
A Survey of Peer-to-Peer Content Distribution Technologies

STEPHANOS ANDROUTSELLIS-THEOTOKIS AND DIOMIDIS SPINELLIS

Athens University of Economics and Business

Distributed computer architectures labeled “peer-to-peer” are designed for the sharing
of computer resources (content, storage, CPU cycles) by direct exchange, rather than
requiring the intermediation or support of a centralized server or authority.
Peer-to-peer architectures are characterized by their ability to adapt to failures and
accommodate transient populations of nodes while maintaining acceptable connectivity
and performance.

Content distribution is an important peer-to-peer application on the Internet that
has received considerable research attention. Content distribution applications
typically allow personal computers to function in a coordinated manner as a distributed
storage medium by contributing, searching, and obtaining digital content.

In this survey, we propose a framework for analyzing peer-to-peer content
distribution technologies. Our approach focuses on nonfunctional characteristics such
as security, scalability, performance, fairness, and resource management potential, and
examines the way in which these characteristics are reflected in—and affected by—the
architectural design decisions adopted by current peer-to-peer systems.

We study current peer-to-peer systems and infrastructure technologies in terms of
their distributed object location and routing mechanisms, their approach to content
replication, caching and migration, their support for encryption, access control,
authentication and identity, anonymity, deniability, accountability and reputation, and
their use of resource trading and management schemes.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Network topology; C.2.2 [Computer-
Communication Networks]: Network Protocols—Routing protocols; C.2.4
[Computer-Communication Networks]: Distributed Systems—Distributed
databases; H.2.4 [Database Management]: Systems—Distributed databases; H.3.4
[Information Storage and Retrieval]: Systems and Software—Distributed systems

General Terms: Algorithms, Design, Performance, Reliability, Security

Additional Key Words and Phrases: Content distribution, DOLR, DHT, grid computing,
p2p, peer-to-peer

1. INTRODUCTION

A new wave of network architectures
labeled peer-to-peer is the basis of
operation of distributed computing

Authors’ address: Athens University of Economics and Business, 76 Patission St., GR-104 34, Athens, Greece;
email: stheotok@aueb.gr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212)
869-0481, or permissions@acm.org.
c©2004 ACM 0360-0300/04/1200-0335 $5.00

systems such as [Gnutella 2003], Seti@
Home [SetiAtHome 2003], OceanStore
[Kubiatowicz et al. 2000], and many
others. Such architectures are gener-
ally characterized by the direct sharing

ACM Computing Surveys, Vol. 36, No. 4, December 2004, pp. 335–371.



336 S. Androutsellis-Theotokis and D. Spinellis

of computer resources (CPU cycles, stor-
age, content) rather than requiring the in-
termediation of a centralized server.

The motivation behind basing appli-
cations on peer-to-peer architectures
derives to a large extent from their ability
to function, scale, and self-organize in
the presence of a highly transient popu-
lation of nodes, network, and computer
failures, without the need of a central
server and the overhead of its adminis-
tration. Such architectures typically have
as inherent characteristics scalability,
resistance to censorship and centralized
control, and increased access to resources.
Administration, maintenance, respon-
sibility for the operation, and even the
notion of “ownership” of peer-to-peer sys-
tems are also distributed among the users,
instead of being handled by a single com-
pany, institution or person (see also Agre
[2003] for an interesting discussion of in-
stitutional change through decentralized
architectures). Finally, peer-to-peer archi-
tectures have the potential to accelerate
communication processes and reduce
collaboration costs through the ad hoc ad-
ministration of working groups [Schoder
and Fischbach 2003].

This report surveys peer-to-peer con-
tent distribution technologies, aiming to
provide a comprehensive account of ap-
plications, features, and implementation
techniques. As this is a new and (thank-
fully) rapidly evolving field, and advances
and new capabilities are constantly being
introduced, this article will be present-
ing what essentially constitutes a “snap-
shot” of the state of the art around the
time of its writing—as is unavoidably the
case for any survey of a thriving research
field. We do, however, believe that the
core information and principles presented
will remain relevant and useful for the
reader.

In the next section, we define the basic
concepts of peer-to-peer computing. We
classify peer-to-peer systems into three
categories (communication and collab-
oration, distributed computation, and
content distribution). Content distribu-
tion systems are further discussed and
categorized.

We then present the main attributes of
peer-to-peer content distribution systems,
and the aspects of their architectural de-
sign which affect these attributes are an-
alyzed with reference to specific existing
peer-to-peer content distribution systems
and technologies.

Throughout this report the terms
“node”, “peer” and “user” are used inter-
changeably, according to the context, to re-
fer to the entities that are connected in a
peer-to-peer network.

1.1. Defining Peer-to-Peer Computing

A quick look at the literature reveals a con-
siderable number of different definitions
of “peer-to-peer”, mainly distinguished
by the “broadness” they attach to the
term.

The strictest definitions of “pure” peer-
to-peer refer to totally distributed sys-
tems, in which all nodes are completely
equivalent in terms of functionality and
tasks they perform. These definitions fail
to encompass, for example, systems that
employ the notion of “supernodes” (nodes
that function as dynamically assigned
localized mini-servers) such as Kazaa
[2003], which are, however, widely ac-
cepted as peer-to-peer, or systems that
rely on some centralized server infras-
tructure for a subset of noncore tasks
(e.g. bootstrapping, maintaining reputa-
tion ratings, etc).

According to a broader and widely ac-
cepted definition in Shirky [2000], “peer-
to-peer is a class of applications that take
advantage of resources—storage, cycles,
content, human presence—available at
the edges of the internet”. This defini-
tion, however, encompasses systems that
completely rely upon centralized servers
for their operation (such as seti@home,
various instant messaging systems, or
even the notorious Napster), as well as
various applications from the field of Grid
computing.

Overall, it is fair to say that there is
no general agreement about what “is” and
what “is not” peer-to-peer.

We feel that this lack of agreement on
a definition—or rather the acceptance of

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 337

various different definitions—is, to a large
extent, due to the fact that systems or
applications are labeled “peer-to-peer” not
because of their internal operation or ar-
chitecture, but rather as a result of how
they are perceived “externally”, that is,
whether they give the impression of pro-
viding direct interaction between comput-
ers. As a result, different definitions of
“peer-to-peer” are applied to accommodate
the various different cases of such systems
or applications.

From our perspective, we believe that
the two defining characteristics of peer-to-
peer architectures are the following:

—The sharing of computer resources by
direct exchange, rather than requir-
ing the intermediation of a centralized
server. Centralized servers can some-
times be used for specific tasks (sys-
tem bootstrapping, adding new nodes
to the network, obtain global keys for
data encryption), however, systems that
rely on one or more global centralized
servers for their basic operation (e.g. for
maintaining a global index and search-
ing through it—Napster, Publius) are
clearly stretching the definition of peer-
to-peer.
As the nodes of a peer-to-peer network
cannot rely on a central server coordi-
nating the exchange of content and the
operation of the entire network, they are
required to actively participate by inde-
pendently and unilaterally performing
tasks such as searching for other nodes,
locating or caching content, routing in-
formation and messages, connecting to
or disconnecting from other neighboring
nodes, encrypting, introducing, retriev-
ing, decrypting and verifying content, as
well as others.

—Their ability to treat instability and
variable connectivity as the norm, au-
tomatically adapting to failures in both
network connections and computers, as
well as to a transient population of
nodes.
This fault-tolerant, self-organizing ca-
pacity suggests the need for an adap-
tive network topology that will change
as nodes enter or leave and network con-

nections fail or recover, in order to main-
tain its connectivity and performance.

We therefore propose the following defi-
nition:

Peer-to-peer systems are distributed systems
consisting of interconnected nodes able to self-
organize into network topologies with the purpose
of sharing resources such as content, CPU cycles,
storage and bandwidth, capable of adapting to
failures and accommodating transient popula-
tions of nodes while maintaining acceptable con-
nectivity and performance, without requiring the
intermediation or support of a global centralized
server or authority.

This definition is meant to encompass
“degrees of centralization” ranging from
the pure, completely decentralized sys-
tems such as Gnutella, to “partially cen-
tralized” systems1 such as Kazaa. How-
ever, for the purposes of this survey, we
shall not restrict our presentation and dis-
cussion of architectures and systems to
our own proposed definition, and we will
take into account systems that are consid-
ered peer-to-peer by other definitions as
well, including systems that employ a cen-
tralized server (such as Napster, instant
messaging applications, and others).

The focus of our study is content distri-
bution, a significant area of peer-to-peer
systems that has received considerable re-
search attention.

1.2. Peer-to-Peer and Grid Computing

Peer-to-peer and Grid computing are two
approaches to distributed computing, both
concerned with the organization of re-
source sharing in large-scale computa-
tional societies.

Grids are distributed systems that en-
able the large-scale coordinated use and
sharing of geographically distributed re-
sources, based on persistent, standards-
based service infrastructures, often with
a high-performance orientation [Foster
et al. 2001].

1In our definition, we refer to “global” servers, to
make a distinction from the dynamically assigned
“supernodes” of partially centralized systems (see
also Section 3.3.3)

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



338 S. Androutsellis-Theotokis and D. Spinellis

As Grid systems increase in scale, they
begin to require solutions to issues of self-
configuration, fault tolerance, and scala-
bility, for which peer-to-peer research has
much to offer.

Peer-to-peer systems, on the other hand,
focus on dealing with instability, tran-
sient populations, fault tolerance, and self-
adaptation. To date, however, peer-to-peer
developers have worked mainly on verti-
cally integrated applications, rather than
seeking to define common protocols and
standardized infrastructures for interop-
erability.

In summary, one can say that “Grid com-
puting addresses infrastructure, but not
yet failure, while peer-to-peer addresses
failure, but not yet infrastructure” [Foster
and Iamnitchi 2003].

In addition to this, the form of sharing
initially targeted by peer-to-peer has been
of limited functionality, providing a global
content distribution and filesharing space
lacking any form of access control.

As peer-to-peer technologies move into
more sophisticated and complex applica-
tions, such as structured content distri-
bution, desktop collaboration, and net-
work computation, it is expected that
there will be a strong convergence be-
tween peer-to-peer and Grid computing
[Foster 2000]. The result will be a new
class of technologies combining elements
of both peer-to-peer and Grid comput-
ing, which will address scalability, self-
adaptation, and failure recovery, while,
at the same time, providing a persis-
tent and standardized infrastructure for
interoperability.

1.3. Classification of Peer-to-Peer
Applications

Peer-to-peer architectures have been em-
ployed for a variety of different application
categories, which include the following.

Communication and Collaboration.
This category includes systems that
provide the infrastructure for facilitating
direct, usually real-time, communica-
tion and collaboration between peer
computers. Examples include chat and
instant messaging applications, such as

Chat/Irc, Instant Messaging (Aol, Icq,
Yahoo, Msn), and Jabber [Jabber 2003].

Distributed Computation. This category
includes systems whose aim is to take ad-
vantage of the available peer computer
processing power (CPU cycles). This is
achieved by breaking down a computer-
intensive task into small work units and
distributing them to different peer com-
puters, that execute their corresponding
work unit and return the results. Cen-
tral coordination is invariably required,
mainly for breaking up and distributing
the tasks and collecting the results. Exam-
ples of such systems include projects such
as Seti@home [Sullivan III et al. 1997;
SetiAtHome 2003], genome@home [Lar-
son et al. 2003; GenomeAtHome 2003],
and others.

Internet Service Support. A number of
different applications based on peer-to-
peer infrastructures have emerged for
supporting a variety of Internet ser-
vices. Examples of such applications
include peer-to-peer multicast systems
[VanRenesse et al. 2003; Castro et al.
2002], Internet indirection infrastruc-
tures [Stoica et al. 2002], and secu-
rity applications, providing protection
against denial of service or virus attacks
[Keromytis et al. 2002; Janakiraman et al.
2003; Vlachos et al. 2004].

Database Systems. Considerable work
has been done on designing distributed
database systems based on peer-to-peer
infrastructures. Bernstein et al. [2002]
propose the Local Relational Model
(LRM), in which the set of all data stored
in a peer-to-peer network is assumed to
be comprised of inconsistent local rela-
tional databases interconnected by sets
of “acquaintances” that define translation
rules and semantic dependencies between
them. PIER [Huebsch et al. 2003] is a
scalable distributed query engine built
on top of a peer-to-peer overlay network
topology that allows relational queries
to run across thousands of computers.
The Piazza system [Halevy et al. 2003]
provides an infrastructure for building
semantic Web [Berners-Lee et al. 2001]
applications, consisting of nodes that can
supply either source data (e.g. from a

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 339

relational database), schemas (or ontolo-
gies) or both. Piazza nodes are transitively
connected by chains of mappings between
pairs of nodes, allowing queries to be
distributed across the Piazza network.
Finally, Edutella [Nejdl et al. 2003] is an
open-source project that builds on the
W3C metadata standard RDF, to provide
a metadata infrastructure and querying
capability for peer-to-peer applications.

Content Distribution. Most of the cur-
rent peer-to-peer systems fall within the
category of content distribution, which in-
cludes systems and infrastructures de-
signed for the sharing of digital media
and other data between users. Peer-to-
peer content distribution systems range
from relatively simple direct fileshar-
ing applications, to more sophisticated
systems that create a distributed stor-
age medium for securely and efficiently
publishing, organizing, indexing, search-
ing, updating, and retrieving data. There
are numerous such systems and in-
frastructures. Some examples are: the
late Napster, Publius [Waldman et al.
2000], Gnutella [Gnutella 2003], Kazaa
[Kazaa 2003], Freenet [Clarke et al.
2000], MojoNation [MojoNation 2003],
Oceanstore [Kubiatowicz et al. 2000],
PAST [Druschel and Rowstron 2001],
Chord [Stoica et al. 2001], Scan [Chen
et al. 2000], FreeHaven [Dingledine
et al. 2000], Groove [Groove 2003], and
Mnemosyne [Hand and Roscoe 2002].

This survey will focus on content distri-
bution, one of the most prominent appli-
cation areas of peer-to-peer systems.

1.4. Peer-to-Peer Content Distribution

In its most basic form, a peer-to-peer con-
tent distribution system creates a dis-
tributed storage medium that allows for
the publishing, searching, and retrieval
of files by members of its network. As
systems become more sophisticated, non-
functional features may be provided, in-
cluding provisions for security, anonymity,
fairness, increased scalability and perfor-
mance, as well as resource management
and organization capabilities. All of these
will be discussed in the following sections.

An examination of current peer-to-peer
technologies in this context suggests that
they can be grouped as follows (with ex-
amples in Tables I and II).

—Peer-to-Peer Applications. This category
includes content distribution systems
that are based on peer-to-peer tech-
nology. We attempt to further subdi-
vide them into the following two groups,
based on their application goals and per-
ceived complexity:
Peer-to-peer “file exchange” systems.
These systems are targeted towards
simple, one-off file exchanges between
peers. They are used for setting up
a network of peers and providing fa-
cilities for searching and transferring
files between them. These are typically
light-weight applications that adopt a
best-effort approach without addressing
security, availability, and persistence. It
is mainly systems in this category that
are responsible for spawning the repu-
tation (and in some cases notoriety) of
peer-to-peer technologies.
Peer-to-peer content publishing and stor-
age systems. These systems are targeted
towards creating a distributed storage
medium in—and through—which users
will be able to publish, store, and dis-
tribute content in a secure and persis-
tent manner. Such content is meant to
be accessible in a controlled manner by
peers with appropriate privileges. The
main focus of such systems is security
and persistence, and often the aim is
to incorporate provisions for account-
ability, anonymity and censorship resis-
tance, as well as persistent content man-
agement (updating, removing, version
control) facilities.

—Peer-to-Peer Infrastructures. This cate-
gory includes peer-to-peer based infras-
tructures that do not constitute working
applications, but provide peer-to-peer
based services and application frame-
works. The following infrastructure ser-
vices are identified:
Routing and location. Any peer-to-peer
content distribution system relies on
a network of peers within which re-
quests and messages must be routed

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



340 S. Androutsellis-Theotokis and D. Spinellis

Table I. A Classification of Current Peer-to-Peer Systems

(RM: Resource Management; CR: Censorship Resistance; PS: Performance and Scalability; SPE: Security,
Privacy and Encryption; A: Anonymity; RA: Reputation and Accountability; RT: Resource Trading.)

Peer-to-Peer File Exchange Systems

System Brief Description
Napster Distributed file sharing—hybrid decentralized.
Kazaa [2003] Distributed file sharing—partially centralized.
Gnutella [2003] Distributed file sharing—purely decentralized.

Peer-to-Peer Content Publishing and Storage Systems

System Brief Description Main Focus
Scan [Chen et al. 2000] A dynamic, scalable, efficient content distribution

network. Provides dynamic content replication.
PS

Publius [Waldman et al. 2000] A censorship-resistant system for publishing
content. Static list of servers. Enhanced content
management (update and delete).

RM

Groove [Groove 2003] Internet communications software for direct
real-time peer-to-peer interaction.

RM,PS,SPE

FreeHaven [Dingledine et al. 2000] A flexible system for anonymous storage. A,RA
Freenet [Clarke et al. 2000] Distributed anonymous information storage and

retrieval system.
A,RA

MojoNation [MojoNation 2003] Distributed file storage. Fairness through the use
of currency mojo.

SPE,RT

Oceanstore [Kubiatowicz et al. 2000] An architecture for global scale persistent storage.
Scalable, provides security and access control.

RM,PS,SPE

Intermemory [Chen et al. 1999] System of networked computers. Donate storage
in exchange for the right to publish data.

RT

Mnemosyne [Hand and Roscoe 2002] Peer-to-peer steganographic storage system.
Provides privacy and plausible deniability.

SPE

PAST [Druschel and Rowstron 2001] Large scale persistent peer-to-peer storage utility. PS,SPE
Dagster [Stubblefield and Wallach 2001] A censorship-resistant document publishing

system.
CR,SPE

Tangler [Waldman and Mazi 2001] A content publishing system based on document
entanglements.

CR,SPE

with efficiency and fault tolerance, and
through which peers and content can
be efficiently located. Different infras-
tructures and algorithms have been
developed to provide such services.
Anonymity. Peer-to-peer based infras-
tructure systems have been designed
with the explicit aim of providing user
anonymity.
Reputation Management. In a peer-
to-peer network, there is no central
organization to maintain reputation
information for users and their behavior.
Reputation information is, therefore,
hosted in the various network nodes. In
order for such reputation information to
be kept secure, up-to-date, and avail-
able throughout the network, complex
reputation management infrastructures
need to be employed.

2. ANALYSIS FRAMEWORK

In this survey, we present a description
and analysis of applications, systems, and
infrastructures that are based on peer-
to-peer architectures and aim at either
offering content distribution solutions, or
supporting content distribution related
activities.

Our approach is based on:
—identifying the feature space of nonfunc-

tional properties and characteristics of
content distribution systems,

—determining the way in which the non-
functional properties depend on, and
can be affected by, various design fea-
tures, and

—providing an account, analysis, and
evaluation of the design features and
solutions that have been adopted by

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 341

Table II. A Classification of Current Peer-to-Peer Infrastructures

Infrastructures for routing and location

Chord [Stoica et al. 2001] A scalable peer-to-peer lookup service. Given a key, it
maps the key to a node.

CAN [Ratnasamy et al. 2001] Scalable content addressable network. A distributed
infrastructure that provides hash-table functionality
for mapping file names to their locations.

Pastry [Rowstron and Druschel 2001] Infrastructure for fault-tolerant wide-area location and
routing.

Tapestry [Zhao et al. 2001] Infrastructure for fault-tolerant wide-area location and
routing.

Kademlia [Mayamounkov and Mazieres 2002] A scalable peer-to-peer lookup service based on the
XOR metric.

Infrastructures for anonymity

Anonymous remailer mixnet [Berthold et al. 1998] Infrastructure for anonymous connection.
Onion Routing [Goldschlag et al. 1999] Infrastructure for anonymous connection.
ZeroKnowledge Freedom [Freedom 2003] Infrastructure for anonymous connection.
Tarzan [Freedman et al. 2002] A peer-to-peer decentralized anonymous network layer.

Infrastructures for reputation management

Eigentrust [Kamvar et al. 2003] A Distributed reputation management algorithm.
A Partially distributed reputation management

system [Gupta et al. 2003]
A partially distributed approach based on a
debit/credit or debit-only scheme.

PeerTrust [Xiong and Liu 2002] A decentralized, feedback-based reputation
management system using satisfaction and number of
interaction metrics.

current peer-to-peer systems, as well as
their shortcomings, potential improve-
ments, and proposed alternatives.

For the identification of the nonfunc-
tional characteristics on which our study
is based, we used the work of Shaw and
Garlan [1995], which we adapted to the
field of peer-to-peer content distribution.

The various design features and solu-
tions that we examine, as well as their
relationship to the relevant nonfunctional
characteristics, were assembled through
a detailed analysis and study of current
peer-to-peer content distribution systems
that are either deployed, researched, or
proposed.

The resulting analysis framework is il-
lustrated in Figure 1. The boxes in the
periphery show the most important at-
tributes of peer-to-peer content distribu-
tion systems, described as follows.

Security. Further analyzed in terms of:
Integrity and authenticity. Safeguard-
ing the accuracy and completeness of

data and processing methods. Unautho-
rized entities cannot change data; ad-
versaries cannot substitute a forged doc-
ument for a requested one.
Privacy and confidentiality. Ensuring
that data is accessible only to those
authorized to have access, and that
there is control over what data is col-
lected, how it is used, and how it is
maintained.
Availability and persistence. Ensuring
that authorized users have access to
data and associated assets when re-
quired. For a peer-to-peer content dis-
tribution system this often means al-
ways. This property entails stability in
the presence of failure, or changing node
populations.

Scalability. Maintaining the system’s per-
formance attributes independent of the
number of nodes or documents in its
network. A dramatic increase in the
number of nodes or documents will
have minimal effect on performance and
availability.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



342 S. Androutsellis-Theotokis and D. Spinellis

Fig. 1. Illustration of the way in which various design features affect the main characteristics of peer-
to-peer content distribution systems.

Performance. The time required for per-
forming the operations allowed by the
system, typically publication, searching,
and retrieval of documents.

Fairness. Ensuring that users offer and
consume resources in a fair and bal-
anced manner. May rely on account-
ability, reputation, and resource trading
mechanisms.

Resource Management Capabilities. In
their most basic form, peer-to-peer con-
tent distribution systems allow the pub-
lishing, searching, and retrieval of docu-
ments. More sophisticated systems may
afford more advanced resource manage-
ment capabilities, such as editing or
removal of documents, management of
storage space, and operations on meta-
data.

Semantic Grouping of Information. An
area of research that has attracted con-
siderable attention recently is the se-
mantic grouping and organization of
content and information in peer-to-peer
networks. Various grouping schemes
are encountered, such as semantic

grouping, based on the content itself;
grouping, based on locality or network
distance; grouping, based on organiza-
tion ties, as well as others.

The relationships between nonfunc-
tional characteristics are depicted as a
UML diagram in Figure 1. The Figure
schematically illustrates the relationship
between the various design features and
the main characteristics of peer-to-peer
content distribution systems.

The boxes in the center show the design
decisions that affect these attributes. We
note that these design decisions are mostly
independent and orthogonal.

We see, for example, that the perfor-
mance of a peer-to-peer content distribu-
tion system is affected by the distributed
object location and routing mechanisms,
as well as by the data replication,
caching, and migration algorithms. Fair-
ness, on the other hand, depends on
the system’s provisions for accountabil-
ity and reputation, as well as on any re-
source trading mechanisms that may be
implemented.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 343

In the following sections of this survey,
the different design decisions and features
will be presented and discussed, based on
an examination of existing peer-to-peer
content distribution systems, and with
reference to the way in which they affect
the main attributes of these systems,
as presented. A relevant presentation
and discussion of various desired prop-
erties of peer-to-peer systems can also
be found in Kubiatowics [2003], while
an analysis of peer-to-peer systems from
the end-user perspective can be found in
Lee [2003].

3. PEER-TO-PEER DISTRIBUTED OBJECT
LOCATION AND ROUTING

The operation of any peer-to-peer content
distribution system relies on a network
of peer computers (nodes), and connec-
tions (edges) between them. This network
is formed on top of—and independently
from—the underlying physical computer
(typically IP) network, and is thus referred
to as an “overlay” network. The topology,
structure, and degree of centralization of
the overlay network, and the routing and
location mechanisms it employs for mes-
sages and content are crucial to the oper-
ation of the system, as they affect its fault
tolerance, self-maintainability, adaptabil-
ity to failures, performance, scalability,
and security; in short almost all of the sys-
tem’s attributes as laid out in Section 2
(see also Figure 1).

Overlay networks can be distinguished
in terms of their centralization and
structure.

3.1. Overlay Network Centralization

Although in their purest form peer-to-peer
overlay networks are supposed to be to-
tally decentralized, in practice this is not
always true, and systems with various de-
grees of centralization are encountered.
Specifically, the following three categories
are identified.

Purely Decentralized Architectures. All
nodes in the network perform exactly the
same tasks, acting both as servers and
clients, and there is no central coordi-
nation of their activities. The nodes of

such networks are often termed “servents”
(SERVers+clieENTS).

Partially Centralized Architectures. The
basis is the same as with purely decentral-
ized systems. Some of the nodes, however,
assume a more important role, acting as
local central indexes for files shared by lo-
cal peers. The way in which these supern-
odes are assigned their role by the network
varies between different systems. It is im-
portant, however, to note that these su-
pernodes do not constitute single points
of failure for a peer-to-peer network, since
they are dynamically assigned and, if they
fail, the network will automatically take
action to replace them with others.

Hybrid Decentralized Architectures. In
these systems, there is a central server fa-
cilitating the interaction between peers by
maintaining directories of metadata, de-
scribing the shared files stored by the peer
nodes. Although the end-to-end interac-
tion and file exchanges may take place di-
rectly between two peer nodes, the central
servers facilitate this interaction by per-
forming the lookups and identifying the
nodes storing the files. The terms “peer-
through-peer” or “broker mediated” are
sometimes used for such systems [Kim
2001].

Obviously, in these architectures, there
is a single point of failure (the central
server). This typically renders them inher-
ently unscalable and vulnerable to censor-
ship, technical failure, or malicious attack.

3.2. Network Structure

By structure, we refer to whether the over-
lay network is created nondeterministi-
cally (ad hoc) as nodes and content are
added, or whether its creation is based
on specific rules. We categorize peer-to-
peer networks as follows, in terms of their
structure:

Unstructured. The placement of content
(files) is completely unrelated to the over-
lay topology.

In an unstructured network, content
typically needs to be located. Searching
mechanisms range from brute force meth-
ods, such as flooding the network with
propagating queries in a breadth-first

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



344 S. Androutsellis-Theotokis and D. Spinellis

or depth-first manner until the desired
content is located, to more sophisticated
and resource-preserving strategies that
include the use of random walks and rout-
ing indices (discussed in more detail in
Section 3.3.4). The searching mechanisms
employed in unstructured networks have
obvious implications, particularly in re-
gards to matters of availability, scalability,
and persistence.

Unstructured systems are generally
more appropriate for accommodating
highly-transient node populations. Some
representative examples of unstructured
systems are Napster, Publius [Waldman
et al. 2000], Gnutella [Gnutella 2003],
Kazaa [Kazaa 2003], Edutella [Nejdl et al.
2003], FreeHaven [Dingledine et al. 2000],
as well as others.

Structured. These have emerged mainly
in an attempt to address the scalability
issues that unstructured systems were
originally faced with. In structured net-
works, the overlay topology is tightly
controlled and files (or pointers to them)
are placed at precisely specified locations.
These systems essentially provide a map-
ping between content (e.g. file identifier)
and location (e.g. node address), in the
form of a distributed routing table, so that
queries can be efficiently routed to the
node with the desired content [Lv et al.
2002].

Structured systems offer a scalable so-
lution for exact-match queries, that is,
queries where the exact identifier of the
requested data object is known (as com-
pared to keyword queries). Using exact-
match queries as a substrate for keyword
queries remains an open research problem
for distributed environments [Witten et al.
1999].

A disadvantage of structured systems is
that it is hard to maintain the structure
required for efficiently routing messages
in the face of a very transient node popu-
lation, in which nodes are joining and leav-
ing at a high rate [Lv et al. 2002].

Typical examples of structured systems
include Chord [Stoica et al. 2001], CAN
[Ratnasamy et al. 2001], PAST [Druschel
and Rowstron 2001], Tapestry [Zhao et al.
2001] among others.

Table III. A classification of Peer-to-Peer Content
Distribution Systems and Location and Routing

Infrastructures in Terms of Their Network Structure,
With Some Typical Examples

Centralization

Hybrid Partial None

Unstructured Napster,
Publius

Kazaa,
Mor-
pheus,
Gnutella,
Edutella

Gnutella,
FreeHaven

Structured
Infrastructures

Chord,
CAN,
Tapestry,
Pastry

Structured
Systems

OceanStore,
Mnemosyne,
Scan, PAST,
Kademlia,
Tarzan

A category of networks that are in be-
tween structured and unstructured are re-
ferred to as loosely structured networks.
Although the location of content is not
completely specified, it is affected by rout-
ing hints. A typical example is Freenet
[Clarke et al. 2000; Clake et al. 2002].

Table III summarizes the categories we
outlined, with examples of peer-to-peer
content distribution systems and architec-
tures. Note that all structured and loosely
structured systems are inherently purely
decentralized; form follows function.

In the following sections, the overlay
network topology and operation of differ-
ent peer-to-peer systems is discussed, fol-
lowing the above classification, according
to degree of centralization and network
structure.

3.3. Unstructured Architectures

3.3.1. Hybrid Decentralized. Figure 2 il-
lustrates the architecture of a typical hy-
brid decentralized peer-to-peer system.

Each client computer stores content
(files) shared with the rest of the network.
All clients connect to a central directory
server that maintains:

—A table of registered user connection in-
formation (IP address, connection band-
width etc.)

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 345

Fig. 2. Typical hybrid decentralized peer-to-peer
architecture. A central directory server maintains
an index of the metadata for all files in the network.

—A table listing the files that each user
holds and shares in the network, along
with metadata descriptions of the files
(e.g. filename, time of creation, etc.)

A computer that wishes to join the
network contacts the central server and
reports the files it maintains. Client com-
puters send requests for files to the server.
The server searches for matches in its in-
dex, returning a list of users that hold the
matching file. The user then opens direct
connections with one or more of the peers
that hold the requested file, and down-
loads it (see Figure 2).

The advantage of hybrid decentralized
systems is that they are simple to imple-
ment, and they locate files quickly and ef-
ficiently. Their main disadvantage is that
they are vulnerable to censorship, legal ac-
tion, surveillance, malicious attack, and
technical failure, since the content shared,
or at least descriptions of it, and the abil-
ity to access it are controlled by the single
institution, company, or user maintain-
ing the central server. Furthermore, these
systems are considered inherently unscal-
able, as there are bound to be limitations
to the size of the server database and its
capacity to respond to queries. Large Web
search engines have, however, repeatedly
provided counterexamples to this notion.

Examples of hybrid decentralized con-
tent distribution systems include the no-

torious Napster and Publius systems
[Waldman et al. 2000] that rely on a static,
system-wide list of servers. Their architec-
ture does not provide any smooth, decen-
tralized support for adding a new server,
or removing dead or malicious servers. A
comprehensive study of the behavior of
hybrid peer-to-peer systems and a com-
parison of their query characteristics and
their performance in terms of bandwidth
and CPU cycle consumption is presented
in Yang and Garcia-Molina [2001].

It should be noted that systems that
do not fall under the hybrid decentral-
ized category may still use some central
administration server to a limited extent,
for example, for initial system boot-
strapping (e.g. Mojonation [MojoNation
2003]), or for allowing new users to
join the network by providing them
with access to a list of current users
(e.g. gnutellahosts.com for the gnutella
network).

3.3.2. Purely Decentralized. In this sec-
tion, we examine the Gnutella network
[Gnutella 2003], an interesting and rep-
resentative member of purely decentral-
ized peer-to-peer architectures, due to its
open architecture, achieved scale, and self-
organizing structure. FreeHaven [Dingle-
dine et al. 2000] is another system using
routing and search mechanisms similar to
those of Gnutella.

Like most peer-to-peer systems,
Gnutella builds a virtual overlay net-
work with its own routing mechanisms
[Ripeanu and Foster 2002], allowing its
users to share files with other peers.

There is no central coordination of the
activities in the network and users connect
to each other directly through a software
application that functions both as a client
and a server (users are referred to as a
servents).

Gnutella uses IP as its underlying net-
work service, while the communication be-
tween servents is specified in a form of
application level protocol supporting four
types of messages [Jovanovich et al. 2001]:

Ping. A request for a certain host to an-
nounce itself.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



346 S. Androutsellis-Theotokis and D. Spinellis

Pong. Reply to a Ping message. It con-
tains the IP and port of the responding
host and number and size of the files being
shared.

Query. A search request. It contains a
search string and the minimum speed re-
quirements of the responding host.

Query Hits. Reply to a Query message.
It contains the IP, port, and speed of the
responding host, the number of match-
ing files found, and their indexed result
set.

After joining the Gnutella network (by
connecting to nodes found in databases
such as gnutellahosts.com), a node sends
out a Ping message to any node it is
connected to. The nodes send back a
Pong message identifying themselves, and
also propagate the Ping message to their
neighbors.

In order to locate a file in unstructured
systems such as gnutella, nondeterminis-
tic searches are the only option since the
nodes have no way of guessing where (at
which nodes) the files may lie.

The original Gnutella architecture uses
a flooding (or broadcast) mechanism to dis-
tribute Ping and Query messages: each
Gnutella node forwards the received mes-
sages to all of its neighbors. The response
messages received are routed back along
the opposite path through which the origi-
nal request arrived. To limit the spread of
messages through the network, each mes-
sage header contains a time-to-live (TTL)
field. At each hop, the value of this field
is decremented, and when it reaches zero,
the message is dropped.

The above mechanism is implemented
by assigning each message a unique iden-
tifier and equipping each host with a dy-
namic routing table of message identifiers
and node addresses. Since the response
messages contain the same ID as the orig-
inal messages, the host checks its routing
table to determine along which link the re-
sponse message should be forwarded. In
order to avoid loops, the nodes use the
unique message identifiers to detect and
drop duplicate messages, to improve effi-
ciency, and preserve network bandwidth
[Jovanovic 2000].

Once a node receives a QueryHit mes-
sage, indicating that the target file has
been identified at a certain node, it ini-
tiates a download by establishing a di-
rect connection between the two nodes.
Figure 3 illustrates an example of the
Gnutella search mechanism.

Scalability issues in the original purely
decentralized systems arose from the fact
that the use of the TTL effectively seg-
mented the network into “sub-networks”,
imposing on each user a virtual “hori-
zon” beyond which their messages could
not reach [Jovanovic 2000]. Removing the
TTL limit, on the other hand, would re-
sult in the network being swamped with
messages.

Significant research has been carried
out to address the above issues, and
various solutions have been proposed.
These will be discussed in more detail in
Section 3.3.4.

3.3.3. Partially Centralized. Partially cen-
tralized systems are similar to purely
decentralized, but they use the con-
cept of supernodes: nodes that are dy-
namically assigned the task of servic-
ing a small subpart of the peer network
by indexing and caching files contained
therein.

Peers are automatically elected to be-
come supernodes if they have sufficient
bandwidth and processing power (al-
though a configuration parameter may
allow users to disable this feature)
[FastTrack 2003].

Supernodes index the files shared by
peers connected to them, and proxy search
requests on behalf of these peers. All
queries are therefore initially directed to
supernodes.

Two major advantages of partially cen-
tralized systems are that:

—Discovery time is reduced in compari-
son with purely decentralized systems,
while there still is no unique point of
failure. If one or more supernodes go
down, the nodes connected to them can
open new connections with other su-
pernodes, and the network will continue
to operate.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 347

Fig. 3. An example of the Gnutella search mechanism. Solid lines between
the nodes represent connections of the Gnutella network. The search orig-
inates at the “requestor” node, for a file maintained by another node. Re-
quest messages are dispatched to all neighboring nodes, and propagated
from node-to-node as shown in the four consecutive steps (a) to (d). When
a node receives the same request message (based on its unique identifier)
multiple times, it replies with a failure message to avoid loops and minimize
traffic. When the file is identified, a success message is returned.

—The inherent heterogeneity of peer-to-
peer networks is taken advantage of,
and exploited. In a purely decentralized
network, all of the nodes will be equally
(and usually heavily) loaded, regard-
less of their CPU power, bandwidth, or
storage capabilities. In partially central-
ized systems, however, the supernodes
will undertake a large portion of the
entire network load, while most of the
other (so called “normal”) nodes will be
very lightly loaded, in comparison (see
also [Lv et al. 2002; Zhichen et al. 2002]).

Kazaa is a typical, widely used instance
of a partially centralized system imple-

mentation (as it is a proprietary system,
there is no detailed documentation on its
structure and operation). Edutella [Nejdl
et al. 2003] is another partially centralized
architecture.

Yang and Garcia-Molina [2002a, 2002b]
present research addressing the design
of, and searching techniques for, partially
centralized peer-to-peer networks.

The concept of supernodes has also been
proposed in a more recent version of the
Gnutella protocol. A mechanism for dy-
namically selecting supernodes organizes
the Gnutella network into an interconnec-
tion of superpeers (as they are referred to)
and client nodes.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



348 S. Androutsellis-Theotokis and D. Spinellis

When a node with enough CPU power
joins the network, it immediately be-
comes a superpeer and establishes con-
nections with other superpeers, forming a
flat unstructured network of superpeers.
If it establishes a minimum required num-
ber of connections to client nodes within a
specified time, it remains a superpeer. Oth-
erwise, it turns into a regular client node.

3.3.4. Shortcomings and Evolution of Unstruc-
tured Architectures. A number of methods
have been proposed to overcome the origi-
nal unscalability of unstructured peer-to-
peer systems. These have been shown to
drastically improve their performance.

Lv et al. [2002] proposed to replace
the original flooding approach by multiple
parallel random walks, where each node
chooses a neighbor at random, and propa-
gates the request only to it. The use of ran-
dom walks, combined with proactive object
replication (discussed in Section 4), was
found to significantly improve the perfor-
mance of the system as measured by query
resolution time (in terms of numbers of
hops), per-node query load, and message
traffic generated. Proactive data replica-
tion schemes are further examined in Co-
hen and Shenker [2001].

Yang and Garcia-Molina [2002b] sug-
gested the use of more sophisticated
broadcast policies, selecting which neigh-
bors to forward search queries to based on
their past history, as well as the use of local
indices: data structures where each node
maintains an index of the data stored at
nodes located within a radius from itself.

A similar solution to the information re-
trieval problem is proposed by Kalogeraki
et al. [2002] in the form of an Intelli-
gent Search Mechanism built on top of
a Modified Random BFS Search Mecha-
nism. Each peer forwards queries to a sub-
set of its neighbors, selecting them based
on a profile mechanism that maintains in-
formation about their performance in re-
cent queries. Neighbours are ranked ac-
cording to their profiles and queries are
forwarded selectively to the most appro-
priate ones only.

Chawathe et al. [2003] presented the
Gia System, which addresses the above is-

sues by means of:

—A dynamic topology adaptation protocol
that ensures that most nodes will be at a
short distance from high capacity nodes.
This protocol, coupled with replicating
pointers to the content of neighbors, en-
sures that high capacity nodes will be
able to provide answers to a very large
number of queries.

—An active flow control scheme that ex-
ploits network heterogeneity to avoid
hotspots, and

—A search protocol that is based on ran-
dom walks directed towards high capac-
ity nodes.

Simulations of Gia were found to in-
crease overall system capacity by three
to five orders of magnitude. Similar ap-
proaches, based on taking advantage of
the underlying network heterogeneity, are
described in Lv et al. [2002] and Zhichen
et al. [2002].

In another approach, Crespo and
Garcia-Molina [2002] use routing indices
to address the searching and scalability
issues. Routing indices are tables of infor-
mation about other nodes, stored within
each node. They provide a list of neighbors
that are most likely to be “in the direction”
of the content corresponding to the query.
These tables contain information about
the total number of files maintained by
nearby nodes, as well as the number
of files corresponding to various topics.
Three different variations of the approach
are presented, and simulations are shown
to improve performance by 1-2 orders
of magnitude with respect to flooding
techniques.

Finally, the connectivity properties and
reliability of unstructured peer-to-peer
networks such as Gnutella have been
studied in Ripeanu and Foster [2002]. In
particular, emphasis was placed on the
fact that peer-to-peer networks exhibit
the properties of power-law networks,
in which the number of nodes with L
links is proportional to L−k , where k is
a network dependent constant. In other
words, most nodes have few links (thus, a
large fraction of them can be taken away

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 349

without seriously damaging the network
connectivity), while there are a few highly-
connected nodes which, if taken away, are
likely to cause the whole network to be
broken down in disconnected pieces. One
implication of this is that such networks
are robust when facing random node
attacks, yet vulnerable to well-planned
attacks. The topology mismatch between
the Gnutella network and the underlying
physical network infrastructure was also
documented in Ripeanu and Foster [2002].
Tsoumakos and Roussopoulos [2003]
present a more comprehensive analysis
and comparison of the above methods.

Overall, unstructured peer-to-peer con-
tent distribution systems might be the
preferred choice for applications where the
following assumptions hold:

—keyword searching is the common oper-
ation,

—most content is typically replicated at a
fair fraction of participating sites,

—the node population is highly transient,
—users will accept a best-effort content re-

trieval approach, and
—the network size is not so large as to in-

cur scalability problems [Lv et al. 2002]
(The last issue is alleviated through
the various methods described in this
Section).

3.4. Structured Architectures

The various structured content distribu-
tion systems and infrastructures employ
different mechanisms for routing mes-
sages and locating data. Four of the most
interesting and representative mecha-
nisms and their corresponding systems
are examined in the following sections.

—Freenet is a loosely structured system
that uses file and node identifier similar-
ity to produce an estimate of where a file
may be located, and a chain mode propa-
gation approach to forward queries from
node-to-node.

—Chord is a system whose nodes maintain
a distributed routing table in the form of
an identifier circle on which all nodes are
mapped, and an associated finger table.

—CAN is a system using an n-dimensional
Cartesian coordinate space to imple-
ment the distributed location and rout-
ing table, whereby each node is respon-
sible for a zone in the coordinate space.

—Tapestry (and the similar Pastry and
Kademlia) are based on the plaxton
mesh data structure, which maintains
pointers to nodes in the network whose
IDs match the elements of a tree-like
structure of ID prefixes up to a digit
position.

3.4.1. Freenet—A Loosely Structured Sys-
tem. The defining characteristic of loosely
structured systems is that the nodes of the
peer-to-peer network can produce an esti-
mate (not with certainty) of which node is
most likely to store certain content. This
affords them the possibility of avoiding
blindly broadcasting request messages to
all (or a random subset) of their neighbors.
Instead, they use a chain mode propaga-
tion approach, where each node makes a
local decision about which node to send the
request message to next.

Freenet [Clarke et al. 2000] is a typical,
purely decentralized loosely-structured
content distribution system. It operates
as a self-organizing peer-to-peer network,
pooling unused disk space in peer com-
puters to create a collaborative virtual
file system. Important features of Freenet
include its focus on security, publisher
anonymity, deniability, and data replica-
tion for availability and performance.

Files in Freenet are identified by unique
binary keys. Three types of keys are sup-
ported, the simplest is based on applying
a hash function on a short descriptive text
string that accompanies each file as it is
stored in the network by its original owner.

Each Freenet node maintains its own lo-
cal data store, that it makes available to
the network for reading and writing, as
well as a dynamic routing table contain-
ing the addresses of other nodes and the
files they are thought to hold. To search
for a file, the user sends a request message
specifying the key and a timeout (hops-to-
live) value.

Freenet uses the following types of mes-
sages, which all include the node identifier

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



350 S. Androutsellis-Theotokis and D. Spinellis

(for loop detection), a hops-to-live value
(similar to the Gnutella TTL, see Sec-
tion 3.3.2), and the source and destination
node identifiers:

Data insert. A node inserts new data
in the network. A key and the actual data
(file) are included.

Data request. A request for a certain
file. The key of the file requested is also
included.

Data reply. A reply initiated when the
requested file is located. The actual file is
also included in the reply message.

Data failed. A failure to locate a file.
The location (node) of the failure and the
reason are also included.

New nodes join the Freenet network
by first discovering the address of one
or more existing nodes, and then start-
ing to send Data Insert messages. To in-
sert a new file in the network, the node
first calculates a binary key for the file,
and then sends a data insert message to
itself. Any node that receives the insert
message, first checks to see if the key is
already taken. If the key is not found, the
node looks up the closest key (in terms
of lexicographic distance) in its routing
table, and forwards the insert message
to the corresponding node. By this mech-
anism, newly inserted files are placed
at nodes possessing files with similar
keys.

This continues as long as the hops-to-
live limit is not reached. In this way, more
than one node will store the new file. At
the same time, all the participating nodes
will update their routing tables with the
new information (this is the mechanism
through which the new nodes announce
their presence to the rest of the network).
If the hops-to-live limit is reached without
any key collision, an “all clear” result
will be propagated back to the original
inserter, informing that the insert was
successful.

If the key is found to be taken, the node
returns the preexisting file as if a request
were made for it. In this way, malicious
attempts to supplant existing files by in-
serting junk will result in the existing files
being spread further.

If a node receives a request for a locally-
stored file, the search stops and the data
is forwarded back to the requestor.

If the node does not store the file that the
requestor is looking for, it forwards the re-
quest to its neighbor that is most likely to
have the file, by searching for the file key
in its local routing table that is closest to
the one requested. The messages, there-
fore, form a chain, as they propagate from
node-to-node. To avoid huge chains, mes-
sages are deleted after passing through
a certain number of nodes, based on the
hops-to-live value they carry. Nodes also
store the ID and other information of the
requests they have seen, in order to handle
“data reply” and “data failed” messages.

If a node receives a backtracking “data
failed” message from a downstream node,
it selects the next best node from its rout-
ing stack and forwards the request to it.
If all nodes in the routing table have been
explored in this way and failed, it sends
back a “data failed” message to the node
from which it originally received the data
request message.

If the requested file is eventually found
at a certain node, a reply is passed back
through each node that forwarded the re-
quest to the original node that started
the chain. This data reply message will
include the actual data, which is cached
in all intermediate nodes for future re-
quests. A subsequent request with the
same key will be served immediately with
the cached data. A request for a similar
key will be forwarded to the node that pre-
viously provided the data.

To address the problem of obtaining
the key that corresponds to a specific file,
Freenet recommends the use of a special
class of lightweight files called “indirect
files”. When a real file is inserted, the au-
thor also inserts a number of indirect files
that are named according to search key-
words and contain pointers to the real file.
These indirect files differ from normal files
in that multiple files with the same key
(i.e. search keyword) are permitted to ex-
ist, and requests for such keys keep going
until a specified number of results is ac-
cumulated, instead of stopping at the first
file found. The problem of managing the

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 351

Fig. 4. The use of indirect files in Freenet.
The diagram illustrates a regular file with key
“A652D17D88”, which is supposed to contain a tu-
torial about photography. The author chose to in-
sert the file itself, and then a set of indirect files
(marked with an i), named according to search key-
words she considered relevant. The indirect files
are distributed among the nodes of the network;
they do not contain the actual document, simply a
“pointer” to the location of the regular file contain-
ing the document.

large volume of such indirect files remains
open. Figure 4 illustrates the use of indi-
rect files.

The following properties of Freenet are
a result of its routing and location algo-
rithms:

—Nodes tend to specialize in searching
for similar keys over time, as they get
queries from other nodes for similar
keys.

—Nodes store similar keys over time, due
to the caching of files as a result of suc-
cessful queries.

—Similarity of keys does not reflect simi-
larity of files.

—Routing does not reflect the underlying
network topology.

3.4.2. Chord. Chord [Stoica et al. 2001]
is a peer-to-peer routing and location in-
frastructure that performs a mapping of
file identifiers onto node identifiers. Data
location can be implemented on top of
Chord by identifying data items (files)
with keys and storing the (key, data item)
pairs at the node that the keys map to.

In Chord, nodes are also identified by
keys. The keys are assigned both to files
and nodes by means of a deterministic
function, a variant of consistent hashing

Fig. 5. A Chord identifier circle consisting of the
three nodes 0,1 and 3. In this example, key 1 is lo-
cated at node 1, key 2 at node 3, and key 6 at node 0.

[Karger et al. 1997]. All node identifiers
are ordered in an “identifier circle” modulo
2m (Figure 5 shows an identifier circle with
m = 3). Key k is assigned to the first node
whose identifier is equal to, or follows k, in
the identifier space. This node is called the
successor node of key k. The use of consis-
tent hashing tends to balance load, as each
node receives roughly the same number of
keys.

The only routing information required
is for each node to be aware of its succes-
sor node on the circle. Queries for a given
key are passed around the circle via these
successor pointers until a node that con-
tains the key is encountered. This is the
node the query maps to.

When a new node n joins the network,
certain keys previously assigned to n’s suc-
cessor will become assigned to n. When
node n leaves the network, all keys as-
signed to it will be reassigned to its suc-
cessor. These are the only changes in key
assignments that need to take place in or-
der to maintain load balance.

As discussed, only one data element
per node needs to be correct for Chord to
guarantee correct (though slow) routing of
queries. Performance degrades gracefully
when routing information becomes out of
date due to nodes joining and leaving the
system, and availability remains high only
as long as nodes fail independently. Since

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



352 S. Androutsellis-Theotokis and D. Spinellis

Fig. 6. CAN: (a) Example 2-d [0, 1] × [0, 1] coordinate space partitioned
between 5 CAN nodes; (b) Example 2-d space after node F joins.

the overlay topology is not based on the
underlying physical IP network topology, a
single failure in the IP network may man-
ifest itself as multiple, scattered link fail-
ures in the overlay [Saroiu et al. 2002].

To increase the efficiency of the loca-
tion mechanism described previously, that
may, in the worst case, require traversing
all N nodes to find a certain key, Chord
maintains additional routing information,
in the form of a “finger table”. In this table,
each entry i points to the successor of node
n + 2i. For a node n to perform a lookup
for key k, the finger table is consulted to
identify the highest node n′ whose ID is
between n and k. If such a node exists, the
lookup is repeated starting from n′. Oth-
erwise, the successor of n is returned. Us-
ing the finger table, both the amount of
routing information maintained by each
node and the time required for resolving
lookups are O(logN ) for an N -node sys-
tem in the steady state.

Achord [Hazel and Wiley 2002] is pro-
posed as a variant of Chord that pro-
vides censorship resistance by limiting
each node’s knowledge of the network in
ways similar to Freenet (see Section 3.4.1).

3.4.3. CAN. The CAN (“Content
Addressable Network”) [Ratnasamy
et al. 2001] is essentially a distributed,
Internet-scale hash table that maps file
names to their location in the network,

by supporting the insertion, lookup, and
deletion of (key,value) pairs in the table.

Each individual node of the CAN net-
work stores a part (referred to as a “zone”)
of the hash table, as well as information
about a small number of adjacent zones
in the table. Requests to insert, lookup, or
delete a particular key are routed via in-
termediate zones to the node that main-
tains the zone containing the key.

CAN uses a virtual d -dimensional
Cartesian coordinate space (see Figure 6)
to store (key K ,value V ) pairs. The zone
of the hash table that a node is respon-
sible for corresponds to a segment of this
coordinate space. Any key K is, therefore,
deterministically mapped onto a point P
in the coordinate space. The (K , V ) pair is
then stored at the node that is responsible
for the zone within which point P lies. For
example, in the case of Figure 6(a), a key
that maps to coordinate (0.1,0.2) would be
stored at the node responsible for zone B.

To retrieve the entry corresponding to
K , any node can apply the same determin-
istic function to map K to P , and then re-
trieve the corresponding value V from the
node covering P . Unless P happens to lie
in the requesting node’s zone, the request
must be routed from node-to-node until it
reaches the node covering P .

CAN nodes maintain a routing table
containing the IP addresses of nodes that
hold zones adjoining their own, to enable

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 353

routing between arbitrary points in space.
Intuitively, routing in CAN works by fol-
lowing the straight line path through the
Cartesian space from source to destination
coordinates. For example, in Figure 6(a), a
request from node A for a key mapping to
point p would be routed though nodes A,
B, E, along the straight line represented
by the arrow.

A new node that joins the CAN system is
allocated its own portion of the coordinate
space by splitting the allocated zone of an
existing node in half, as follows:

(1) The new node identifies a node al-
ready in CAN network, using a boot-
strap mechanism as described in Fran-
cis [2000].

(2) Using the CAN routing mechanism,
the node randomly chooses a point P
in the coordinate space and sends a
JOIN request to the node covering P .
The zone is then split, and half of it is
assigned to the new node.

(3) The new node builds its routing table
with the IP addresses of its new neigh-
bors, and the neighbors of the split
zone are also notified to update their
routing tables to include the new node.

When nodes gracefully leave CAN, the
zones they occupy and the associated
hash table entries are explicitly handed
over to one of their neighbors. Under
normal conditions, a node sends periodic
update messages to each of its neighbors
reporting its zone coordinates, its list of
neighbors, and their zone coordinates. If
there is prolonged absence of such an up-
date message, the neighbor nodes realize
there has been a failure, and initiate a con-
trolled takeover mechanism. If many of
the neighbors of a failed node also fail, an
expanding ring search mechanism is ini-
tiated by one of the neighboring nodes, to
identify any functioning nodes outside the
failure region.

A list of design improvements is pro-
posed over the basic CAN design described
including the use of multi-dimensional
coordinate space, or multiple coordinate
spaces, for improving network latency and
fault tolerance; the employment of more

advanced routing metrics, such as connec-
tion latency and underlying IP topology,
alongside the Cartesian distance between
source and destination; allowing multiple
nodes to share the same zone, mapping the
same key onto different points; and the ap-
plication of caching and replication tech-
niques [Ratnasamy et al. 2001].

3.4.4. Tapestry. Tapestry [Zhao et al.
2001] supports the location of objects and
the routing of messages to objects (or the
closest copy of them, if more than one copy
exist in the network) in a distributed, self-
administering, and fault-tolerant manner,
offering system-wide stability by bypass-
ing failed routes and nodes, and rapidly
adapting communication topologies to cir-
cumstances.

The topology of the network is self-
organizing as nodes come and go, and net-
work latencies vary. The routing and loca-
tion information is distributed among the
network nodes; the topology’s consistency
is checked on-the-fly, and if it is lost due to
failures or destroyed, it is easily rebuilt or
refreshed.

Tapestry is based on the location and
routing mechanisms introduced by Plax-
ton, Rajamaran and Richa [1997], in which
they present the Plaxton mesh, a dis-
tributed data structure that allows nodes
to locate objects and route messages to
them across an arbitrarily-sized overlay
network, while using routing maps of
small and constant size. In the original
Plaxton mesh, the nodes can take on the
role of servers (where objects are stored),
routers (which forward messages), and
clients (origins of requests).

Each node maintains a neighbor map,
as shown in the example in Table IV. The
neighbor map has multiple levels, each
level l containing pointers to nodes whose
ID must be matched with l digits (the x ’s
represent wildcards). Each entry in the
neighbor map corresponds to a pointer to
the closest node in the network whose ID
matches the number in the neighbor map,
up to a digit position.

For example, the 5th entry for the 3rd
level for node 67493 points to the node

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



354 S. Androutsellis-Theotokis and D. Spinellis

Table IV. The Neighbor Map Held by Tapestry Node
With ID 67493

Level 5 Level 4 Level 3 Level 2 Level 1

Entry 0 07493 x0493 xx093 xxx03 xxxx0
Entry 1 17493 x1493 xx193 xxx13 xxxx1
Entry 2 27493 x2493 xx293 xxx23 xxxx2
Entry 3 37493 x3493 xx393 xxx33 xxxx3
Entry 4 47493 x4493 xx493 xxx43 xxxx4
Entry 5 57493 x5493 xx593 xxx53 xxxx5
Entry 6 67493 x6493 xx693 xxx63 xxxx6
Entry 7 77493 x7493 xx793 xxx73 xxxx7
Entry 8 87493 x8493 xx893 xxx83 xxxx8
Entry 9 97493 x9493 xx993 xxx93 xxxx9

Each entry in this table corresponds to a pointer to
another node.

closest to 67493 in network distance whose
ID ends in ..593. Table IV shows an exam-
ple neighbor map maintained by a node
with ID 67493.

Messages are, therefore, incrementally
routed to the destination node digit-by-
digit, from the right to the left. Figure 7
shows an example path taken by a mes-
sage from node with I D = 67493, to node
I D = 34567. The digits are resolved right
to left as follows:

xxxx7 → xxx67 → xx567 → x4567
→ 34567

The Plaxton mesh uses a root node for
each object, that serves to provide a guar-
anteed node from which the object can
be located. When an object o is inserted
in the network and stored at node ns,
a root node nr is assigned to it by us-
ing a globally consistent deterministic al-
gorithm. A message is then routed from
ns to nr , storing data in the form of a
mapping (object id o, storer id ns) at all
nodes along the way. During a location
query, messages destined for o are ini-
tially routed towards nr , until a node is
encountered containing the (o, ns) location
mapping.

The Plaxton mesh offers: (1) simple
fault-handling by its potential to route
around a single link or node by choos-
ing a node with a similar suffix, and (2)
scalability (with the only bottleneck exist-
ing at the root nodes). Its limitations in-
clude: (1) the need for global knowledge

Fig. 7. Tapestry: Plaxton mesh routing ex-
ample, showing the path taken by a message
originating from node 67493, and destined for
node 34567 in a Plaxton mesh, using decimal
digits of length 5.

required for assigning and identifying root
nodes, and (2) the vulnerability of the root
nodes.

The Plaxton mesh assumes a static node
population. Tapestry extends its design to
adapt it to the transient populations of
peer-to-peer networks and provide adapt-
ability, fault tolerance, as well as vari-
ous optimizations described in Zhao et al.
[2001] and outlined below:

—Each node additionally maintains a list
of back-pointers, which point to nodes
where it is referred to as a neighbor.
These are used in dynamic node inser-
tion algorithms to generate the appro-
priate neighbor maps for new nodes. Dy-
namic algorithms are employed for node
insertion, populating neighbor maps,
and notifying neighbors of new node in-
sertions.

—The concept of distance between nodes
becomes semantically more flexible, and
locations of more than one replica of
an object are stored, allowing the ap-
plication architecture to define how the
“closest” node will be interpreted. For
example, in the Oceanstore architecture
[Kubiatowicz et al. 2000], a “freshness”
metric is incorporated in the concept
of distance, that is taken into account

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 355

when finding the closest replica of a doc-
ument.

—The use of soft-state to maintain cached
content, based on the announce/listen
approach [Deering 1998], is adopted by
Tapestry to detect, circumvent, and re-
cover from failures in routing or ob-
ject location. Caches are periodically
updated by refreshment messages, or
purged if no such messages are re-
ceived. Additionally, the neighbor map
is extended to maintain two backup
neighbors, in addition to the closest (pri-
mary) neighbor. Furthermore, to avoid
costly reinsertions of nodes after fail-
ures, when a node realizes that a neigh-
bor is unreachable, instead of removing
its pointer, it temporarily marks it as in-
valid in the hope that the failure will be
repaired, and, in the meantime, routes
messages through alternative paths.

—To avoid the single point of failure that
root nodes constitute, Tapestry assigns
multiple roots to each object. This en-
ables a trade-off between reliability and
redundancy. A distributed algorithm
called surrogate routing is employed to
compute a unique root node for an object
in a globally consistent fashion, given
the nonstatic set of nodes in the network

—A set of optimizations improve per-
formance by adapting to environment
changes. Tapestry nodes tune their
neighbor pointers by running refresher
threads that update network latency
values. Algorithms are implemented to
detect query hotspots and offer sugges-
tions as to where additional copies of
objects can be placed to significantly im-
prove query response time. A “hotspot
cache” is also maintained at each node.

Tapestry is used by several systems
such as Oceanstore [Kubiatowicz et al.
2000; Rhea et al. 2001], Mnemosyne
[Hand and Roscoe 2002], and Scan [Chen
et al. 2000].

Oceanstore further enhances the per-
formance and fault tolerance of Tapestry
by applying an additional “introspec-
tion layer”, where nodes monitor usage
patterns, network activity, and resource

availability to adapt to regional outages
and denial of service attacks.

Pastry [Rowstron and Druschel 2001]
is a scheme very similar to Tapestry,
differing mainly in its approach to
achieving network locality and object
replication. It is employed by the PAST
[Druschel and Rowstron 2001] large-
scale persistent peer-to-peer storage
utility.

Finally Kademlia [Mayamounkov and
Mazieres 2002] is proposed as an improved
XOR-topology-based routing algorithm
similar to Tapestry and Pastry, focusing
on consistency and performance. It intro-
duces the use of a concurrence parameter,
that lets users trade bandwidth for better
latency and fault recovery.

3.4.5. Comparison, Shortcomings and Evo-
lution of Structured Architectures. In the
previous sections, we have presented
characteristic examples of structured
peer-to-peer object location and routing
systems, and their main characteristics.
A comparison of these (and similar) sys-
tems can be based on the size of the
routing information maintained by each
node (the routing table), their search
and retrieval performance (measured in
number of hops), and the flexibility with
which they can adapt to changing network
topologies.

It turns out that in their basic de-
sign, most of these systems are equiva-
lent in terms of routing table space cost,
which is O(log N ), where N is the size of
network. Similarly, their performance is
again mostly O(log N ), with the exception
of CAN, where the performance is given by
O( d

4 N
1
d ), d being the number of employed

dimensions.
Maintaining the routing table in the

face of transient node populations is rela-
tively costly for all systems, perhaps more
for Chord, as nodes joining or leaving in-
duce changes to all other nodes, and less
so in Kademlia which maintains a more
flexible routing table. Liben-Nowell et al.
[2002a] introduce the notion of the “half-
life” of a system as an approach to this
issue.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



356 S. Androutsellis-Theotokis and D. Spinellis

Overall, these systems present rela-
tively equivalent solutions to routing and
location in distributed peer-to-peer en-
vironments, focusing, however, on dif-
ferent aspects, and prioritizing differ-
ently the various design issues (see also
Balakrishnan et al. [2003]) that have been
adopted by various systems.

One of the major limitations of struc-
tured peer-to-peer systems is that they are
designed to support exact match lookups.
One needs to know the exact identifier
(key) of a data item in order to be able to
locate the node that stores it. To address
this issue, keyword query techniques can
be designed on top of exact-match queries,
although it is arguable whether such
techniques can be efficiently implemented
[Lv et al. 2002]. In Garces-Erice et al.
[2004] an approach is proposed for aug-
menting peer-to-peer systems based on
distributed hash tables with a mecha-
nism for locating data using incomplete
information. The mechanism relies on
distributing hierarchically-organized in-
dexes that maintain information about the
data stored in nodes. A system to support
complex queries over structured peer-to-
peer systems is proposed in Harren et al.
[2002]. This approach relies on the un-
derlying peer-to-peer system for both in-
dexing and routing, and implements a
parallel query processing layer on top of it.

Heleher et al. [2002], furthermore, ar-
gue that by creating keys for accessing
data items (i.e. by virtualizing the names
of the data items) two main problems
arise:

—Locality is Destroyed. Files originating
from a single site are not usually colo-
cated, meaning that opportunities for
enhanced browsing, prefetching, and ef-
ficient searching are lost. They propose
an approach allowing systems to exploit
object locality.

—Useful Application Level Information is
Lost. Data used by applications is often
naturally organized in a hierarchical-
fashion. The virtualization of the file
namespace that takes place as files are
represented by keys discards this infor-
mation.

The ability of structured peer-to-peer
systems to maintain the structure re-
quired for routing in order to function effi-
ciently when nodes are joining and leaving
at a high rate is an open research issue.
The resilience of structured peer-to-peer
systems in the face of a very transient user
population is considered in Lv et al. [2002]
and Liben-Nowell et al. [2002b].

Finally, Saroiu et al. [2002] argue that,
due to the deterministic nature of the
topology of structured systems, it is pos-
sible for an attacker to construct a set
of node identifiers that, if inserted in the
network, could intercept all lookup re-
quests originating from a particular node.
There are mechanisms for preventing a
peer from deliberately selecting arbitrary
identifiers, however, they can probabilisti-
cally be circumvented, if enough addresses
are selected.

4. CONTENT CACHING, REPLICATION AND
MIGRATION

Peer-to-peer content distribution systems
rely on the replication of content on more
than one node for improving the avail-
ability of content, enhancing performance,
and resisting censorship attempts. Con-
tent replication can be categorized as fol-
lows:

Passive Replication. Content replication
occurs naturally in peer-to-peer systems
as nodes request and copy content from
one another. This is referred to as passive
replication.

Cache-Based Replication. A form of
replication employed in several systems,
cache-based replication (e.g. OceanStore,
Mojonation, Freenet) is the result of
caching copies of content as it passes
through nodes in the network. In Freenet
[Clarke et al. 2000] for instance, when a
search request succeeds in locating a file,
the file is transferred through the network
node-by-node back to the originator of the
request (see also Section 3.4.1). In the pro-
cess, copies of the file are cached on all
intermediated nodes, increasing its avail-
ability and location characteristics in fu-
ture requests.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 357

Active Replication. Active (or proactive)
content replication and migration meth-
ods are often employed to improve locality
of data, as well as availability and perfor-
mance.

Instrospective replica management tech-
niques are employed by OceanStore, on
top of extensive caching, whereby traffic
is observed, and replicas of content ob-
jects are created to accommodate demand
[Rhea et al. 2001]. OceanStore thus adapts
to regional outages and denial of service
attacks by migrating data to areas of use,
and maintaining sufficiently high levels of
data redundancy.

A similar approach is seen in MojoNa-
tion, where additional copies of popular
data are made by a central services bro-
ker that monitors traffic and requests, and
are distributed to peer nodes for storage
[MojoNation 2003].

Dynamic replica management algo-
rithms are used in Scan to dynami-
cally place a minimum number of repli-
cas, while meeting quality of service and
server capacity constraints [Chen et al.
2000]. Such algorithms are designed to
satisfy both client latency and server loads
by first searching for existing replicas
that meet the client latency constraint
without being overloaded, and, if unsuc-
cessful, proceeding to place new replicas.
Different versions of these algorithms dif-
fer in the degree to which replicas are en-
forced to lie close to the client requesting
them.

In proactive replication studies for the
Gnutella network [Cohen and Shenker
2001], it was found that the optimal repli-
cation scheme for nondeterministic search
is to replicate objects such that

p ∝ √
qr ,

where p is the number of object replicas,
and qr is the object query rate.

By replicating content, data consistency
and synchronization issues come up that
need to be addressed, especially in sys-
tems that allow the deletion and update of
content (see also Section 9). Some appli-
cations effectively decide to weaken their
consistency restrictions in favor of more

extensive data replication and higher
availability.

Replication is of increased significance
to systems employing steganographic file
storage techniques for encryption, such as
Mnemosyne [Hand and Roscoe 2002], as
these systems must ensure that enough
copies of the files are available to avoid
collisions. Such encryption techniques are
further discussed in Section 5.

Replication is more of a challenge for
structured systems such as Chord, where
the location of objects is directly bound to
the object identifiers. In some cases, the
use of aliases is employed to allow for repli-
cation [Stoica et al. 2001; Saroiu et al.
2002]. In Tapestry, a replication function
produces a set of random keys, yielding a
set of replica roots at random points in the
ID space; a replica function in Chord maps
an object’s key to the node IDs of the neigh-
bor set of the key’s root; in CAN a replica
function produces random keys for stor-
ing replicas at diverse locations [Wallach
2002]

Finally mechanisms for trading content,
discussed in Section 8, essentially result in
an additional form of data replication. In
FreeHaven, for example, peers frequently
trade and exchange parts of documents
(shares) with each other, with the sole aim
of increasing availability and censorship
resistance [Dingledine et al. 2001a].

5. SECURITY

Peer-to-peer content distribution architec-
tures present a particular challenge for
providing the levels of availability, privacy,
confidentiality, integrity, and authentic-
ity often required, due to their open and
autonomous nature. The network nodes
must be considered untrusted parties, and
no assumptions can be made regarding
their behavior.

This Section discusses various ap-
proaches that address a number of secu-
rity issues characteristic of peer-to-peer
content distribution systems. We particu-
larly focus on secure storage, secure rout-
ing, access control, authentication, and
identity management.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



358 S. Androutsellis-Theotokis and D. Spinellis

5.1. Secure Storage

Various cryptographic algorithms and pro-
tocols are employed to provide security for
content published and stored in peer-to-
peer networks.

Self-Certifying Data. Self-certifying
data is data whose integrity can be
verified by the node retrieving it [Castro
et al. 2002]. A node inserting a file in the
network calculates a cryptographic hash
of the file’s content, based on a known
hashing function, to produce the file key.
When a node retrieves the file using its
key, it calculates the same hash function
to verify the integrity of the data. Note the
requirement for common knowledge of the
hashing function by all nodes in the net-
work. The above approach is adopted by
the CFS system [Dabek et al. 2001], while
PAST uses a similar approach, based
on signed files [Druschel and Rowstron
2001]. Note that the method depends on
using the hash-derived signature as a
file’s unique access key.

Information Dispersal. The information
dispersal algorithm by Rabin [1989] is
widely used. Publius [Waldman et al.
2000], Mnemosyne [Hand and Roscoe
2002], and FreeHaven [Dingledine et al.
2000] employ the algorithm for encoding
information to be published in the net-
work. Files are encoded into m blocks,
so that any n is sufficient to reassem-
ble the original data (m < n). This gives
resilience “proportional” to a redundancy
factor equal to m

n .
Shamir’s Secret Sharing Scheme.

Shamir’s [1979] secret sharing scheme
(SHA) is also used in several systems
(Publius [Waldman et al. 2000], Mo-
joNation [MojoNation 2003], and PAST
[Druschel and Rowstron 2001]). The pub-
lisher of the content encrypts a file with
a key K , then splits K into l shares, so
that any k of them can reproduce K , but
k − 1 give no hints about K . Each server
then encrypts one of the key shares, along
with the file block. In order for the file to
become inaccessible, at least (l − k − 1)
servers containing the key must be shut
down.

Anonymous Cryptographic Relays. A
mechanism based on publisher, forwarder,
storer, and client peers communicating
through anonymous connection layers is
employed by PAST [Serjantov 2002]. A
publisher selects several forwarders and
sends to them, via an anonymous con-
nection, encrypted shares of a file. The
forwarders, in turn, select other nodes
to act as storers for the shares, and for-
ward the shares to them (again via an
anonymous connection). Once all shares
are stored, the publisher destroys them,
and announces the file name, together
with the list of forwarders that were
used.

In order to retrieve the content, a client
will contact the forwarders; the forwarders
will, in turn, contact random servers to
act as decryptors for the addresses of the
storers holding the shares. The forwarders
will then contact the storers requesting the
shares. The storers will decrypt the shares
and send them back to the client. The pro-
cess repeats until enough shares are col-
lected to reconstruct the document.

Forwarders are visible to a potential at-
tacker, but they are less likely to be at-
tacked since they don’t store the content,
nor the addresses of the nodes storing the
content.

Smartcards. The use of smartcards for
tracking each node’s use of remote re-
sources and issuing digitally signed tick-
ets was also suggested in the PAST system
[Druschel and Rowstron 2001]. This would
allow nodes to prove to other nodes that
they are operating within their quota. It
is argued, however, that it may be imprac-
tical to issue smartcards to a very large
number of nodes, and that the danger of
the smartcard keys being compromised by
nodes of the network is considerable [Wal-
lach 2002].

Distributed Steganographic File Sys-
tems. A distributed steganographic file sys-
tem, based on Anderson et al. [1998] is
implemented by Mnemosyne [Hand and
Roscoe 2002]. The main property of a
steganographic file system is that en-
crypted blocks are indistinguishable from
a random substrate, so that their presence

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 359

cannot even be detected. The system is
prepared by first writing random data to
all blocks, and then files are stored by
encrypting their blocks and placing them
at pseudo-randomly chosen locations (e.g.
by hashing the block number with a ran-
domly chosen key). To avoid collisions, a
considerable amount of replication is re-
quired.

Erasure Coding. A mechanism based on
erasure coding for data durability and a
Byzantine agreement protocol [Lamport
et al. 1982] for consistency and update se-
rialization is implemented by OceanStore
[Rhea et al. 2001].

With erasure coding, the data is broken
in to blocks and spread over many servers.
Only a fraction is needed to reconstruct
the original block (similar to the infor-
mation dispersal algorithm). The objects
and their associated fragments are then
named using a secure hash over the ob-
ject contents, giving them globally unique
identifiers. This provides data integrity, by
ensuring that a recovered file has not been
corrupted, since a corrupted file would pro-
duce a different identifier. Blocks are dis-
persed with care to avoid possible corre-
lated failures, picking nodes in different
geographic locations or administrative do-
mains, or based on models of historical
measurements.

An “inner ring” of servers is set up for
each object to provide versioning capa-
bilities. The role of the ring is to main-
tain a mapping from the original identi-
fier of the object, to the identifier of the
most recent version of the object. The
ring is kept consistent through a Byzan-
tine agreement protocol that lets 3 f +
1 servers reach an agreement when no
more than f are faulty. So the map-
ping from an active (original) identifier,
to the most recent identifier, is fault
tolerant.

The inner ring is also responsible for
verifying the object’s legitimate writers
and maintaining a history of the object’s
updates, thus providing a universal undo
mechanism, as well as true referential
integrity by storing previous versions of
objects.

5.2. Secure Routing

The goal of secure routing is to resolve
the problem of malicious nodes attempt-
ing to corrupt, delete, deny access to, or
supply stale copies of object replicas that
are transferred between nodes.

The secure routing primitives proposed
in Castro et al. [2002] cope with the prob-
lems of:

(1) secure assignment of IDs to nodes.
(2) secure maintenance of routing tables.
(3) secure forwarding of messages.

These primitives can be combined with
other existing security techniques to yield
more robust applications.

5.3. Access Control, Authentication and
Identity Management

The issues of access control, authentica-
tion, and identity management are of-
ten ignored in peer-to-peer content distri-
bution systems. When an access control
mechanism is used, it follows the discre-
tionary access control paradigm [Ander-
son 2001], clearly an insecure approach in
the face of untrusted clients.

Within a distributed environment, it is
possible for the same physical entity to
appear under different identities, partic-
ularly in systems with highly transient
populations of nodes. This poses a secu-
rity threat, especially in peer-to-peer sys-
tems that employ content replication, or
fragmentation schemes over many peers
for security and availability (see also Sec-
tion 5.1), and, therefore, rely on the exis-
tence of independent peers with different
identities.

This problem is labeled a “Sybil Attack”
and analyzed in Douceur [2002], conclud-
ing that unless a central certification or
identification authority is employed, peer-
to-peer systems will be susceptible to this
kind of attack. The only proposed alter-
native is the use of (typically imprac-
tical) resource-demanding identification
challenges, that assume that the resources
of the attacker are limited.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



360 S. Androutsellis-Theotokis and D. Spinellis

In several systems, the lack of authen-
tication is overcome by the distribution of
the keys necessary for accessing content
to a subset of privileged users.

Access control lists can also be as-
signed to objects by their original authors
through the use of signed certificates (e.g.
in Oceanstore [Kubiatowicz et al. 2000]).
All content modifications relating to an ob-
ject are then verified against the access
control list that is assigned to it, and unau-
thorized updates are ignored.

The issue of peers that often appear
with different identities in order to escape
the consequences of past actions, and, in
particular, the effects of this on the per-
formance of reputation or incentive mech-
anisms is discussed in Lai et al. [2003].

Finally, it is argued that access control
is closely related to intellectual property
management and digital rights manage-
ment issues. Whether—or which—peer-to-
peer systems should enforce access control
and to what extent, and whether this en-
forcement should take place at the end-
points of the network, remains an open
issue [Daswani et al. 2003].

6. PROVISIONS FOR ANONYMITY

Anonymity is the main focus of sev-
eral peer-to-peer based infrastructures
and content distribution systems target-
ing privacy, confidentiality, and censor-
ship resistance. In content distribution
systems anonymity can refer to [Dingle-
dine et al. 2001a]:

—the author (or publisher) of the content,
—the identity of a node storing the

content,
—the identity and details of the content

itself, and
—the details of a query for retrieval of the

content.

This section describes the main ap-
proaches currently adopted for providing
anonymity.

Disassociation of Content Source and
Requestor. Freenet [Clarke et al. 2000]
is a peer-to-peer content distribution sys-
tem specifically targeted towards provid-

ing anonymity to its users by making it
infeasible to discover the true origin or
destination of a file passing through its
network, and difficult for a node opera-
tor to determine or be held responsible for
the actual physical content of their own
node. It employs a mechanism whereby,
when a search for a file succeeds, the file
is passed from the node that holds it to
the originator of the request through ev-
ery node that forwarded the search re-
quest. In order to achieve anonymity, any
node along this path can unilaterally de-
cide to claim itself or another arbitrarily
chosen node as the data source. In this
way, there is no connection between the
requestor of the file and the actual source
node.

As a further measure, the initial value
of the hops-to-live counter associated with
each search message is randomly chosen
in order to obscure the distance of the
message from the originator node. More
details about the location and routing
mechanism employed by Freenet are dis-
cussed in Section 3.4.1.

Anonymous Connection Layers. Con-
tent distribution systems that seek to
provide anonymity often employ infras-
tructures for providing anonymous con-
nection layers, such as onion routing
[Goldschlag et al. 1999], mix networks
[Chaum 1981; Berthold et al. 1998] or
the Freedom anonymity system [Freedom
2003]. For instance, the anonymizing,
censorship-resistant system proposed in
Serjantov [2002] splits documents to be
published into encrypted shares, and uses
an anonymizing layer of nodes (which it
refers to as “forwarders”) to pick nodes
on which to store the shares, construct
“onions” around them (as in onion rout-
ing), and anonymously forward them,
including their anonymous return ad-
dresses, while the original documents
are destroyed. FreeHaven [Dingledine
et al. 2000] is a similar system built
on top of anonymous remailers for pro-
viding pseudonyms and communication
channels.

The Tarzan system [Freedman et al.
2002] is a completely decentralized
anonymizing network layer infrastructure

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 361

that builds anonymous IP tunnels be-
tween an open-ended set of peers. By
using the Tarzan infrastructure, a client
can communicate with a server without
anybody being able to determine their
identity.

The Tarzan anonymizing layer is com-
pletely decentralized and transparent
both to clients and servers, and it involves
sequences of mix relays chosen from a
large pool of volunteer participant nodes.
Packets are routed through a tunnel of
randomly chosen Tarzan peers using mix-
style layered encryption, similar to onion
routing. The two ends of the tunnel are a
Tarzan node, running a client application,
and a Tarzan node, running a network ad-
dress translator. The latter forwards the
traffic to the ultimate destination, an or-
dinary Internet server. A suggested policy
to reduce the risk of attack to the system is
for tunnels to contain peers from different
jurisdictions or organizations, even if per-
formance is sacrificed. Crowds [Reiter and
Rubin 1999] is a system similar to Tarzan,
its main difference being that, in Tarzan,
the data is encrypted in the tunnels, while
in Crowds it is not.

Censorship Resistant Lookup. A censor-
ship resistant design based on the Chord
lookup service is proposed in the Achord
system [Hazel and Wiley 2002]. Achord
provides censorship resistance by focus-
ing on publisher, storer, and retriever
anonymity, and by making it difficult for
a node to voluntarily assume responsi-
bility for a certain document. The de-
sign of Chord is carefully varied so that
these anonymity and censorship resis-
tance properties are achieved without
altering its main operation. In particular,
the Chord algorithm is modified so that
the node identification information is sup-
pressed as the successor nodes are located.
More details about the Chord Distributed
Object Location and Routing system can
be found in Section 3.4.2.

7. PROVISIONS FOR DENIABILITY

Deniability in a peer-to-peer content dis-
tribution system refers to each user’s abil-
ity to deny knowledge of content stored in

their node. As a consequence, users cannot
be held responsible for the content stored
in their node, or for actions that have been
carried out by their node as part of it’s op-
eration in the peer-to-peer network.

A deniable peer-to-peer system can be
used without fear of censorship or reper-
cussions for dealing with particular con-
tent, increasing the degree of freedom it
provides to its users. On the other hand,
it makes the exchange of illegal content
less risky and, therefore easier, as there is
less control over the operation of content
stored at each node of the network.

Deniability can apply both to content be-
ing stored and content being transferred.

Deniability of Stored Content. This fea-
ture is offered by systems that store en-
crypted shares of files and no keys for
them, and, therefore, cannot know the con-
tent of the files whose shares they are
storing (examples are Publius [Waldman
et al. 2000], Oceanstore [Kubiatowicz
et al. 2000], and PAST [Druschel and
Rowstron 2001; Serjantov 2002]). Simi-
larly, systems that implement distributed
steganographic storage systems (such as
Mnemosyne [Hand and Roscoe 2002]) of-
fer deniability through the fact that blocks
of files that are written on a peer node’s
file system are undetectable (cannot be di-
rectly searched).

Deniability of Content in Transit. This
feature can be offered through the use
of anonymous connection layers incorpo-
rated in systems such as PAST (see also
Section 6). It makes it possible to deny
that a request from a client node nc had
anything to do with a share arriving at nc
some time later.

In a different approach with the same
goal, Freenet [Clarke et al. 2000] offers
deniability by making it infeasible to dis-
cover the true origin of a file passing
through the network (see Section 3.4.1
for a description of the Freenet location
algorithm). Furthermore, as files passing
through the network are transparently
cached at all nodes encountered, it is dif-
ficult for a node operator to determine or
be held responsible for the actual physical
content of their own node.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



362 S. Androutsellis-Theotokis and D. Spinellis

Additional measures for deniability can
be incorporated by inhibiting the use
of traffic analysis for concluding where
a file was read from. For example, in
Mnemosyne [Hand and Roscoe 2002], dur-
ing the retrieval of a file, more nodes than
those needed will be contacted and more
files will be retrieved so that the actual
file targeted will be disguised.

It should be noted that structured sys-
tems are apparently nondeniable, as the
identifiers of the files stored at the nodes
are bound to the node addresses; if a file
is known to exist in the network, its lo-
cation, and, therefore, the identity of the
node that stores it, is also known. On the
other hand, the owner of the node has not
necessarily requested the file, and, in any
event, has no control over whether the file
will be stored in their node, and, in this
sense, cannot be held responsible for it.

8. INCENTIVE MECHANISMS AND
ACCOUNTABILITY

The operation, performance and availabil-
ity of an uncontrolled decentralized peer-
to-peer system relies to a large extent on
the voluntary participation of its users. It
is, therefore, necessary to employ mech-
anisms that provide incentives and stim-
ulate cooperative behavior between the
users, as well as some notion of account-
ability for actions performed.

In the absence of such provisions, the re-
sults can range from significant degrada-
tion of performance to variable and unpre-
dictable availability of resources, or even
to complete collapse.

An example of uncooperative behavior
is the so-called “free-rider” effect, where
users only consume resources without con-
tributing any. This can be interpreted as a
manifestation of the “Tragedy of the Com-
mons” [Harding 1968], which argues that
people tend to abuse shared resources that
they do not have to pay for in some way.

Providing incentives and accountabil-
ity in peer-to-peer networks with tran-
sient populations of users, where it is hard
to identify peers and obtain information
about their past behavior in order to pre-
dict their future performance, can be a par-

ticularly challenging task, especially due
to the absence of a ubiquitous, effective,
robust, and secure system for making and
accepting anonymous micropayments.

Two general categories of solutions are
proposed:

—Trust-based Incentive Mechanisms.
Trust is a straightforward incentive for
cooperation, in which one engages in
a transaction based on whether he/she
trusts the other party. Reputation
mechanisms belong in this category.

—Trade-based Incentive Mechanisms. In
trade-based incentive mechanisms, one
party offering some service to another
is explicitly remunerated, either di-
rectly or indirectly. This category is
mainly represented by various mi-
cropayment mechanisms and resource
trading schemes.

8.1. Reputation Mechanisms

Online reputation management systems
can be described as large-scale “online
word-of-mouth communities” in which in-
dividuals share opinions about other indi-
viduals.

Centralized reputation systems (such
as the one found in eBay) are success-
ful to a large extent because people trust
the reputation information presented by
them [Dellarocas 2001]. In a peer-to-
peer network, however, there is no sin-
gle, recognizable organization or entity to
maintain and distribute reputation infor-
mation. As a result, reputation informa-
tion must be distributed throughout the
network, and hosted on many different
nodes.

The main goal of a peer-to-peer rep-
utation mechanism is to take the repu-
tation information that is locally gener-
ated as a result of an interaction between
peers, and spread it throughout the net-
work to produce a global reputation rat-
ing for the network nodes. In the pro-
cess, such reputation information must be
kept secure and available. Various com-
plex reputation management mechanisms
have been developed to address these chal-
lenging tasks.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 363

Kamvar et al. [2003] propose the Eigen-
Trust algorithm, which produces global
reputation ratings for users based on their
history of uploads. These ratings can then
be used by other peers to decide where to
download files from. The global reputation
values are computed from the local repu-
tation values assigned to a peer by other
peers, weighted by the global reputation
of the assigning peers. This approach was
found to reduce the number of rogue files
on the network.

Gupta et al. [2003] present a partially
centralized mechanism using reputation
computation agents and data encryption,
where the reputation values are calcu-
lated, encrypted, and stored locally using
a reputation computation agent. They pro-
pose two different schemes for calculating
reputation values, a credit/debit scheme,
and a credit only scheme.

Xiong and Liu [2002] present a
feedback-based reputation mechanism
where a scalar trust value for a peer is
computed based on a figure of the satis-
faction received by other peers, the total
number of interactions, and a balancing
factor to counteract reports by malicious
peers. The reputation information is dis-
tributed in the network so that each peer
maintains a portion of the total trust data.

Various simple (and to some extent
naive) approaches calculate a user par-
ticipation level [Kazaa 2003] and reward
peers with higher participation by giving
higher priority to their requests, or by re-
ducing their waiting times in file trans-
fer queues. In a more abstract approach
[Ramaswamy and Liu 2003], utility
functions, based on the amount and pop-
ularity of content stored by the peer, are
used to estimate a figure for their useful-
ness. Such mechanisms are generally easy
to subvert by malicious users.

Finally, distributed auditing mecha-
nisms have also been devised to apply
peer-pressure to misbehaving nodes [Wal-
lach 2002]. Nodes can consume resources
to compare the logs of another node, cho-
sen at random, with the logs of every node
with which it is sharing information. The
system appears to provide strong disin-
centives to cheaters at a reasonable cost.

At the development level, peer-to-peer
frameworks such as Sun’s JXTA [Jxta
2003] include provisions for incorporat-
ing peer-monitoring hooks in a distributed
content distribution environment, that
could be used for collecting transaction in-
formation and building centralized or dis-
tributed reputation databases.

Some potential problems with dis-
tributed reputation management need to
be addressed. For example, an entity ac-
quiring reputation in one context where it
has functioned well, may spend it in an-
other context for malicious purposes. An
immediate extension of the above scenario
is the possibility of using reputation as
currency, exchanging it for content or ser-
vices.

A discussion of accountability and rep-
utation can also be found in Dingledine
et al. [2001b].

8.2. Micropayments Mechanisms

A variety of both centralized [MojoNation
2003; Ioannidis et al. 2002] and decen-
tralized [Vishnimurthy et al. 2003; Yu
and Singh 2003] currency-based micro-
payment and credit systems have been de-
ployed in peer-to-peer networks.

A typical example is the MojoNation
system, where a currency (the “Mojo”) is
gained by offering disk space, bandwidth,
or CPU cycles, and used to obtain access
to distributed storage space. This system
employs a scheme based on trusted third
parties to ensure honest transactions be-
tween peers.

More complex systems offer more ad-
vanced capabilities to users, for example,
allowing them to negotiate prices and per-
form auctions for services rendered (e.g.
Vishnimurthy et al. [2003])

It is, however, claimed in Buragohain
et al. [2003] that monetary schemes, al-
though providing clear economic models,
may be impractical for most applications.

8.3. Resource Trading Schemes

Various decentralized resource trading
and exchange schemes have been pro-
posed [Anagnostakis and Greenwald

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



364 S. Androutsellis-Theotokis and D. Spinellis

2004; Cohen 2003; Cooper and Garcia-
Molina 2002; Dingledine et al. 2000].

Anagnostakis and Greenwald [2004]
proposed an extension to accommodate
transitive chains of peer transactions, in-
stead of simple one-to-one exchanges.

A system in which each node publishes
and digitally signs logs containing lists of
files it stores on behalf of remote nodes and
lists of files that other nodes are storing on
its behalf is proposed in Wallach [2002].
Through the use of these lists it can be en-
sured that no node is using more resources
than it is providing, and a balanced system
is achieved.

A flexible algorithm for trading content
is proposed by Cooper and Garcia-Molina
[2002]. Peers make local decisions about
how much data to trade, what resources to
contribute and how many trades to make.
This algorithm ensures fairness while try-
ing to maximize content preservation by
choosing the most appropriate policies for
deed trading, advertising, remote site se-
lection, and bidding.

Another example of a purely decentral-
ized reputation system based on resource
trading exist seen in FreeHaven [Dingle-
dine et al. 2000]. The FreeHaven nodes
form contracts to store each other’s ma-
terial for a certain period of time. By
successfully fulfilling a contract, a node
increases its reputation. Contracts are
formed whenever new data is inserted in
the network, or swapped between peers. A
trading handshake protocol is employed.
It includes “receipts” for resources traded,
and the use of “buddy” peer nodes that
record the transactions carried out by
other nodes. Each node, therefore, main-
tains a database containing the perceived
reputation of others. Nodes periodically
check whether other nodes have dropped
data earlier than they were supposed to,
and decrease the level of trust of these
peers. In order for nodes to leave the net-
work without decreasing their reputation
value, they must first swap their docu-
ments for shorter-lived ones, and wait un-
til they expire.

An additional benefit of trading content
is that it offers a way of actively replicat-
ing it, and hence, making it more available

and less likely to be lost due to failures.
Digital libraries may collaborate with one
another to provide content preservation
by storing each other’s material. Systems
such as OceanStore [Kubiatowicz et al.
2000] and Intermemory [Chen et al. 1999]
employ this idea.

Finally, it is argued in Chun et al. [2003]
that such resource trading models are par-
ticularly suitable for bootstrapping peer-
to-peer economies in the first period of
their operation.

9. RESOURCE MANAGEMENT
CAPABILITIES

The resources that peer-to-peer content
distribution systems typically deal with
are content (files), storage (disk space),
and transmission capacity (bandwidth).
Obviously inserting, locating (searching),
and retrieving content are the minimum
operations that any system is required
to perform. Additional resource manage-
ment facilities may include removing or
updating content, maintaining previous
versions of updated content, managing
storage space, and setting bandwidth lim-
its. Different peer-to-peer content distri-
bution system allow different levels of re-
source management, as now described.

Content Deletion and Update. Deleting
and updating content are not straight-
forward operations in a peer-to-peer envi-
ronment if correct synchronization is to be
maintained. Systems such as MojoNation
[MojoNation 2003] use immutable files,
which cannot be updated. The only way
to update the content is to post a new
version of the document under a differ-
ent name. PAST [Druschel and Rowstron
2001] is similar in this respect. It does of-
fer a delete functionality for reclaiming
the disc space occupied by a file, but it
does not guarantee that the file will no
longer be available anywhere in the net-
work. FreeHaven [Dingledine et al. 2000]
also forbids unpublishing, or revocation of
documents, but mainly for reasons of se-
curity and robustness to attacks.

Both deletion and update of content are
offered by Publius [Waldman et al. 2000],

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 365

which is, however, based on a static set of
servers that store the content. Files are
published along with a password file that
ensures that only the publisher will be
able to delete or modify the content.

Content Expiration. Document expi-
ration dates are effectively introduced
in FreeHaven [Dingledine et al. 2000]
through the use of contracts with different
durations, as described in Section 8.

Content Versioning. A more sophisti-
cated approach is employed by OceanStore
[Rhea et al. 2001], which offers a version-
based archival storage system. Versions of
documents are stored in permanent read-
only form, encoded with erasure codes,
and spread over hundreds of servers.
OceanStore maintains active maps of doc-
ument IDs, which redirect to the most
recent version of a document, provid-
ing both an update history and an undo
mechanism.

Directory Structure. An entire dis-
tributed directory structure system in-
cluding directories and Unix-like inodes
[Bach 1986] is built on top of files by
Mnemosyne [Hand and Roscoe 2002]. Di-
rectories are optionally used to aggregate
files sharing a common key, serving as a
mnemonic service for a set of file names.

Content Searching. Searching facilities
may also vary in their degree of function-
ality and performance. Unstructured sys-
tems such as Gnutella, Kazaa, and Free-
Haven offer keyword-search mechanisms
that are convenient, but do not scale well
(see also our discussion in 3.3.4). In struc-
tured systems, searches are very efficient,
but can only be based on file identifiers.
The problem of providing keyword search
facilities on top of exact-match queries is
open. One solution proposed in Freenet is
the use of indirect files, published along
with regular files and pointing to them,
which are named according to relevant
search keywords. The problem of manag-
ing the large volume of such files, however,
also remains unresolved [Clarke et al.
2000].

Storage and Bandwidth Management.
Managing the storage space available
to the peers also varies between sys-
tems. Usually the amount of disk space

contributed can be specified by each peer
independently. In systems such as Mo-
joNation users contribute storage in ex-
change for economic or other compensa-
tion. PAST [Druschel and Rowstron 2001]
uses a secure quota system, where users
are either assigned a fixed quota of storage
they can use, or they can use as much as
they contribute on their node. This system
can be optionally extended to incorporate
the use of smartcards.

In order to protect from denial of ser-
vice attacks, apart from enforcing a pub-
lished size quota to users, the idea of
“hash cash” is also employed (e.g. in Pub-
lius [Waldman et al. 2000]). A publisher
is requested to carry out computational
work to solve a mathematical problem be-
fore being allowed to publish a certain
amount of content. Alternatively, a per-
node rate limiter can be used, as is the case
for example in Mnemosyne [Hand and
Roscoe 2002]. Bandwidth management is
also available in systems such as Kadem-
lia [Mayamounkov and Mazieres 2002],
which allows the users to trade bandwidth
for latency and fault recovery.

10. SEMANTIC GROUPING OF
INFORMATION

The topic of semantic grouping and orga-
nization of content and information within
peer-to-peer networks has attracted con-
siderable research attention lately [Zhou
et al. 2003; Ayyasamy et al. 2003; Castano
et al. 2003; Broekstra et al. 2003], driven
to a large extent by the recent advances in
the field of knowledge management.

Khambatti et al. [2003] introduce the
notion of interest-based “peer communi-
ties”, similar to real human communities,
in which membership depends on the re-
lationship between peers that share com-
mon interests. The authors argue—and
show through their experiments—that
such communities can be used to make
searching more efficient and produce bet-
ter quality of results. The grouping is im-
plemented through sets of attributes that
the peers choose to claim, and communi-
ties are formed between peers that share
similar attributes. As an extension of this

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



366 S. Androutsellis-Theotokis and D. Spinellis

notion, a peer-to-peer community-based
trust model is introduced in Khambatti
et al. [2004], where links between peers
that trust each other are used to form dy-
namic coalitions between different com-
munities.

The semantic overlay clustering ap-
proach, based on partially-centralized
(super-peer) networks [Loeser et al. 2003]
aims at creating logical layers above the
physical network topology, by matching
semantic information provided by peers
to clusters of nodes based on super-peers.
Clusters of nodes with similar semantic
profiles are, therefore, formed based on
some matching engine and clustering pol-
icy. Each cluster contains a set of peers,
together with their corresponding super-
peer.

Bonifacio et al. [2002] propose a dis-
tributed knowledge management archi-
tecture consisting of knowledge nodes
(peers that own local knowledge), that co-
operate through a set of services. Each
node can act as a seeker (allowing the user
to search for information and forwarding
queries), as a provider (accepting and re-
solving queries and returning results), or
both. Searching can be either semantic
(based on a context matching algorithm),
or textual (based on keywords). Groups of
nodes have the ability to form federations,
similar to social aggregations, by agreeing
to be considered as a sole entity by other
peers when they request certain semantic
search services.

A peer-to-peer architecture based on se-
mantic grouping, context, and peer pro-
files applied in the area of eLearning is
proposed in Hummel et al. [2003].

From a different perspective, a num-
ber of different mechanisms are proposed
for constructing efficient overlay network
topologies by taking into account the lo-
cality and network proximity of peer com-
puters to decrease the communication cost
[Zhang et al. 2004; Zhao et al. 2002; Castro
et al. 2002].

11. CONCLUSIONS

Peer-to-peer systems are distributed sys-
tems consisting of interconnected nodes,

able to self-organize into network topolo-
gies with the purpose of sharing resources
such as content, CPU cycles, storage, and
bandwidth. Content distribution, a promi-
nent application area of peer-to-peer sys-
tems, is based on systems and infrastruc-
tures designed for sharing digital media
and other data between users.

Peer-to-peer content distribution sys-
tems range from relatively simple direct
file sharing applications, to more sophis-
ticated systems that create a distributed
storage infrastructure for securely and ef-
ficiently publishing, organizing, indexing,
searching, updating, and retrieving data.

We performed this study of peer-to-
peer content distribution systems and
infrastructures by identifying the fea-
ture space of their nonfunction proper-
ties, and determining the way in which
these nonfunctional properties depend on,
and are affected by various design fea-
tures. The main nonfunctional character-
istics we identified include provisions for
security, anonymity, fairness, increased
scalability, and performance, as well as
resource management, and organization
capabilities.

One of the central characteristics of
peer-to-peer systems—which reflects upon
issues of performance, availability, and
scalability—is their ability to function,
scale, and self-organize in the presence
of a highly transient population of nodes
and network and computer failures, with-
out the need for a central server admin-
istration. This characteristic is mainly at-
tributed to the network organization and
location and routing algorithms. Two gen-
eral categories of systems can be iden-
tified in this respect: the unstructured
systems and the structured (or DHT-based)
systems. The rationale behind structured
systems often was to conquer the se-
vere scalability and performance prob-
lems of unstructured ones. However, re-
cent research developments in both struc-
tured and unstructured systems, ren-
ders them both as complementary and
acceptable solutions.

Research on other aspects and prop-
erties of peer-to-peer content distri-
bution systems has taken advantage

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 367

of knowledge and solutions from nu-
merous scientific fields. Characteristic
examples include research on the applica-
tion of reputation systems in peer-to-peer
environments, the semantic organization
of information, as well as the use of cryp-
tographic techniques for the protection of
data, both stored and in transit through
the network.

Finally, as peer-to-peer technologies are
still evolving, there are a multitude of open
research problems, directions, and oppor-
tunities, including, but not limited to:

—The design of new distributed object lo-
cation, routing and distributed hash ta-
ble data structures and algorithms for
maximizing performance, security and
scalability, both in structured and un-
structured network architectures.

—The study of more efficient security,
anonymity, and censorship resistance
schemes. These features will be critical
to the future of peer-to-peer systems and
their adoption for increasingly more sen-
sitive applications.

—The semantic grouping of information
in peer-to-peer networks. This direction
that has a lot in common with efforts in
the semantic Web domain.

—The design of incentive mechanisms and
reputation systems that will stimulate
the cooperative behavior between the
users, and make the overall operation of
peer-to-peer networks more fair.

—The convergence of Grid and Peer-to-
Peer systems. Research in this direction
aims to combine the benefits of the es-
tablished field of distributed computing
(including interoperability standards)
with the merits of new peer-to-peer ar-
chitectures.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous re-
viewers for their insightful comments and sugges-
tions.

REFERENCES

AGRE, P. 2003. P2p and the promise of internet
equality. Comm. ACM 46, 2 (Feb.), 39–42.

ANAGNOSTAKIS, K. AND GREENWALD, M. 2004.
Exchange-based incentive mechanisms for
peer-to-peer file sharing. To Appear in the Pro-
ceedings of the 24th International Conference on
Distributed Computing (ICDCS04).

ANDERSON, R. 2001. Security Engineering: A Guide
to Building Dependable Distributed Systems.
John Wiley & Sons, New York.

ANDERSON, R., NEEDHAM, R., AND SHAMIR, A. 1998.
The steganographic file system. In Proceedings
of International Workshop on Information Hid-
ing (IWIH) .

AYYASAMY, S., PATEL, C., AND LEE, Y. 2003. Seman-
tic web services and dht-based peer-to-peer net-
works: A new symbiotic relationship. In Proceed-
ings of the 1st Workshop on Semantics in Peer-
to-Peer and Grid Computing at the 12th Inter-
national World Wide Web Conference. Budapest,
Hungary.

BACH, M. 1986. The Design of the UNIX Operating
System. Prentice-Hall.

BALAKRISHNAN, H., KAASHOEK, M., KARGER, D., R, M.,
AND STOICA, I. 2003. Looking up data in p2p
systems. Comm. ACM 46, 2 (Feb.), 43–48.

BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. 2001.
The semantic web. Scientific American.

BERNSTEIN, P., GIUNCHIGLIA, F., KEMENTSIETSIDIS, A., MY-
LOPOULOS, J., SERAFINI, L., AND ZAIHRAYEU, I. 2002.
Data management for peer-to-peer computing: A
vision. In Proceedings of the Workshop on the Web
and Databases (WebDB’02).

BERTHOLD, O., FEDERRATH, H., AND KOPSELL, S. 1998.
Web mixes: A system for anonymous and unob-
servable internet access. In Proceedings of the
Workshop on Design Issues in Anonymity and
Unobservability. Berkeley, CA.

BONIFACIO, M., CUEL, R., MAMELI, G., AND NORI,
M. 2002. A peer-to-peer architecture for dis-
tributed knowledge management. In Proceed-
ings of the 3rd International Symposium on
Multi-Agent Systems, Large Complex Systems,
and E-Businesses (MALCEB’02).

BROEKSTRA, J., EHRIG, M., HAASE, P., VAN HARME-
LEN, F., KAMPMAN, A., SABOU, M., SIEBES, R.,
STAAB, S., STUCKENSCHMIDT, H., AND TEMPICH,
C. 2003. A metadata model for semantics-
based peer-to-peer systems. In Proceedings of
the 1st Workshop on Semantics in Peer-to-
Peer and Grid Computing at the 12th Interna-
tional World Wide Web Conference. Budapest,
Hungary.

BURAGOHAIN, C., AGRAWAL, D., AND SURI, S. 2003. A
game theoretic framework for incentives in p2p
systems. In Proceedings of the 3rd International
Conference on Peer-to-Peer Computing.

CASTANO, S., FERRARA, A., MONTANELLI, S., PAGANI,
E., AND ROSSI, G. 2003. Ontology-addressable
contents in p2p networks. In Proceedings of
the 1st Workshop on Semantics in Peer-to-
Peer and Grid Computing at the 12th Interna-
tional World Wide Web Conference. Budapest,
Hungary.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



368 S. Androutsellis-Theotokis and D. Spinellis

CASTRO, M., DRUSCHEL, P., GANESH, A., A, R., AND WAL-
LACH, D. 2002. Secure routing for structured
peer-to-peer overlay networks. In Proceedings of
the 5th Usenix Symposium on Operating Sys-
tems. Boston, MA.

CASTRO, M., DRUSCHEL, P., KERMARREE, A.-M., AND ROW-
STRON, A. 2002. Scribe: A large-scale and de-
centralized application-level multicast infras-
tructure. IEEE J. Select. Areas Comm. 20, 8
(Oct.).

CASTRO, M., DRUSCHEL, P., YC, H., AND ROWSTRON, A.
2002. Exploiting network proximity in peer-to-
peer overlay networks. In Proceedings of the In-
ternational Workshop on Future Directions in
Distributed Computing (FuDiCo’02).

CHAUM, D. 1981. Untraceable electronic mail, re-
turn addresses and digital pseudonyms. Comm.
ACM 24, 2, 84–88.

CHAWATHE, Y., RATNASAMY, S., BRESLAU, L., LANHAM, N.,
AND SHENKER, S. 2003. Making Gnutella-like
p2p systems scalable. In Proceedings of the 2003
Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communi-
cations. Karlsruhe, Germany, 407–418.

CHEN, Y., EDLER, J., GOLDBERG, A., GOTTLIEB, A., SOBTI,
S., AND YANILOS, P. 1999. A prototype imple-
mentation of archival intermemory. In Proceed-
ings of the 4th ACM Conference on Digital Li-
braries. Berkeley, CA.

CHEN, Y., KATZ, R., AND KUBIATOWICZ, J. 2000. Scan:
A dynamic, scalable and efficient content distri-
bution network. In Proceedings of International
Conference on Pervasive Computing.

CHUN, B., FU, Y., AND VAHDAT, A. 2003. Boot-
strapping a distributed computational economy
with peer-to-peer bartering. In Proceedings of
the 1st Workshop on Economics of Peer-to-Peer
Systems.

CLAKE, I., HONG, T., SANBERG, O., AND WILEY, B.
2002. Protecting free expression online with
Freenet. IEEE Internet Comput. 6, 1 (Jan.-Feb.),
40–49.

CLARKE, I., SANDBERG, O., AND WILEY, B. 2000.
Freenet: A distributed anonymous information
storage and /etrieval system. In Proceedings of
the Workshop on Design Issues in Anonymity and
Unobservability. Berkeley, CA.

COHEN, B. 2003. Incentives build robustness in
bitorrent. In Proceedings of the 1st Workshop on
Economics of Peer-to-Peer Systems.

COHEN, E. AND SHENKER, S. 2001. Optimal replica-
tion in random search networks. Preprint.

COOPER, B. AND GARCIA-MOLINA, H. 2002. Peer-
to-peer resource trading in a reliable dis-
tributed system. In Proceedings of the 1st In-
ternational Workshop on Peer-to-Peer Systems
(IPTPS ’02). MIT Faculty Club, Cambridge,
MA.

CRESPO, A. AND GARCIA-MOLINA, H. 2002. Routing
indices for peer-to-peer systems. In Proceed-
ings of the 22nd International Conference on

Distributed Computing Systems (ICDCS’02). Vi-
enna, Autria.

DABEK, F., KAASHOEK, M., KARGER, D., MORRIS, R., AND

STOICA, I. 2001. Wide-area cooperative stor-
age with CFS. In Proceedings of the ACM
SOSP’01 Conference. Banff, Canada.

DASWANI, N., GARCIA-MOLINA, H., AND YANG, B. 2003.
Open problems in data-sharing peer-to-peer sys-
tems. In Proceedings of the 9th International
Conference on Database Theory. Siena, Italy.

DEERING, S. 1998. Host extensions for IP multicas-
ting. Tech. Rep. RFC-1112, IETF, (Aug.). SRI In-
ternational, Menlo Park, CA.

DELLAROCAS, C. 2001. Analyzing the economic ef-
ficiency of ebay-like online reputation mecha-
nisms. In Proceedings of the 3rd ACM Conference
on Electronic Commerce. Tampa, FL.

DINGLEDINE, R., FREEDMAN, M., AND MOLNAR, D. 2000.
The FreeHaven project: Distributed anonymous
storage service. In Workshop on Design Issues in
Anonymity and Unobservability. 67–95.

DINGLEDINE, R., FREEDMAN, M., AND MOLNAR, D.
2001a. Peer-to-peer: Harnessing the Power of
Disruptive Technology, 1st Ed. O’Reilly (Chap-
ter 1. A network of peers: Peer-to-peer models
through the history of the Internet, 3–20)

DINGLEDINE, R., FREEDMAN, M., AND MOLNAR, D.
2001b. Peer-to-peer: Harnessing the power of
disruptive technology, 1st Ed. O’Reilly (Chapter
16. Accountability, 271–340)

DOUCEUR, J. 2002. The Sybill attack. In Proceed-
ings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS’02). MIT Faculty Club,
Cambridge, MA.

DRUSCHEL, P. AND ROWSTRON, A. 2001. Past: A large-
scale, persistent peer-to-peer storage utility. In
Proceedings of the Eighth Workshop on Hot Top-
ics in Operating Systems.

FastTrack Accessed on-line 2003. The FastTrack web
site. http://www.fasttrack.nu.

FOSTER, I. 2000. Internet computing and the
emerging grid. Nature Web Matters.

FOSTER, I. AND IAMNITCHI, A. 2003. On death,
taxes, and the convergence of peer-to-peer and
grid computing. In Proceedings of the 2nd In-
ternational Workshop on Peer-to-Peer Systems
(IPTPS’03). Berkley, CA.

FOSTER, I., KESSELMAN, C., AND TUECKE, S. 2001. The
anatomy of the grid. Intl. J. Supercomput. Appl.

FRANCIS, P. 2000. Yoid: Extending the inter-
net multicast architecture. Unpublished
Paper, available on-line at http://www.aciri.
org/yoid/docs/index.html.

FREEDMAN, M., SIT, E., CATES, J., AND MORRIS, R. 2002.
Introducing tarzan, a peer-to-peer anonymiz-
ing network layer. In Proceedings of the 1st
International Workshop on Peer-to-Peer Sys-
tems (IPTPS’02). MIT Faculty Club, Cambridge,
MA.

Freedom 2003. The Freedom anonymity system
web site. http://www.freedom.net.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 369

GARCES-ERICE, L., FELBER, P., BIERSACK, E., URVOY-
KELLER, G., AND ROSS, K. 2004. Data indexing
in peer-to-peer dht networks. In Proceedings of
the 24th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS). Tokyo,
Japan, 200–208.

GenomeAtHome 2003. The genome@home
project web site. http://genomeathome.stanford.
edu/.

Gnutella 2003. The Gnutella web site: http://
gnutella.wego.com.

GOLDSCHLAG, D., REED, M., AND SYVERSON, P. 1999.
Onion routing for anonymous and private inter-
net connections. Comm. ACM 42, 2, 39–41.

Groove 2003. The Groove web site. http://www.
groove.net.

GUPTA, M., JUDGE, P., AND AMMAR, M. 2003. A repu-
tation system for peer-to-peer networks. In Pro-
ceedings of the NOSSDAV’03 Conference. Mon-
terey, CA.

HALEVY, A., IVES, Z., MORK, P., AND TATARINOV, I. 2003.
Piazza: Data management infrastructure for se-
mantic web applications. In Proceedings of the
12th International Conference on World Wide
Web. Budapest, Hungary, 556–567.

HAND, S. AND ROSCOE, T. 2002. Mnemosyne: Peer-
to-peer steganographic storage. In Proceedings
of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS’02). MIT Faculty Club, Cam-
bridge, MA.

HARDING, G. 1968. The tragedy of the commons.
Science 162, 1243–1248.

HARREN, M., HELLERSTEIN, J., HUEBSCH, R., LOO, B.,
SHENKER, S., AND STOICA, I. 2002. Complex
queries in dht-based peer-to-peer networks. In
Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS ’02). MIT Faculty
Club, Cambridge, MA.

HAZEL, S. AND WILEY, B. 2002. Achord: A variant of
the Chord lookup service for use in censorship re-
sistant peer-to-peerpublishing systems. In Pro-
ceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS ’02). MIT Faculty
Club, Cambridge, MA.

HELEHER, P., BHATTACHARJEE, B., AND SILAGHI, B.
2002. Are vitrualized overlay networks too
much of a good thing? In Proceedings of the
1st International Workshop on Peer-to-Peer Sys-
tems (IPTPS ’02). MIT Faculty Club, Cambridge,
MA.

HUEBSCH, R., HELLERSTEIN, J., LANHAM, N., AND

THAU LOO, B. 2003. Querying the internet
with pier. In Proceedings of the 29th VLDB Con-
ference. Berlin, Germany.

HUMMEL, K., KOTSIS, G., AND KOPECNY, R. 2003. Peer
profile driven group support for mobile learn-
ing teams. In Proceedings of the CATE/IASTED
Conference. Rhodes, Greece.

IOANNIDIS, J., IOANNIDIS, S., KEROMYTIS, A., AND PREVE-
LAKIS, V. 2002. Fileteller: Paying and getting
paid for file storage. In Proceedings of the Sixth

International Conference on Financial Cryptog-
raphy.

Jabber 2003. The Jabber web site. http://www.
jabber.org/.

JANAKIRAMAN, R., WALDVOGEL, M., AND ZHANG, Q.
2003. Indra: A peer-to-peer approach to net-
work intrusion detection and prevention. In Pro-
ceedgings of 2003 IEEE WET ICE Workshop on
Enterprize Security. Linz, Austria.

JOVANOVIC, M. 2000. Modelling large-scale peer-to-
peer networks and a case study of Gnutella. M.S.
thesis, Department of Electrical and Computer
Engineering and Computer Science, University
of Cincinnati, Cincinnati, OH 45221.

JOVANOVICH, M., ANNEXSTEIN, F., AND BERMAN, K.
2001. Scalability issues in large peer-to-peer
networks—a case study of Gnutella. Tech. rep.,
ECECS Department, University of Cincinnati,
Cincinnati, OH 45221.

Jxta 2003. The project JXTA web site.
http://www.jxta.org.

KALOGERAKI, V., GUNOPOULOS, D., AND ZEINALIPOUR-
YAZTI, D. 2002. A local search mechanism for
peer-to-peer networks. In Proceedings of the 11th
International Conference on Information and
Knowledge Management (CIKM’02). McLean,
VA.

KAMVAR, S. D., SCHLOSSER, M. T., AND GARCIA-MOLINA,
H. 2003. The Eigentrust algorithm for repu-
tation management in p2p networks. In Pro-
ceedings of the 12th International Conference on
World Wide Web. ACM Press, 640–651.

KARGER, D., LEHMAN, E., LEIGHTON, F., LEVINE, M.,
LEWIN, D., AND PANIGRAHY, R. 1997. Consistent
hashing and random trees: Distributed caching
protocols for relieving hot spots on the world
wide web. In Proceedings of the 29th Annual
ACM Symposium on Theory of Computing. El
Paso, TX, 654–663.

Kazaa 2003. The Kazaa web site. http://www.
kazaa.com.

KEROMYTIS, A., V, M., AND RUBENSTEIN, D. 2002.
SOS: Secure overlay services. In Proceedings of
the ACM SIGCOMM’02 Conference. Pittsburgh,
PA.

KHAMBATTI, M., DASGUPTA, P., AND RYU, K. 2004. A
role-based trust model for peer-to-peer com-
munities and dynamic coalitions. In Pro-
ceedings of the Second IEEE International
Information Assurance Workshop. Charlotte,
NC.

KHAMBATTI, M., RYU, K., AND DASGUPTA, P. 2003.
Structuring peer-to-peer networks using
interest-based communities. In Proceedings of
the International Workshop On Databases, In-
formation Systems and Peer-to-Peer Computing
(P2PDBIS). Berlin, Germany.

KIM, H. 2001. P2p overview. Tech. rep., Korea Ad-
vanced Institute of Technology. (Aug.)

KUBIATOWICS, J. 2003. Extracting guarantees from
chaos. Comm. ACM 46, 2 (Feb.), 33–38.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



370 S. Androutsellis-Theotokis and D. Spinellis

KUBIATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P., GEELS,
D., GUMMADI, S., WEATHERSPOON, H., WEIMER, W.,
WELLS, C., AND ZHAO, B. 2000. Oceanstore: An
architecture for global-scale persistent storage.
In Proceedings of ACM ASPLOS.

LAI, K., FELDMAN, M., STOICA, I., AND CHUANG, J. 2003.
Incentives for cooperation in peer-to-peer net-
works. In Proceedings of the Workshop on Eco-
nomics of Peer-to-Peer Systems. Berkeley, CA.

LAMPORT, L., SHOSTAK, R., AND PEASE, M. 1982. The
Byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst. 4, 3 (July), 382–401.

LARSON, S., SNOW, C., AND PANDE, V. 2003. Mod-
ern Methods in Computational Biology,. (Chap-
ter Folding@Home and Genome@Home: Using
distributed computing to tackle previously in-
tractable problems in computational biology)
Horizon Press.

LEE, J. 2003. An end-user perspective on file-
sharing systems. Comm. ACM 46, 2 (Feb.), 49–
53.

LIBEN-NOWELL, D., BALAKRISHNAN, H., AND KARGER, D.
2002a. Analysis of the evolution of peer-to-peer
systems. In Proceedings of the ACM Sympo-
sium on the Principles of Distributed Computing
(PODC). Monterey, CA.

LIBEN-NOWELL, D., BALAKRISHNAN, H., AND KARGER, D.
2002b. Observations on the dynamic evolution
of peer-to-peer networks. In Proceedings of the
1st International Workshop on Peer-to-Peer Sys-
tems (IPTPS’02). MIT Faculty Club, Cambridge,
MA.

LOESER, A., WOLPERS, M., SIBERSKI, W., AND NEJDL, W.
2003. Semantic overlay clusters within super-
peer networks. In Proceedings of the Interna-
tional Workshop On Databases, Information Sys-
tems and Peer-to-Peer Computing (P2PDBIS).
Berlin, Germany.

LV, Q., CAO, P., COHEN, E., LI, K., AND SHENKER, S.
2002. Search and replication in unstructured
peer-to-peer networks. In Proceedings of the 16th
ACM International Conference on Supercomput-
ing (ICS’02). New York, NY.

LV, Q., RATNASAMY, S., AND SHENKER, S. 2002. Can
heterogeneity make Gnutella scalable? In Pro-
ceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS’02). MIT Faculty
Club, Cambridge, MA.

MAYAMOUNKOV, P. AND MAZIERES, D. 2002. Kadem-
lia: A peer-to-peer information system based on
the xor metric. In Proceedings of the 1st In-
ternational Workshop on Peer-to-Peer Systems
(IPTPS’02). MIT Faculty Club, Cambridge, MA.

MojoNation 2003. The MojoNation web site.
http://www.mojonation.net.

NEJDL, W., WOLF, B., QU, C., DECKER, S., SINTEK, M.,
NAEVE, A., NILSSON, M., PALMER, M., AND RISCH, T.
2003. Edutella: A p2p networking infrastruc-
ture based on rdf. In Proceedings of the 12th In-
ternational Conference on World Wide Web. Bu-
dapest, Hungary.

PLAXTON, C., RAJARAMAN, R., AND RICHA, A. 1997. Ac-
cessing nearby copies of replicated objects in a
distributed environment. In Proceedings of ACM
SPAA. ACM.

RABIN, M. 1989. Efficient dispersal of information
for security, load balancing and fault tolerance.
J. ACM 36, 2 (April), 335–348.

RAMASWAMY, L. AND LIU, L. 2003. Free riding: A new
challenge for peer-to-peer file sharing systems.
In Proceedings of the Hawaii International Con-
ference on Systems Science.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., AND KARP, R.
2001. A scalable content-addressable network.
In Proceedings of SIGCOMM 2001.

REITER, M. AND RUBIN, A. 1999. Anonymous web
transactions with Crowds. Comm. ACM 42, 2,
32–38.

RHEA, S., WELLS, C., ET AL. 2001. Maintenance-free
global storage. IEEE Internet Compu., 40–49.

RIPEANU, M. AND FOSTER, I. 2002. Mapping the
Gnutella network: Macroscopic properties of
large-scale peer-to-peer systems. In Proceedings
of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS’02). MIT Faculty Club, Cam-
bridge, MA.

ROWSTRON, A. AND DRUSCHEL, P. 2001. Pastry: Scal-
able, distributed object location and routing
for large-scale peer-to-peer systems. In Proceed-
ings of IFIP/ACM Middleware. Heidelberg, Ger-
many.

SAROIU, S., GUMMADI, P., AND GRIBBLE, S. 2002. Ex-
ploring the design space of distributed peer-to-
peer systems: Comparing the web, TRIAD and
Chord/CFS. In Proceedings of the 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS
’02). MIT Faculty Club, Cambridge, MA.

SCHODER, D. AND FISCHBACH, K. 2003. Peer-to-peer
prospects. Comm. ACM 46, 2 (Feb.), 27–29.

SERJANTOV, A. 2002. Anonymizing censorship re-
sistant systems. In Proceedings of the 1st In-
ternational Workshop on Peer-to-Peer Systems
(IPTPS’02). MIT Faculty Club, Cambridge, MA.

SetiAtHome 2003. The seti@home project web
site. http://setiathome.ssl.berkeley.edu.

SHAMIR, A. 1979. How to share a secret. Comm.
ACM 22, 612–613.

SHAW, M. AND GARLAN, D. 1995. Formulations and
formalisms in software architecture. In Com-
puter Science Today: Recent Trends and Devel-
opments, Lecture Notes in Computer Science,
1000. J. van Leeuwen, Ed. Springer Verlag, 307–
323.

SHIRKY, C. 2000. What is p2p... and what isnt’t.
Network, available online at http://www. or-
eillynet.com/pub/a/p2p/2000/11/24/shirky1
-whatisp2p.html. O’Reilly

STOICA, I., ADKINS, D., ZHUANG, S., SHENKER, S.,
AND SURANA, S. 2002. Internet indirection in-
frastructure. In Proceedings of the ACM SIG-
COMM’02 Conference. Pittsburgh, PA.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



A Survey of Content Distribution Technologies 371

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M.,
AND BALAKRISHNAN, H. 2001. Chord: A scalable
peer-to-peer lookup service for internet applica-
tions. In Proceedings of SIGCOMM 2001.

STUBBLEFIELD, A. AND WALLACH, D. 2001.
Dagster:censorship-resistant publishing with-
out replication. Tech. Rep. Technical Report
TR01-380, Rice University, Dept. of Computer
Science. (July).

SULLIVAN III, W., WERTHIMER, D., BOWYER, S., COBB, J.,
GEDYE, D., AND ANDERSON, D. 1997. A new ma-
jor seti project based on project serendip data
and 100,000 personal computers. In Proceedings
of the 5th International Conference on Bioastron-
omy.

TSOUMAKOS, D. AND ROUSSOPOULOS, N. 2003. A com-
parison of peer-to-peer search methods. In Pro-
ceedings of the Sixth International Workshop on
the Web and Databases. San Diego, CA.

VANRENESSE, R., BIRMAN, K., BOZDOG, A., DIM-
ITRIU, D., SINGH, M., AND VOGELS, W. 2003.
Heterogeneity-aware peer-to-peer multicast. In
Proceedings of the 17th International Sympo-
sium on Distributed Computing (DISC2003).
Sorrento, Italy.

VISHNIMURTHY, V., CHANDRAKUMAR, S., AND GUN SIRER,
E. 2003. Karma: A secure economic frame-
work for p2p resource sharing. In Proceedings
of the 1st Workshop on Economics of Peer-to-Peer
Systems.

VLACHOS, V., ANDROUTSELLIS-THEOTOKIS, S., AND SPINEL-
LIS, D. 2004. Security applications of peer-to-
peer networks. Comput. Netw. J. 45, 2, 195–205.

WALDMAN, M., AD, R., AND LF, C. 2000. Publius:
A robust, tamper-evident, censorship-resistant
web publishing system. In Proceedings of the 9th
USENIX Security Symposium.

WALDMAN, M. AND MAZI, D. 2001. Tangler: a
censorship-resistant publishing system based on
document entanglements. In Proceedings of the
ACM Conference on Computer and Communica-
tions Security. 126–131.

WALLACH, D. 2002. A survey of peer-to-peer secu-
rity issues. In International Symposium on Soft-
ware Security. Tokyo, Japan.

WITTEN, I., MOFFAT, A., AND BELL, T. 1999. Manag-
ing Gigabytes: Compressing and Indexing Docu-
ments and Images, 2nd ed. Morgan Kauffman.

XIONG, L. AND LIU, L. 2002. Building trust in de-
centralized peer-to-peer communities. In Pro-
ceedings of the International Conference on Elec-
tronic Commerce Research.

YANG, B. AND GARCIA-MOLINA, H. 2001. Comparing
hybrid peer-to-peer systems. In Proceedings of
the 27th VLDB Conference. Rome, Italy, 561–
570.

YANG, B. AND GARCIA-MOLINA, H. 2002a. De-
signing a super-peer network. Tech. rep.,
Stanford University. (Feb.). Available online:
http://dbpubs.stanford.edu/pub/2002-13.

YANG, B. AND GARCIA-MOLINA, H. 2002b. Improv-
ing search in peer-to-peer networks. In Proceed-
ings of the 22nd International Conference on
Distributed Computing Systems (ICDCS’02). Vi-
enna, Autria.

YU, B. AND SINGH, M. 2003. Incentive mechanisms
for peer-to-peer systems. In Proceedings of the
2nd International Workshop on Agents and Peer-
to-Peer Computing.

ZHANG, X., ZHANG, Q., ZHANG, Z., SONG, G., AND ZHU, W.
2004. A construction of locality-aware overlay
network: moverlay and its performance. IEEE
JSAC Special Issue on Recent Advances on Ser-
vice Overlay Networks.

ZHAO, B., JOSEPH, A., AND KUBIATOWICZ, J. 2002. Lo-
cality aware mechanisms for large-scale net-
works. In Proceedings of the International Work-
shop on Future Directions in Distributed Com-
puting (FuDiCo2002).

ZHAO, B., KUBIATOWICZ, J., AND JOSEPH, A. 2001.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Tech. Rep.
UCB/CSD-01-1141, Computer Science Divi-
sion, University of California, Berkeley, 94720.
(April)

ZHICHEN, X., MAHALINGAM, M., AND KARLSSON, M.
2002. Turning heterogeneity to an advantage
in overlay routing. Tech. Rep. HPL-2002-126, HP
Labs.

ZHOU, J., DIALANI, V., DE ROURE, D., AND HALL, W.
2003. A semantic search algorithm for peer-
to-peer open hypermedia systems. In Proceed-
ings of the 1st Workshop on Semantics in Peer-
to-Peer and Grid Computing at the 12th Inter-
national World Wide Web Conference. Budapest,
Hungary.

Received May 2003; revised May 2004; accepted September 2004

ACM Computing Surveys, Vol. 36, No. 4, December 2004.


