is beyond the scope
of this paper and we refer to [11].

Fig. 19. Measured multicast throughput at receivers. The plots compare
theoretical bounds and measured values of the average throughput of multicast
transmissions for a set of multicast trees. We show two measurements:
1) 100-MB bulk data transfers for an overlay withN = 2 to 100 nodes, where
at most one node is assigned to each host and 2) 10-MB bulk data transfers for
an overlay withN = 20 to 1000 nodes, where always ten nodes are assigned
to each host. The error bars show the variation of the measurements across all
considered multicast trees.

receivers, as the ratio of the amount of data sent (10 MB or
100 MB) and the time lag between the receipt of the first and
last message. As in all previous experiments, we repeat each
measurement five times. Fig. 19 shows the average throughput,
averaged over all nodes in all multicast trees and all repetitions.
To give an indication of the distribution of the throughput values,
we include the range of throughput measurements for all mul-
ticast trees as error bars. Note that there is a different multicast
tree for each generated overlay.

Given a network topology (in our case, Fig. 14), an overlay
network, and a multicast sender, the “stress” (see Fig. 6) imposes
a limit on the maximum achievable throughout. The achievable
throughput can be bounded by , where is the set
of all network links in the overlay network which carry traffic
from the multicast sender, is the capacity of link (here,
either 100 Mb/s or 1 Gb/s), and is thestressof link . We cal-
culate these bounds and compare them to the measured values.
We include the average value of the bounds, averaged over all
multicast trees that were evaluated.

Fig. 19 shows that the throughput for the multicast trans-
missions is high, achieving an average throughout of close
to 15 Mb/s when 100 nodes are running on 100 hosts. The
throughput is lower when ten nodes are run on each host. With
1000 nodes running on 100 nodes, the measured throughput is



LIEBEHERRet al.: APPLICATION-LAYER MULTICASTING WITH DELAUNAY TRIANGULATION OVERLAYS 1487

Fig. 20. Measured end-to-end delay of messages. The plots show average
delays and 99th percentile of delays for receivers in a set of multicast trees.
We present two measurements: 1) 100-MB bulk data transfers for an overlay
with N = 2 to 100 nodes, where at most one node is assigned to each host;
and 2) 10-MB bulk data transfer for an overlay withN = 20 to 1000 nodes,
where always ten nodes are assigned to each host.

close to 2 Mb/s. Note that in the experiments which run one
node per host, the achieved throughput is close to the theoretical
bound. This indicates that the experiment is bandwidth limited
in experiments where one overlay node is run on each host.
When we run ten overlay nodes on each host, the measured
data is lower than the throughput bound. This indicates that the
bottleneck is the processing at hosts.

Finally, we present measurements of the end-to-end delay ex-
perienced by individual messages during the above multicast ex-
periments. Clocks on the hosts of the Centurion cluster are syn-
chronized using , which runs the NTP Version 3 protocol
[24], and should differ by at most 30 ms. With the synchronized
clocks, we can determine the end-to-end delay of a message for
a node as the time lag between message transmission and mes-
sage reception.

Fig. 20 shows the average and 99th percentile values of the
end-to-end packet delays for the multicast receivers for 10-MB
bulk data transfers (with ten nodes running on a host) and
100-MB bulk data transfers (with one node running on a host).
If one node is run on a host, the average delay in a network
with 100 nodes is 76 ms and the 99th percentile of the delay
is 176 ms. For 100 nodes, using ten nodes per host, the delay is
much higher, with an average of 311 msec and a 99th percentile
of the delay at 935 ms.

VI. CONCLUSION

We have examined Delaunay triangulations as overlay
topologies for application-layer multicast. We have presented
a protocol, theDT Protocol, that creates and maintains a
Delaunay triangulation overlay for applications.

The contribution of the presented Delaunay triangulation
and the DT protocol is that we can build and maintain very
large overlay networks with relatively low overhead, at the
cost of poor resource utilization due to a possibly bad match
of the overlay network to the network-layer infrastructure. To
our knowledge, our study is the first that demonstrates in an
implementation that overlay networks with 10 000 members
can be built and maintained in a highly distributed fashion and
with relatively low overhead.

There are several directions for future work. A limitation
of this study is that the experiments with the DT protocol are
confined to a local-area environment. We plan to evaluate the
DT protocol over a wide-area network. However, managing
wide-area measurement experiments for an overlay network
with several thousand members imposes significant logistical
problems. In addition, since Delaunay triangulations have mul-
tiple alternate paths between nodes, an overlay network based
on Delaunay triangulations can mask a certain amount of node
failures. The geographic routing techniques from [16] may be
suitable to find routes to bypass failed nodes. Finally, we have
pointed out that the mapping of the Delaunay triangulation
overlay network to the network-layer infrastructure can be
poor. New coordinate spaces, that can take into consideration
network delay measurements [25], may provide an improved
mapping of the logical overlay network to the underlying
network.

As a final comment, the software of the DT protocol, which
is part of the HyperCast software [11], is publicly available.
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