

TEAMCENTER

REV'08: Third International Workshop on Requirements Engineering Visualization Monday 8th September Barcelona, Spain

Visualizing the Impact of Non-Functional Requirements on Variants – A Case Study

Clotilde Rohleder

clotilde.rohleder@siemens.com

TEAMCENTER

The importance:

Many developers must address NFRs.

e.g. Teamcenter software non-functional requirements are represented as Items and are the criteria for setting views of the Product Structure (performance view and the security view).

The problem:

Current visualization techniques lack convenience and do not provide sufficient clarity about impact of non-functional requirements on variants.

TEAMCENTER

Who is the visualization for?

Every stakeholders that has to deal with non-functional requirements and their impact on variants:

• From the vendor side: technical sales support, benchmarker, developers, prototypers, project leaders, implementators etc.

• From the customer side: managers, project leaders, users, etc.

TEAMCENTER

The visualization should support the work of stakeholders in each business and product lifecycle management steps when one has to deal with non-functional requirements and their impact on variants:

• Benchmark (incl. Prototype)

What is the visualization for?

- Process Accessment
- Specification
- Implementation
- Testing and Validation
- Change Management Process

TEAMCENTER

We propose a visualization that expects to help to see at first glance:

- the Non-Functional Requirements (NFRs)
- the Functional Requirements
- the Impact of NFRs on variants

TEAMCENTER

TEAMCENTER

Map model [Rolland 2000, Rolland et al. 2007]

Functional Requirements

TEAMCENTER

Variants are based on map model.

TEAMCENTER

Why variant representation based on MAP model?

The visualization supports all variant types: optional variants, alternatives, mandatory, iterative.

TEAMCENTER

TEAMCENTER

TEAMCENTER

TEAMCENTER

NFR Visualization

Using the representation of [Chung et al., 1996]

Decomposition of NFR goal Performance/Time into one or two sub-goals

TEAMCENTER

Quality Requirements Panel

TEAMCENTER

Impact of NFRs on Variants Panel

Layer 2: Impact of NFRs on

simple and composite variants

Layer 1: Impact of NFRs on atomic variants

TEAMCENTER

NFRs Impact on atomic variants

TEAMCENTER

TEAMCENTER

TEAMCENTER

TEAMCENTER

TEAMCENTER

Summary Graphical Representation on NFR Impact on Simple & Composite Variants

TEAMCENTER

NFR's testing and ISO compliance

Example

No	NFR	Test Scenario	Example	ISO Compliance
1	Suitability The capability of the test object to provide an appropriate set of functions for specified tasks and user objects.	Execution of instructions and function blocks, transfer of data, time response.	Transfer of bytes per second	Yes

TEAMCENTER

Scalability of the representation:

The scalability is enabled by

- 1) the decomposition method of the map for the functional requirements and
- 2) the typology of NFR according to the Chung NFR types or ISO9126.
- As requirements become more complex, one can keep the representation uncluttered by showing a map of the highest level. The user may view details by traversing the hierarchy of maps.
- Also, rather than viewing a total representation, the user can view NFRs according to their NFR types. For example, one could view first the NFR decomposed goals of performance and then the NFR decomposed goals of user-friendliness or security.

TEAMCENTER

The case study

The visualization has been used in practice for validating the work

This study addressed software for reporting Product Lifecycle Management (<u>http://www.siemens.com/plm</u>)

TEAMCENTER

Map of data reporting tool for Product Lifecycle Management

Functional Requirements

Where used information Where referenced information BOM information Workflow information Master information etc.

TEAMCENTER

TEAMCENTER

• Evaluation

All variability representation types

Type of expressed variability	Variant type according our approach	
Alternative bundles	Simple Variant with multiple choice Multi-path Composite Variant	
Alternatives	Simple Variant with Alternate Choice	
Options	Optional Variant like Simple Variant with multiple Choice or Path Composite Variant or Multi-path Composite Variant or atomic Variant which belongs to a Path Composite Variant	
O p t i o n a l Alternativ es	Optional Variant like Simple Variant with Alternate Choice belonging to a Path Composite Variant	

TEAMCENTER

Evaluation

- Dependencies
- NFRs representation
- Clarity

TEAMCENTER

The results

This visualization approach clarifies use of variant combinations based on non-functional requirements. One can navigate through the variants and get information about the quality attributes according to the approach.

Applying our approach, we obtained preliminary design views for the reporting tool that were implemented in the resulting reporting system. Leaders who participated in this case study responded positively.

TEAMCENTER

Thanks for your attention!

Questions?