
Karel++ Translator/Simulator
Joseph Bergin

Introduction
This system is intended to permit execution of programs that conform to the language defined in 
the book Karel++: A Gentle Introduction to Object-Oriented Programming, by Bergin, Stehlik, 
Roberts, and Pattis. A previous simulator has ceased to work on recent (32-bit only) Microsoft 
Windows systems and this is intended as a replacement for that. 

More recently, a new book has been published by the same authors: Karel J Robot: A Gentle 
Introduction to Object-Oriented Programming in Java. The simulator for the new book is quite 
nice and is written in Java, so should run anywhere. The new book may be obtained from http://
www.cafepress.com/kareljrobot. It is described, along with its simulator at http://csis.pace.edu/
~bergin/KarelJava2ed/Karel++JavaEdition.html. This system permits the newer simulator to be 
used with the older book. 

The Karelplusplus.jar file in this package contains a translator for the Karel++ language into a form 
of Java that is acceptable to the Karel J Robot simulator. You can therefore run Karel++ code (after 
translation) on the newer simulator.  

Using the System
There are two ways to use the translator.  First, you can just double click the jar file to bring up a 
small GUI that will let you choose (or type) the file to be translated and name the listing and world 
files. The Compile Button will then translate the input file into four output files as explained below. 

Double clicking the jar is equivalent to typing the following command (when the working directory 
is current):

java -jar Karelplusplus.jar

The second way to run it is to use a command line, and enter a command such as one of the 
following:

java -cp .;Karelplusplus.jar karelplusplus.KarelCompiler myfile.r  
listing.txt wld.kwld
or
java -cp .;Karelplusplus.jar karelplusplus.KarelCompiler 

In the latter case you will be prompted for the names of the three input files. The above assumes 
that myfile.r contains a Karel++ program. A listing with errors (if any) will be put into the 
listing.txt file. Use whatever name you like for this. The third file (here wld.kwld) is the name of a 
world file. This file need not exist when you do the translation, but must by the time you run the 



simulator.  

(On a UNIX or Linux system or Macintosh, the single semicolon in the above must be changed to 
a colon. On some versions of Java, the cp option must be spelled out as classpath. Note also that 
Java systems are case sensitive, even if your system is not. So karelplussplus.KarelCompiler must 
be capitalized exactly like this.)

Suggestions for use. 
(a) put one Karel++ class in each file and translate them separately. Don't put your task in these 
files.
(b) put the task in a separate file and translate it. 
(c) don't bother with #include. Includes wont be used and the translated file won't need them 
anyway. 

The translator produces four files. First is a listing, including any errors. Next is a Java file that has 
for a name, either 
(a) the name of your original file up to the first period with .java appended, provided your input file 
has a task block. 
or 
(b) the name of the last class in your file with .java appended, provided your input file does NOT 
have a task block. 

The third and fourth files produced are a batch and a shell file for use (respectively) on windows 
and unix systems. Each contains commands that will use the Java compiler to translate the 
produced Java file AND will run it in the Karel J Robot simulator if there is a task in the input file. 
The latter files are called run.bat and run.sh, respectively. On unix, you need to make the file 
executable with chmod, of course. 

Installing the System
To use this translator you should establish a working directory on your system and install the 
Karelplusplus.jar file into it. This jar is the translator.

You should also put the KarelJRobot.jar into the same place. This jar is the simulator and world 
builder. There is a user's manual for it as well, though it is directed at the Java/Karel J Robot 
programmer, not the Karel++ programmer. 

You also need to correctly install the Java JDK from sun on your system. Do a standard 
installation of the JDK. Note that old versions of the JDK should be fine. 

Once everything is in place you should work from your working directory. If you want to work 
from the command line, you should cd to this directory to give the required commands. You can 
also double click the translator jar and the resulting batch/shell files in most cases. The distribution 
of this includes a couple of Karel++ programs (with extension .r) that you can use to test the 



installation. 

If you want a world in which your Karel++ program can run you have an additional step. If you 
double click the KarelJRobot.jar file it will bring up the world builder. There is a Simulator User's 
Manual for this on my Karel J Robot pages. You can also download a complete set of worlds 
representing figures in the book from the same place, though their names are keyed to the Karel J 
Robot book not Karel++.  There is one world file included, that will work with the sample robot 
programs. Note that world files are just text files. We use the extension.kwld, but that is not 
necessary. 

Notes
(1) The C++ way to get access to a method of a superclass is classname::methodname(); In this 
system the classname is always interpreted as the name of the most direct superclass, not a more 
remote ancestor class. In a rare case, this can change the meaning of your program. Java doesn't 
permit looking into more remote ancestors, in fact. 

(2) The system does generally a poor job of recovering from syntax errors. Usually you can find 
the first one from the report, but it won't give a lot of information to help you fix it. It should 
correctly report if you misspell a method name or a class or robot name, however. In general its 
error reporting is not very good yet. 

(3) The translator is strict about requiring  braces for the parts of all if, if/else, loop, and while 
instructions. This is consistent with the usage in the book. 

(4) In the GUI compiler there is a text field in which you can put a compile option. The J option is 
already entered there. When this is set, the compiler tries to show you in the listing file, the Java 
code that is being generated. If you use the command line version, you can give this option after the 
three file names (you need to list all of them) by preceding the letter J with either a / or a -. There 
should be no space after the "option character."  Within the Karel++ file itself, you can also turn 
this code listing on or off by putting $J+ or $J- at the beginning of the file. Note that the option 
within the file overrides anything you do when running the program either with the GUI or 
command line version. 

(5) In both versions of this program, you can run the resulting batch/shell file automatically. In the 
GUI version, put the letter r or R into the compile option field (alone or with the J). For the 
command line version append one of the following to the end of your command: /r /R -r -R. If you 
use the simple (prompted form) of the command line compiler you will be asked if you want to 
"Run the result?[yN]" If you answer with any string that starts with y (or Y) the resulting batch file 
will be run after compilation. The default is no. Note that in all cases, the batch/shell file is run only 
if your Karel++ program compiles with no errors. If you use this option, the Java and batch files 
are still created and written as usual for later use. 



(6) Comments in the Karel++ version of your program are not carried into the Java version. The 
translator accepts both // and /* ... */ comment forms. 

(7) The more esoteric things in Chapter 6 should work fine, but the translator is not very strict 
about requiring the tokens * and ->. It tries to do the right thing, however, especially with simple 
cases, as in the second sample below.

(8) All of the Java code produced is put into the package karel. 

Sample
Here is a sample Karel++ program taken from the text. I called the file MarkPickup.r

class Harvester : ur_Robot 
{

void harvestTwoRows();
void positionForNextHarvest();
void turnRight();
void harvestOneRow();
void harvestCorner();
void goToNextRow();

};

void Harvester:: goToNextRow() 
{

turnLeft();
move();
turnLeft();

}

void Harvester:: harvestOneRow() 
{

harvestCorner();
move();
harvestCorner();
move();
harvestCorner();
move();
harvestCorner();
move();
harvestCorner();

}

void Harvester:: harvestCorner()
{

pickBeeper();



}

void Harvester :: positionForNextHarvest() 
{

turnRight();
move();
turnRight();

}

void Harvester :: turnRight() 
{

turnLeft();
turnLeft();
turnLeft();

}

void Harvester:: harvestTwoRows() 
{

harvestOneRow();
goToNextRow();
harvestOneRow();

}

task 
{ Harvester Mark(2, 2, East, 0);

Mark.move();
Mark.harvestTwoRows();
Mark.positionForNextHarvest();
Mark.harvestTwoRows();
Mark.positionForNextHarvest();
Mark.harvestTwoRows();
Mark.move();
Mark.turnOff();

}

The command to translate it is

java -cp .:Karelplusplus.jar karelplusplus.KarelCompiler 
MarkPickup.r  listing.txt fig3-2.kwld

And here is the Java that was produced. It is named MarkPickup.java. 

package karel;



import kareltherobot.*;

class Harvester extends UrRobot{
   public Harvester(int street, int avenue, Direction direction, 
int beepers)
   {   super(street, avenue, direction, beepers);
   }
   public void harvestTwoRows(){
      this.harvestOneRow();
      this.goToNextRow();
      this.harvestOneRow();
   }
   public void positionForNextHarvest(){
      this.turnRight();
      this.move();
      this.turnRight();
   }
   public void turnRight(){
      this.turnLeft();
      this.turnLeft();
      this.turnLeft();
   }
   public void harvestOneRow(){
      this.harvestCorner();
      this.move();
      this.harvestCorner();
      this.move();
      this.harvestCorner();
      this.move();
      this.harvestCorner();
      this.move();
      this.harvestCorner();
   }
   public void harvestCorner(){
      this.pickBeeper();
   }
   public void goToNextRow(){
      this.turnLeft();
      this.move();
      this.turnLeft();
   }
}

public class MarkPickup implements Directions {
   public static void main(String [] args) {
         Harvester Mark = new Harvester(2, 2, East, 0);



         Mark.move();
         Mark.harvestTwoRows();
         Mark.positionForNextHarvest();
         Mark.harvestTwoRows();
         Mark.positionForNextHarvest();
         Mark.harvestTwoRows();
         Mark.move();
         Mark.turnOff();
}

   static {
      World.readWorld("fig3-2.kwld");
      World.setVisible(true);
      World.showSpeedControl(true);
   }
}

The above translation also produced a listing (not shown here) and a run.bat file with contents

javac -d . -classpath .;KarelJRobot.jar  MarkPickup.java
java -classpath .;KarelJRobot.jar karel.MarkPickup 

An equivalent unix shell file was also produced: run.sh. 

If you execute (double click) the batch or shell file, the Java will be compiled and the simulator will 
run the program in the named world. If it doesn't already exist, a folder named karel will be created 
in your working directory. It contains the class files produced by the Java compiler (with javac) 
and needed by the simulator to execute your program. It might be preferable to run the batch file 
from the command line (just type "run") rather than double clicking it. If your original source file 
had errors, the resulting Java file may also have errors and you will then see them in the command 
window. If you just double click, you may not see them. 

Note that the GUI version names its batch files slightly differently. Since you can use it to translate 
several files without quitting, the batch files are named run0.bat, run1.bat, etc. for the files 
produced. These will overwrite earlier versions, however. The shell files are named similarly. 

Known Flaws
(1) If you declare two methods with the same name in a class, the second only will be retained. 
There is a warning. If you define a method twice all the statements of both are run together in the 
result. A warning is given. 

(2) If you declare two classes with the same name in one file, only the second will be retained. The 
declarations done in the first will be discarded. A warning is given, but additional errors will 
probably ensue about the discarded names not being declared when you try to later define those 



methods. 

(3) If you use #include, the only acceptable filenames are of the form id or id.id, where each id 
begins with a letter and consists of letters, digits, and underscores only. Includes aren't used here, 
so you can just comment them out for our purposes. 

Additional Notes
(1) If the batch file doesn't run your Java system is probably not correctly installed. In particular the 
bin directory of the installation needs to be in your Path. 

(2) This translator accepts only what is described in the Karel++ text. In particular, methods may 
not have parameters and the only instance fields are robots. The Karel J Robot book goes beyond 
these limitations, however. See, especially, Chapter 4 of that newer book. 

(3) The Java file can be safely edited, perhaps to add or change the world file that is used or to add 
additional world options as defined in the Simulator User's Guide. 

(4) The "Source File", "Listing File", and "World" buttons bring up standard dialogs. The World 
button is only effective, however, if the world file you want already exists. If you want to 
incorporate a file you have not yet created, you should just type its name into the corresponding 
text field. 

(5) If you are using this to introduce C++, there are two additional "features" of the translator. 
Instead of "task" you can say "main()" or "int main()". And you can put "public:" between the 
robot declarations at the beginning of your class definition and the method declarations. Note that 
the robot declarations must come before any of the methods. This is not a complete C++ compiler, 
of course, and attempts only the Karel++ language with these few extensions. 

(6) While you can, of course, edit the produced Java file, my intention is to make this unnecessary. 
If you think there are things that should be put into the Java files automatically, or under control of 
compiler options, please let me know. The output Java has been pretty-printed to make it easy to 
read. 

Please send additional flaws or feature requests to the author, berginf@pace.edu. I would like a 
copy of any program with a common or subtle syntax error that causes this to crash with an 
exception, such as a null pointer exception. 

Additional Example
Here is an example from Chapter 6 of Karel++. There are two classes and a task defined in 
PutGet.r

class Putter: Robot 
{



void move();
};

class Getter: Robot
{

void move();
};

void Putter::move() 
{

Robot:: move();
if (anyBeepersInBeeperBag()) 
{

putBeeper();
}

}

void Getter::move() 
{

Robot :: move();
while (nextToABeeper()) 
{

pickBeeper();
}

}

task
{ Robot  *Karel;

Putter Lisa(1, 1, East, 100);
Getter Tony(2, 1, East, 0);

loop (10) 
{

Karel = &Lisa;  // "Karel" refers to Lisa;
loop (2)
{

Karel->move();  // either Lisa or Tony
Karel = &Tony; // "Karel" refers to Tony

}
}

}

And here is the equivalent Java produced by the translator. It shows how if, while, and loop 
statements are translated:



package karel;

import kareltherobot.*;

class Getter extends Robot{
   public Getter(int street, int avenue, Direction direction, int 
beepers)
   {   super(street, avenue, direction, beepers);
   }
   public void move(){
      super.move();
      while( this.nextToABeeper() ){ 
         this.pickBeeper();
      }
   }
}
class Putter extends Robot{
   public Putter(int street, int avenue, Direction direction, int 
beepers)
   {   super(street, avenue, direction, beepers);
   }
   public void move(){
      super.move();
      if( this.anyBeepersInBeeperBag() ){ 
         this.putBeeper();
      }
   }
}

public class PutGet implements Directions {
   public static void main(String [] args) {
         Robot Karel;
         Putter Lisa = new Putter(1, 1, East, 100);
         Getter Tony = new Getter(2, 1, East, 0);
         for( int i0=0;i0<10; ++i0 ){ 
            Karel = Lisa;
            for( int i1=0;i1<2; ++i1 ){ 
               Karel.move();
               Karel = Tony;
            }
         }
}

   static {
      World.readWorld("fig3-2.kwld");



      World.setVisible(true);
      World.showSpeedControl(true);
   }
}


