
Part Workbook 5.
The Linux Filesystem

2

Table of Contents
1. File Details ... 5

Discussion .. 5
How Linux Save Files .. 5
What's in an inode? .. 6
Viewing inode information with the stat command ... 9
Viewing inode information with the ls command .. 10
Identifying Files by Inode .. 10

Examples .. 11
Example 1. Comparing file sizes with ls -s and ls -l ... 11
Example 2. Listing files, sorted by modify time ... 11
Example 3. Decorating listings with ls -F ... 12

Online Exercises .. 13
Online Exercise 1. Viewing file metadata ... 13

Specification .. 13
Deliverables ... 13
Suggestions ... 13

Questions .. 13
2. Hard and Soft Links ... 17

Discussion ... 17
The Case for Hard Links ... 17
Hard Link Details ... 17
The Case for Soft Links .. 19
Soft Link Details .. 20
Creating Links with the ln Command ... 20
Issues with Soft Links ... 21

Dangling Links .. 21
Recursive links ... 22
Absolute vs. Relative Soft Links ... 23

Comparing Hard and Soft Links .. 23
Examples .. 23

Example 1. Working with hard links ... 23
Example 2. Working with soft links .. 24
Example 3. Working with soft links and directories .. 25

Online Exercises .. 25
Online Exercise 1. Creating and Managing Links ... 25

Specification .. 25
Deliverables ... 26

Online Exercise 2. Sharing a Hard Linked File .. 26
Specification .. 26
Deliverables ... 27

Questions .. 27
3. Directories and Device Nodes .. 30

Discussion ... 30
Directories ... 30

Directory Structure ... 30
Directory Links .. 31

Device Nodes .. 33
Block and Character Device Nodes .. 33
Terminals as Devices .. 34
Device Permissions, Security, and the Console User 35

Examples .. 36

The Linux Filesystem

3

Example 1. Interpreting Directory Links Counts .. 36
Questions .. 37

4. Disks, Filesystems, and Mounting ... 40
Discussion ... 40

Disk Devices ... 40
Low Level Access to Drives ... 41
Filesystems .. 42
Mounting Filesystems .. 43

Viewing Mount Points ... 44
Why Bother? ... 44
Mounting Temporary Media: The /media directory. 45
Mounting Issues ... 46

Examples .. 47
Example 1. Using an Unformatted Floppy .. 47
Example 2. Using a DOS Formatted Floppy ... 48
Example 3. Floppy Images .. 49

Online Exercises .. 49
Online Exercise 1. Using Floppies .. 49

Setup .. 49
Specification .. 50
Deliverables ... 50
Possible Solution .. 50
Cleaning Up .. 50

Online Exercise 2. Imaging a Floppy ... 50
Setup .. 51
Specification .. 51
Deliverables ... 51
Possible Solution .. 51
Cleaning Up .. 51

Questions .. 51
5. Locating Files with locate and find ... 55

Discussion ... 55
Locating Files .. 55
Using Locate ... 55
Using find ... 56

Find Criteria .. 57
Find Actions .. 58

Examples .. 59
Example 1. Using locate ... 59
Example 2. Using find .. 60
Example 3. Using find to Execute Commands on Files ... 60

Online Exercises .. 61
Online Exercise 1. Locating files .. 61

Specification .. 61
Deliverables ... 61

Questions .. 62
6. Compressing Files: gzip and bzip2 .. 64

Discussion ... 64
Why Compress Files? .. 64
Standard Linux Compression Utilities ... 64
Other Compression Utilities .. 65

Examples .. 65
Example 1. Working with gzip ... 65
Example 2. Using gzip Recursively ... 65

The Linux Filesystem

4

Example 3. Working with bzip2 ... 66
Online Exercises .. 66

Online Exercise 1. Working with compression Utilities ... 66
Specification .. 66
Deliverables ... 67

Questions .. 67
7. Archiving Files with tar .. 69

Discussion ... 69
Archive Files ... 69
Tar Command Basics .. 69
More About tar .. 70

Absolute References .. 71
Establishing Context ... 72
Compressing archives .. 73

Examples .. 73
Example 1. Creating a tar Archive .. 73
Example 2. Tarring Directly to a Floppy .. 74
Example 3. Oops. .. 75

Online Exercises .. 75
Online Exercise 1. Archiving Directories ... 75

Specification .. 75
Deliverables ... 75

Questions .. 76

5

Chapter 1. File Details
Key Concepts

• The term file refers to regular files, directories, symbolic links, device nodes, and others.

• All files have common attributes: user owner, group owner, permissions, and timing information. This
information is stored in a structure called an inode.

• File names are contained in data structures called dentries (directory entries).

• A file's inode information can be examined with the ls -l and stat commands.

• Within the Linux kernel, files are generally identified by inode number. The ls -i command can be used
to examine inode numbers.

Discussion

How Linux Save Files
Suppose elvis opens a text editor, and composes the following shopping list.

eggs
bacon
milk

When he is finished, and closes the editor, he is asked what he would like to name the file. He chooses
shopping.txt. Once he is done, he lists the contents of the directory to make sure it is there.

[elvis@station elvis]$ ls -l
total 4
-rw-rw-r-- 1 elvis elvis 16 Jul 11 07:54 shopping.txt

This short example illustrates the three components Linux associates with a file.

data The data is the content of the file, in this case, the 16 bytes that compose elvis's
shopping list (13 visible characters, and 3 invisible "return" characters that indicate
the end of a line). In Linux, as in Unix, every file's content is stored as a series of bytes.

metadata In addition to its content, every file in Linux has extra information associated with it.
The entire last Workbook focused on some of this information, namely the file's user
owner, group owner, and permissions. Other information, such as the last time the file
was modified or read, is stored as well. Much of this metadata is reported when you
run the ls -l command. In Linux (and Unix), all of the extra information associated
with a file (with the important exception discussed next) is stored in a structure called
an inode.

filename The filename is the exception to the rule. Although the filename could be considered
metadata associated with the file, it is not stored in the inode directly. Instead, the
filename is stored in a structure called a dentry. (The term dentry is a shortening of
directory entry, and, as we will see in a later Lesson, the structure is closely associated
with directories.) In essence, the filename associates a name with an inode.

In summary, there are three structures associated with every file: a dentry which contains a filename
and refers to an inode, which contains the file's metadata and refers to the file's data. Understanding the

File Details

6

relationships between these structures helps in understanding later concepts, such as links and directories.
These structures are summarized in the figure below.

Figure 1.1. File Structures

What's in an inode?
In Linux (and Unix), every file that exists in the filesystem has an associated inode which stores all of the
file's information, except for the filename. What can be found in an inode?

File Type In Linux (and Unix), the term file has a very
general meaning: anything that exists in the
filesystem (and thus has an inode associated
with it) is a file. This includes regular
files and directories, which we have already
encountered, symbolic links and device nodes
which we will soon encounter, and a couple
of more obscure creatures which are related to
interprocess communication, and beyond the
scope of the course. The possible file types
are listed in the table below.

Table 1.1. Linux (Unix) File Types

File Type ls
abbr.

Use

Regular File - Storing data

Directories d Organizing files

Symbolic
Links

l Referring to other
files

Character
Device
Nodes

c Accessing devices

Block Device
Nodes

b Accessing devices

File Details

7

File Type ls
abbr.

Use

Named Pipes p Interprocess
communication

Sockets s Interprocess
communication

Each of the seven file types mentioned above
uses the same inode structure, so they each
have the same types of attributes: owners,
permissions, modify times, etc. When listing
files with ls -l, the file type of a file is
identified by the first character, using the
abbreviations found in the second column
above.

Note

The term file is overloaded in Linux
(and Unix), and has two meanings.
When used in sentences such as
"every file has an inode", the term
refers to any of the file types
listed in the table above. When
used in sentences such as "The
head command only works on files,
not directories", the term file is
referring only to the specific type
of file that holds data. Usually,
the meaning is clear from context.
When a distinction has to be made,
the term regular file is used, as
in "The ls -l command identifies
regular files with a hyphen (-)".

Ownerships and Permissions As discussed in the previous Workbook,
every (regular) file and directory has a group
owner, a user owner, and a collection of three
sets of read, write, and execute permissions.
Because this information is stored in a file's
inode, and the inode structure is the same
for all files, all seven file types use the same
mechanisms for controlling who has access to
them, namely chmod, chgrp, and chown.

When listing files with ls -l, the first column
displays the permissions (as well as file type),
the third the user owner, and the fourth the
group owner.

Timing Information Each inode stores three times relevant to
the file, conventionally called the atime,
ctime, and mtime. These times record the last

File Details

8

time a file was accessed (read), changed, or
modified, respectively.

Table 1.2. File times

AbbreviationName Purpose

atime Access
Time

Updates whenever the
file's data is read

ctime Change
Time

Updates whenever the
file's inode information
changes

mtime Modify
Time

Updates whenever the
file's data changes

What's the difference between change and
modify? When a file's data changes, the file
is said to be modified, and the mtime is
updated. When a file's inode information
changes, the file is said to be changed, and the
file's ctime is updated. Modifying a file (and
thus changing the mtime) causes the ctime to
update as well, while merely reading a file
(and thus changing the atime) does not cause
the ctime to udpate.

What about create
time?

Often, people mistake Unix's ctime
for a "creation time". Oddly,
traditional Unix (and Linux) does
not record the fixed time a file was
created, a fact which many consider
a weakness in the design of the Unix
filesystem.

File length and size The inode records two measures of how large
a file is: The file's length (which is the actual
number of bytes of data), and the file's size
(which is the amount of disk space the file
consumes). Because of the low level details of
how files are stored on a disk, the two differ.
Generally, the file's size increments in chunks
(usually 4 kilobytes) at a time, while the
length increases byte by byte as information
is added to the file. When listing files with
the ls -l command, the file's length (in bytes)
is reported in the 5th column. When listing
files with the ls -s command, the file's size (in
kilobytes) is reported instead.

Link Count Lastly, the inode records a file's link count, or
the number of dentries (filenames) that refer

File Details

9

to the file. Usually, regular files only have
one name, and the link count as one. As we
will find out, however, this is not always the
case. When listing files with ls -l, the second
column gives the link count.

Viewing inode information with the stat command

Red Hat Enterprise Linux includes the stat command for examining a file's inode information in detail. In
Unix programming, a file's collection of inode information is referred to as the status of the file. The stat
command can be thought of as reporting the status of a file.

Note

The stat command is often not installed by default in Red Hat Enterprise Linux. If you find that
your machine does not have the stat command, have your instructor install the stat RPM package
file.

stat [OPTION] FILE...

Display file (or filesystem) status information.

Switch Effect

-c, --format=FORMAT Print only the requested information using the specified format. See the stat(1)
man page for more information.

-f, --filesystem Show information about the filesystem the file belongs to, instead of the file.

-t, --terse Print output in terse (single line) form

In the following example, madonna examines the inode information on the file /usr/games/fortune.

[madonna@station madonna]$ stat /usr/games/fortune

 File: `/usr/games/fortune'

 Size: 17795 Blocks: 40 IO Block: 4096 Regular File

Device: 303h/771d Inode: 540564 Links: 1

Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Access: 2003-07-09 02:36:41.000000000 -0400
Modify: 2002-08-22 04:14:02.000000000 -0400
Change: 2002-09-11 11:38:09.000000000 -0400

The name of the file. This is information is not really stored in the inode, but in the dentry, as
explained above.
Inconveniently for the terminology introduced above, the stat command labels the length of the file
"Size".
The number of filesystem blocks the file consumes. Apparently, the stat command is using a
blocksize of 2 kilobytes. 1

The file type, in this case, a regular file.
The link count, or number of filenames that link to this inode. (Don't worry if you don't understand
this yet.)
The file's user owner, group owner, and permissions.
The atime, mtime, and ctime for the file.

File Details

10

Viewing inode information with the ls command
While the stat command is convenient for listing the inode information of individual files, the ls command
often does a better job summarizing the information for several files. We reintroduce the ls command, this
time discussing some of its many command line switches relevant for displaying inode information.

ls [OPTION...] FILE...

List the files FILE..., or if a directory, list the contents of the directory.

Switch Effect

-a, --all Include files that start with .

-d, --directory If FILE is a directory, list information about the directory itself, not the
directory's contents.

-F, --classify Decorate filenames with one of *, /, =, @, or | to indicate file type.

-h, --human-readable Use "human readable" abbreviations when reporting file lengths.

-i, --inode List index number of each file's inode.

-l Use long listing format

-n, --numeric-uid-gid Use numeric UIDs and GIDs, rather then usernames and groupnames.

-r, --reverse Reverse sorting order.

-R, --recursive List subdirectories recursively.

--time=WORD Report (or sort by) time specified by WORD instead of mtime. WORD may
be one of "atime", "access", "ctime", or "status".

-t Sort by modification time.

In the following example, madonna takes a long listing of all of the files in the directory /usr/games.
The different elements reported by ls -l are discussed in detail.

[madonna@station madonna]$ ls -l /usr/games/

total 28

drwxr-xr-x 3 root root 4096 Jan 29 09:40 chromium
-rwxr-xr-x 1 root root 17795 Aug 22 2002 fortune
dr-xrwxr-x 3 root games 4096 Apr 1 11:49 Maelstrom

The total number of blocks used by files in the directory. (Note that this does not include
subdirectories).
The file type and permissions of the file.
The file's link count, or the total number of dentries (filenames) that refer to this file. (Note that, for
directories, this is always greater than 1!. hmmm...)
The file's owner.
The file's group owner.
The length of the file, in bytes (Note that directories have a length as well, and the length seems to
increment in blocks. hmmm....)
The file's mtime, or last time the file was modified.

Identifying Files by Inode
While people tend to use filenames to identify files, the Linux kernel usually uses the inode directly. Within
a filesystem, every inode is assigned a unique inode number. The inode number of a file can be listed with
the -i command line switch to the ls command.

File Details

11

[madonna@station madonna]$ ls -iF /usr/games/
 540838 chromium/ 540564 fortune* 312180 Maelstrom/

In this example, the directory chromium has an inode number of 540838. A file can be uniquely identified
by knowing its filesystem and inode number.

Examples

Comparing file sizes with ls -s and ls -l
The user elvis is examining the sizes of executable files in the /bin directory. He first runs the ls -s
command.

[elvis@station elvis]$ ls -s /bin
total 4860
 4 arch 0 domainname 20 login 92 sed
 96 ash 56 dumpkeys 72 ls 32 setfont
 488 ash.static 12 echo 72 mail 20 setserial
 12 aumix-minimal 44 ed 20 mkdir 0 sh
 0 awk 4 egrep 20 mknod 16 sleep
...

Next to each file name, the ls command reports the size of the file in kilobytes. For example, the file ash
takes up 96 Kbytes of disk space. In the (abbreviated) output, that all of the sizes are divisible by four.
Apparently, when storing a file on the disk, disk space gets allocated to files in chunks of 4 Kbytes. (This
is referred to as the "blocksize" of the filesystem). Note that the file awk seems to be taking up no space.

Next, elvis examines the directory information using the ls -l command.

[elvis@station elvis]$ ls -l /bin
total 4860
-rwxr-xr-x 1 root root 2644 Feb 24 19:11 arch
-rwxr-xr-x 1 root root 92444 Feb 6 10:20 ash
-rwxr-xr-x 1 root root 492968 Feb 6 10:20 ash.static
-rwxr-xr-x 1 root root 10456 Jan 24 16:47 aumix-minimal
lrwxrwxrwx 1 root root 4 Apr 1 11:11 awk -> gawk
...

This time, the lengths of the files are reported in bytes. Looking again at the file ash, the length is reported
as 92444 bytes. This is reasonable, because rounding up to the next 4 Kilobytes, we get the 96 Kbytes
reported by the ls -s command. Note again the file awk. The file is not a regular file, but a Symbolic Link,
which explains why it was consuming no space. Symbolic Links will be discussed in more detail shortly.

Lastly, elvis is curious about the permissions on the /bin directory. When he runs ls -l /bin, however,
he get a listing of the contents of the /bin directory, no the directory itself. He solves his problem by
adding the -d command line switch.

[elvis@station elvis]$ ls -ld /bin
drwxr-xr-x 2 root root 4096 Jul 8 09:29 /bin

Listing files, sorted by modify time
The user prince is exploring the system log files found in the /var/log directory. He is curious about
recent activity on the system, so he would like to know which files have been accessed most recently. He
first takes a long listing of the directory, and begins examining the reported modify times for the files.

[prince@station prince]$ ls -l /var/log
total 16296
-rw------- 1 root root 20847 Jul 12 2002 boot.log
-rw------- 1 root root 45034 Jul 6 2002 boot.log.1

File Details

12

-rw------- 1 root root 29116 Jun 29 2002 boot.log.2
-rw------- 1 root root 18785 Jun 22 2002 boot.log.3
-rw------- 1 root root 15171 Jun 15 2002 boot.log.4
drwxr-xr-x 2 servlet servlet 4096 Jan 20 2002 ccm-core-cms
-rw------- 1 root root 57443 Jul 12 2002 cron
-rw------- 1 root root 62023 Jul 6 2002 cron.1
-rw------- 1 root root 74850 Jun 29 2002 cron.2
...

With 74 files to look at, prince quickly tires of skimming for recent files. Instead, he decides to let the
ls command do the hard work for him, specifying that the output should be sorted by mtime with the -
t command line switch.

[prince@station prince]$ ls -lt /var/log
total 16296
-rw------- 1 root root 57443 Jul 12 2002 cron
-rw------- 1 root root 2536558 Jul 12 2002 maillog
-rw------- 1 root root 956853 Jul 12 2002 messages
-rw-rw-r-- 1 root utmp 622464 Jul 12 2002 wtmp
-rw-r--r-- 1 root root 22000 Jul 12 2002 rpmpkgs
-rw-r--r-- 1 root root 38037 Jul 12 2002 xorg.0.log
....

Now elvis easily reads the cron, maillog, and messages files as the most recently modified files.
Curious which log files are not being used, prince repeats the command, adding the -r command line
switch.

[prince@station prince]$ ls -ltr /var/log
total 16296
-rw-r--r-- 1 root root 32589 Oct 23 2001 xorg.1.log.old
drwxr-xr-x 2 servlet servlet 4096 Jan 20 2002 ccm-core-cms
drwxr-xr-x 2 root root 4096 Feb 3 2002 vbox
-rwx------ 1 postgres postgres 0 Apr 1 2002 pgsql
drwx------ 2 root root 4096 Apr 5 2002 samba
-rw-r--r-- 1 root root 42053 May 7 2002 xorg.1.log
-rw-r--r-- 1 root root 1371 May 9 2002 xorg.setup.log
-rw------- 1 root root 0 Jun 9 2002 vsftpd.log.4
...

Decorating listings with ls -F
The user blondie is exploring the /etc/X11 directory.

[blondie@station blondie]$ ls /etc/X11/
applnk prefdm sysconfig xorg.conf.backup xkb
desktop-menus proxymngr twm xorg.conf.wbx Xmodmap
fs rstart X xorg.conf.works Xresources
gdm serverconfig xdm XftConfig.README-OBSOLETE xserver
lbxproxy starthere xorg.conf xinit xsm

Because she does not have a color terminal, she is having a hard time distinguishing what is a regular file
and what is a directory. She adds the -F command line switch to decorate the output.

[blondie@station blondie]$ ls -F /etc/X11/
applnk/ rstart/ xorg.conf Xmodmap
desktop-menus/ serverconfig/ xorg.conf.backup Xresources
fs/ starthere/ xorg.conf.wbx xserver/
gdm/ sysconfig/ xorg.conf.works xsm/
lbxproxy/ twm/ XftConfig.README-OBSOLETE
prefdm* X@ xinit/
proxymngr/ xdm/ xkb@

Now, the various files are decorated by type. Directories end in a /, symbolic links with a @, and regular
files with executable permissions (implying that they are commands to be run) end in a *.

File Details

13

Online Exercises

Viewing file metadata

Lab Exercise

Objective: List files by modify time

Estimated Time: 5 mins.

Specification

1. Create a file in your home directory called etc.bytime. The file should contain a long listing of
the /etc directory, sorted by modify time. The most recently modified file should be on the first line
of the file.

2. Create a file in your home directory called etc.bytime.reversed. The file should contain a long
listing of the /etc directory, reverse sorted by modify time. The most recently modified file should
be on the last line of the file.

3. Create a file called etc.inum, which contains the inode number of the /etc directory as its only
token. (Note that this is asking for the inode of the directory itself).

Deliverables

1.
1. A file called etc.bytime, which contains a long listing of all files in the /etc directory,

sorted by modify time, with the most recently modified file first.

2. A file called etc.bytime.reversed, which contains a long listing of all files in the /etc
directory, sorted by modify time, with the most recently modified file last.

3. A file called etc.inum, which contains the inode number of the file /etc directory as its
only token.

Suggestions

The first few lines of the file etc.bytime should look like the following, although the details (such as
modify time) may differ.

total 2716
-rw-r--r-- 1 root root 258 May 21 09:27 mtab
-rw-r--r-- 1 root root 699 May 21 09:13 printcap
-rw-r----- 1 root smmsp 12288 May 21 09:10 aliases.db
-rw-rw-r-- 2 root root 107 May 21 09:10 resolv.conf
-rw-r--r-- 1 root root 28 May 21 09:10 yp.conf
-rw------- 1 root root 60 May 21 09:10 ioctl.save
-rw-r----- 1 root root 1 May 21 09:10 lvmtab
drwxr-xr-x 2 root root 4096 May 21 09:10 lvmtab.d
-rw-r--r-- 1 root root 46 May 21 08:55 adjtime

Questions
1. Which of the following is not a data structure associated with a file?

File Details

14

a. dentry

b. superblock

c. inode

d. data (blocks)

e. All of the above are data structures associated with files.

2. Which of the following file types does not use a data structure called an inode?

a. regular file

b. directory

c. symbolic link

d. character device node

e. All of the above file types use the inode data structure.

3. Which of the following information is not stored in a file's inode?

a. The file's modify time

b. The file's permissions

c. The file's user owner

d. The file's name

e. All of the above information is stored in the inode.

Use the output from the following commands to answer the next 2 questions.

[student@station student]$ stat /bin
 File: "/bin"
 Size: 2048 Blocks: 4 IO Block: 4096 Directory
Device: 309h/777d Inode: 44177 Links: 2
Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Wed Mar 19 09:38:51 2003
Modify: Wed Jan 22 16:36:06 2003
Change: Wed Jan 22 16:36:06 2003
[student@station student]$ ls -l /usr/bin/tree
-rwxr-xr-x 1 root root 18546 Jun 23 2002 /usr/bin/tree

4. How many blocks are in use by the directory /bin as shown above?

a. 2

b. 4

c. 2048

d. 4096

5. What are the permissions for the file /usr/bin/tree as shown above?

a. 640

File Details

15

b. 644

c. 755

d. 775

6. Which command(s) will show the size and permissions of the file /etc/passwd?

a. stat /etc/passwd

b. df -h

c. cat /etc/passwd

d. ls -l /etc/passwd

7. Which command syntax will show the owner and group of the directory /etc?

a. ls /etc

b. ls -l /etc

c. ls -d /etc

d. ls -ld /etc

8. Which time for a file is shown by the ls -l command?

a. The file's modify time

b. The file's change time

c. The file's access time

d. The file's creation time

e. None of the above.

9. Which time is updated when a file is read?

a. The file's modify time

b. The file's change time

c. The file's access time

d. A and C

e. All of the above.

10. Which time is updated when data is appended to a file?

a. The file's modify time

b. The file's change time

c. The file's access time

d. A and B

File Details

16

e. All of the above.

17

Chapter 2. Hard and Soft Links
Key Concepts

• The ln command creates two distinct types of links.

• Hard links assign multiple dentries (filenames) to a single inode.

• Soft links are distinct inodes that reference other filenames.

Discussion

The Case for Hard Links

Occasionally, Linux users want the same file to exist two separate places, or have two different names.
One approach is by creating a hard link.

Suppose elvis and blondie are collaborating on a duet. They would both like to be able to work on the
lyrics as time allows, and be able to benefit from one another's work. Rather than copying an updated file
to one another every time they make a change, and keeping their individual copies synchronized, they
decide to create a hard link.

Blondie has set up a collaboration directory called ~/music, which is group owned and writable by
members of the group music. She has elvis do the same. She then creates the file ~/music/duet.txt,
chgrps it to the group music, and uses the ln command to link the file into elvis's directory.

[blondie@station blondie]$ ls -ld music/
drwxrwxr-x 2 blondie music 4096 Jul 13 05:45 music/
[blondie@station blondie]$ echo "Knock knock" > music/duet.txt
[blondie@station blondie]$ chgrp music music/duet.txt
[blondie@station blondie]$ ln music/duet.txt /home/elvis/music/duet.txt

Because the file was linked, and not copied, it is the same file under two names. When elvis edits /home/
elvis/music/duet.txt, he is editing /home/blondie/music/duet.txt as well.

[elvis@station elvis]$ echo "who's there?" >> music/duet.txt

[blondie@station blondie]$ cat music/duet.txt
Knock knock
who's there?

Hard Link Details

How are hard links implemented? When created, the file /home/blondie/music/duet.txt
consists of a dentry, an inode, and data, as illustrated below.

Hard and Soft Links

18

Figure 2.1. Regular File

After using the lncommand to create the link, the file is still a single inode, but there are now two dentries
referring to the file.

Figure 2.2. Hard Link

When blondie runs the ls -l command, look closely at the second column, which reports the link count
for the file.

[blondie@station blondie]$ ls -l music/duet.txt
-rw-rw-r-- 2 blondie music 25 Jul 13 06:08 music/duet.txt

Until now, we have not been paying much attention to the link count, and it has almost always been 1 for
regular files (implying one dentry referencing one inode). Now, however, two dentries are referencing the
inode, and the file has a link count of 2. If blondie changes permissions on the file /home/blondie/
music/duet.txt, what happens to the file /home/elvis/music/duet.txt?

[blondie@station blondie]$ chmod o-r music/duet.txt

[elvis@station elvis]$ ls -l music/duet.txt
-rw-rw---- 2 blondie music 25 Jul 13 06:08 music/duet.txt

Because both halves of the link share the same inode, elvis sees the changed permissions as well.

What happens if blondie removes /home/blondie/music/duet.txt? The inode /home/elvis/
music/duet.txt still exists, but with one less dentry referencing it.

Hard and Soft Links

19

[blondie@station blondie]$ rm music/duet.txt

Figure 2.3. Hard link after half is removed

What would you expect the link count of the file /home/elvis/music/duet.txt to be now?

[elvis@station elvis]$ ls -l music/duet.txt
-rw-rw---- 1 blondie music 25 Jul 13 06:08 music/duet.txt

A little awkwardly, elvis is left with a file owned by blondie, but it is still a valid file, nonetheless. At a
low level, the rm command is not said to delete a file, but "unlink" it. A file (meaning the file's inode and
data) are automatically deleted from the system when its link count goes to 0 (implying that there are no
longer any dentries (filenames) referencing the file).

The Case for Soft Links
The other approach to assigning a single file two names is called a soft link. While superficially similar,
soft links are implemented very differently from hard links.

The user madonna is obsessively organized, and has collected her regular errands into seven todo lists,
one for every day of the week.

[madonna@station madonna]$ ls todo/
friday.todo saturday.todo thursday.todo wednesday.todo
monday.todo sunday.todo tuesday.todo

She consults her todo lists multiple times a day, but finds that she has trouble remembering what day of
week it is. She would rather have a single file called today.todo, which she updates each morning. She
decides to use a soft link instead. Because today is Tuesday, she uses the same ln command that is used
for creating hard links, but adds the -s command line switch to specify a soft link.

[madonna@station todo]$ ls
friday.todo saturday.todo thursday.todo wednesday.todo
monday.todo sunday.todo tuesday.todo
[madonna@station todo]$ ln -s tuesday.todo today.todo
[madonna@station todo]$ ls -l
total 32
-rw-rw-r-- 1 madonna madonna 138 Jul 14 09:54 friday.todo
-rw-rw-r-- 1 madonna madonna 29 Jul 14 09:54 monday.todo
-rw-rw-r-- 1 madonna madonna 579 Jul 14 09:54 saturday.todo
-rw-rw-r-- 1 madonna madonna 252 Jul 14 09:54 sunday.todo
-rw-rw-r-- 1 madonna madonna 519 Jul 14 09:54 thursday.todo

Hard and Soft Links

20

lrwxrwxrwx 1 madonna madonna 12 Jul 14 09:55 today.todo -> tuesday.todo
-rw-rw-r-- 1 madonna madonna 37 Jul 14 09:54 tuesday.todo
-rw-rw-r-- 1 madonna madonna 6587 Jul 14 09:55 wednesday.todo

Examine closely file type (the first character of each line in the ls -l command) of the newly created file
today.todo. It is not a regular file ("-"), or a directory ("d"), but a "l", indicating a symbolic link. A
symbolic link, also referred to as a "soft" link, is a file which references another file by filename. Soft
links are similar to aliases found in other operating systems. Helpfully, the ls -l command also displays
what file the soft link refers to, where today.todo -> tuesday.todo implies the soft link titled
today.todo references the file tuesday.todo.

Now, whenever madonna references the file today.todo, she is really examining the file
tuesday.todo.

[madonna@station todo]$ cat today.todo
feed cat
take out trash
water plants
[madonna@station todo]$ cat tuesday.todo
feed cat
take out trash
water plants

Soft Link Details
How are soft links implemented? When created, the file tuesday.txt, like most files, consists of a
dentry, an inode, and data, as illustrated below. When the soft link today.txt was created, the soft link
(unlike a hard link) really is a new file, with a newly created inode. The link is not a regular file, however,
but a symbolic link. Symbolic links, rather than storing actual data, store the name of another file. When
the Linux kernel is asked to refer to the symbolic link, the kernel automatically resolves the link by looking
up the new filename. The user (or really, the process on behalf of the user) that referred to the symbolic
link doesn't know the difference.

Figure 2.4. Soft Links

Creating Links with the ln Command
As illustrated above, both hard links and soft links are created with the ln command.

Hard and Soft Links

21

ln [OPTION...] TARGET [LINK]

Create the link LINK referencing the file TARGET.

ln [OPTION...] TARGET... [DIRECTORY]

Create link(s) to the file(s) TARGET in the directory DIRECTORY.

Switch Effect

-f, --force clobber existing destination files

-s, --symbolic make symbolic (soft) link instead of hard link

The ln command behaves very similarly to the cp command: if the last argument is a directory, the
command creates links in the specified directory which refer to (and are identically named) to the preceding
arguments. Unlike the cp command, if only one argument is given, the ln command will effectively assume
a last argument of ".". When specifying links, the ln command expects the name of the original file(s)
first, and the name of the link last. Reversing the order doesn't produce the desired results. Again, when
in doubt, recall the behavior of the cp command.

In the following short example, madonna creates the file orig.txt. She then tries to make a hard link
to it called newlnk.txt, but gets the order of the arguments wrong. Realizing her mistake, she then
corrects the problem.

[madonna@station madonna]$ date > orig.txt
[madonna@station madonna]$ ln newlnk.txt orig.txt
ln: accessing `newlnk.txt': No such file or directory
[madonna@station madonna]$ ln orig.txt newlnk.txt

Issues with Soft Links

Dangling Links

Soft links are susceptible to a couple of problems that hard links are not. The first is called dangling links.
What happens if madonna renames or removes the file tuesday.todo?

[madonna@station todo]$ mv tuesday.todo tuesday.hide
[madonna@station todo]$ ls -l
total 32
-rw-rw-r-- 1 madonna madonna 138 May 14 09:54 friday.todo
-rw-rw-r-- 1 madonna madonna 29 May 14 09:54 monday.todo
-rw-rw-r-- 1 madonna madonna 579 May 14 09:54 saturday.todo
-rw-rw-r-- 1 madonna madonna 252 May 14 09:54 sunday.todo
-rw-rw-r-- 1 madonna madonna 519 May 14 09:54 thursday.todo
lrwxrwxrwx 1 madonna madonna 12 May 14 09:55 today.todo -> tuesday.todo
-rw-rw-r-- 1 madonna madonna 37 May 14 10:22 tuesday.hide
-rw-rw-r-- 1 madonna madonna 6587 May 14 09:55 wednesday.todo
[madonna@station todo]$ cat today.todo
cat: today.todo: No such file or directory

The symbolic link today.todo still references the file tuesday.todo, but the file tuesday.todo
no longer exists! When madonna tries to read the contents of today.todo, she is met with an error.

Hard and Soft Links

22

Figure 2.5. Dangling Links

Recursive links

The second problem that symbolic links are susceptible to is recursive links. In day to day use, recursive
links are not nearly as common as dangling links, and someone almost has to be looking for them to create
them. What if madonna created two symbolic links, link_a, which referenced a file named link_b,
and link_b, which references the file link_a, as illustrated below?

[madonna@station madonna]$ ln -s link_a link_b
[madonna@station madonna]$ ln -s link_b link_a
[madonna@station madonna]$ ls -l
total 0
lrwxrwxrwx 1 madonna madonna 6 Jul 14 10:41 link_a -> link_b
lrwxrwxrwx 1 madonna madonna 6 Jul 14 10:41 link_b -> link_a

Figure 2.6. Recursive Links

When madonna tries to read link_a, the kernel resolves link_a to link_b, which it then resolves back to
link_a, and so on. Fortunately, the kernel will only resolve a link so many times before it suspects that it
is caught in a recursive link, and gives up.

[madonna@station madonna]$ cat link_a
cat: link_a: Too many levels of symbolic links

Hard and Soft Links

23

Absolute vs. Relative Soft Links

When creating soft links, users can choose between specifying the link's target using a relative or absolute
reference. If the soft link, and its target, are never going to be relocated, the choice doesn't matter. Often,
however, users can't anticipate how the files they create will be used in the future. Usually, relative links
are more resilient to unexpected changes.

Comparing Hard and Soft Links
When should a soft link be used, and when should a hard link be used? Generally, hard links are more
appropriate if both instances of the link have a reasonable use, even if the other instance didn't exist. In
the example above, even if blondie decided not to work on the duet and removed her file, elvis could
reasonably continue to work. Soft links are generally more appropriate when one file cannot reasonably
exist without the other file. In the example above, madonna could not have tasks for "today" if she did not
have tasks for "tuesday". These are general guidelines, however, not hard and fast rules.

Sometimes, more practical restrictions make the choice between hard links and soft links easier. The
following outlines some of the differences between hard and soft links. Do not be concerned if you do not
understand the last two points, they are included for completeness.

Table 2.1. Comparing Hard and Soft Links

Hard Links Soft Links

Directories may not be hard linked. Soft links may refer to directories.

Hard links have no concept of "original" and "copy".
Once a hard link has been created, all instances are
treated equally.

Soft links have a concept of "referrer" and
"referred". Removing the "referred" file results in a
dangling referrer.

Hard links must refer to files in the same filesystem. Soft links may span filesystems (partitions).

Hard links may be shared between "chroot"ed
directories.

Soft links may not refer to files outside of a
"chroot"ed directory.

Examples

Working with hard links
In her home directory, blondie has a file called rhyme and a directory called stuff. She takes a long
listing with ls -li, where the -i command line switch causes the ls command to print the inode number of
each file as the first column of output.

Because each inode in a filesystem has a unique inode number, the inode number can be used to identify
a file. In fact, when keeping track of files internally, the kernel usually refers to a file by inode number
rather than filename.

[blondie@station blondie]$ ls -il
total 8
 246085 -rw-rw-r-- 1 blondie blondie 51 Jul 18 15:29 rhyme
 542526 drwxrwxr-x 2 blondie blondie 4096 Jul 18 15:34 stuff

She creates a hard link to the rhyme file, and views the directory contents again.

[blondie@station blondie]$ ln rhyme hard_link
[blondie@station blondie]$ ls -li
 246085 -rw-rw-r-- 2 blondie blondie 51 Jul 18 15:29 hard_link

Hard and Soft Links

24

 246085 -rw-rw-r-- 2 blondie blondie 51 Jul 18 15:29 rhyme
 542526 drwxrwxr-x 2 blondie blondie 4096 Jul 18 15:34 stuff

The link count for rhyme is now 2. Additionally notice that the inode number for both rhyme and
hard_link is 246085, implying that although there are two names for the file (two dentries), there is
only one inode.

If we change the permissions on rhyme, the permissions on hard_link will change as well. Why? the
two filenames refer to the same inode. Because the inode references a file's content, they also share the
same data.

[blondie@station blondie]$ chmod 660 rhyme
[blondie@station blondie]$ ls -li
 246085 -rw-rw---- 2 blondie blondie 51 Jul 18 15:29 hard_link
 246085 -rw-rw---- 2 blondie blondie 51 Jul 18 15:29 rhyme
 542526 drwxrwxr-x 2 blondie blondie 4096 Jul 18 15:34 stuff
[blondie@station blondie]$ echo "Hickory, Dickory, Dock," > rhyme
[blondie@station blondie]$ echo "Three mice ran up a clock." >> hard_link
[blondie@station blondie]$ cat rhyme
Hickory, Dickory, Dock,
Three mice ran up a clock.

Moving or even removing the original file has no effect on the link file.

[blondie@station blondie]$ mv rhyme stuff
[blondie@station blondie]$ ls -Rli
.:
total 8
 246085 -rw-rw---- 2 blondie blondie 51 Jul 18 15:29 hard_link
 542526 drwxrwxr-x 2 blondie blondie 4096 Jul 18 15:38 stuff

./stuff:
total 4
 246085 -rw-rw---- 2 blondie blondie 51 Jul 18 15:29 rhyme

Working with soft links
The user blondie now repeats the exact same exercise, but uses a soft link instead of a hard link. She starts
with an identical setup as the example above.

[blondie@station blondie]$ ls -li
total 8
 246085 -rw-rw-r-- 1 blondie blondie 29 Jul 18 15:25 rhyme
 542526 drwxrwxr-x 2 blondie blondie 4096 Jul 18 15:25 stuff

She now creates a soft link to the rhyme file, and views the directory contents again.

[blondie@station blondie]$ ln -s rhyme soft_link
[blondie@station blondie]$ ls -li
total 8
 246085 -rw-rw-r-- 1 blondie blondie 29 Jul 18 15:25 rhyme
 250186 lrwxrwxrwx 1 blondie blondie 5 Jul 18 15:26 soft_link -> rhyme
 542526 drwxrwxr-x 2 blondie blondie 4096 Jul 18 15:25 stuff

In contrast to the hard link above, the soft link exists as a distinct inode (with a distinct inode number),
and the link counts of each of the files remains 1. This implies that there are now two dentries and two
inodes. When referenced, however, the files behave identically as in the case of hard links.

[blondie@station blondie]$ echo "Hickory, Dickory, Dock," > rhyme
[blondie@station blondie]$ echo "Three mice ran up a clock." >> soft_link
[blondie@station blondie]$ cat rhyme
Hickory, Dickory, Dock,
Three mice ran up a clock.

Hard and Soft Links

25

Unlike the hardlink, the softlink cannot survive if the original file is moved or removed. Instead, blondie
is left with a dangling link.

[blondie@station blondie]$ ls -liR
.:
total 4
 250186 lrwxrwxrwx 1 blondie blondie 5 Jul 18 15:26 soft_link -> rhyme
 542526 drwxrwxr-x 2 blondie blondie 4096 Jul 18 15:31 stuff

./stuff:
total 4
 246085 -rw-rw-r-- 1 blondie blondie 51 Jul 18 15:29 rhyme
[blondie@station blondie]$ cat soft_link
cat: soft_link: No such file or directory

Working with soft links and directories
Soft links are also useful as pointers to directories. Hard links can only be used with ordinary files.

[einstein@station einstein]$ ln -s /usr/share/doc docs
[einstein@station einstein]$ ls -il
 10513 lrwxrwxrwx 1 einstein einstein 14 Mar 18 20:31 docs -> /usr/share/doc
 10512 -rw-rw---- 2 einstein einstein 949 Mar 18 20:10 hard_link
 55326 drwxrwxr-x 2 einstein einstein 1024 Mar 18 20:28 stuff

The user einstein can now easily change to the docs directory without having to remember or type the
long absolute path.

Online Exercises

Creating and Managing Links

Lab Exercise

Objective: Create and Manage hard and soft links

Estimated Time: 10 mins.

Specification

All files should be created in your home directory.

1. Create a file called cal.orig in your home directory, which contains a text calendar of the current
month (as produced by the cal command).

2. Create a hard link to the file cal.orig, called cal.harda

3. Create a hard link to the file cal.orig, called cal.hardb

4. Create a soft link to the file cal.orig, called cal.softa

5. Remove the file cal.orig, so that the soft link you just created is now a dangling link.

6. Create a soft link to the /usr/share/doc directory, called docabs, using an absolute reference.

7. Create a soft link to the ../../usr/share/doc directory, called docrel, using a relative
reference. (Note: depending on the location of your home directory, you may need to add or remove

Hard and Soft Links

26

some .. references from the proceeding filename. Include enough so that the the soft link is a true
relative reference to the /usr/share/doc directory.

If you have finished the exercise correctly, you should be able to reproduce output similar to the following.

[student@station student]$ ls -l
total 12
-rw-rw-r-- 2 student student 138 Jul 21 10:03 cal.harda
-rw-rw-r-- 2 student student 138 Jul 21 10:03 cal.hardb
lrwxrwxrwx 1 student student 8 Jul 21 10:03 cal.softa -> cal.orig
lrwxrwxrwx 1 student student 14 Jul 21 10:03 docabs -> /usr/share/doc
lrwxrwxrwx 1 student student 19 Jul 21 10:03 docrel -> ../../usr/share/doc

Deliverables

1.
1. A file called cal.harda.

2. A file called cal.hardb, which is a hard link to the proceeding file.

3. A file called cal.softa, which is a dangling soft link to the nonexistent file cal.orig.

4. A file called docabs, which is a soft link to the /usr/share/doc directory, using an
absolute reference.

5. A file called docrel, which is a soft link to the /usr/share/doc directory, using a relative
reference.

Sharing a Hard Linked File

Lab Exercise

Objective: Share a hard linked file between two users.

Estimated Time: 15 mins.

Specification

You would like to create a hard linked file that you will share with another user.

1. As your primary user, create a subdirectory of /tmp named after your account name, such as /tmp/
student, where student is replaced with your username.

2. Still as your primary user, create a file called /tmp/student/novel.txt, which contains the text
"Once upon a time."

[student@station student]$ mkdir /tmp/student
[student@station student]$ echo "Once Upon a Time," > /tmp/student/novel.txt
[student@station student]$ ls -al /tmp/student/
total 12
drwxrwxr-x 2 student student 4096 Jul 21 10:13 .
drwxrwxrwt 28 root root 4096 Jul 21 10:12 ..
-rw-rw-r-- 1 student student 18 Jul 21 10:13 novel.txt

3. Now log in as (or su - to) your first alternate account. Create a directory in /tmp which is named after
your alternate account, such as /tmp/student_a.

4. As your first alternate user, in your newly created directory, create a hard link to the file /tmp/
student/novel.txt, called /tmp/student_a/novel.lnk. Try to edit the file, changing the

Hard and Soft Links

27

line from "Once upon a time,", to "It was a dark and stormy night.". Why did you have difficulties? Are
you able to modify the ownerships or permissions of the file novel.lnk? Why or Why not?

[student@station student]$ su - student_a
Password:
[student_a@station student_a]$ mkdir /tmp/student_a
[student_a@station student_a]$ ln /tmp/student/novel.txt /tmp/student_a/novel.ln
k
[student_a@station student_a]$ echo "It was a dark and stormy night." >> /tmp/st
udent_a/novel.lnk
-bash: /tmp/student_a/novel.lnk: Permission denied

5. As your primary user, adjust the permissions and/or ownerships on the file /tmp/student/
novel.txt, so that your first alternate user is able to modify the file.

6. As your first alternate user, apply the edit mentioned above. When you are finished, the file /tmp/
student_a/novel.lnk should contain only the text "It was a dark and stormy night.".

Deliverables

1.
1. A file called /tmp/student/novel.txt, where student is replaced with the name of

your primary user, owned by your primary user. The file should have appropriate ownerships
and permissions so that it can be modified by your first alternate account. The file should contain
only the text "It was a dark and stormy night.".

2. A file called /tmp/student_a/novel.lnk, where student_a is replaced with the
name of your first alternate account. The file should be a hard link to the file /tmp/student/
novel.txt.

Questions
Use the output from the following command to help answer the next 5 questions.

[student@station student]$ ls -li /usr/bin/
 342997 lrwxrwxrwx 1 root root 5 Apr 1 11:18 ./bunzip2 -> bzip2
 342998 lrwxrwxrwx 1 root root 5 Apr 1 11:18 ./bzcat -> bzip2
 342999 lrwxrwxrwx 1 root root 6 Apr 1 11:18 ./bzcmp -> bzdiff
 343004 lrwxrwxrwx 1 root root 6 Apr 1 11:18 ./bzless -> bzmore
 343066 lrwxrwxrwx 1 root root 16 Apr 1 11:12 ./gunzip -> ../../bin/gunzip
 343112 lrwxrwxrwx 1 root root 14 Apr 1 11:12 ./gzip -> ../../bin/gzip
 343136 lrwxrwxrwx 1 root root 2 Apr 1 11:21 ./lz -> uz
 343123 -rwxr-xr-x 3 root root 57468 Jan 24 23:42 ./rx
 343123 -rwxr-xr-x 3 root root 57468 Jan 24 23:42 ./rz
 343065 -rwxr-xr-x 3 root root 61372 Jan 24 23:42 ./sb
 343065 -rwxr-xr-x 3 root root 61372 Jan 24 23:42 ./sx
 343065 -rwxr-xr-x 3 root root 61372 Jan 24 23:42 ./sz
 347486 lrwxrwxrwx 1 root root 8 Jul 21 16:43 ./uncompress -> compress
 343117 -rwxr-xr-x 3 root root 3029 Jan 31 11:08 ./zegrep
 343117 -rwxr-xr-x 3 root root 3029 Jan 31 11:08 ./zfgrep
 343117 -rwxr-xr-x 3 root root 3029 Jan 31 11:08 ./zgrep

Note that many lines have been omitted from the previous command's output, leaving only a few interesting
one.

1. Which of the following files share the same inode?

a. lz

b. uz

Hard and Soft Links

28

c. rx

d. sb

e. sx

f. sz

2. Removing which of the following files would create a dangling link?

a. bzip2

b. lz

c. uz

d. sb

e. compress

f. zgrep

3. How many files (listed or not) share inode number 343123?

a. 1

b. 2

c. 3

d. None of the above.

e. It cannot be determined from the information provided.

4. Examine the lengths of the symbolic links such as bzcat, lz, and uncompress, as reported
in the 6th column of the output above. Which of the following best explains what the length of a
symbolic link represents?

a. The length represents the length of the filename that the symbolic link resolves to.

b. The length represents the number of files which share the soft link.

c. The length is the length of the file that the symbolic link resolves to.

d. The length is arbitrary, and serves no purpose.

e. None of the above.

Suppose the system administrator moved the /usr/bin directory, as shown.

[root@station root]# mv /usr/bin /usr/lib/bin

5. Which files in the new /usr/lib/bin directory would be dangling symbolic links?

a. bzcat

b. gunzip

c. gzip

Hard and Soft Links

29

d. lz

e. uncompress

f. zgrep

6. What is the correct command for creating a shortcut from your home directory that points to a /
data/project directory?

a. ln /data/project /home/student/project

b. ln /home/student/project /data/project

c. ln -s /data/project /home/student/project

d. ln -s /home/student/project /data/project

7. Projects A, B, and C all use the file /data/script. All teams want to have a copy in their own
project directory but they also want to be sure that any changes to the original file are reflected in
their copies. Using project_A as an example, which commands would accomplish this goal?

a. ln /data/script /data/project_A/script

b. cp /data/script /data/project_A/script

c. ln -s /data/script /data/project_A/script

d. ln -s /data/project_A/script /data/script

e. A and C

8. The team leader of project_D wants to use the script as a starting point, but intends to modify it in
a way that the other teams will not want to use. What is the best way for to get the original script?

a. ln /data/script /data/project_D/script

b. cp /data/script /data/project_D/script

c. ln -s /data/script /data/project_D/script

d. ln -s /data/project_D/script /data/script

30

Chapter 3. Directories and Device
Nodes

Key Concepts

• The term file refers to regular files, directories, symbolic links, device nodes, and others.

• All files have common attributes: user owner, group owner, permissions, and timing information.

• File meta-information is contained in a data structure called inodes.

• File names are contained in data structures called directory entries (dentries).

• File meta-information can be examined with the ls -l and stat commands.

Discussion

Directories

Directory Structure

Earlier, we introduced two structures associated with files, namely dentries, which associate filenames
with inodes, and inodes, which associate all of a file's attributes with its content. We now see how these
structures relate to directories.

The user prince is using a directory called report to manage files for a report he is writing. He recursively
lists the report directory, including -a (which specifies to list "all" entries, including those beginning
with a ".") and -i (which specifies to list the inode number of a file as well as filename). What results is
the following listing of the directories and files, along with their inode number.

[prince@station prince]$ ls -iaR report
report:
 592253 . 249482 .. 592255 html 592254 text

report/html:
 592255 . 592253 .. 592261 chap1.html 592262 chap2.html 592263 figures

report/html/figures:
 592263 . 592255 .. 592264 image1.png

report/text:
 592254 . 592253 .. 592257 chap1.txt 592258 chap2.txt

Notice the files (directories) "." and ".." are included in the output. As mentioned in a previous Workbook,
the directory "." refers to a directory itself, and the directory ".." refers to the directory's parent. Every
directory actually contains entries called . and .., though they are treated as hidden files (because they
"begin with ."), and not displayed unless -a is specified.

The same directories, files, and inode numbers are reproduced below, in an easier format.

path | inode
--

Directories and Device Nodes

31

report/ | 592253
|-- html | 592255
| |-- chap1.html | 592261
| |-- chap2.html | 592262
| `-- figures | 592263
| `-- image1.png | 592264
`-- text | 592254
 |-- chap1.txt | 592257
 `-- chap2.txt | 592258

As seen in the following figure of the report directory, directories have the same internal structure
as regular files: a dentry, an inode, and data. The data that directories store, however, are the dentries
associated with the files the directory is said to contain. A directory is little more than a table of dentries,
mapping filenames to the underlying inodes that represent files. When introduced, the name dentry was
said to be derived from directory entry. We now see that directories are no more complicated than that:
a directory is a collection of dentries.

Figure 3.1. The Internal Structure of Directories

Directory Links

Earlier, we observed that the link counts of directories, as reflected in the second column of the ls -l
command, was always two or greater. This follows naturally from the fact that every directory is referenced
at least twice, once by itself (as the directory "."), and once by its parent (with an actual directory name, such
as report). The following diagram of the dentries contained by the report directory, its subdirectory
html, and its subdirectory figures, helps to illustrate.

Directories and Device Nodes

32

Figure 3.2. Dentry Tables for the report, report/html, and report/html/
figures directories.

When prince takes a long listing of the report directory, he sees the four files in the first table.

[prince@station prince]$ ls -ial report
total 16
 592253 drwxrwxr-x 4 prince prince 4096 Jul 14 13:27 .
 249482 drwx-----x 6 prince prince 4096 Jul 14 13:27 ..
 592255 drwxrwxr-x 3 prince prince 4096 Jul 14 13:49 html
 592254 drwxrwxr-x 2 prince prince 4096 Jul 14 13:49 text

Every file in the listing is a directory, and the link count (here the third column, since the inode number
has been prepended as the first column) of each is greater than or equal to two. Can we account for each of
the links? Let's start by listing the references to inode number 592253 (the report directory, or above,
simply ".").

1. The entry ., found in the directory itself.

2. The parent directory (not pictured) contains an entry called report, which references the same inode.

3. The subdirectory html contains an entry called .., which references inode 592253 as its parent
directory.

4. Likewise, the subdirectory text (not pictured) contains an entry called .., which references the same
inode.

Accounting for itself (which calls it "."), it's parent (which calls it "report"), and its two subdirectories
(which call it ".."), we have found all four links to the inode 592253 reported by the ls -l command.

In the following listing, the report/html directory has a link count of 3. Can you find all three
references to inode number 592255 in the figure above?

[prince@station prince]$ ls -ial report/html

Directories and Device Nodes

33

total 20
 592255 drwxrwxr-x 3 prince prince 4096 Jul 14 13:49 .
 592253 drwxrwxr-x 4 prince prince 4096 Jul 14 13:27 ..
 592261 -rw-rw-r-- 1 prince prince 2012 Jul 14 13:28 chap1.html
 592262 -rw-rw-r-- 1 prince prince 2012 Jul 14 13:28 chap2.html
 592263 drwxrwxr-x 2 prince prince 4096 Jul 14 13:28 figures

"html" in the directory report, "." in the directory report/html, and ".." in the directory report/
html/figures.

In summary, directories are simply collections of dentries for the files the directory is said to contain,
which map filenames to inodes. Every directory contains at least two links, one from its own directory
entry ".", and one from its parent's entry with the directory's conventional name. Directories are referenced
by an additional link for every subdirectory, which refer to the directory as "..".

Device Nodes

We have now discussed three types of "creatures" which can exist in the Linux filesystem, namely regular
files, directories, and symbolic links. In this section, we shift gears, and discuss the last two types of
filesystem entries (that will be covered in this course), block and character device nodes.

Block and Character Device Nodes

Device nodes exist in the filesystem, but do not contain data in the same way that regular files, or even
directories and symbolic links, contain data. Instead, the job of a device node is to act as a conduit to a
particular device driver within the kernel. When a user writes to a device node, the device node transfers
the information to the appropriate device driver in the kernel. When a user would like to collect information
from a particular device, they read from that device's associated device node, just as reading from a file.

By convention, device nodes live within a dedicated directory called /dev. In the following, the user elvis
takes a long listing of files in the /dev directory.

[elvis@station elvis]$ ls -l /dev
total 228
crw------- 1 root root 10, 10 Jan 30 05:24 adbmouse
crw-r--r-- 1 root root 10, 175 Jan 30 05:24 agpgart
crw------- 1 root root 10, 4 Jan 30 05:24 amigamouse
...
crw------- 1 elvis root 14, 7 Jan 30 05:24 audioctl
brw-rw---- 1 root disk 29, 0 Jan 30 05:24 aztcd
crw------- 1 elvis root 10, 128 Jan 30 05:24 beep
brw-rw---- 1 root disk 41, 0 Jan 30 05:24 bpcd
crw------- 1 root root 68, 0 Jan 30 05:24 capi20
...

As there are over 7000 entries in the /dev directory, the output has been truncated to only the first several
files. Focusing on the first character of each line, most of the files within /dev are not regular files or
directories, but instead either character device nodes ("c"), or block device nodes ("b"). The two types
of device nodes reflect the fact that device drivers in Linux fall into one of two major classes, character
devices and block devices.

Block Devices Block devices are devices that read and write information a
chunk ("block") at a time. Block devices customarily allow
random access, meaning that a block of data could be read
from anywhere on the device, in any order. Examples of
block devices include hard drives, floppy drives, and CD/ROM
drives.

Directories and Device Nodes

34

Character Devices Character devices are often devices that read and write
information as a stream of bytes ("characters"), and there is a
natural concept of what it means to read or write the "next"
character. Examples of character devices include keyboards,
mice, sound cards, and printers. Some character device drivers
support memory buffers as well.

Under the Hood

The real distinction between character and block device drivers relates to how the device driver
interacts with the Linux kernel. block devices ("disks") interact with the the unified I/O cache,
while character devices bypass the cache and interact with processes directly.

Terminals as Devices

In the following, elvis has logged onto a Linux machine on both the first and second virtual consoles. In
the first workbook, we learned how to identify terminals by name, and found that the name of the first
virtual console was tty1, and the second virtual console was tty2. Now, we can see that the "name"
of a terminal is really the name of the device node which maps to that terminal. In the following listing,
the device nodes /dev/tty1 through /dev/tty6 are the device nodes for the first 6 virtual consoles,
respectively.

[elvis@station elvis]$ ls -l /dev/tty[1-6]
crw--w---- 1 elvis tty 4, 1 May 14 16:06 /dev/tty1
crw--w---- 1 elvis tty 4, 2 May 14 16:06 /dev/tty2
crw------- 1 root root 4, 3 May 14 08:50 /dev/tty3
crw------- 1 root root 4, 4 May 14 08:50 /dev/tty4
crw------- 1 root root 4, 5 May 14 08:50 /dev/tty5
crw------- 1 root root 4, 6 May 14 08:50 /dev/tty6

In the following, elvis, working from virtual console number 1, will redirect the output of the cal command
three times; first, to a file called /tmp/cal, secondly, to the /dev/tty1 device node, and lastly, to
the /dev/tty2 device node.

[elvis@station elvis]$ cal > /tmp/cal

[elvis@station elvis]$ cal > /dev/tty1
 May 2003
Su Mo Tu We Th Fr Sa
 1 2 3 4 5
 6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

[elvis@station elvis]$ cal > /dev/tty2

This case should be familiar; the output was merely redirected to a newly created file called cal.
From appearances, the redirection didn't happen, but it did. The output of the command was redirected
to the device node for the first virtual console, which did what it was "supposed to do", namely,
display all information written to it on the screen.
Where did the output of the cal command go this time? The information was redirected to the device
node for the second virtual console, which did what it was "supposed to do", namely displayed it
on the second virtual console.

The second redirection merits a little more attention. When elvis redirected the output to the device node
controlling his current virtual console, /dev/tty1, the effect was as if he had performed no redirection
at all. Why? When elvis runs interactive commands without redirection, they write to the controlling
terminal's device node by default. Redirecting the command's output to /dev/tty1 is akin to saying "but
instead of writing your output to my terminal, write your output to my terminal."

Directories and Device Nodes

35

Upon switching to the second virtual console, using the CTRL+ALT+F2 key sequence, elvis finds the
following characters on the screen.

Red Hat Enterprise Linux Server release 5 (Tikanga)
Kernel 2.6.18-8.el5 on an i686

station login: elvis
Password:
Last login: Mon May 14 16:55:22 on tty1
You have new mail.

[elvis@station elvis]$ May 2003
Su Mo Tu We Th Fr Sa
 1 2 3 4 5
 6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26

27 28 29 30 31

This is where elvis's cursor was sitting after logging in on the second virtual console, and switching
to virtual console number 1.
Here is where the output of the cal command was written to the terminal. Note the lack of a linefeed
separating the output. This is not a natural, well formatted occurrence, but something odd that elvis
asked the device driver to do.
Lastly, the output of the cal command tailed off, but notice that the bash shell did not offer a fresh
prompt. In fact, the bash shell didn't even realize that the characters were written to the terminal. It's
still waiting for elvis to enter a command.

Device Permissions, Security, and the Console User

Continuing the train of thought from above, the user elvis (who has logged onto the first two virtual
consoles, tty1 and tty2) next tries to redirect the output of the cal command to virtual console number
3, but runs into problems.

[elvis@station elvis]$ cal > /dev/tty3
-bash: /dev/tty3: Permission denied

Why was elvis not able to perform the same trick on the third virtual console? because elvis has not logged
in on the third virtual console, and therefore does not own the device. Examine again the long listing of
the ls -l virtual console device nodes:

[elvis@station elvis]$ ls -l /dev/tty[1-6]
crw--w---- 1 elvis tty 4, 1 May 16 13:38 /dev/tty1
crw--w---- 1 elvis tty 4, 2 May 16 13:38 /dev/tty2
crw------- 1 root root 4, 3 May 16 10:02 /dev/tty3
crw------- 1 root root 4, 4 May 16 10:02 /dev/tty4
crw------- 1 root root 4, 5 May 16 10:02 /dev/tty5
crw------- 1 root root 4, 5 May 16 10:02 /dev/tty6

Because device nodes are considered files, they also have user owners, group owners, and a collection of
permissions. When reading or writing from device nodes, permissions apply just as if reading or writing
to a regular file. This allows a system administrator (or the software on the system) to control who has
access to particular devices using a familiar technique; namely, by managing file owners and permissions.

What happens when prince logs in on the third virtual console?

[elvis@station elvis]$ ls -l /dev/tty[1-6]
crw--w---- 1 elvis tty 4, 1 May 16 13:38 /dev/tty1
crw--w---- 1 elvis tty 4, 2 May 16 13:38 /dev/tty2
crw--w---- 1 prince tty 4, 3 May 16 13:46 /dev/tty3
crw------- 1 root root 4, 4 May 16 10:02 /dev/tty4

Directories and Device Nodes

36

crw------- 1 root root 4, 5 May 16 10:02 /dev/tty5
crw------- 1 root root 4, 6 May 16 10:02 /dev/tty6

When a user logs in, they take ownership of the device node that controls their terminal. Processes that
they run are then able to read input or write output to the terminal. In general, the permissions on device
nodes do not allow standard users to access devices directly. Two categories of exceptions occur.

Terminals Because users need to be able to communicate with the system, they
(or, more exactly, the processes that they run) must be able to read
from and write to the terminal they are using. Usually, part of the
process of logging into a system involves transferring ownership of
the terminal's device node to the user.

"Console Users" In Red Hat Enterprise Linux, users can be granted special
permissions not because of who they are, but because of where they
logged in from. Namely, when a user logs into a virtual console, or
the graphical X server, they are considered a "console user". Console
users are granted access to hardware devices associated with the
console, such as the floppy drive and sound card. When the console
user logs out of the system, ownerships for these devices are restored
to system defaults. None of this happens if a user logs in over the
network, for example. (If the user is not sitting at the machine, would
it be reasonable for them to use the floppy drive?)

In summary, Linux (and Unix) uses device nodes to allow users access to devices on the system. The
managing of devices on a Linux system can be a large and complicated topic. As an introduction, we have
examined enough about how terminal device nodes are used to introduce the concept, and identify a couple
of advantages to the device node approach.

• When writing programs, programmers do not need to deal with device details. They can treat all input
and output as if it they were simply reading or writing to a file.

• Access to devices can be controlled through the same techniques of file ownerships and permissions
that are used for regular files.

Examples

Interpreting Directory Links Counts
The user elvis takes a long listing of the /var/spool directory. He is interested in interpreting the
subdirectory's link counts, as listed in the second column.

[elvis@station elvis]$ ls -l /var/spool
total 64
drwxr-xr-x 2 root root 4096 Jan 24 16:26 anacron
drwx------ 3 daemon daemon 4096 Jun 18 02:00 at
drwxrwx--- 2 smmsp smmsp 4096 Jul 21 10:42 clientmqueue
drwx------ 2 root root 4096 Jun 18 16:12 cron
drwx------ 3 lp sys 8192 Jul 18 17:38 cups
drwxr-xr-x 23 root root 4096 Jan 24 18:52 lpd
drwxrwxr-x 2 root mail 4096 Jul 21 10:11 mail
drwx------ 2 root mail 8192 Jul 21 10:43 mqueue
drwxr-xr-x 17 root root 4096 Feb 24 19:41 postfix
drwxr-xr-x 2 rpm rpm 4096 Apr 11 06:18 repackage
drwxrwxrwt 2 root root 4096 Apr 5 23:46 samba
drwxr-xr-x 2 root root 8192 Jul 16 17:53 up2date
drwxrwxrwt 2 root root 4096 Feb 3 19:13 vbox

Directories and Device Nodes

37

Noticing that it has a link count of 17, elvis concludes that the postfix directory contains 15
subdirectories. (1 link (shown above) for the postfix entry, 1 link for the entry . found within postfix
(not shown), and 15 for the entries .. within each of 15 subdirectories.)

Examining a long listing of the /var/spool/postfix directory, he concludes that he was right (there
are 15 subdirectories).

[elvis@station elvis]$ ls -l /var/spool/postfix/
total 60
drwx------ 2 postfix root 4096 Feb 24 19:41 active
drwx------ 2 postfix root 4096 Feb 24 19:41 bounce
drwx------ 2 postfix root 4096 Feb 24 19:41 corrupt
drwx------ 2 postfix root 4096 Feb 24 19:41 defer
drwx------ 2 postfix root 4096 Feb 24 19:41 deferred
drwxr-xr-x 2 root root 4096 Apr 1 12:22 etc
drwx------ 2 postfix root 4096 Feb 24 19:41 flush
drwx------ 2 postfix root 4096 Feb 24 19:41 incoming
drwxr-xr-x 2 root root 4096 Apr 11 05:54 lib
drwx-wx--- 2 postfix postdrop 4096 Feb 24 19:41 maildrop
drwxr-xr-x 2 root root 4096 Feb 24 19:41 pid
drwx------ 2 postfix root 4096 Feb 24 19:41 private
drwx--x--- 2 postfix postdrop 4096 Feb 24 19:41 public
drwx------ 2 postfix root 4096 Feb 24 19:41 saved
drwxr-xr-x 3 root root 4096 Feb 24 19:41 usr

Questions
Use the output from the following two commands to answer the next 3 questions.

[student@station student]$ tree /etc/sysconfig/networking/
/etc/sysconfig/networking/
|-- devices
| `-- ifcfg-eth0
|-- ifcfg-lo
`-- profiles
 |-- default
 | |-- hosts
 | |-- ifcfg-eth0
 | |-- network
 | `-- resolv.conf
 `-- netup
 |-- hosts
 |-- ifcfg-eth0
 |-- network
 `-- resolv.conf

4 directories, 10 files
[student@station student]$ ls -iaR /etc/sysconfig/networking/
/etc/sysconfig/networking/:
 49180 . 244801 .. 65497 devices 49019 ifcfg-lo 65498 profiles

/etc/sysconfig/networking/devices:
 65497 . 49180 .. 73383 ifcfg-eth0

/etc/sysconfig/networking/profiles:
 65498 . 49180 .. 65499 default 558071 netup

/etc/sysconfig/networking/profiles/default:
 65499 . 73386 hosts 73384 network
 65498 .. 73383 ifcfg-eth0 73385 resolv.conf

/etc/sysconfig/networking/profiles/netup:
 558071 . 558076 hosts 558072 network
 65498 .. 558077 ifcfg-eth0 558075 resolv.conf

Directories and Device Nodes

38

1. What would you expect to be the link count of inode number 65498?

a. 2

b. 3

c. 4

d. 5

e. None of the above

2. What would you expect to be the link count of inode number 49180?

a. 2

b. 3

c. 4

d. 5

e. None of the above

3. What would you expect to be the link count of inode number 65499?

a. 2

b. 3

c. 4

d. 5

e. None of the above

Use the output from the following command to answer the next 4 questions.

[elvis@station 030_section_questions]$ ls -l /dev/tty[1-6] /dev/fd0 /dev/audio
crw--w---- 1 elvis tty 4, 1 Jul 22 15:30 /dev/tty1
crw--w---- 1 prince tty 4, 2 Jul 22 15:30 /dev/tty2
crw--w---- 1 elvis tty 4, 3 Jul 22 15:30 /dev/tty3
crw--w---- 1 blondie tty 4, 4 Jul 22 15:30 /dev/tty4
crw------- 1 root root 4, 5 Jul 22 09:29 /dev/tty5
crw------- 1 root root 4, 6 Jul 22 09:29 /dev/tty6
brw-rw---- 1 prince floppy 2, 0 Jan 30 05:24 /dev/fd0
crw------- 1 prince root 14, 4 Jan 30 05:24 /dev/audio

4. The user elvis is logged in to which virtual console(s)?

a. Virtual Console Number 1

b. Virtual Console Number 2

c. Virtual Console Number 3

d. Virtual Console Number 4

e. Virtual Console Number 5

f. Virtual Console Number 6

Directories and Device Nodes

39

5. Which of the following are block device nodes?

a. /dev/tty1

b. /dev/tty2

c. /dev/tty3

d. /dev/tty6

e. /dev/fd0

f. /dev/audio

6. Which user is currently considered the "Console User"?

a. elvis

b. prince

c. blondie

d. None of the above

e. It cannot be determined from the information provided.

7. The user elvis has also logged on using the X graphical environment. He tries to play an audio CD
using the gnome-cd player. Which of the following best explains why this will not work?

a. Only users who have logged on using a virtual console may access the audio devices.

b. The user elvis is not considered the "Console User", and does not have write permissions to
the device nodes that connect to the audio device drivers.

c. The user elvis is not a member of the group "audio", and does not have write permissions to
the device nodes that connect to the audio device drivers.

d. None of the above

40

Chapter 4. Disks, Filesystems, and
Mounting

Key Concepts

• Linux allows low level access to disk drives through device nodes in the /dev directory.

• Usually, disks are formatted with a filesystem, and mounted to a directory instead.

• Filesystems are created with some variant of the mkfs command.

• The default filesystem of Red Hat Enterprise Linux is the ext3 filesystem.

• The mount command is used to map the root directory of a disk's (or a disk partition's) filesystem to an
already existing directory. That directory is then referred to as a mount point.

• The umount command is used to unmount a filesystem from a mount point.

• The df command is used to report filesystem usage, and tables currently mounted devices.

Discussion

Disk Devices
Linux (and Unix) allows users direct, low level access to disk drives through device nodes in the /dev
directory. The following table lists the filenames of common disk device nodes, and the disks with which
they are associated.

Table 4.1. Linux Disk Device Nodes

Device Node Disk

/dev/fd0 Floppy Disk

/dev/hda IDE Primary Master

/dev/hdb IDE Primary Slave

/dev/hdc IDE Secondary Master

/dev/hdd IDE Secondary Slave

/dev/sd[a-z] SCSI Disks

/dev/cdrom Symbolic Link to CD/ROM

Although device nodes exist for disk drives, usually standard users do not have permissions to access them
directly. In the following, elvis has performed a long listing of the various device nodes tabled above.

[elvis@station elvis]$ ls -l /dev/fd0 /dev/hd[abcd] /dev/sda /dev/cdrom
lrwxrwxrwx 1 root root 8 Oct 1 2002 /dev/cdrom -> /dev/hdc
brw-rw---- 1 elvis floppy 2, 0 Jan 30 05:24 /dev/fd0
brw-rw---- 1 root disk 3, 0 Jan 30 05:24 /dev/hda
brw-rw---- 1 root disk 3, 64 Jan 30 05:24 /dev/hdb
brw------- 1 elvis disk 22, 0 Jan 30 05:24 /dev/hdc
brw-rw---- 1 root disk 22, 64 Jan 30 05:24 /dev/hdd

Disks, Filesystems, and Mounting

41

brw-rw---- 1 root disk 8, 0 Jan 30 05:24 /dev/sda

By default, elvis does not have permissions to access the machine's fixed drives. Because he is (apparently)
logged on at the console, he is considered the "console user", and has gained permissions to access the
floppy and CD/ROM drives. We will take advantage of this fact during this lesson.

Interestingly, the file /dev/cdrom is not a device node, but a symbolic link, which resolves to the block
device node /dev/hdc. Most modern CD/ROM drives physically attach to the machine using either an
IDE or SCSI interface, and so appear to the kernel as just another SCSI or IDE drive. Some applications,
however, such as the gnome-cd audio CD player, want to access "the CD/ROM". For them, /dev/cdrom
provides access to the CD/ROM, no matter how its attached to the system.

More often than not, hard disks are further divided into partitions. Partitions are regions of the hard disk
that can each be used as if it were a separate disk. Just as there are device nodes for every disk, there are
also device nodes for every disk partition. The name of a partition's device node is simply the partition
number appended to the name of the disk's device node. For example, the device node for the third partition
of the primary slave IDE drive is called /dev/hdb3.

The following diagram illustrates a hard disk that has been divided into four partitions, and the device
nodes which address each of the partitions.

Figure 4.1. Hard Disk Partitions

Low Level Access to Drives
In the following, elvis is exploring low level access to his floppy drive. He starts by ensuring he has
read and write permissions to the floppy's device node, catting the /etc/resolv.conf file, and then
redirecting the output of the command to the floppy drive (/dev/fd0).

[elvis@station elvis]$ ls -l /dev/fd0
brw-rw---- 1 elvis floppy 2, 0 Jan 30 05:24 /dev/fd0
[elvis@station elvis]$ cat /etc/resolv.conf
search example.com
nameserver 192.168.0.254
[elvis@station elvis]$ cat /etc/resolv.conf > /dev/fd0
-bash: /dev/fd0: No such device or address

At first perplexed by the error message, elvis realizes that there is no floppy disk in his floppy disk drive.
He places an old, unused floppy (that he doesn't care about the contents of) into the drive.

[elvis@station elvis]$ cat /etc/resolv.conf > /dev/fd0
-bash: /dev/fd0: Read-only file system

Perplexed again, elvis removes the floppy from the drive, examines it, slides the write protection tab on
the floppy disk to the writable position, and reinserts the floppy.

[elvis@station elvis]$ cat /etc/resolv.conf > /dev/fd0

Finally, the floppy drive's light comes on, and elvis hears the disk spin as information is written to the
floppy. Curious to see what he has written to the floppy disk, elvis next tries to read the floppy with the
less pager.

Disks, Filesystems, and Mounting

42

[elvis@station elvis]$ less /dev/fd0
/dev/fd0 is not a regular file (use -f to see it)

The less pager seems to be telling elvis, "Sane people don't read from device nodes directly, but if you
really want to do it, I'll let you." Because elvis really wants to do it, he adds the -f command line switch.

[elvis@station elvis]$ less -f /dev/fd0

On the first page of the pager, elvis recognizes the first few characters as the contents of /etc/
resolv.conf. After that, however, the pager shows unintelligible data, with occasional human readable
text interspersed.

search example.com
nameserver 192.168.0.254
B^RA^^@^@V^^|F^@^@^@AdDBP^A^^|^C^F^B|^@DVP|Q^^^R ABAoot failed^@^@^@LDLINUX SYS
...

The user elvis continues to page through the "file" using the less pager, seeing apparently random snippets
of text and binary characters. When he feels like he's gotten the point, he quits the pager.

What is the point? By accessing disk drives through their device nodes, users may see (and write) the
contents of the drive byte for byte. To the user, the drive looks like a (very big) file. When elvis cats the
contents of a file to the drive's device node, the information is transferred, byte for byte, to the drive.

On the first few bytes of the floppy, elvis sees a copy of the contents of the /etc/resolv.conf file. On
the floppy, what is the filename associated with the information? Trick question. It doesn't have one. Who
is the user owner? What are the permissions? There are none. It's just data. When elvis goes back to read
the contents of the drive, he sees the data he wrote there, namely the contents of the /etc/resolv.conf
file. After that, he sees whatever happened to be on the floppy before he started.

Filesystems
The previous section demonstrated how to access drives at a low level. Obviously, people do not like to
store their information on drives as one stream of data. They like to store their information in files, and give
the files filenames. They like to organize their files into directories, and say who can access the directory
and who cannot. All of this structuring of information is the responsibility of what is called a filesystem.

A filesystem provides order to disk drives by organizing the drive into fixed sized chunks called blocks.
The filesystem then organizes these blocks, effectively saying "this block is going to contain only inodes",
"this block is going to contain only dentries", "these 3 block over here, and that one over there, are going
to contain the contents of the file /etc/services", or "this first block is going to store information
which keeps track of what all the other blocks are being used for". Filesystems provide all of this structure
that is usually taken for granted.

Before a disk can be used to store files in a conventional sense, it must be initialized with this type of
low level structure. In Linux, this is usually referred to as "creating a filesystem". In other operating
systems, it is usually referred to as "formatting the disk". Linux supports a large number of different types
of filesystems (the fs(5) man page lists just a few). While Linux's native filesystem is the ext2 (or in Red
Hat Enterprise Linux, the ext3) filesystem, it also supports the native filesystems of many other operating
systems, such as the DOS FAT filesystem, or the OS/2 High Performance File System.

In Linux, filesystems are created with some variant of the mkfs command. Because these commands
are usually used only by the administrative user, they do not live in the standard /bin or /usr/
bin directories, and therefore cannot be invoked as simple commands. Instead, they live in the /sbin
directory, which is reserved for administrative commands. In the following, elvis lists all commands that
begin mkfs in the /sbin directory.

Disks, Filesystems, and Mounting

43

[elvis@station elvis]$ ls /sbin/mkfs*
/sbin/mkfs /sbin/mkfs.ext2 /sbin/mkfs.msdos
/sbin/mkfs.cramfs /sbin/mkfs.ext3 /sbin/mkfs.vfat

Apparently, there is one copy of the mkfs command for each type of filesystem that can be constructed,
including the ext2 and msdos filesystems. The user elvis next formats the same floppy he used above with
the ext2 filesystem. Because the mkfs.ext2 command did not live in one of the "standard" directories, elvis
needs to refer to the command using an absolute reference, /sbin/mkfs.ext2.

[elvis@station elvis]$ /sbin/mkfs.ext2 /dev/fd0
mke2fs 1.39 (29-May-2006)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
4096 inodes, 4096 blocks
204 blocks (4.98%) reserved for the super user
First data block=0
1 block group
32768 blocks per group, 32768 fragments per group
4096 inodes per group

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 20 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

The mkfs.ext2 command displays information about the filesystem as it creates it on the device /dev/
fd0. When the command completes, the filesystem has been initialized, and the floppy is ready to be used.

The mkfs command, and its variants, can be configured with a large collection of command line switches
which specify low level details about the filesystem. These details are beyond the scope of this course,
however. Fortunately, the various options default to very reasonable general purpose defaults. For the
curious, more information can be found in the mkfs.ext2(8) and similar man pages.

Mounting Filesystems

Once a disk or a disk partition has been formatted with a filesystem, users need some way to access the
directories and files that the filesystem provides. In other operating systems, users are usually very aware
of disk partitions, because they have to refer to them using labels such as C: or D:. In Unix, users are often
unaware of partitions, because different disk partitions are organized into a single directory structure.

How is this done? Every filesystem provides a root directory that serves as the base of that filesystem. Upon
booting the system, one of your disk's partitions acts as the root partition, and its root directory becomes
the system's root directory /. Sometimes, that's the end of the story. The / directory has subdirectories,
and those subdirectories have subdirectories, all of which reside in the root partition's filesystem.

If a system has multiple disks, however, or if a disk has multiple partitions, the story gets more complicated.
In order to access the filesystems on the other partitions, the root directories of those filesystems are
mapped to an already existing directory through a standard Unix technique called mounting.

In the example diagrammed below, the filesystem on the partition /dev/hda2 is being used as the
root partition, and contains the /etc, /tmp, /home, and other expected directories. The /dev/hda4
partition has also been formatted with a filesystem, and its root directory contains the directories /
blondie, /prince, and others. In order to make use of this filesystem, it is mounted to the /home
directory, which already existed in the root partition's filesystem. This mount usually happens as a normal
part of the system's boot up process.

Disks, Filesystems, and Mounting

44

Figure 4.2. Mounting a Filesystem

Now, all references to the /home directory are transparently mapped to the root directory of the filesystem
on /dev/hda4, giving the appearance that the /home directory contains the subdirectories blondie,
elvis, etc., as seen below. When a filesystem is mounted over a directory in this manner, that directory
is referred to as a mount point.

[elvis@station elvis]$ ls /home
blondie elvis madonna prince

How can elvis tell which partition contains a given file? Just using the ls command, he can't! To the ls
command, and usually in a user's mind, all of the different partitions are gracefully combined into a single,
seamless directory structure.

Viewing Mount Points

How can a user determine which directories are being used as mount points? One approach is to run the
mount command without arguments.

[elvis@station elvis]$ mount
/dev/hda3 on / type ext3 (rw)
none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/hda1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)

Without arguments, the mount command returns a list of current mount points, the device that is mounted
to it, the type of filesystem that device has been formatted with, and any mount options associated with
the mount. In the above example, the /dev/hda3 partition is being used as the root partition, and the
ext3 filesystem on partition /dev/hda1 has been mounted to the directory /boot. Note that several of
the filesystems listed above are said to be on the device "none". These are virtual filesystems, which are
implemented by the kernel directly, and do not exist on any physical device.

Why Bother?

If you seldom know which directories are being used as mount points, and which files exist in which
partitions, why bother even talking about it? For now, we will address two reasons. The first reason is that
there can be subtle issues that creep up which are related to the underlying filesystem. Partitions can run
out of space. If a filesystem mounted on /home runs out of space, no more files can be created underneath
the /home directory. This has no effect on the /tmp directory, however, because it belongs to another
filesystem. In Unix, when a partition fills up, it only effects the part of the directory structure underneath
its mount point, not the entire directory tree.

Disks, Filesystems, and Mounting

45

Users can determine how much space is available on a partition with the df command, which stands for
"disk free".

df [OPTION...] [FILE...]

Show information about all partitions, or partition on which FILE resides.

Switch Effect

-a, --all Show all filesystems, including those of size 0

-h, --human-readable Print sizes in human readable format

-i, --inodes List inode usage instead of block usage

-T, --print-type Include filesystem type

Not only will the df command show how much space is left on particular partitions, but it also gives a
very readable table of which devices are mounted to which directories. In the following, the filesystem on
/dev/hda2 is being used as the root partition, the filesystem on /dev/hda1 is mounted to the /boot
directory, and /dev/hda4 is mounted to /home. A partition on a second disk drive, namely the /dev/
hdb2 partition, is mounted to a non standard directory named /data.

[elvis@station elvis]$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 8259708 6708536 1131592 86% /
/dev/hda1 102454 24227 72937 25% /boot
/dev/hda4 5491668 348768 4863936 7% /home
/dev/hdb2 4226564 1417112 2594748 36% /data
none 127592 0 127592 0% /dev/shm

Mounting Temporary Media: The /media directory.

The second reason users need to be aware of filesystems and mount points involves temporary media such
as floppies and CD/ROM drives. Like any block device, floppy disks and CD/ROM disks are formatted
with filesystems. In order to access these filesystems, they must be mounted into the directory structure,
using a (already existing) directory as a mount point. Which directory should be used?

The /media directory contains subdirectories such as /media/floppy and /media/cdrom, or even
/media/camera, which are intended for just this purpose; they serve as mount points for temporary
media. (Thus the name of the /media directory.) If you would like to make use of a temporary disk,
such as a floppy disk, you must first mount the filesystem into your directory structure, using the mount
command.

[elvis@station elvis]$ mount /media/floppy
[elvis@station elvis]$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 8259708 6708536 1131592 86% /
/dev/hda1 102454 24227 72937 25% /boot
/dev/hda4 5491668 348768 4863936 7% /home
/dev/hdb2 4226564 1417112 2594748 36% /data
none 127592 0 127592 0% /dev/shm
/dev/fd0 1412 13 1327 1% /media/floppy

On the last line, the df command now reports the newly mounted floppy drive, and elvis can copy files
onto the floppy.

Disks, Filesystems, and Mounting

46

Figure 4.3. Mounting a Formatted Floppy

[elvis@station elvis]$ cp /etc/services /media/floppy/
[elvis@station elvis]$ ls /media/floppy/
lost+found services

Where did the directory lost+found come from? This directory was created when the filesystem was
created, and always exists in the root directory of an ext2 or ext3 filesystem. It is used occasionally when
repairing damaged filesystems.

When elvis has finished using the floppy, he detaches it from the filesystem using the umount command.

[elvis@station elvis]$ umount /media/floppy/
[elvis@station elvis]$ ls /media/floppy/

Once the floppy disk's filesystem has been detached from the /media/floppy directory, the directory
is just an empty directory.

Mounting Issues

Mounting devices is one of the more awkward and problematic issues for new Linux (and Unix) users.
The following issues can also occur, which serve to complicate the matter.

Permissions By default, only the root user can mount and unmount devices.
Temporary media are handled differently, however. The "Console
User" (someone who has logged in from a virtual console
or the X login screen) gains ownership of devices associated
with the physical machine, such as a floppy drive, and special
permissions to mount these devices to predefined mount points,
such as /media/floppy. If a user has logged in by some other
technique, such as over the network, or via the su command,
they will not be considered the "Console User", and will not have
permissions to mount these devices.

Busy Filesystems A filesystem can only be unmounted if it is considered "non-
busy". What can keep a filesystem "busy"? Any open file, or any
process that has a current working directory in the filesystem,
"busy"s the filesystem. The only way for the filesystem to be
unmounted is to track down any processes that might be keeping
the filesystem "busy", and kill them.

Automounters The GNOME graphical environment runs an automounter, which
keeps an eye on the CD/ROM drive, and will automatically mount

Disks, Filesystems, and Mounting

47

the filesystem of any newly inserted disk. The automounter is part
of the graphical environment, and does not exist if a user logged
in through a virtual console. Also, the automounter only works for
the CD/ROM drive. The floppy drive, or other devices, must be
mounted "manually".

Kernel Buffering In order to improve performance, the kernel buffers all block
device (harddrive) interactions. For example, when you copy
a file to a floppy, the file might seem to have been copied
almost immediately. Later, when you unmount the floppy with
the umount command, the command takes a while to return while
writes are being committed to the floppy. When unmounting the
device, the kernel is forced to commit all pending transactions to
the disk.

What would happen if you removed the floppy from the drive
before buffered writes were committed to disk? At best, the files
that you thought you had copied to the floppy would not be there.
At worst, you may have a corrupted floppy, and a confused Linux
kernel the next time someone tries to mount a floppy.

The upshot: Not only must you mount temporary media (such as
floppies) before you can use them, you must also unmount the
media when you are done.

Examples

Using an Unformatted Floppy
The user madonna has a collection of songs which she would like to copy to an unformatted floppy to
share with friends. Because she knows that all of her friends use Red Hat Enterprise Linux, she decides
to format the floppy with the ext2 filesystem.

[madonna@station madonna]$ /sbin/mkfs.ext2 /dev/fd0
mke2fs 1.32 (09-Nov-2002)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
184 inodes, 1440 blocks
72 blocks (5.00%) reserved for the super user
First data block=1
1 block group
8192 blocks per group, 8192 fragments per group
184 inodes per group

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 21 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

Next, she mounts the floppy, and copies her files over to it.

[madonna@station madonna]$ mount /media/floppy/
[madonna@station madonna]$ cp song* /media/floppy/
[madonna@station madonna]$ cd /media/floppy/
[madonna@station floppy]$ ls

Disks, Filesystems, and Mounting

48

lost+found song02.ogg song04.ogg song06.ogg
song01.ogg song03.ogg song05.ogg song07.ogg

She then unmounts her floppy.

[madonna@station madonna]$ umount /media/floppy/
umount: /media/floppy: device is busy

Why would the floppy not unmount? Some process either has an open file, or a current working directory
within the floppy's filesystem. The offending process is madonna's bash shell, whose current working
directory is /media/floppy. In order to unmount the floppy, madonna must cd to somewhere else,
such as her home directory.

[madonna@station floppy]$ cd
[madonna@station madonna]$ umount /media/floppy/

She can now remove the floppy from the drive.

Using a DOS Formatted Floppy
Eventually, madonna comes across a friend that insists he can only use DOS formatted floppies. Madonna
formats another floppy, this time with the MS-DOS filesystem, mounts the floppy, and copies her files
over to it.

[madonna@station madonna]$ /sbin/mkfs.msdos /dev/fd0
mkfs.msdos 2.8 (28 Feb 2001)
[madonna@station madonna]$ mount /media/floppy/
[madonna@station madonna]$ cp song0* /media/floppy/

After she has copied the files to the floppy, she decides that she would like to create a soft link to identify
her favorite song for her friend.

[madonna@station madonna]$ cd /media/floppy/
[madonna@station floppy]$ ls
song01.ogg song03.ogg song05.ogg song07.ogg
song02.ogg song04.ogg song06.ogg
[madonna@station floppy]$ ln -s song06.ogg my_favorite_song.ogg
ln: creating symbolic link `my_favorite_song.ogg' to `song06.ogg': Operation not
 permitted

Why could madonna not create the link? Although Linux supports the MS-DOS filesystem, the MS-
DOS filesystem is much simpler than traditional Linux filesystems, and Linux needs to make some
compromises. One of these compromises is that the MS-DOS filesystem does not support soft (or hard)
links. Neither does the MS-DOS filesystem support file owners and file permissions. How does Linux
handle this? It treats all files as owned by the same user, and all permissions as 755. What happens when
madonna tries to change permissions on one of the files?

[madonna@station floppy]$ chmod 664 song05.ogg
chmod: changing permissions of `song05.ogg' (requested: 0664, actual: 0644): Ope
ration not permitted

Again, the operation not permitted. Different filesystems provide different capabilities, and the MS-DOS
filesystem is not as featured as the ext2 filesystem.

Now that she is finished, madonna cd's to her home directory, and unmounts the floppy.

[madonna@station floppy]$ cd
[madonna@station madonna]$ umount /media/floppy/

Why did she cd to her home directory first?

Disks, Filesystems, and Mounting

49

Her bash shell's current working directory was inside the floppy's filesystem, which would have prevented
her from unmounting the floppy.

Floppy Images
Several friends have asked madonna for copies of the same floppy. After a while, she grows tired of
formatting floppies, mounting them, copying the same 8 songs over to it, and unmounting. She decides to
speed up the process by creating an image file for her floppy.

She first prepares a floppy with the files that she wants to distribute.

[madonna@station madonna]$ /sbin/mkfs.ext2 /dev/fd0 > /dev/null
mke2fs 1.32 (09-Nov-2002)
[madonna@station madonna]$ mount /media/floppy/
[madonna@station madonna]$ cp song* /media/floppy/
[madonna@station madonna]$ ls /media/floppy/
lost+found song02.ogg song04.ogg song06.ogg
song01.ogg song03.ogg song05.ogg song07.ogg
[madonna@station madonna]$ umount /media/floppy/

Next, she copies the contents of the unmounted floppy, byte for byte, into a file called songs.img.

[madonna@station madonna]$ cat /dev/fd0 > songs.img

The cat command, that we have been using on to view simple text files, works just as well on binary files,
or, in this case, binary disk data. After a few seconds of the floppy drive spinning, she has a new file.
How big is the file?

[madonna@station madonna]$ ls -s songs.img
1444 songs.img

1.4 MBytes, exactly what you would expect from a floppy. She stores this image file, and whenever
someone new wants a copy of her floppy, she reverses the process by cating the image back down to an
unformatted floppy.

[madonna@station madonna]$ cat songs.img > /dev/fd0

Because the image file is transferred, byte for byte, to the new floppy, this command has the effect of
formatting the floppy with an ext2 filesystem, and copying the files to it, all in one step. This is a powerful
technique known as imaging drives, and works on any type of disk, not just floppies.

When accessing devices at a low level, it is important that the device is unmounted. If madonna had
performed to last command on a mounted floppy, the kernel would have almost certainly been confused,
and corrupted the floppy.

Online Exercises

Using Floppies

Lab Exercise

Objective: Format, mount, and umount a floppy drive

Estimated Time: 15 mins.

Setup

You will need a floppy for this exercise. The contents of the floppy will be destroyed.

Disks, Filesystems, and Mounting

50

Specification

In this lab exercise, you will format a floppy disk, mount it, copy files to it, and then unmount the floppy.

1. Make sure that the floppy disk is not write protected, and place it in the floppy drive.

2. Format the floppy with the ext2 filesystem, using the /sbin/mkfs.ext2 command.

3. Mount the floppy onto the /media/floppy directory, using the mount command.

4. Recursively copy the contents of the /etc/sysconfig directory onto your floppy. (Ignore any errors
that you do not have permissions to read some files.)

5. Unmount your floppy. Swap floppies with a neighbor at this point, if possible.

6. Mount your neighbor's floppy (or remount your own), again to the /media/floppy directory.

7. With the floppy still mounted, capture the output of the df command into the file df.floppy in your
home directory.

Deliverables

1.
1. A floppy formatted with the ext2 filesystem mounted to the /media/floppy directory.

2. A directory /media/floppy/sysconfig, which is a recursive copy of the /etc/
sysconfig directory (perhaps with a few inaccessible files omitted).

3. A file in your home directory called df.floppy, which contains the output of the df
command.

Possible Solution

The following sequence of commands provides one possible solution to this exercise.

[student@station student]$ /sbin/mkfs.ext2 /dev/fd0
mke2fs 1.32 (09-Nov-2002)
Filesystem label=
OS type: Linux
...
[student@station student]$ mount /media/floppy/
[student@station student]$ cp -r /etc/sysconfig /media/floppy/
cp: cannot open `/etc/sysconfig/rhn/up2date' for reading: Permission denied
cp: cannot open `/etc/sysconfig/rhn/systemid' for reading: Permission denied
...
[student@station student]$ df > df.floppy
[student@station student]$ umount /media/floppy/

Cleaning Up

You may unmount your floppy after you have been graded. If you are proceeding to the next exercise,
save the contents of your floppy.

Imaging a Floppy

Lab Exercise

Objective: Create an image of a floppy disk drive

Disks, Filesystems, and Mounting

51

Estimated Time: 15 mins.

Setup

You will need the floppy you created in the previous exercise, namely, an ext2 formatted floppy containing
a recursive copy of the /etc/sysconfig directory.

Specification

In this lab exercise, you will create an image file of a floppy, and then restore the floppy using the image
file.

1. Make sure that the floppy disk is not write protected, and place it in the floppy drive. Make sure that
the floppy is not mounted. Unmount the floppy with the umount command, if necessary.

2. Using the cat command, make an image file of the floppy in your home directory, called floppy.img.

3. Using the ls -s command, confirm that the size of your image file is 1444 Kbytes.

4. Using the file command, make sure the file is being identified as an ext2 filesystem.

5. With your floppy still in the drive, and still unmounted, reformat the floppy with the msdos filesystem
(using the /sbin/mkfs.msdos command).

6. Mount your floppy to the /media/floppy directory, and, using the mount command without
arguments, confirm that the floppy has been formatted with the msdos (vfat) filesystem.

7. Unmount the floppy. Using the cat command, restore your floppy from the image file.

8. Mount your floppy, again to the /media/floppy directory. Using the mount command, without
arguments, confirm that the original ext2 filesystem has been restored.

Deliverables

1.
1. A floppy formatted with the ext2 filesystem mounted to the /media/floppy directory.

2. An image of the same floppy, stored in the file floppy.img in your home directory.

Possible Solution

The following commands provide one solution to the first four steps of this exercise.

[student@station student]$ cat /dev/fd0 > floppy.img
[student@station student]$ file floppy.img
floppy.img: Linux rev 1.0 ext2 filesystem data
[student@station student]$ ls -s
total 1448
 4 df.floppy 1444 floppy.img

Cleaning Up

Because the image file you created from this exercise is fairly large, you may want to remove it after your
exercise has been graded.

Questions
Some questions may use the following information:

Disks, Filesystems, and Mounting

52

[student@station student]$ mount
/dev/hda9 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hda2 on /boot type ext3 (rw)
/dev/hda7 on /home type ext3 (rw)
none on /dev/shm type tmpfs (rw)
/dev/hda8 on /tmp type ext3 (rw)
/dev/hda5 on /usr type ext3 (rw)
/dev/hda6 on /var type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)

1. Which command or commands will show what filesystems are currently mounted?

a. chown

b. df

c. mount

d. ls

e. mkdir

2. According to the screen output above, which device contains the /home filesystem?

a. /dev/pts

b. /dev/hda1

c. /dev/hda5

d. /dev/hda7

e. None of the above

3. According to the screen output above, where is the device /dev/hda6 mounted?

a. /dev/pts

b. /home

c. /var

d. /usr

e. None of the above

4. When unmounting a device, the error message "umount: /media/floppy: device is busy" can mean
what?

a. An application was started from the directory /media/floppy and is still running.

b. The current working directory for some shell is /media/floppy

c. The floppy is read only.

d. You do not have permission to use the umount command.

Disks, Filesystems, and Mounting

53

e. An application has the file /media/floppy/make.log open for writing.

5. Why is it important to unmount removable media before physically removing it?

a. If you do not, the system will shut down.

b. So that the next disk inserted can be read and mounted without error.

c. So that the disk can be read and mounted on another system without error.

d. Most systems cache data written to a device. The umount ensures that this data gets written
from the cache to the device so that it is not lost.

6. Which of the following commands can be used to format an unformatted floppy?

a. /sbin/mkfs.ext2

b. /sbin/mkfsys.msdos

c. format

d. floppyfd

e. mount

The user elvis tries to unmount the floppy, and receives the following error message.

[elvis@station elvis]$ umount /media/floppy/
umount: only student can unmount /dev/fd0 from /media/floppy

7. What is the most reasonable explanation for the message?

a. The user student write protected the floppy.

b. The user student mounted the floppy, and therefore only that user may umount the floppy.

c. The user elvis does not have permissions to run the umount command.

d. The user student formatted the floppy, so only the user student may mount and unmount it.

8. Which of the following commands would create an ext2 filesystem on the third partition of the
primary master IDE drive?

a. /sbin/mkfs.ext2 /dev/hda

b. /sbin/mkfs.ext2 /dev/fd0

c. /sbin/mkfs.msdos /dev/hda

d. /sbin/mkfs.msdos /dev/hda3

e. None of the above

9. Which of the following commands would create an ext2 filesystem on the second partition of a
SCSI disk?

a. /sbin/mkfs.ext2 /dev/sda2

b. /sbin/mkfs.ext2 /dev/hda2

Disks, Filesystems, and Mounting

54

c. /sbin/mkfs.msdos /dev/sda2

d. /sbin/mkfs.msdos /dev/hda2

e. None of the above

When logged into the X graphical environment, using GNOME, elvis tries to mount a newly inserted CD/
ROM.

[elvis@station elvis]$ mount /media/cdrom
mount: according to mtab, /dev/cdrom is already mounted on /media/cdrom
mount failed

10. What is the most reasonable explanation for the message?

a. Another user, logged in over the network, mounted the CD/ROM without elvis realizing it.

b. The GNOME automounter automatically mounted the CD/ROM.

c. The /etc/mtab file is out of sync, and the CD/ROM is really not currently mounted.

d. None of the above.

55

Chapter 5. Locating Files with locate
and find

Key Concepts

• The locate command uses a database to quickly locate files on the system by filename.

• The find command performs a real time, recursive search of the filesystem.

• The find command can search for files based on inode information.

• The find command can perform arbitrary commands on files.

Discussion

Locating Files
It is common to find config files in /etc or executables in a bin directory, however, sometimes it is necessary
to search the system for a specific file. Two of the common tools for this are locate and find.

The command locate prints the names of files and directories that match a supplied pattern. It is the faster
of the two commands because it relies on a database (updated daily by default) instead of searching real
time. The downside of this is that it will not find files created today or it will find files that have been
deleted since the last update of the database.

The command find can find files by name but can also search for files by owner, group, type, modification
date, and many other criteria. With its real time search through the directory tree, it is slower than locate
but it is also more flexible.

Using Locate
The locate command quickly reports all files on the disk whose filename contains the specified text.
The search relies on a database, which is updated nightly, so recently created files will probably not be
reported. The database does remember file permissions, however, so you will only see files which you
would normally have permissions to see.

Earlier we used the command umount to unlink a filesystem from the directory tree. Lets see what files
on the system include the string "umount" in their names.

[blondie@station blondie]$ locate umount
/bin/umount
/sbin/umount.cifs
/sbin/umount.nfs
/sbin/umount.nfs4
/usr/bin/gnome-umount
/usr/share/doc/samba-3.0.23c/htmldocs/manpages/smbumount.8.html
/usr/share/doc/samba-3.0.23c/htmldocs/manpages/umount.cifs.8.html
/usr/share/man/man2/umount.2.gz
/usr/share/man/man2/umount2.2.gz
/usr/share/man/man8/umount.8.gz
/usr/share/man/man8/umount.cifs.8.gz
/usr/share/man/man8/umount.nfs.8.gz

Locating Files with locate and find

56

Notice that in addition to /bin/umount we also locate variants for special network related filesystems,
several man page files.

The locate command also supports "file globs", or, more formally, pathname expansion, using the same
*, ?, and [...] expressions as the bash shell. For example, if you knew that there was a PNG image of a
fish somewhere on the system, you might try the following locate command.

For reasons discussed in a later workbook, it's a better idea to wrap any "globs" in quotes, though you can
often get away without them.

[blondie@station ~]$ locate "*fish*.png"
/usr/share/backgrounds/tiles/fish.png
/usr/share/gnome/help/fish/C/figures/fish_applet.png
/usr/share/gnome/help/fish/es/figures/fish_applet.png
...
/usr/share/gnome/help/fish-applet-2/de/figures/fish_applet.png
/usr/share/gnome/help/fish-applet-2/de/figures/fish_settings.png
/usr/share/gnome/help/fish-applet-2/ja/figures/fish_applet.png
...
/usr/share/gnome/panel/pixmaps/fishanim.png
/usr/share/icons/hicolor/16x16/apps/gnome-panel-fish.png
...

Using find
The find command is used to search the filesystem for files that meet a specified criteria. Almost any
aspect of a file can be specified, such as its name, its size, the last time it was modified, even its link count.
(The only exception is the file's content. For that, we need to wait for a command called grep, which
complements find nicely.)

The find command's syntax takes a little getting accustomed to, but once learned, is very usable. A find
command essentially consists of three parts: a root directory (or directories), a search criteria, and an action.

find (root directory) (criteria) (action)

The default directory is ".", the default criteria is "every file", and the default action is "print" (the
filename), so running the find command without arguments will simply descend the current directory,
printing every filename. If given a directory name as a single argument, the same would be done for that
directory.

[madonna@station madonna]$ find /etc/sysconfig/networking/
/etc/sysconfig/networking/
/etc/sysconfig/networking/devices
/etc/sysconfig/networking/devices/ifcfg-eth0
/etc/sysconfig/networking/profiles
/etc/sysconfig/networking/profiles/default
/etc/sysconfig/networking/profiles/default/network
/etc/sysconfig/networking/profiles/default/resolv.conf
/etc/sysconfig/networking/profiles/default/hosts
/etc/sysconfig/networking/profiles/default/ifcfg-eth0
/etc/sysconfig/networking/profiles/netup
/etc/sysconfig/networking/profiles/netup/network
/etc/sysconfig/networking/profiles/netup/resolv.conf
/etc/sysconfig/networking/profiles/netup/hosts
/etc/sysconfig/networking/profiles/netup/ifcfg-eth0
/etc/sysconfig/networking/ifcfg-lo

Usually, however, the find command is given criteria to refine its search, in the form of (non standard)
command line switches. For example, the -name command line switch is used to find files with a given
name. As with locate, globs are supported, but should be quoted.

[madonna@station madonna]$ find /etc -name "*.conf"

Locating Files with locate and find

57

/etc/gdm/securitytokens.conf
/etc/gdm/custom.conf
/etc/gssapi_mech.conf
...
/etc/updatedb.conf
/etc/reader.conf
/etc/selinux/restorecond.conf
find: /etc/selinux/targeted/modules/active: Permission denied
find: /etc/selinux/targeted/modules/previous: Permission denied
/etc/selinux/targeted/setrans.conf
/etc/selinux/semanage.conf
...

While superficially similar to the locate command, find functions by performing a search in real time.
This can take a lot longer, but avoids the issue of an "out of sync" database. Note that if the proper ordering
is not followed, find becomes quickly confused.

[madonna@station madonna]$ find -name "*.conf" /etc
find: paths must precede expression
Usage: find [path...] [expression]

Find Criteria

If you browse the find(1) man page, you will discover that an overwhelming selection of criteria can be
specified for your search. Almost any aspect of the file that can be reported by the stat command or the ls
command is fair game. The following table summarizes some of the more common search criteria.

Table 5.1. Search Criteria for the find Command

switch specification

-empty The file is a directory or regular file, and is empty.

-group gname The file is group owned by gname.

-inum n The file has an inode number n.

-links n The file has n links.

-mmin n The file was last modified n minutes ago.

-mtime n The file was last modified n days ago.

-name pattern The file's name matches the file glob pattern.

-newer filename The file was modified more recently than filename.

-perm mode The file's permissions are exactly mode.

-perm -mode All of the permission bits mode are set for the file.

-perm +mode Any of the permission bits mode are set for the file.

-size n The file has a size of n.

-type c The file is of type c, where c is "f" (regular file), "d" (directory), or "l" (symbolic
link). See the man page for more details.

-user uname File is owned by the user uname.

More options are available, but these should give you an idea of the flexibility of the find command.
Any criteria that takes a numeric argument, such as -size or -mtime, recognizes arguments of the form +3
(meaning more than 3), -3 (meaning less than 3), or 3 (meaning exactly 3).

If multiple criteria are specified, by default, all criteria must be met. If multiple criteria are separated by -
or, however, either condition may be met. Criteria can be inverted by preceding the criteria with -not.

Locating Files with locate and find

58

As an example, the following command finds all files under /var which are not group writable.

[elvis@station elvis]$ find /var -not -perm +20
/var
/var/lib
/var/lib/rpm
/var/lib/rpm/Packages
/var/lib/rpm/Basenames
/var/lib/rpm/Name
/var/lib/rpm/Group
...

Find Actions

You can also specify what you would like done to files that meet the specified criteria. By default, if no
criteria is specified, the file name is printed to standard out, one file per line. Other options are summarized
in the following table.

Table 5.2. Action Specifications for the find Command

Switch Action

-exec command ; Execute command on matching files. Use {} to indicate where filename should be
substituted.

-ok command ; Like -exec, but prompt for each file

-ls Print file in ls -dils format.

Again, others exist. Consult the find(1) man page.

Perhaps the most useful, and definitely the most awkward, of these is -exec, and its close cousin -ok.
The -exec mechanism is powerful: rather than printing the names of matching files, arbitrary commands
can be run. The -exec mechanism is awkward, because the syntax for specifying the command to run is
tricky. The command should be written after the -exec switch, using a literal {} as a placeholder for the
file name. The command should be terminated with a literal ;, but as will be seen a later Workbook, the
; has special significance to the shell, and so must be "escaped" by prepending a \. An example will help
clarify the syntax.

Suppose madonna wanted to make a copy of every file greater than 200 Kbytes in size out of the /etc
directory. First, she finds which files meet the criteria.

[madonna@station madonna]$ find /etc -size +200k 2>/dev/null
/etc/selinux/targeted/policy/policy.21
/etc/firmware/microcode.dat
/etc/prelink.cache
/etc/termcap
/etc/pki/tls/certs/ca-bundle.crt
/etc/gconf/gconf.xml.defaults/%gconf-tree-sr@Latn.xml
/etc/gconf/gconf.xml.defaults/%gconf-tree-cs.xml
...

(The 2>/dev/null serves to "throw away" complaints about directories madonna does not have permissions
to access.)

To confirm the sizes of the files, she reruns the command, specifying the "action" of -ls.

[madonna@station madonna]$ find /etc -size +200k -ls 2>/dev/null
132462 1112 -rw-r--r-- 1 root root 1130305 Aug 22 15:41 /etc/selinux/targeted/policy/policy.21
132045 788 -rw-r--r-- 1 root root 798555 Dec 4 2006 /etc/firmware/microcode.dat
132705 320 -rw-r--r-- 1 root root 319141 Aug 24 13:20 /etc/prelink.cache
130862 800 -rw-r--r-- 1 root root 807103 Jul 12 2006 /etc/termcap
131090 440 -rw-r--r-- 1 root root 441017 Nov 30 2006 /etc/pki/tls/certs/ca-bundle.crt

Locating Files with locate and find

59

132279 460 -rw-r--r-- 1 root root 459789 Aug 22 15:43 /etc/gconf/gconf.xml.defaults/%gconf-tree-sr@Latn.xml
132673 468 -rw-r--r-- 1 root root 467812 Aug 22 15:43 /etc/gconf/gconf.xml.defaults/%gconf-tree-cs.xml
...

Now, she makes a directory called /tmp/big, and composes a cp command on the find command line,
remembering the following.

• Place a {} as a placeholder for matching file names

• Terminate the command with a \;.

[madonna@station madonna]$ mkdir /tmp/big
[madonna@station madonna]$ find /etc -size +200k -exec cp {} /tmp/big \; 2>/dev
/null
[madonna@station madonna]$ ls /tmp/big/
apps_gnome_settings_daemon_keybindings.schemas %gconf-tree-nn.xml
apps_nautilus_preferences.schemas %gconf-tree-or.xml
ca-bundle.crt %gconf-tree-pa.xml
clock.schemas %gconf-tree-pl.xml
...

Rather than printing the file name, the find command copied the files to the /tmp/big directory.

Examples

Using locate
There are several ways to find a specific file.

[blondie@station blondie]$ locate rmdir
/bin/rmdir
/usr/lib/perl5/5.8.8/i386-linux-thread-multi/auto/POSIX/rmdir.al
/usr/share/doc/bash-3.1/loadables/rmdir.c
/usr/share/man/man1/rmdir.1.gz
/usr/share/man/man1p/rmdir.1p.gz
/usr/share/man/man2/rmdir.2.gz
/usr/share/man/man3p/rmdir.3p.gz
[blondie@station blondie]$ find /bin -name "*dir*"
/bin/mkdir
/bin/rmdir
[blondie@station blondie]$ which rmdir
/bin/rmdir

In the above examples, locate shows everything in the database with the string "rmdir" including the
command and man pages. find shows all files under /bin that include "dir" in the name. Finally, which
shows the absolute path for a known command.

You can also include filename expansion characters in your search:

[blondie@station blondie]$ locate "*theme*png"
...
/home/elvis/gdm/themes/RHEL/background.png
/home/elvis/gdm/themes/RHEL/distribution.png
/home/elvis/gdm/themes/RHEL/icon-language.png
/home/elvis/gdm/themes/RHEL/icon-reboot.png
/home/elvis/gdm/themes/RHEL/icon-session.png
/home/elvis/gdm/themes/RHEL/icon-shutdown.png
/home/elvis/gdm/themes/RHEL/logo.png
...

Recall that locate uses a database and will not locate files that have been created since the database was
last updated. The example below should not show any output from the locate command.

Locating Files with locate and find

60

[blondie@station blondie]$ touch ~/locate_example_file
[blondie@station blondie]$ locate locate_example_file

Because the locate database does not yet know about the locate_example_file file, no files are
reported.

Using find
The find searches the actual directory tree from the specified beginning point.

[elvis@station elvis]$ find /home/elvis
/home/elvis
/home/elvis/.metacity
/home/elvis/.metacity/sessions
/home/elvis/.metacity/sessions/1187895446-1983-3849805419.ms
/home/elvis/.metacity/sessions/1187972526-2245-2949308818.ms
...

Multiple starting directories can be specified for the find command.

[elvis@station elvis]$ find /bin /usr/bin -name "*dir*"
/bin/rmdir
/bin/mkdir
/usr/bin/dir
/usr/bin/lndir
/usr/bin/dirname
...

The find command can be used to discover symbolic links.

[elvis@station ~]$ find /usr/bin -type l
/usr/bin/lastb
/usr/bin/spam
/usr/bin/gnome-character-map
/usr/bin/rdistd
/usr/bin/ipmish
/usr/bin/python2
...
[elvis@station ~]$ ls -l /usr/bin/lastb
lrwxrwxrwx 1 root root 4 Aug 22 15:36 /usr/bin/lastb -> last

As a complicated example, find can produce a "ls -l style" listing of everything on the system not owned
by the users root, bin or elvis. As there may be directories where search access is denied, redirecting errors
to /dev/null reduces screen clutter.

[elvis@station elvis]$ find / -not -user root -not -user bin -not -user elvis
-ls 2> /dev/null
198506 96 -rwxr-xr-x 1 rpm rpm 89344 Jan 4 2007 /bin/rpm
1013889 8 drwx------ 3 madonna madonna 4096 Aug 25 08:43 /home/madonna
1013833 8 drwx------ 3 pataki pataki 4096 Aug 22 15:43 /home/pataki
1013986 8 drwx------ 4 rhauser_a rhauser_a 4096 Aug 23 20:33 /home/rhauser_a
1013903 8 drwx------ 3 prince prince 4096 Aug 22 15:43 /home/prince
1014000 8 drwx------ 3 rhauser_c rhauser_c 4096 Aug 23 11:02 /home/rhauser_c
1013896 8 drwx------ 3 bob bob 4096 Aug 22 15:43 /home/bob
1013854 8 drwx------ 3 blondie blondie 4096 Aug 25 08:59 /home/blondie
1013875 8 drwx------ 3 nero nero 4096 Aug 22 15:43 /home/nero
1013882 8 drwx------ 3 einstein einstein 4096 Aug 22 15:43 /home/einstein
...

Using find to Execute Commands on Files
Find all the files under /tmp with a link count greater than 1 and make a copy of each in a directory
called /tmp/links.

Locating Files with locate and find

61

[blondie@station blondie]$ ls -l /tmp/*file
-rw-rw-r-- 2 blondie blondie 0 Mar 17 22:33 /tmp/linkfile
-rw-rw-r-- 2 blondie blondie 0 Mar 17 22:33 /tmp/newfile
[blondie@station blondie]$ mkdir /tmp/links
[blondie@station blondie]$ find /tmp -type f -links +1 -exec cp {} /tmp/links \;
[blondie@station blondie]$ ls /tmp/links
linkfile
newfile

Online Exercises

Locating files

Lab Exercise

Objective: Devise and execute a find command that produces the result described in each of the
following.

Estimated Time: 20 mins.

Specification

Use the find command to find files which match the following criteria, and redirect the output to the
specified files in your home directory. When listing filenames, make sure every filename is an absolute
reference.

You will encounter a number of "Permission denied" messages when find tries to recurse into directories
for which you do not have permissions to access. Do not be concerned with these errors. You can suppress
these error messages by appending 2> /dev/nullto your find command.

You may need to consult the find(1) man page to find the answer for some of the problems.

Deliverables

The following command lines will produce the appropriate answers.

find /var/lib -user webalizer

find /var -user root -group mail

find /usr/bin -size +1000000c -ls

find /etc/sysconfig -exec file {} \;

find /usr/bin -type f -links +3

1.
1. The file varlib.webalizer, which contains a list of all files under the /var/lib

directory which are owned by the user "webalizer".

2. The file var.rootmail, which contains a list of all files under the /var directory which are
owned by the user "root" and group owned by the group "mail".

3. The file bin.big which contains a ls -dils style listing of all files under the /usr/bin
directory that are greater than 1000000 characters in size.

Locating Files with locate and find

62

4. Execute the file command on every file under /etc/sysconfig, and record the output in
the file sysconfig.find.

5. The file big.links, which contains a list of the filenames of regular files underneath the /
usr/bin directory which have a link count of greater than 3.

Questions
1. Which find option will locate files of exactly 100 blocks?

a. -size +100

b. -size 100

c. -inum 100

d. -inum +100

2. Which find option will locate files with inode number 100?

a. -type f

b. -size 100

c. -inum 100

d. -perm 100

3. Which find option or options will locate only ordinary files which have a link count of 2 or more?

a. -type f -links +2

b. -links +1

c. -type o -links +1

d. -type f -links +1

4. Which find option will print the output in a ls -l style format?

a. -type

b. -size

c. -inum

d. -ls

5. Which find option or options will locate files owned by user root and group sys?

a. -user root -and -group sys

b. -user root -group sys

c. -user root

d. -group sys

Locating Files with locate and find

63

6. Which command or commands will list files that were recently created and include the string
"coffee" in their names?

a. slocate coffee

b. find . -name coffee

c. find . -name "*coffee*"

d. ls -R *coffee*

7. Which command or commands will list files that include the string "coffee" in their names?

a. slocate coffee

b. find . -name coffee

c. find . -name "*coffee*"

d. ls -R *coffee*

8. Which find command will locate ordinary files under /home or /tmp with world writable
permissions?

a. find /home /tmp -type f -perm -2

b. find /home -or /tmp -type f -perm 002

c. find /home /tmp -type o -perm 2

d. find /home /tmp -perm -2

9. Which find option can be added to the previous answer so that each file found will have the "other"
write permission removed?

a. -exec chmod o-w \;

b. -exec chmod o-w

c. -exec chmod o-w {} \;

d. -exec chmod -2

10. Which find option can be used such that each file found will have permissions removed and have
find prompt interactively whether or not to change the permissions?

a. -ok

b. -ask

c. -exec

d. -exec -ok

64

Chapter 6. Compressing Files: gzip
and bzip2

Key Concepts

• Compressing seldom used files saves disk space.

• The most commonly used compression command is gzip.

• The bzip2 command is newer, and provides the most efficient compression.

Discussion

Why Compress Files?

Files that are not used very often are often compressed. Large files are also compressed before transferring
to other systems or users. The advantages of saved space and bandwidth usually outweighs the added time
it takes to compress and uncompress files.

Text files often have patterns that can be compressed up to 75% but binary files rarely compress more than
25%. In fact, it is even possible for a compressed binary file to be larger than the original file!

Standard Linux Compression Utilities

As better and better compression techniques have been developed, new compression utilities have gained
favor. For backwards compatibility, however, older compression utilities are still retained. Often, there is
a trade off between compression efficiency and CPU activity. Sometimes, older compression utilities do
"good enough" in a much shorter time.

The following list discusses the two most common compression utilities used in Linux and Unix.

gzip (.gz) The gzip command is the most versatile and most commonly used
decompression utility. Files compressed with gzip are uncompressed with
gunzip. Additionally, the gzip command supports the following command line
switches.

Switch Effect

-c Redirect Output to stdout

-d Decompress instead of compress file

-r Recurse through subdirectories, compressing individual files.

-1 ... -9 Specify trade off between CPU intensity and compression
efficiency.

bzip2 (.bz) The bzip2 command is a relative newcomer, which tends to produce the most
compact compressed files, but is the most CPU intensive. Files compressed
with bzip2 are uncompressed with bunzip2. The bzip2 command supports the
following command line switches.

Compressing Files: gzip and bzip2

65

Switch Effect

-c Redirect Output to stdout

-d Decompress instead of compress file

The following examples illustrate the use and relative efficiency of the compression commands.

[elvis@station elvis]$ ls -sh termcap
725K termcap
[elvis@station elvis]$ gzip termcap
[elvis@station elvis]$ ls -sh termcap*
234K termcap.gz
[elvis@station elvis]$ gzip -d termcap
[elvis@station elvis]$ ls -sh termcap*
725K termcap

[elvis@station elvis]$ ls -sh termcap
725K termcap
[elvis@station elvis]$ bzip2 termcap
[elvis@station elvis]$ ls -sh termcap*
185K termcap.bz2
[elvis@station elvis]$ bunzip2 termcap.bz2
[elvis@station elvis]$ ls -sh termcap*
725K termcap

Other Compression Utilities
Another compression utility available in Red Hat Enterprise Linux is zip. This utility is compatible with the
DOS/Windows PKzip/Winzip utilities and can compress more than one file into a single file, something
that gzip and bzip2 cannot do.

Linux and Unix users often prefer instead to use tar and gzip together in preference to zip. The command
tar is discussed in the next lesson.

Examples

Working with gzip
Madonna also has a copy of the same bigfile but prefers to use gzip compression.

[madonna@station madonna]$ gzip bigfile
[madonna@station madonna]$ ls -l bigfile*
-rw-r--r-- 1 madonna madonna 131069 Mar 18 15:29 bigfile.gz
[madonna@station madonna]$ gunzip bigfile.gz
[madonna@station madonna]$ ls -l bigfile*
-rw-r--r-- 1 madonna madonna 409305 Mar 18 15:29 bigfile

Notice the better compression algorithm from this utility.

Using gzip Recursively
The gzip command includes a -r command line switch, which will recurse through subdirectories,
compressing individual files. In the following example, madonna will create a local copy of the /etc/
sysconfig/networking directory, and then recursively compress the copy.

[madonna@station madonna]$ cp -r /etc/sysconfig/networking .
[madonna@station madonna]$ gzip -r networking

Compressing Files: gzip and bzip2

66

[madonna@station madonna]$ tree networking/
networking/
|-- devices
| `-- ifcfg-eth0.gz
|-- ifcfg-lo.gz
`-- profiles
 |-- default
 | |-- hosts.gz
 | |-- ifcfg-eth0.gz
 | |-- network.gz
 | `-- resolv.conf.gz
 `-- netup
 |-- hosts.gz
 |-- ifcfg-eth0.gz
 |-- network.gz
 `-- resolv.conf.gz

4 directories, 10 files

Working with bzip2
Elvis realizes that the compress utility that he first used is old and decides to try a much newer compression
utility.

[elvis@station elvis]$ bzip2 bigfile
[elvis@station elvis]$ ls -l bigfile*
-rw-r--r-- 1 elvis elvis 154563 Mar 18 15:29 bigfile.bz2
[elvis@station elvis]$ bunzip2 bigfile.bz2
[elvis@station elvis]$ ls -l bigfile*
-rw-r--r-- 1 elvis elvis 409305 Mar 18 15:29 bigfile

Notice that to uncompress this archive, Elvis must give the filename with the bz2 extension. In the other
examples, the utility used could find a file of the given base name with a known extension.

Online Exercises

Working with compression Utilities

Lab Exercise

Objective: Compress large files

Estimated Time: 10 mins.

Specification

1. Copy the files /etc/gconf/schemas/gnome-terminal.schemas and /usr/bin/gimp
into your home directory, preserving their original filenames. (The first is an example of a large text
file, the second is an example of a large binary file.) Use the gzip command to compress each of the
newly created files.

2. Again, copy the files /etc/gconf/schemas/gnome-terminal.schemas and /usr/bin/
gimp into your home directory. This time, use the bzip2 command to compress the two files.

3. One last time, copy the /etc/gconf/schemas/gnome-terminal.schemas and /usr/
bin/gimp files into your home directory. Use the ls -s command to compare the sizes of the various
compression techniques.

Compressing Files: gzip and bzip2

67

Deliverables

1.
1. The file gnome-terminal.schemas in your home directory, which is a copy of /etc/
gconf/schemas/gnome-terminal.schemas.

2. The file gnome-terminal.schemas.gz, the gziped version of gnome-
terminal.schemas.

3. The file gnome-terminal.schemas.bz2, the bzip2ed version of gnome-
terminal.schemas.

4. The file gimp in your home directory, which is a copy of /usr/bin/gimp.

5. The file gimp.gz, the gziped version of gimp.

6. The file gimp.bz2, the bzip2ed version of gimp.

Questions
1. What filename extension is generally associated with files compressed using the bzip2 utility?

a. .Z

b. .gz

c. .bz2

d. .tar

2. What filename extension is generally associated with files compressed using the gzip utility?

a. .Z

b. .gz

c. .bz2

d. .tar

3. Which commands can uncompress a .gz file?

a. uncompress

b. gunzip

c. gzip -d

d. bunzip2

4. Why is compression most useful for text files?

a. Binary files may get corrupted when compressed.

b. Binary files are always larger after being compressed

c. Utilities cannot compress a binary file

Compressing Files: gzip and bzip2

68

d. Binary files are often already efficiently using space and little is gained by compressing them.

5. Assuming that the text files exist in the current directory, what will the command gzip report.txt
draft.txt schedule.txt produce?

a. A single file with three text files in it.

b. A single compressed file with three text files in it.

c. Three compressed text files.

d. An error message.

69

Chapter 7. Archiving Files with tar
Key Concepts

• Archiving files allows an entire directory structure to be stored as a single file.

• Archives are created, listed, and extracted with the tar command.

• Archive files are often compressed as well.

• The fileroller application provides a GUI interface to archiving files.

Discussion

Archive Files
Often, if a directory and its underlying files are not going to be used for a while, or if the entire directory
tree is going to be transferred from one place or another, people convert the directory tree into an archive
file. The archive contains the directory and its underlying files and subdirectories, packaged as a single file.
In Linux (and Unix), the most common command for creating and extracting archives is the tar command.

Originally, archive files provided a solution to backing up disks to tape. When backing up a filesystem,
the entire directory structure would be converted into a single file, which was written directly to a tape
drive. The tar command derived its name from "t"ape "ar"chive.

Today, the tar is seldom used to write to tapes directly, but instead creates archive files which are often
referred to as "tar files", "tar archives", or sometimes informally as "tarballs". These archive files are
conventionally given the .tar filename extension.

Tar Command Basics
When running the tar command, the first command line must be selected from the following choices.

Switch Effect

-c, --create Create an archive file

-x, --extract Extract an archive file

-t, --list List the contents of an archive file

There are others, but almost always one of these three will suffice. See the tar(1) man page for more details.

Next, almost every invocation of the tar command must include the -f command line switch and its
argument, which specifies which archive file is being created, extracted, or listed.

As an example, the user prince has been working on a report, which involves several subdirectories and
files.

report/
|-- html/
| |-- chap1.html
| |-- chap2.html
| `-- figures/
| `-- image1.png

Archiving Files with tar

70

`-- text/
 |-- chap1.txt
 `-- chap2.txt

3 directories, 5 files

He would like to email a copy of the report to a friend. Rather than attach each individual file to an email
message, he decides to create an archive of the report directory. He uses the tar command, specifying -c
to "c"reate an archive, and using the -f command line switch to specify the archive file to create.

[prince@station prince]$ tar -c -f report.tar report
[prince@station prince]$ ls -s
total 24
 4 report 20 report.tar

The newly created archive file report.tar now contains the entire contents of the report directory,
and its subdirectories. In order to confirm that the archive was created correctly, prince lists the contents
of the archive file with the tar -t command (again using -f to specify which archive file).

[prince@station prince]$ tar -t -f report.tar
report/
report/text/
report/text/chap1.txt
report/text/chap2.txt
report/html/
report/html/figures/
report/html/figures/image1.png
report/html/chap1.html
report/html/chap2.html

As further confirmation, prince extracts the archive file in the /tmp directory, using tar -x.

[prince@station prince]$ cd /tmp
[prince@station tmp]$ tar -x -f /home/prince/report.tar
[prince@station tmp]$ ls -R report/
report/:
html text

report/html:
chap1.html chap2.html figures

report/html/figures:
image1.png

report/text:
chap1.txt chap2.txt

Now convinced that the archive file contains the report, and that his friend should be able to extract it, he
cleans up the test copy, and uses the mutt command to email the archive as an attachment.

[prince@station tmp]$ rm -fr report/
[prince@station tmp]$ cd
[prince@station prince]$ mutt -a report.tar -s "My Report" elvis@example.com

Don't be concerned if you aren't familiar with mutt. This just serves as an example of why someone might
want to create a tar archive.

More About tar
The first command line switch to the tar command must be one of the special switches discussed above.
Because the first switch is always one of a few choices, the tar command allows a shortcut; you do not
need to include the leading hyphen. Often, experienced users of tar will use shortened command lines
like the following.

Archiving Files with tar

71

[prince@station prince]$ tar cf report.tar report
[prince@station prince]$ tar tf report.tar
report/
report/text/
report/text/chap1.txt
report/text/chap2.txt
report/html/
report/html/figures/
report/html/figures/image1.png
report/html/chap1.html
report/html/chap2.html

Creating archives introduces a lot of complicated questions, such as some of the following.

• When creating archives, how should links be handled? Do I archive the link, or what the link refers to?

• When extracting archives as root, do I want all of the files to be owned by root, or by the original owner?
What if the original owner doesn't exist on the system I'm unpacking the tar on?

• What happens if the tape drive I'm archiving to runs out of room in the middle of the archive?

The answers to these, and many other questions as well, can be decided with an overwhelming number
of command line switches to the tar command, as tar --help or a quick look at the tar(1) man page will
demonstrate. The following table lists some of the more commonly used switches, and there use will be
discussed below.

Switch Effect

-C, --directory=DIR Change to directory DIR

-P, --absolute-reference don't strip leading / from filenames

-v, --verbose list files processed

-z, --gzip internally gzip archive

-j, --bzip2 internally bzip2 archive

Absolute References

Suppose prince wanted to archive a snapshot of the current networking configuration of his machine. He
might run a command like the following. (Note the inclusion of the -v command line switch, which lists
each file as it is processed.)

[prince@station prince]$ tar cvf net.tar /etc/sysconfig/networking
tar: Removing leading `/' from member names
etc/sysconfig/networking/
etc/sysconfig/networking/devices/
etc/sysconfig/networking/devices/ifcfg-eth0
etc/sysconfig/networking/profiles/
etc/sysconfig/networking/profiles/default/
etc/sysconfig/networking/profiles/default/network
...

As the leading message implies, what was an absolute reference to /etc/sysconfig/networking
is converted to relative references inside the archive: None of the entries have leading slashes. Why is this
done? What happens if prince turns right around and extracts the archive?

[prince@station prince]$ tar xvf net.tar
etc/sysconfig/networking/
etc/sysconfig/networking/devices/
etc/sysconfig/networking/devices/ifcfg-eth0

Archiving Files with tar

72

etc/sysconfig/networking/profiles/
etc/sysconfig/networking/profiles/default/
etc/sysconfig/networking/profiles/default/network
etc/sysconfig/networking/profiles/default/resolv.conf
...
[prince@station prince]$ ls -R etc/
etc/:
sysconfig

etc/sysconfig:
networking

etc/sysconfig/networking:
devices ifcfg-lo profiles

etc/sysconfig/networking/devices:
ifcfg-eth0

etc/sysconfig/networking/profiles:
default netup

etc/sysconfig/networking/profiles/default:
hosts ifcfg-eth0 network resolv.conf

etc/sysconfig/networking/profiles/netup:
hosts ifcfg-eth0 network resolv.conf

Because the file entries were relative, the archive unpacked into the local directory. As a rule, archive
files will always unpack locally, reducing the chance that you will unintentionally clobber files in your
filesystem by unpacking an archive on top of them. When constructing the archive, this behavior can be
overridden with the -P command line switch.

Establishing Context

When extracting the archive above, the first "interesting" directory is the networking directory, because
it contains the relevant subdirectories and files. When extracting the archive, however, and "extra" etc
and etc/sysconfig are created. In order to get to the interesting directory, someone has to work his
way down to it.

When constructing an archive, the -C command line switch can be used to help establish context by
changing directory before the archive is constructed. Compare the following two tar commands.

[prince@station prince]$ tar cvf net.tar /etc/sysconfig/networking
tar: Removing leading `/' from member names
etc/sysconfig/networking/
etc/sysconfig/networking/devices/
etc/sysconfig/networking/devices/ifcfg-eth0
etc/sysconfig/networking/profiles/
etc/sysconfig/networking/profiles/default/
etc/sysconfig/networking/profiles/default/network
...
[prince@station prince]$ tar cvf net.tar -C /etc/sysconfig networking
networking/
networking/devices/
networking/devices/ifcfg-eth0
networking/profiles/
networking/profiles/default/
networking/profiles/default/network
...

In the second case, the tar command first changes to the /etc/sysconfig directory, and then creates
a copy of the networking directory found there. When the resulting archive file is extracted, the
"interesting" directory is immediately available.

Archiving Files with tar

73

Of course, prince could have used the cd command before running the tar command to the same effect,
but the -C command line switch is often more efficient.

Compressing archives

Often, the tar command is used to archive files that will not be used anytime soon. Because the resulting
archive files will not be used soon, they are compressed as well. In the following, prince is able to save a
significant amount of disk space by gziping his archive of his home directory.

[prince@station prince]$ tar cf /tmp/prince.tar -C /home/prince .
[prince@station prince]$ ls -s /tmp/prince.tar
 224 /tmp/prince.tar
[prince@station prince]$ gzip /tmp/prince.tar
[prince@station prince]$ ls -s /tmp/prince.tar.gz
 28 /tmp/prince.tar.gz

Because users are often creating and then compressing archives, or dealing with archives that have been
compressed, the tar command provides three command line switches for internally compressing (or
decompressing) archive files. Above, prince could have obtained the same result by adding a -z command
line switch.

[prince@station prince]$ tar czf /tmp/prince.tar.gz -C /home/prince .
[prince@station prince]$ ls -s /tmp/prince.tar.gz
 28 /tmp/prince.tar.gz

The combination of tar and gzip is found so often, that often the .tar.gz filename extension will be
abbreviated .tgz.

[prince@station prince]$ tar czf /tmp/prince.tgz -C /home/prince .
[prince@station prince]$ tar tzf /tmp/prince.tgz
./
./.bash_profile
./Desktop/
./Desktop/redhat_academy.desktop
./.bashrc
./.bash_logout
./.zshrc

With older versions of the tar command, when expanding or listing a tar archive, you would have to
respecify the appropriate compression (with the -z or -j command line switches). In recent version of Red
Hat Enterprise Linux, however, the tar command will now automatically recognize a compressed archive,
and decompress it appropriately.

[prince@station prince]$ tar tf /tmp/prince.tgz
./
./.bash_profile
./Desktop/
./Desktop/redhat_academy.desktop
./.bashrc
./.bash_logout
./.zshrc

Examples

Creating a tar Archive
The user einstein wants to make a copy of the bash documentation that he can take along with him. He
quickly tars up the /usr/share/doc/bash-2.05b directory.

[einstein@station einstein]$ tar cvzf bashdoc.tgz -C /usr/share/doc bash-3.1
bash-3.1/

Archiving Files with tar

74

bash-3.1/bashref.ps
bash-3.1/bash.0
bash-3.1/bash.html
bash-3.1/article.ps
bash-3.1/complete/
bash-3.1/complete/complete2.ianmac
...
[einstein@station einstein]$ ls -s bashdoc.tgz
 1240 bashdoc.tgz

Once he gets the file to its new location, he extracts the archive.

[einstein@station einstein]$ tar xvf bashdoc.tgz
bash-3.1/
bash-3.1/bashref.ps
bash-3.1/bash.0
bash-3.1/bash.html
bash-3.1/article.ps
bash-3.1/complete/
bash-3.1/complete/complete2.ianmac
...

Tarring Directly to a Floppy
The user maxwell wants to quickly compare the LDAP configuration on two different machines. The
machines are not connected to a network, but both have a floppy drive. Rather than creating an archive,
formatting a floppy, mounting the floppy, copying the archive, and unmounting the floppy, maxwell
decides to save a few steps. With an unmounted floppy in the drive, maxwell runs the following command.

[maxwell@station maxwell]$ tar cvzf /dev/fd0 -C /etc openldap
openldap/
openldap/ldapfilter.conf
openldap/ldap.conf
openldap/ldapsearchprefs.conf
openldap/ldaptemplates.conf

He then ejects the floppy and carries it to the second machine. The following command extracts the archive
into his local directory.

[maxwell@station maxwell]$ tar xvzf /dev/fd0
openldap/
openldap/ldapfilter.conf
openldap/ldap.conf
openldap/ldapsearchprefs.conf
openldap/ldaptemplates.conf
openldap/ldaptemplates.conf

gzip: stdin: decompression OK, trailing garbage ignored
tar: Child died with signal 13
tar: Error exit delayed from previous errors

Although the tar command (or, more accurately, the gzip command) complained about "trailing garbage",
the archive was successfully extracted.

What happened here? The tar command wrote directly to the floppy's device node, so the archive file
was written byte for byte onto the floppy as raw data. Upon extracting the archive, the file was read byte
for byte, until the file was entirely read. The gzip command kept going, however, trying to decompress
whatever was sitting on the floppy before the archive was written. This is the "trailing garbage" that the
gzip command complained about. What was the filename of the archive as it was sitting on the floppy?
(Trick question!)

The file doesn't have a name, because the floppy doesn't have a filesystem. (What ever filesystem might
have existed on the floppy was destroyed by the archive).

Archiving Files with tar

75

Oops.
The user einstein wants to create an archive of his home directory. He tries the following command.

[einstein@station einstein]$ tar cvzf ~/einstein.tgz ~
tar: Removing leading `/' from member names
home/einstein/
home/einstein/.kde/
home/einstein/.kde/Autostart/
...
home/einstein/.bash_history
home/einstein/einstein.tgz
tar: /home/einstein/einstein.tgz: file changed as we read it
tar: Error exit delayed from previous errors

Why did the tar command error out? The archive was being written to the file /home/einstein/
einstein.tgz. The archive included every file in the /home/einstein directory. Eventually, the
tar command tried to append the file /home/einstein/einstein.tgz to the archive /home/
einstein/einstein.tgz. This obviously causes problems.

Fortunately, the tar command is now smart enough to detect circular references. In the (not too distant)
"old days", the first clue that something was wrong in situations like this was the long time it took the tar
command to run, and the second clue was the error message saying that the disk was out of space.

What's the solution? Make sure that the archive file you're creating does not exist in the directory your
archiving. The /tmp directory comes in handy.

[einstein@station einstein]$ tar czf /tmp/einstein.tgz ~
tar: Removing leading `/' from member names
[einstein@station einstein]$ mv /tmp/einstein.tgz .

Online Exercises

Archiving Directories

Lab Exercise

Objective: Create an archive using the tar command.

Estimated Time: 15 mins.

Specification

1. In your home directory, create the file zip_docs.tar which is an archive of the documentation for
the zip package located in the /usr/share/doc/zip* directory.

2. Create the file /tmp/student.tgz, which is a gziped archive of your home directory. Replace
student with your username.

Deliverables

Solutions

tar cvf ~/zip_docs.tar /usr/share/doc/zip*

tar cvzf /tmp/student.tgz ~

Archiving Files with tar

76

1.
1. The file zip_docs.tar in your home directory, which is an archive of the /usr/share/
doc/zip* directory.

2. The file /tmp/student.tgz, with student replaced with your username, which is a
gziped archive of your home directory.

Questions
1. Which of the following commands would create an archive called archive.tar?

a. tar -c -f archive.tar

b. tar -x -f archive.tar /usr/games

c. tar -t -f archive.tar /usr/games

d. tar -c -f archive.tar /usr/games

e. None of the above.

2. Which of the following commands would list the contents of an archive file called
archive.tar?

a. tar tf archive.tar

b. tar -xf archive.tar

c. tar -c -f archive.tar

d. tar --list archive.tar

e. None of the above.

3. Which of the following commands would extract the contents of an archive file called
archive.tar?

a. tar tf archive.tar

b. tar -xf archive.tar

c. tar -c -f archive.tar

d. tar --list archive.tar

e. None of the above.

4. You have downloaded a file titled linux-2.5.34.tar.gz. Which of the following commands
can you run to extract the contents of the file?

a. tar xvzf linux-2.5.34.tar.gz

b. tar -x -f linux-2.5.34.tar.gz

c. tar -x -z -f linux-2.5.34.tar.gz

d. tar -xZf linux-2.5.34.tar.gz

Archiving Files with tar

77

e. tar fz linux-2.5.34.tar.gz

f. tar -x -f linux-2.5.34.tar.gz -z

5. You would like to make a bzip2 compressed archive of the /usr/share/sounds directory, so
that when someone extracts the archive, it extracts starting with the directory sounds. Which of
the following commands will create the archive?

a. tar -c -f /tmp/sounds.tar.bz2 /usr/share/sounds

b. tar cvjf /tmp/sounds.tar.bz2 -C /usr/share sounds

c. tar -c -f /tmp/sounds.tar.bz2 -C /usr/share/sounds -j

d. tar -cj /tmp/sounds.tar.bz2 -f /usr/share/sounds

e. None of the above

6. What filename extension does the tar command add automatically when creating an archive?

a. .tar

b. .tgz

c. .tar.gz

d. .zip

e. No extension is added by tar.

7. Usually, when a tar archive is extracted with the command tar xzf archive.tgz, where
are the files placed?

a. Relative to the root of the current filesystem

b. Relative to the current working directory

c. Relative to the directory specified on the command line

d. Relative to the root of the root filesystem

e. Relative to the /tmp directory

8. A file has been downloaded called archive.tgz. How can you view the contents of this archive?

a. tar tzvf archive.tgz

b. tar jtvf archive.tgz

c. tar tvf archive.tgz

d. tar cvzf archive.tgz

e. tar tf archive.tgz

