
JavaScript	
 101	

	

Developed	
 for	
 Pace	
 University	
 –	
 CIS101	

	

	

	

Catherine	
 Dwyer	

Narayan	
 Murthy	

David	
 Sachs	

Henry	
 H.	
 Gaylord,	
 III	

JavaScript 101 | i

Copyright © August 2002 Pace University

Introduction to Programming

OBJECTIVES: This material will introduce you to

• Programming languages

• The common elements found in most programming languages

• JavaScript

• Object based languages

• What software you will need to create and run JavaScript code

ii| Introduction Programming

Copyright © August 2002 Pace University

About programming
What exactly is programming? Without it, computers won’t work. Who can learn how to
program? Even young children, using a special programming language called Logo, are
able to write programs. As an introduction to programming and programming languages,
we will spend a few weeks learning about JavaScript, a programming language designed
to work with Web pages.

A program is a set or sequence of instructions entered into a computer to perform work.
Programs are written in programming languages, such as Visual Basic, Java, C++, or
JavaScript. The term script is sometimes used to denote a JavaScript program.
Programming languages are made up of special terms (called keywords), commands, and
ways to represent information (data). Programs at first may seem a little strange, but they
basically contain English words.

However, the computer cannot carry out instructions written in English. It only
understands instructions written in its very own language, machine code, or binary
code. Binary code consists of patterns made up of nothing but 1s and 0s. Can you
imagine writing instructions for a computer using just 0s and 1s? Actually, the first
programmers had to do this. But then computer scientists figured out a better way. They
devised a mechanism to allow programmers to write instructions similar to human
language, and then used the computer itself to translate those instructions into machine
code.

How does a program get translated into binary code? Well, another program does the job!
There are two techniques used to translate a program into binary code. One is called a
compiler. A compiler looks at all the instructions in the program, and then translates the
entire list into a full set of binary instructions. The second type is called an interpreter.
An interpreter looks at only one instruction at a time, and then translates it into binary
code, and the computer executes those instructions. The language we will study,
JavaScript, is an interpreted language. When you execute a JavaScript program, your
Web browser, i.e. Netscape or Internet Explorer, does the job of interpreting your
JavaScript code.

Programming is writing the sequence of instructions that, after being translated into
binary code, will allow the computer to complete a task.

JavaScript 101 | iii

Copyright © August 2002 Pace University

Common elements found in most programming languages

The language we will study in CIS101, JavaScript, has elements common with many
other programming languages. Most languages contain ways to represent information
(data), statements that examine or transform (change) data, statements that collect (input)
data, and statements that format and display (output) data.

The common elements of most languages (including JavaScript) consist of the following:

• variables
• data types
• expressions
• keywords
• statements
• functions

A variable is a reference to a storage locations inside main memory (RAM) that contains
information relevant to a program. For example, if you used the computer to register for
your courses, the program that processed your registration would need a variable to store
the number of credits you have registered for. The information stored in variables is in
binary format (i.e. only 0s and 1s). The information is also volatile. In other words, just
like other information stored in memory, its value in memory can be lost if it is not saved
before the machine is turned off.

A Data Type is a category of information that a programming language is capable of
representing and processing. Although data types vary from language to language, the
three found in JavaScript are Number, String, and Boolean. Numbers can represent
either integers (whole numbers) or real numbers (numbers with a fractional portion). A
String is any sequence of letters, numbers, or other printable characters enclosed with
quote marks (either “” or ‘’). Boolean data can only have two possible values: true or
false.

An expression is the computer science term for a formula that generates a value.
Expressions can contain variables, arithmetic operators like plus (+) and minus (-), and
other elements.

A keyword or reserved word is a word that has a special meaning in JavaScript, and the
word cannot be used for any other purpose such as the name of a variable.

A statement is a command that can be carried out by a program, such as statements that
repeat (for loop and while loop), or statements that examine a condition and branch in
different directions depending on the condition (if statement).

A function is a part of a program that carries out a specific task or purpose. It is a kind of
mini-program. A function has a name, and the function name represents the set of
statements inside the function that perform its intended task. So when you use the
function name in your code, the statements associated with that name are executed.

iv| Introduction Programming

Copyright © August 2002 Pace University

About JavaScript
Over the next few weeks you will be learning how to program using JavaScript. The goal
for this course is not to make you a programmer. Instead the course’s goal is to introduce
you to some simple programs, and give you an appreciation of the work involved in
creating a program. Since computer software is constantly changing, understanding how
programs are put together will help prepare you to learn new tools.

In 1995 Netscape began to design and implement a new language intended to add
interactivity to Web pages. The language was christened “LiveScript” to reflect its
dynamic nature, but was quickly renamed JavaScript, a decision that has caused great
confusion as to the relationship between Java and JavaScript.

Although their names make them seem related, there is no direct connection between
JavaScript and Java, a complex cross-platform programming language developed by Sun
Microsystems to write standalone applications or applets attached to HTML pages.
JavaScript is also not a subset of Java (meaning that it is not just scaled-down Java with
some of the features left out). Although JavaScript is structured in ways that are
somewhat similar to Java, there are many differences between the two as well.

JavaScript is a programming language used to create dynamic Web pages. The purpose of
JavaScript is to allow code downloaded along with HTML to be executed on the client.
The client computer is the computer you are sitting in front of when you surf the Web.
When you click on a hyperlink, HTML code is copied and transmitted across the Internet
from another computer, called the server, onto your machine (the client). Your browser,
following the instructions contained in HTML, then displays the page. By including
JavaScript code with the HTML and allowing it to execute on the client, there is a
dramatic decrease in the time consuming back and forth between the client and the
server. Before the existence of JavaScript, programs that added interactivity to Web
pages ran on the server, resulting in very slow response times. JavaScript is called a
"lightweight" programming language because it is not compiled, but is interpreted line by
line. This eliminates the need for a compiler, but requires the browser to be JavaScript
enabled, which means your browser carries out the job of interpreting the JavaScript
code.

You can use JavaScript to:

• Display different HTML depending on whether the browser is Netscape or
Internet Explorer.

• Validate user input data prior to sending data to the server for processing

• Create dynamic effects like animation, scrolling text, swapping of images, and
manipulation of layers

• Check for plug-ins being installed

JavaScript 101 | v

Copyright © August 2002 Pace University

Some important features of JavaScript:

• It is currently supported by both Netscape and Internet Explorer, although there
are many examples of scripts that appear differently depending on which browser
you are using.

• JavaScript source code is usually directly embedded in an HTML document.

• JavaScript programs are event driven. As we will learn in Lesson 05, an event is a
user action that the computer can respond to. So an event driven program can
respond to user events like clicking a button or moving the mouse.

• It is compact and relatively easy to learn.

• It is an object-based scripting language.

• It is an interpreted language (interpreted by the browser).

vi| Introduction Programming

Copyright © August 2002 Pace University

Object based languages
JavaScript is an object-based language. Other object-based languages include Visual
Basic and VB Script. An object is a “package”, a collection of properties (variables) and
methods (functions) all combined under a single name. The properties of an object refer
to its characteristics. The methods of an object refer to actions it is capable of executing.
For example, imagine that there was an object named car. We could say that the car
object possesses several properties: make, model, year, and color, for example. We might
even say that car has some methods, or actions it can perform: go(), stop(), and reverse().
Although car is obviously fictional, you can see that its properties and methods all relate
to a common theme. Objects are an important component of modern programming
languages such as C++ and Java.

Object based languages have built-in objects already defined and available for use. In
JavaScript, some examples include the document object, the location object, and the
window object. You will use some of these built-in objects in your programs, beginning
in Lesson 01 using the document object to display text. In JavaScript, the set of pre-
existing objects is known as the “Document Object Model”, or DOM.

The DOM is a hierarchy of objects “built in” to JavaScript. Most of these objects are
directly related to characteristics of the Web page or browser. DOM defines the
properties and methods for each object. When you write JavaScript code, all the objects
in DOM are available for use.

JavaScript 101 | vii

Copyright © August 2002 Pace University

Software you will need to Write JavaScript Code in CIS101

Since JavaScript is embedded in HTML code, you will continue to use 1stPage 2000 to
write your JavaScripts. For instructions on how to get started using 1st Page 2000, see
Appendix B, “Using 1st Page 2000 to Write JavaScripts.”

The screen shots and code for this book use the browser Internet Explorer 6.0. Since there
are substantial differences between how Netscape and Internet Explorer execute
JavaScript, your output might appear quite different from the way it is presented in this
book. If you are using Netscape and the output does not seem right, try it with Internet
Explorer.

viii| Introduction Programming

Copyright © August 2002 Pace University

Key Terms and Definitions
• program – a sequence of instructions entered into a computer to perform work

• programming language – a set of rules, syntax requirements, and data representation
techniques that can be used to create a program, or a set of instructions for a computer.

• keywords – words that are part of a computer language that have been given a specific
and precise meaning, allowing the language to generate programs.

• binary code – also known as machine code, it is the series of 0s and 1s that represent
information and ocmputer instructions. Computers can only process information and
instructions that have been translated into binary format.

• compiler – a program that produces binary code (machine code) from instructions
written in another programming language. A compiler first examines all the instructions
in the input code file, then creates a separate file containing all the machine code needed
to execute the program.

• interpreter – an interpreter also translates instructions from a programming language
into machine code. However, it performs this translation one line at a time. JavaScript is
an example of an interpreted language. Your Web browser carries out the task of
interpreting your JavaScript code.

• variable – named location in the computer’s main memory that stores information in
binary format (0s and 1s).

• data type – a category of information that a programming languages is capable of
representing and processing. The primary data types in JavaScript are Number,
representing numeric data, String, representing character data, and Boolean, representing
logical data.

• expression – a formula that is part of a program that calculates a value.

• statement – command that computer can carry out.

• function – mini program that carries out a specific task. Also called methods when
referring to objects.

• client – computer that requests copies of HTML and JavaScript code for display.

• server – computer that hosts Web pages that may contain JavaScripts.

• object – package that is part of a programming language that combines data (properties)
and functions or methods that act on the data.

• properties - data that is part of an object.

• methods – functions or actions an object can carry out or complete.

• Document Object Model – hierarchy of built in pre-defined objects available in
JavaScript.

JavaScript 101 | 1-1

Copyright © August 2002 Pace University

Lesson 1: Writing Your First JavaScript

OBJECTIVES: In this lesson you will be taught how to

• Use the <script> </script> tag

• Insert JavaScript code in a Web page

• Hide your JavaScript code from older browsers

• Use document.write to create output

• Become familiar with built in objects and object notation

• Use embedded HTML to format output

• Display the date and time using the Date object

• Use comments to document code

1-2| Lesson 1: Writing Your first JavaScript

Copyright © August 2002 Pace University

Preparing to Program
JavaScript code is most often embedded in HTML documents. Since JavaScript code
requires the browser to perform special processing, the code is “fenced off” so to speak
from the HTML with the <script> tag. JavaScript code is placed between <script>
and </script>. JavaScript programs look something like this:

Example

<script language="JavaScript">

JavaScript code goes here

</script>

Browsers that recognize JavaScript also recognize the special <script> ... </script> tags.
Since there is more than one scripting language, the script tag has a language attribute
that you set to “JavaScript.” The script tag can be inserted in the body of your HTML
document or the head of your document. If your JavaScript code will write something
directly on the page, it is normally placed in the body section of the document where you
want the results to appear. Code that does not write to the page directly, such as code that
changes elements or defines variables, is normally placed in the head section. For most of
the programs in this course you will insert your code in the body of the document.

Hiding JavaScript From Older Browsers
While this has become less important, very old browsers do not understand JavaScript
and will not recognize the script tag. The JavaScript code that is typed between the script
tags are just lines of text to those old browsers and will be displayed on the Web page.
To prevent this from happening, a programming convention is used that hides the
JavaScript inside comments. It prevents the JavaScript from being displayed. Of course,
it does not solve the original problem, that there are browsers unable to process
JavaScript. So this fix will hide your code for those browsers; note that they will be
unable to execute it.
It looks something like this:

<script LANGUAGE=”JavaScript”>

<!-- hide (first comment line)

JavaScript code goes here

// finish hiding (last comment line)-->

</script>

A programming convention is a common practice used by most professional programmers.
Although it is usually a good idea to comply with programming conventions, you are not

JavaScript 101 | 1-3

Copyright © August 2002 Pace University

required to do so by the rules of the language. Comments are parts of programs that
document the code but are not executed. They are preceded by a special symbol that tells the
broswer not to interpret the text that follows. To hide your code from old browsers, you insert
the opening HTML comment code (<!--) just after the opening script tag. Just before the
closing script tag, you insert the closing HTML comment preceded by two forward slashes(//
-->). If you use 1st Page 2000 to write your JavaScript code, select the Scripting sub-menu,
then select Define Scripting Language and choose JavaScript. The opening and closing script
tags along with the needed comment lines will be generated for you by 1st page 2000 (See
Appendix B for more detailed instructions on using 1st Page 2000 to write JavaScript code).

Using document.write to Display Text
The document.write method is your first JavaScript statement. It writes a line of text to the
document. The format for document.write is as follows:

Syntax:

document.write(“text to be displayed within quotation marks”)

document.write will display what it finds between the opening parenthesis and closing
parenthesis. The characters surrounded by quotation marks are known as a string. When the
string is displayed, the quote marks are omitted. The purpose of the quote marks is to serve
as delimiters: symbols that mark the beginning and end of the string. You may also use
single quote marks to delimit a string.

As was discussed in the Introduction, document is a built in object in JavaScript. When using
objects, you must use dot (.) notation. The dot means “belongs to.” So
document.write(“some text”) means “use the write method that belongs to the object known
as document to display the text found inside the parentheses.”

Adding Comments to Your Code
You often want to include information about a JavaScript in the file that contains the code.
You may want to include your name for the purpose of handing in an assignment. You
sometimes want to explain how a particular section of the code works.

Text that is inside a code file but is not intended to be executed is called a comment. In
JavaScript there are two ways to indicate a comment. You can create a single line comment
by using //, or create a multi-line comment by using /* and */. Here are some examples:

// everything on this line after the two slashes is a comment

or

/*
 everything,
 including what is on this line and below
 is a comment until you encounter the
 closing symbol, which is
*/

1-4| Lesson 1: Writing Your first JavaScript

Copyright © August 2002 Pace University

These comments only work inside the script tags. If you include them in the HTML section
they will be displayed on the page.

JavaScript 101 | 1-5

Copyright © August 2002 Pace University

In the Lab
Each week in the lab you will enter JavaScript code and run it using 1st Page 2000. After
correctly entering the program and running it without any mistakes, you will start making
changes and additions to the code. This is a technique programmers use to learn a new
language. Programmers key in a program they know is working, then try to make small
adjustments and alterations until they learn enough about the language to write an entire
program. Even after learning a language, programmers hardly every start with a blank page.
They usually begin with some code sample close to what they want to accomplish, then make
alterations.

Start 1st page 2000 and begin a new HTML document. Save it giving it the name
lesson0101.html. Following the instructions outlined in Appendix B, place your cursor
between the <body> … </body> tags, and insert the script tags and hiding comments by
using the Scripting menu.

Now type in exactly the following code:

<html>

<head>
 <title>Lesson 01</title>
</head>

<body>

<script language="Javascript">

<!—

document.write("Hello world!
");

document.write("This is my first JavaScript.
");

//-->

</script>

</body>

</html>

Please note: if you use 1st Page 2000, it will generate an HTML template plus the script tags
and the hiding comments. You actually only have to key in the Title, and lines 10 and 11 (the
two document.write statements).

Now click the Preview tab, and you should see the following output:

(insert screen shot of code above running).

Notice that both lines with document.write end with a semi-colon (;). The semi-colon at the
end of a statement is optional. You may also end it with the new line character (by hitting
enter). Since other programming and scripting languages end statements with a semicolon,

1-6| Lesson 1: Writing Your first JavaScript

Copyright © August 2002 Pace University

JavaScript also allows you to put a semicolon at the end of your statements. You do not need
semicolons at the end of statements, and you will see many examples around the Web of
JavaScript code without semi-colons. All you need to do is to start the next statement on a
new line.

What to do if things go wrong
If you do not see the exact same output shown above, then you have made a mistake entering
the code. An error in code is called a bug. Removing errors is called debugging. When you
first learn to program, most of the mistakes you make will be keyboarding errors. You might
have forgotten the closing quotes on the message or misspelled document.write. Such errors
in the format of statements, be it HTML or JavaScript, are known as syntax errors. For the
most part, HTML syntax errors are easy to spot and correct: usually the browser just ignores
malformed tags and continues on with the page. In contrast, syntax errors in JavaScript code
can sometimes be difficult to identify. JavaScript is case sensitive, so “Big” and “big” will
not be treated as the same word. This is NOT the case with HTML, so the combination of
HTML and JavaScript in one file, with one being case sensitive and the other not is a large
source of confusion.

Most Web browsers attempt to assist you in identifying and correcting JavaScript syntax
errors. If you try to run your JavaScript in Internet Explorer and it has a syntax error, a
window will automatically pop up identifying the error. Unfortunately, the error messages
provided by Internet Explorer are not very descriptive, sometimes providing only the line
number where the error occurred.

If you use Netscape, a short error message will appear in the status bar (the bottom panel) on
the browser window, although that message may be short-lived and easy to overlook. With
Netscape, you can generate error messages by entering "javascript:" (the word javascript
followed by a colon) in the Location box. This command will invoke the JavaScript Console,
which opens in a separate window. The JavaScript Console will identify the line in the
HTML document where the syntax error is believed to occur along with a descriptive error
message. Usually, this error message will be very helpful in fixing the underlying error. For
more detailed instructions on debugging see Appendix D, “Debugging JavaScript Code.”

Building on Your First JavaScript
If you are at this point in the lab, it means you have typed in lesson0101.html, and it is
working properly. Do not continue with this section until that is the case.

Let’s take a closer look at the first document.write statement:

document.write("Hello world!
");

Notice the
 tag at the end of the string. If you remember from HTML,
 forces a new
line. It is the equivalent of hitting the enter key. You should find this interesting. It means
that not only can you embed JavaScript into HTML, but you can also embed HTML into
JavaScript!

JavaScript 101 | 1-7

Copyright © August 2002 Pace University

Besides
, you can use all the other HTML text formatting tags, like headings, the font
tags, bold, italic, etc. One important requirement is that the tags must be part of the string. In
other words, they must be nested inside the opening and closing quotes that define the string.

Let’s start adding more lines.

After line 11 (after the second document.write statement), add the following (if your text is
longer than one line you can break it up as indicated below with the backslash):

document.write(“<h1>This first JavaScript was written by \
(your name)</h1>”);

You can write in different colors. The next line write text in maroon. Be careful with the
quotes within quotes. The outer quotes are double quotes, the inner quotes (around the word
maroon) must be single quotes.

document.write(“Have a great day!
”);

Try writing extra lines using different colors. For more colors to use, see Appendix C,
“Named Colors.”

Using the Date Object
So far we haven’t done anything you couldn’t already do with HTML. We just used a
different way to display text. Now it is time to spread our wings and to start seeing a little bit
of what JavaScript and programming can provide to you. You are probably aware that
whenever you turn on your computer, a little clock pops up in the lower right corner showing
the current time. If you place your mouse arrow over the time, today’s date displays. All
computers have an internal clock for the day and time. It is needed by the computer for many
purposes, including executing code and saving files. With JavaScript, you can capture the
current date and time and display it on your page.

Add the following code:

document.write("Today is ", Date(),"
");

Be careful with the syntax of this statement. Be careful, Date() needs to be capitalized. It will
not work if you type it all lower case.

Notice the output has three parts, separated by commas. Type it in exactly as you see it and
run it. Your code should display something like this:

(insert picture of output with date)

Hit the reload button of your browser or hit the edit then preview button in 1st Page 2000, and
notice that the time is updated. Date is an object that gets the current time and date from your
computer’s system clock. So each time you reload the page and re-execute that line of code, a
new Date object is created.

The syntax of document.write allows you to display a list of things, as long as they are

1-8| Lesson 1: Writing Your first JavaScript

Copyright © August 2002 Pace University

separated by commas. You can keep adding to the document.write statement, as long as each
part is separated by a comma. With the comma, the parts are displayed next to each other. If
you remove the comma, you will get an error.

Another interesting fact is that the Date object appears differently depending on whether you
use Netscape or Internet Explorer. Execute this code using both browsers and notice the
differences between the two. This is just a minor example of the compatibility conflicts that
exist between Netscape and Internet Explorer. Until this issue is resolved, there will continue
to be examples of JavaScript code that do not run the same way with Netscape and Internet
Explorer.

Student Modifications
You now have a working JavaScript that uses document.write to display text, uses embedded
HTML to format text, and displays the current time and date. Add some more modifications:

• Output a line of text telling us your favorite singer or band

• Output your email address in your favorite color

• Output your favorite movie

• Add a comment within the script tags by using either // or /* and */

JavaScript 101 | 1-9

Copyright © August 2002 Pace University

Key Terms and Definitions

• script tag – Set of tags (<script> and </script> that enclose JavaScript code.

• programming conventions – standards and practices that are followed by professional
programmers but are not required by the syntax rules of a language.

• comments – text that is part of a program file but is not interpreted by the browser. Its
purpose is to provide documentation for the code. Comments are indicated in JavaScript
by either // or /* and */.

• document.write – JavaScript statement that writes text to a page.

• string – a word, sentence, or other set of characters, such as letters, numbers, and
puctuation marks, surrounded by quote marks.

• dot notation - syntax required when referring to objects. The dot (.) indicates that what
follows is part of the object. So document.write means that write is a method that belongs
to the object named document.

• delimiters - Symbols that act as boundaries for parts of a program. Single and double
quotes are both used as delimiters for strings.

• debugging – the process of elimating errors from a program.

• Date object - an object available to a JavaScript that contains a specifc time and date.

Lesson Summary
In Lesson 1 you learned to write your first JavaScript. You used the script tag to
designate JavaScript code within an HTML document, and learned how to hide
JavaScript from old browsers. You used document.write to display text. You also used
HTML embedded within JavaScript to format text for display. You learned how to use
comments to document your code. Finally, you added the Date object to your page to
display the current date and time.

1-10| Lesson 1: Writing Your first JavaScript

Copyright © August 2002 Pace University

Lesson 01 Exercises

1_1. Write a JavaScript that displays the following double spaced lines:
 Hello again!

 Your class is CIS101.

 What is your name?

1_2. Write a JavaScript that uses asterisks to display your first initial in block form. For
example, the program that Fred writes would output the following:

*
*

*
*
*

1_3. Write a JavaScript program that lists all the courses you are taking this semester.
Use a new line and a new color for each course.

JavaScript 101 | 2-1

Copyright © August 2002 Pace University

Lesson 2: Input and Variables

OBJECTIVES: In this lesson you will learn

• How to include data in your script by using a variable

• How to declare (create) a variable

• How to name a variable (rules for identifiers)

• How to assign a value to a variable using =

• How to combine strings using + and string concatenation

• How to use the prompt statement to collect information from the user

• How to display (output) the contents (value) of a variable

• About string formatting methods

2-2| Lesson 2: Input and Variables

Copyright © August 2002 Pace University

Preparing to Program
A critical feature of programming is the ability to represent data (information). If a
computer cannot process information, it is not much use. Programming languages use
variables to represent information. A variable is an idea you may remember from
algebra: it is a name that stands for a value. Since that value can change (vary) over time,
it is called a variable. It does not mean it has to change, it just means that it may change.
In programming, a variable is a container that holds information used by a program. In
algebra, you learned that variables like x and y can hold numbers. In JavaScript
programs, variables can also hold strings (character data) or Boolean (logical) values.

Declaring Variables
The first step requires that you create a variable. This is called a variable declaration. In
JavaScript, a variable declaration looks like this:

var myName;

var is a keyword that indicates this is a variable declaration. This line of code says that
“myName” is the name of the variable. In programming, the name of a variable is called
an identifier. All programming languages have syntax rules that restrict what can be a
legal identifier. In JavaScript, the first character must be either a letter or an underscore
(_). The remaining characters may include numbers, along with letters or an underscore.
You cannot include a blank space or any other special characters like dash (-). You may
also not use any JavaScript reserved words as an identifier (see Appendix A for a list of
JavaScript reserved words). Identifiers are case sensitive, so”myName” and “MyName”
are treated as different identifiers. Mis-spellings causes by the wrong case are usually
difficult to spot, so always be careful when creating and using variable names.

Assigning Values to a Variable
Since a variable is a container for a value, you need to know how to put something into
that container. You give a value to a variable using this syntax:

myName = “Fred”;

The equal sign is called the assignment operator. Notice the value is copied from the right
to the left. This is opposite of how you used the equal sign in your math classes. In most
programming languages, values are assigned from the right into the left. The opposite
direction is an error:

“Fred” = myName;
//this is an error, the variable name must be on the left

You can also declare a variable and assign it a value at the same time:

var anotherName = “Sally”;
You can also declare a variable and assign it with a numeric value. Here are some
examples:

var number = 100;

JavaScript 101 | 2-3

Copyright © August 2002 Pace University

var taxRate = .0825;

Using prompt and Variables
An important feature that JavaScript adds to your Web page is interactivity: you can ask
users questions, and their answers can determine how the Web page is displayed. The
prompt method is used to ask a question and to store the answer entered by the user in a
variable. Here is the basic syntax for the prompt method:

Syntax:

var varname = prompt("your text","default entry")
You replace varname with a variable name, and replace “your text” with the message
displayed to the user (usually a question). The second entry, “default entry” sets a default
value for the user. Often this is left as “”, which is nothing. However, it could be set to
something else if you would like to have a default answer ready for the user to see. When the
user sees this dialog box, enters a value and presses enter, the string the user has entered is
assigned (copied) into the variable. The variable now has the value of the user’s input.

The entries inside the parentheses of a method are known as parameters. Remember, in the
Introduction you learned about the idea of a function or method, which is a mini-program
that carries out a specific task. Parameters are information that a method or function uses
when carrying out its specialized tasks. You will learn more about parameters, functions, and
methods in Lesson 6.

Here is an example of a prompt statement:

var myName = prompt(“What is your name?”, “Enter your name here”);

When executed, this code displays the following dialog box:

(insert picture of prompt method with this code here)

This week in the lab you will use the prompt method to collect information from the user
and make use of it in your programs.

Using Variables With document.write
Once a variable has a value, you can use document.write to display it on a page. It is
important to distinguish between the name of a variable and what its contents are. The
name of a variable is its identifier. When you refer to a variable in a line of code, you use
the name. Variables are stand-ins or placeholders for a value. When the code actually
executes and the variable is needed to do something, its value is used. For example, given
the following declaration:

2-4| Lesson 2: Input and Variables

Copyright © August 2002 Pace University

var myName = “Sam”;

myName is the name of the variable, and Sam is the value or contents of the variable.
When you use a variable in a document.write statement, the contents of the variable are
displayed on the page. For example, the statement

document.write(myName);

displays the name Sam on the page. Notice there are no quote marks surrounding
myName. If you were to include quote marks, then the contents of the quote marks, not
the contents of the variable would be displayed. The basic rule controlling output is this:
characters inside quotes are printed; characters not inside quotes are considered variables,
and the value of the variable is printed.

For example:

document.write(“myName”);

displays myName on the page, not the name Sam.

Combining Strings Using Concatenation
Concatenation is an operation that combines strings. The + operator, when applied between
two strings, combines them into one string. For example:

var part1 = “This sentence “;

var part 2 = “has “;

var part 3 = “three pieces.”;

var sentence = part1 + part2 + part3;

Once all three parts are combined, the variable sentence has the value “This sentence has
three pieces.” Notice you need to include blank spaces within the string. If you omit them,
they words will run together.
You can also use concatenation to combine strings inside quotes along with variables. For
example:

var myCar = “Corvette”;

document.write(“I love to drive my “ + myCar);

which displays the following

(insert screen shot of above line of code).

You will use concatenation in this lesson to combine variables containing values input by the
user in a display message.

JavaScript 101 | 2-5

Copyright © August 2002 Pace University

In the Lab
This week in the lab you will add interactivity to your Web pages by introducing variables
and user input with the prompt method. This will allow you to customize the appearance of
your page. We will also try out a simple version of Mad Libs, a word game that creates
mangled sentences.

Start 1st Page 2000 and begin a new HTML document. Save it giving it the name
lesson0201.html. Following the instructions outlined in Appendix B, place your cursor
between the <BODY> … </BODY> tags, and insert the SCRIPT tags and hiding comments
by using the Scripting menu.

Now type in exactly the following code:

<script language="Javascript">

<!--

var name=prompt("Please enter your name:"," your name");

document.write("Hello " + name + " !!!
");

var yourClass=prompt("What class are you taking?","your class");

document.write("Welcome to " + yourClass + " !!!
");

//-->

</script>

After you have typed in the above code, run it using the preview button. If you have any
errors, correct your code until you have output that looks like the following:

(insert screen shot of above code)

Student Modifications
Make the following modifications to the code:

• In the prompt method set the value of the second parameter to “”, which means
empty. This takes away the default entry. Run the code again, and do not input a
value, just hit the enter key. What is displayed?

• Create another variable called myMovie. Ask the user to input their favorite movie,
and store their answer in myMovie. Write a document.write statement that displays
the variable.

• Use HTML format tags to change the format of a variable. Remember, the HTML
tags need to be inside quote marks, so you must use concatenation to do this.

2-6| Lesson 2: Input and Variables

Copyright © August 2002 Pace University

Having Some Fun With Variables
Save your work from the previous exercise. Start a new HTML document in 1st Page 2000,
add the SCRIPT tags using the Scripting menu, and save this file as lesson0202.html.
A Mad Lib is a popular party activity where a potentially humorous story is written down,
with blanks in the place of some important words. Before reading the story, the storyteller
asks others present to fill in those blanks. Those selecting the words are only told the type of
word required, and have no other information about the story. This lack of context in
selecting words can result in an entertaining story when the words are plugged in the
appropriate places.
The following JavaScript code uses variables and the prompt method to create a Mad Lib.

Enter the following code:

<html>

<head>
 <title>Simple Mad Lib</title>
</head>

<body>

<script language="Javascript">

<!--

var name = prompt("Give me a name: ","");

var verb = prompt("Give me a past-tense verb: ","");

var adjective= prompt("Give me an adjective: ","");

var sentence = name + " " + verb +
 " to the museum, and the monkey was " + adjective + ".<p>";

document.write(sentence);

//-->

</script>

</body>

</html>

After entering this code, run it a few times with different words. Check your blank spaces,
and be sure the words are spaced properly.

JavaScript 101 | 2-7

Copyright © August 2002 Pace University

Student Modifications
You have used embedded HTML to change the format of string output. JavaScript also has
string formatting methods that can simplify your output formatting.
For example, add the following code after the first document.write statement (line 17):
document.write(sentence.bold());

Type this code in and run it. You will see it displays sentence in bold. This method performs
the task of adding to the front of sentence and to the end of sentence.
Here are some additional string methods:
string.blink()

string.fontcolor(colorValue)

string.fontsize(integer1to7)

string.italics()

string.big()

string.small()

Try some or all of these methods in your Mad Lib. For example, to use italics, replace string
with sentence, i.e.
document.write(sentence.italics());

If you want to use fontcolor, you will need to include a color as a parameter. Select a color
from the list in Appendix C. If you want to use fontsize, you will need to include a number
between 1 and 7 as a parameter.

2-8| Lesson 2: Input and Variables

Copyright © August 2002 Pace University

Key Terms and Definitions

• variable declaration – a statement that creates and names a new variable.

• var – JavaScript keyword used to create a new variable in a variable declaration.

• identifier – the name of a part of your program, like a variable, function or method. In
JavaScript, an identifier must begin with either an underscore or a letter, and may only
contain letters, numbers or an underscore.

• assignment operator – equal sign (=), used to give (assign) a value to a variable. Values
are always assigned from right to left.

• prompt method – JavaScript method that asks the user for input and stores the answer in
a variable.

• parameters – data inside the parentheses portion of a function or method. Functions use
values in parameters when carrying out their specific tasks.

• concatenation – the process of combining strings using the + operator.

• string formatting methods – methods that are used to change the format (appearance) of
a string.

Lesson 2 Summary
You learned how to declare and name a variable using the JavaScript rules for identifiers.
You also assigned values to a variable with the assignment operator. You queried the user for
input, and stored the user’s response in a variable with the prompt method. You learned how
to combine strings using concatenation and the + operator. You also learned how to display
the value of a variable with document.write. Finally you learned how to use string formatting
methods to alter the appearance of a string.

JavaScript 101 | 2-9

Copyright © August 2002 Pace University

Lesson 2 Exercises
2_1. Write a JavaScript program that uses three variables and three prompt statements. Ask
the user to enter their first name, middle name, and last name in separate prompt statements.
Then use string concatenation to display the name in the following format:
last name, first name middle name
So if Thomas Francis Jones is the name that is entered, your program will display:
Jones, Thomas Francis
Be careful of spaces. Be sure to include any needed spaces within your quote marks.

2_2. Write a JavaScript program that asks the user to input their name, what city they were
born in, and the month of their birthday. Then display that information using document.write.

2_3. Make your own Mad Lib:
In this exercise you will create a Web page that serves as an interactive Mad Lib program.
Your page will contain JavaScript code that prompts the user for words to fill in the blanks in
a story, and then stores those words in variables. After having read in all of the words, your
code should then display the story in the Web page, using the values of the variables where
appropriate.
For example, here is a start to a Mad Lib:

It was a adjective kind of day when person's name walked out into the street. The sky
was a deep color , and same name was walking his new pet animal ...
Making the following substitutions:

adjective = smarmy
person's name = Chris
color = mauve
animal = gnu

The story would read:

It was a smarmy kind of day when Chris walked out into the street. The sky was a deep
mauve, and Chris was walking his new pet gnu ...

The content of the story can be anything that you like -- be creative! Your story must meet

2-10| Lesson 2: Input and Variables

Copyright © August 2002 Pace University

the following conditions, however.

It must be at least two paragraphs long.
It must have at least six missing words.
At least one of the missing words must be used multiple times in the story. For example, the
person's name was used twice in the sample story above.
The page should have a title, centered at the top, that includes your name.

JavaScript 101 | 3- 1

Copyright © August 2002 Pace University

Lesson 3: Variables and Arithmetic

OBJECTIVES: In this lesson you will learn

• To use the arithmetic operators +, -, *, / to solve problems

• To use the assignment operator(=) to give a numeric value to a variable

• How operator precedence controls the order in which an expression is calculated

• To use the alert method to display information

• How to use the Math object in calculations

3-2| Lesson 3: Variables and Arithmetic

Copyright © August 2002 Pace University

Preparing to Program
All programming languages have the ability to carry out arithmetic operations. The name
computer has its root in the machine’s original purpose, which was to compute values
difficult or impossible to calculate by hand.

In JavaScript, arithmetic operations are carried out with the arithmetic symbols you use in
math class. These symbols are called arithmetic operators. There are other types of
operators in JavaScript that you will learn about in subsequent lessons.

JavaScript provides the following commonly used binary arithmetic operators. Binary
means there are two values used, with the operator in between them.

The addition operator +

The binary + is the addition operator: A + B yields the sum of A plus B.

The subtraction operator –

The binary - is the subtraction operator: A - B yields the difference A minus B.

The multiplication operator *

The binary * is the multiplication operator: A * B yields the product A multiplied by B.

The division operator /

The binary / is the division operator: A / B yields the dividend of A divided by B.

Simple Expressions
As you learned in the Introduction, an expression is the computer science term for a formula
that returns a value. In JavaScript and other languages, an expression can be a combination of
variables, literals, and arithmetic operators. A literal is a number itself, like 4, 92.7, etc.

JavaScript 101 | 3- 3

Copyright © August 2002 Pace University

Given the following variable definitions:
var num1 = 6;

var num2 = 3;

Here are some expressions and their values:
num1 * 2 yields 12

num1 + num2 yields 9

num1/num2 yields 2

Expressions can be used in combination with the assignment operator to give a value to a
variable.
Consider the following:

var length = 5;

var width = 6;

var area;

The formula for calculating the area of a rectangle is:

 area is equal to length times width

If we were to write this as JavaScript, it would look like this:

area = length * width;

So if length is 5 and width is 6, then area has a value of 30. Remember that assignment
always goes from right to left. So first length is multiplied times width, and then the answer
is assigned to the variable area.

Expressions With More Than One Operator
Expressions can also have more than one operator. For example, the formula for calculating
the perimeter of a rectangle is length plus the width times 2. So in JavaScript, the code to
calculate the perimeter would look like this:

var length = 5;

var width = 6;

var perimeter;

perimeter = length + width * 2;

Although this looks right, it will not produce the right answer. The correct answer is length +
width (11) times 2, which yields 22. The expression above yields length (5) plus width times
2(12), or 17. Why does it end up with the wrong answer?
It has to do with a rule of mathematics called operator precedence. When an expression has

3-4| Lesson 3: Variables and Arithmetic

Copyright © August 2002 Pace University

more than one operator, the computer has to decide which operation goes first. The computer
can only carry out one operation at a time. Even though the time it takes to carry out that
operation is blindingly fast, it still does one thing at a time. The computer must select the
correct order in which the operations are carried out. This order is called operator
precedence.
It determines which operations have precedence, or go first. It is the same order defined in
your math classes when you took algebra. Multiplication and division take precedence over
addition and subtraction. If more than one operator is on the same level, for example if you
have addition and subtraction in the same expression, then those operations are carried out
from left to right through the expression.
How can we fix our problem with calculating the perimeter? We want to override the
standard order and force the addition to take place first. To do this we use parentheses. Just
like in algebra, the operations inside parentheses have higher precedence and therefore are
carried out first.
Here is a corrected formula for perimeter:

perimeter = (length + width) * 2;

This will produce the correct answer, because length will be added to width before it is
multiplied by two. Notice you have to explicitly include the ‘*’ symbol for multiplication,
otherwise you will have an error.

Operator Precedence Table
This table summarizes the operator precedence information you will need in order to perform
basic arithmetic in JavaScript. The operations are carried out in order from top to bottom:

Type of Operator Example of Operators

Parentheses (Overrides others) ()
Multiplication, Division *, /
Addition, Subtraction +, -
Assignment =

The alert method
In Lesson 1 we learned how to display output using document.write. There are other ways in
JavaScript to display output. The technique you will use in this lesson is the alert method.
The alert method displays a small pop up window, sometimes called a message box. It looks
like this:

(insert screen shot of alert box)

Syntax:

alert("message")

JavaScript 101 | 3- 5

Copyright © August 2002 Pace University

The alert box will display the specified message. When the user clicks the OK button, the
alert box is removed.

3-6| Lesson 3: Variables and Arithmetic

Copyright © August 2002 Pace University

In the Lab
This week in lab you will use JavaScript to solve problems using variables, arithmetic
operators, assignment, and the alert statement.

Start 1st Page 2000 and begin a new HTML document. Save it giving it the name
lesson0301.html. Following the instructions outlined in Appendix B, place your cursor
between the <body> … </body> tags, and insert the script tags and hiding comments by
using the Scripting menu.

Now type in exactly the following code:

<html>

<head>
 <title>Lesson 3: Variables and Arithmetic</title>
</head>

<body>

<script language="Javascript">

<!—

var length=10;

var width = 5;

var area = length * width;

document.write("The length of the rectangle is ",length,"
");

document.write("The width of the rectangle is ",width,"
");

document.write("The area of the rectangle is ",area,"
");

//-->

</script>

</body>

</html>

After accurately entering the code above run it using the preview button. You should see the
following output:

(insert screen shot running above code)

JavaScript 101 | 3- 7

Copyright © August 2002 Pace University

After you have run the program and obtained the correct output, try the program again with
different numbers. Change the values for length and width to other numbers, including
numbers with a fractional value, like 2.7 or 5.6, and run the program again.
Now add the following code, which will calculate the perimeter and display its value using
the alert method. Insert this code after line 16 (the third document.write statement):
var perimeter = 2*length + 2*width

alert("The perimeter is "+perimeter);

You should see the following output:

(Insert screen shot of above code with additions)

Student Modifications
• Change the first document.write statement which displays the length to an alert statement,

then run the code. Notice that this alters the appearance of the text. The subsequent
document.write statements do not appear until the user clicks OK.

• Add the variables base and height, and assign them values. Add a variable triangleArea
and code to calculate and display the area of a triangle. The formula for the area of a
triangle is:

triangleArea = 1/2*base*height;

• Add a variable radius and assign it a value. Add variables circleArea,
circleCircumference, and code to calculate and display the area and the circumference of
a circle. The formula for the area of a circle is:

circleArea = radius*radius*Math.PI;

The formula for the circumference of a circle is:

circleCircumference = 2*radius*Math.PI;

Math.PI is an example of a defined constant that is part of the Math object. Math.PI is
defined with a value of 3.141592653589793, or the approximate value of π. Math is a
built-in object which has a large number of properties and methods to handle
mathematical computations.

3-8| Lesson 3: Variables and Arithmetic

Copyright © August 2002 Pace University

Key Terms and Definitions

• arithmetic operators – The symbols + (plus), - (minus), * (multiplication), and /
(division) that are used in JavaScript to carry out arithmetic.

• literals – numbers like 6, 9, 2.33, that can be used in an expression or to assign a value to
a numeric variable.

• operator precedence – the order that the browser follows when evaluating expressions
that contain more than one operator. The basic order is parentheses, multiplication or
division, then addition or subtraction.

• alert method - JavaScript method that displays a pop up window with a message and an
OK button. The alert window remains visible until the user clicks OK.

• Math object – a built in JavaScript object with a large number of properties and methods
useful for carrying out mathematical calculations.

• defined constant – a number, like the value of π, that has be defined and assigned a
value. Programmers can use defined constants in expressions to solve problems.

• Math.PI - a defined constant, part of the Math object, that holds an approximate value
for π.

Lesson 3 Summary
In Lesson 3 you learned about arithmetic operators and how expressions are evaluated by the
browser using operator precedence. You learned how to use JavaScript to solve problems,
like calculating and displaying the area of common shapes like a rectangle and triangle. You
used the alert method as an alternate way to display output. Finally you used the Math object
and defined constant Math.PI to calculate and display the area and circumference of a circle.

JavaScript 101 | 3- 9

Copyright © August 2002 Pace University

Lesson 3 Exercises
3_1. Write a JavaScript program that converts a distance in miles into a distance in meters. One
mile is equal to 1.60935 kilometers. If you multiple the number of miles times 1.60935, you will
calculate the numer of kilometers. Declare miles as a variable and give it a value. Declare
kilometers as a variable. Use the formula above for converting miles to kilometers to assign a
value to kilometers. Display the results in an alert box. Include the original number of miles and
the calculated distance in kilometers in the message displayed in the alert box.
For example, if the number of miles is 5, then your program should produce the following
output:
(insert screen shot with output of miles = 5 and calculated kilometer result).
3_2. Your pulse rate is the number of times your heart beats per minute (usually about 70 per
minute for an adult and higher for children.) Write a JavaScript program with a variable to
represent your age in years. Determine the number of minutes in a year: 60*24*365, and
multiply this by your age in years. Then determine the approximate number of times your heart
has beated by multiplying this result by 80, an average rate that takes into account the faster rate
for children. Display the results using an alert box.
For example, if your age is 18, this is what your program should produce:
(insert screen shot of above problem with age equal to 18)
3_3. Write a JavaScript program to convert Celsius temperature values to Fahrenheit. The
formula for the conversion is:
Fahrenheit = 9 * Celsius/5 + 32
Use different variables for Celsius and Fahrenheit, and display the results in an alert box.
3_4. Here is a list of some of the methods available in the Math object:

Method syntax Arguments Returns
Math.abs(num) number absolute value of num
Math.ceil(num) number The least integer greater than or

equal to num
Math.cos(num) number (angle in

radians)
cos(num)

Math.floor(num) number The greatest integer less than or
equal to num

Math.log(num) number >0 ln(num)
Math.max(num1,num2) both are numbers The greater of num1 and num2
Math.min(num1,num2) both are numbers The smaller of num1 and num2
Math.pow(num1,num2) both are numbers numnum2

Math.round(num) number Rounded off integer
Math.sin(num) number sin(num)
Math.sqrt(num) number ≥0 √num
Math.tan(num) number tan(num)

3-10| Lesson 3: Variables and Arithmetic

Copyright © August 2002 Pace University

Use document.write statements to display the results of some of these Math methods. For
example, the code

document.write("absolute value of -4 is = ",Math.abs(-4),"<P>")
document.write("square root of 30 is = ",Math.sqrt(30),"<P>")

displays the following results:
(insert screen shot with this output).

JavaScript 101 | 4- 1

Copyright © August 2002 Pace University

Lesson 4: Formatting Input Data for Arithmetic

OBJECTIVES: In this lesson you will learn about

• Data types

• String data versus numeric data

• How input data (from the prompt method) is stored as a string

• Why you need to format input data for arithmetic

• How to use built in JavaScript functions to format input data for arithmetic (parseInt,
parseFloat, and eval)

4-2| Lesson 4: Formatting Input Data For Arithmetic

Copyright © August 2002 Pace University

Preparing to Program
In Lesson 3 we learned how to use arithmetic to solve problems in JavaScript. In this
lesson, you will take that one step further by using the prompt method to collect user data
for your calculations. This is more complicated, because JavaScript (and most other
languages) store input data in the form of a string, i.e. character data. In the Introduction,
you learned that JavaScript has three basic data types, or formats for information:
Numeric, String, and Boolean. Information in the form of a string cannot be used in
arithmetic: it must be converted (formatted) into the numeric format that the computer
can use to carry out arithmetic.

This might seem strange to you. Think of it this way: you have been using HTML to
format your output. Sometimes you use bold; sometimes you use different colors. In a
similar way, you need to format the data coming into your program. If you want to use
input data to carry out arithmetic, you need to convert it to a numeric format.

The following example illustrates the problem. It uses the prompt method, which you
used in Lesson 2, to collect information from the user.

<script language="Javascript">

<!--

var num1=prompt("Enter a number:","0");

var num2 = prompt("Enter a second number:","0");

document.write("num1 = ",num1,"
");

document.write("num2 = ",num2,"
");

document.write("num1 + num2 is equal to ",num1+num2,"
");

//-->

</script>

If you run the above code, and enter 5 for num1 and 6 for num2, you get the following
output:

num1 = 5

num2 = 6

num1 + num2 is equal to 56

Hopefully you find this to be wrong! Whenever you use prompt to collect data, you need
to be careful. Often it will not cause a problem since JavaScript will automatically
convert the input string to a number when a numeric operation (such as '*' or '-') is
applied. However, addition is a problem since the '+' operator may be interpreted as string
concatenation.

JavaScript 101 | 4- 3

Copyright © August 2002 Pace University

In the above code, we want the computer to add those numbers together. But + can also
mean string concatenation. So when the browser sees two strings joined by a plus sign
(i.e. num1+num2), it carries out concatenation.

You can solve this problem by explicitly converting num1 and num2 into a numeric
format. To do this you can use the parseFloat method. The word “parse” in English
means to extract. So parseFloat extracts a float from a string. This method converts a
string into a number. Then the browser sees two numbers joined by a plus sign, and
carries out addition. Here is the same example as above using parseFloat:

<script language="Javascript">

<!--

var num1=parseFloat(prompt("Enter a number:","0"));

var num2 =parseFloat(prompt("Enter a second number:","0"));

document.write("num1 = ",num1,"
");

document.write("num2 = ",num2,"
");

document.write("num1 + num2 is equal to ",num1+num2,"
");

//-->

</script>

If you run the above code, and enter 5 for num1 and 6 for num2, you get the following
output:

num1 = 5

num2 = 6

num1 + num2 is equal to 11

This code produces the correct result.

JavaScript Methods That Convert Strings Into Numbers

JavaScript provides several functions that convert strings into numbers.

The method parseFloat(string1) returns string1 as a decimal number, that is a number with a
fractional portion.

If string1 does not start with a number, parseFloat() gives an error message.

If string1 starts with a number followed by some other characters, parseFloat() converts the
number part of the string and ignores the rest.

4-4| Lesson 4: Formatting Input Data For Arithmetic

Copyright © August 2002 Pace University

Examples

parseFloat("235") returns the number 235

parseFloat("23.45'') returns the number 23.45

parseFloat(``23.45abc'') returns 23.45

parseFloat(``ab34.46'') results in an error

The method parseInt(string1) returns string1 as an integer.

If string1 does not start with a number, parseInt() gives an error message.

If string1 starts with digits followed by some other characters, parseInt() converts the number
part of the string and ignores the following non-numeric part.

parseInt() always returns a whole number.

Examples

parseInt("235") returns the number 235

parseInt("23.45'') returns the number 23

parseInt("23.45abc") returns 23

parseInt("ab354") results in an error

You can also convert strings to numbers with the method eval(string1), where the string1
is a numeric expression in the form of a string. The eval method evaluates string1 and
returns its value.

JavaScript 101 | 4- 5

Copyright © August 2002 Pace University

Example

<script language="Javascript">

<!—

a = "3 +2*5"

document.write(a,"<P>")

document.write(eval(a))

//-->

</script>

The first line output is: 3+2*5

The second line output is : 13

4-6| Lesson 4: Formatting Input Data For Arithmetic

Copyright © August 2002 Pace University

In the Lab
This week in lab you will use JavaScript methods to convert user input from string format to
numeric format, and then carry out calcuations using arithmetic operators and expressions.

Start 1st Page 2000 and begin a new HTML document. Save it giving it the name
lesson0401.html. Following the instructions outlined in Appendix B, place your cursor
between the <body> … </body> tags, and insert the script tags and hiding comments by
using the Scriping menu.

Now type in exactly the following code:

<html>

<head>
 <title>Lesson 4: Formatting Input Data For Arithmetic</title>
</head>

<body>

<script language="Javascript">

<!--
var ageString;

var age;

age = parseFloat(prompt("Please enter your age:",""));

document.write("You are " + (age * 7) + " in dog years!");

//-->

</script>

</body>

</html>

The above program calculates your age in dog years. Try it out a few times to confirm that it
is calculating the correct result.

Student Modifications
• You can also calculate the age of a dog in human years. Prompt the user to enter the age

of their dog. Use parseFloat to convert the input value to a numeric format and store it in
a new variable dogAge. Then convert to human years with the following formula:

 dogToHumanYears = ((dogAge - 1) * 7) + 9

and display the result.

JavaScript 101 | 4- 7

Copyright © August 2002 Pace University

• Do other conversions, from cat years (cats live about 20 years) to human years. Look on
the Internet for other possibilities: giant Redwood trees (500 to 700 years), Galapagos
Turtles (200 years), etc.

4-8| Lesson 4: Formatting Input Data For Arithmetic

Copyright © August 2002 Pace University

Key Terms and Definitions

• parseFloat method – JavaScript method that converts a string into a numeric decimal
format, i.e. a number that has a fractional portion.

• parseInt method – JavaScript method that converts a string into an integer format, i.e. a
format that is a whole number.

• eval method – JavaScript method that converts a string in the form of an expression into
its numeric value.

Lesson 4 Summary
In Lesson 4 you learned that JavaScript stores data input with the prompt method as a string.
You also learned that data in string format cannot be used to carry out arithmetic. You
learned that JavaScript provides several methods to convert strings into numbers. They are
parseFloat, which converts a string to a decimal number, parseInt, which converts a string to
an integer, and eval, which converts an expression in the form of a string into a numeric
value.

JavaScript 101 | 4- 9

Copyright © August 2002 Pace University

Lesson 4 Exercises
4_1. Sales Tax Calculator:

Write a JavaScript program that calculates the sales tax and total price of an item. Assume a
sales tax rate of 8%, which means you will multiply the cost of the item by .08 in order to
calculate the tax amount.

Use prompt and parseFloat to ask the user to input the item’s cost and convert it to a numeric
format. Declare a variable salesTax and use the formula above to calculate the sales tax
amount. Declare a variable totalCost, add the item’s cost plus the sales tax amount, and store
it in totalCost. Output the Item cost, tax amount, and total cost on separate lines in the form
of a receipt.

Enhancements:

• Don’t assume a tax rate of 8%. Instead, ask the user to input the tax rate in the form
of a decimal, i.e. .05, .03, etc., and use this tax rate for the calculations.

• Display the tax amount in a different color.
• Depending on the price of an item, you may end up with a tax amount that takes up

more than 2 decimal places. Use the following code to round the tax amount to two
decimal places:

var taxAmtRnd = Math.round(taxAmount*100);

taxAmtRnd = taxAmtRnd/100;

This code multiplies the tax amount by 100, rounds it off, then divides by 100. This
drops any extra decimal places from the tax amount. The rounded tax amount is in the
variable taxAmtRnd.

4_2. Miles per gallon Calculator:
Write a JavaScript program that calculates miles per gallon. Use parseFloat and prompt to
ask the user to input the total number of miles driven and to store that number in numeric
format. Use parseFloat and prompt to ask the user to enter the number of gallons consumed.
Calculate the miles per gallon with the following formula:
milesPerGallon = milesDriven/gallonsConsumed
Display the answer using the alert method.

4_3. Write a JavaScript program to assist a cashier in determining the total value of coins in a
coin tray. Using parseInt and prompt, ask the user to input the number of quarters, dimes,
nickels, and pennies and to store the input in separate variables. Set the default entry equal to
“0”, so the user can hit enter and skip to the next prompt if they do not have any of a
particular coin. Then add up the total value by multiplying the number of quarters by .25, the
number of dimes by .1, the number of nickels by .05, and the number of pennies by .01.
Display the final total using the alert method.

JavaScript 101 | 5- 1

Copyright © August 2002 Pace University

Lesson 5: Introduction to Events

OBJECTIVES: In this lesson you will learn about

• Event driven programming

• Events and event handlers

• The onClick event handler for hyperlinks

• The onClick event handler for buttons (forms)

• The mouse event handlers onMouseOver and onMouseOut

5-2| Lesson 5: Introduction to Events

Copyright © August 2002 Pace University

Preparing to Program
A popular feature of the World Wide Web is its interactive nature. When you access a Web
page, you don't just view the page, you interact with it. You click on links and buttons to
change pages, make windows pop up, or enter information in forms and view responses
based on your entries. In these and many other ways, Web pages are responsive to your
actions. In other words, Web pages are event driven, reacting to events that you initiate such
as mouse clicks or keyboard entries.

An event is an action by the user. Some examples of events are:

• clicking a button;

• moving the mouse pointer over a hyperlink;

• changing the contents of a text box;

• entering or leaving a text box.

Event driven programs use events as triggers for program execution. Events signal requests
and commands from the user that the program carries out by executing code.

In this lesson, you will learn to use JavaScript to control event driven Web pages. You will
use buttons and hyperlinks to initiate actions, and you will learn how you can use JavaScript
to make a Web page respond to mouse events to display different images.
Event driven Programming
In previous lessons you wrote JavaScript programs that collected user input and produced an
output page. These programs executed statements in a predetermined pattern: asking a user
for data at certain points, and computing results based on the data. Once your program
started, it was in complete control of its execution. It ran to completion and then stopped.

Event driven programs are different. With Web sites it is difficult to know exactly what the
user will do and when. For example, a Web page may present a number of clickable images,
text boxes, and check boxes that the user can choose to click. There are many possible
sequences of clicks that the user can perform. Perhaps he or she will choose to click a link
that shows a new page, then return later to the original page and click a button that submits
data to a remote server. Or perhaps the user will instead click an image that starts an applet.
On large, complex pages there are many possibilities presented to the user.

It is very difficult, if not impossible, to write code that predicts the sequence of actions the
user might select in such a situation. Instead, it is far simpler to write a separate piece of code
for each of the possible things that the user can do. When the user chooses an action, such as
clicking a button, the corresponding piece of code can be executed. In this way, the code is
set up to respond to the actions of the user, instead of running to completion by itself. The
control of the order of execution is in the hands of the user, rather than the program.
Events and Event Handlers
In event driven Web pages, user actions determine the course of code execution. User actions
are events, and the separate sections of code that responds to events are called event

JavaScript 101 | 5- 3

Copyright © August 2002 Pace University

handlers. An event handler is a predefined JavaScript keyword. It is a special attribute that is
associated with hyperlinks, buttons, and other elements of a Web page. Event handlers
always begin with the word on. Examples of event handlers include onClick,
onMouseOver, and onMouseOut.

Event driven JavaScript waits for your Web page visitor to take a particular action, such as
placing the mouse arrow over an image, before it reacts by executing code. The key to coding
event driven JavaScript is to know the names of events and how to use them.

It is important to understand that events happen to a particular button, link, or other
component on the Web page. You can say that an event belongs to that component. This
should make sense to you. If you click the mouse on a blank part of a Web page, there is no
response. If you click a button on the page, then that button’s event handler executes.

So where do you insert this event handler code? Since an event belongs to a Web page
component, its event handler code should be placed with the component itself. In this lesson,
you will write event handlers for hyperlinks and buttons, and you will see that the event
handler code is part of the definition of the links and buttons you include in your Web page.
onClick Event Handlers and Links
This first example of an event handler is part of a hyperlink. You have been clicking
hyperlinks since the first day you saw a Web page. The default action of a hyperlink is to go
to a new Web site. Using the JavaScript event handler onClick, this code instead produces an
alert message.
<html>

<head>
 <title>onClick and Hyperlinks</title>
</head>

<body>

<h1>Example of an onClick Event Handler</h1>

Click this
link!
</body>

</html>

When you run this code and click the link, and the following message appears:

(insert screen shot of image)

All the relevant code for the event handler is in line 9, where the link is defined. The symbol
“#” is HTML code that tells the browser to stay on this page. Next is the keyword onClick.
Notice it is inside the anchor tag, and there are no script tags. They are not needed with event
handlers.

The syntax for the onClick event handler is as follows:
Syntax:

5-4| Lesson 5: Introduction to Events

Copyright © August 2002 Pace University

onClick=”JavaScript statement(s);”

The event handler code you write is placed inside a pair of quote marks. Let’s take a closer
look at the code for this particular event handler:

onClick = "alert('This is what it does!');"

Notice there are two sets of quotes. The outer set of double quotes serves as delimiters
(boundaries) for the event handler. Nested inside the alert method is another pair of single
quotes. These serve as delimiters for the message string. You often have to nest quotes with
event handlers, and it is easy to make a mistake that causes your code not to run.

Follow these rules when using quotes with event handlers:

• alternate pairs of double quote marks with single quote marks

• inner quote marks must be paired up (nested) within the enclosing quotes. For
example:

 “This is an error ‘caused by overlapping” quote marks.’
should be like this:

 “This is the ‘right way’ to nest quotes inside each other.”

Also notice that the alert statement ends with a semicolon. This enables you to add additional
JavaScript code after the alert, performing multiple actions in response to a click event rather
than a single JavaScript statement. For example:
<html>

<head>
 <title>Multiple Alerts</title>
</head>

<body>

<a href="#" onClick="alert('one'); alert('two'); alert('three');
alert('four'); alert('five');">Click this link

</body>

</html>

This link’s onClick event handler produces five alert messages. This is possible because each
alert is separated by a semi-colon. But it should be apparent that this method quickly gets
inconvenient and messy. In the next lesson you will learn a better way to write event handlers
with complex logic and multiple statements. You will learn how to write using a function that
handles the event. Since a function is a separate section of code, it is easier to put multiple
event handler statements within a function.

JavaScript 101 | 5- 5

Copyright © August 2002 Pace University

onClick Event Handlers for Buttons
Button are elements of HTML forms. You declare a button by including an input tag with
type set to button within form tags. Buttons also have onClick event handlers with the same
syntax as links.

Here is an example of JavaScript code that displays an alert message when the user clicks the
button:

<html>

<head>
 <title>onClick and Buttons</title>
</head>

<body>

<form>

<input type="button" value="Click Me" onClick="alert('You clicked a button');">

</form>

</body>

</html>

Here is what the output looks like:

(insert screen shot of this output)

Notice the syntax for the onclick event handler is the same as for hyperlinks. You need to
include the keyword onClick within the definition for the button. You need to enclose the
code for the event handler within double quotes. You need to use single quotes for any
interior quotes. You should also terminate statements with a semi-colon to allow you to add
extra statements. Now that you see how the click event works, we will explore events and
event handlers associated with moving the mouse.
Mouse Events
Links can respond to other events, such as those triggered when the user moves the mouse.
Two event handlers you will learn about are onMouseOver and onMouseOut. Moving the
mouse arrow over a link triggers onMouseOver. The onMouseOver event handler has a
syntax similar to the onClick method:
Syntax:

onMouseOver=”JavaScript statement(s);”

5-6| Lesson 5: Introduction to Events

Copyright © August 2002 Pace University

Just like the onClick event handler, you need to insert this code in the definition for the link.
You also need to enclose the JavaScript statements within quotes marks. Here is a sample
onMouseOver event handler for a link:

Mouse Over
Link

The onMouseOut event is triggered when the mouse arrow moves off a link. Here is the
syntax for onMouseOut:
Syntax:

onMouseOut=”JavaScript statement(s);”

Here is a example for onMouseOut:

Mouse
Out Event

Mouse Event and the Window Status Bar
A common functionality for onMouseOver is to use it to write a message in the window
status bar, the thin grey bar at the very bottom of your browser window.

(insert screen shot of browser window with arrow pointing to the status bar.)

JavaScript code can change the status bar by accessing the window object, a JavaScript built
in object. You have already used the document object and document.write to display
text;now you will learn how to use the window object. The built-in JavaScript window object
has many useful properties, including the status property. By assigning a value to the status
property, you change what is displayed in the status bar in your browser. Here is an example:

window.status = “Welcome to CIS101!”

This code displays the message “Welcome to CIS101” in the status bar. Remember the dot
notation that is required when accessing parts of an object. This notation, window.status,
means that status is a property of the window object.

Here is a program that changes the status bar using onMouseOver:
<html>

<head>

JavaScript 101 | 5- 7

Copyright © August 2002 Pace University

 <title>onMouseOver Example</title>
</head>

<body>

<center>

<h1> onMouseOver and Status Bar</h1>

<a href="#" onMouseOver="window.status='over first';
return true;">First

<p>

<a href="#" onMouseOver="window.status='over second';
 return true;">Second

<p>

<a href="#" onMouseOver="window.status='over third';
return true;">Third

<p>

</center>

</body>

</html>

(Insert screen shot with mouse over a link and show status information)

Notice the return true statement after the window.status command. This extra code is needed
to keep the new message visible. When the user places the mouse arrow over one of these
links, it triggers the onMouseOver event handler. The statement “return true” prevents the
URL from appearing in the status bar (this is the default behavior). If you do not include
“return true”, then your message will be briefly displayed then quickly replaced by the URL.

You will use these two events, onMouseOver and onMouseOut, together in the lab to
produce an image swap.You are not required to use them together. You can use each one by
itself, or even combine them with the onClick event handler.

Here is a link with all three event handlers:

<a href=”#” onMouseOver = “window.status = ‘now you are over’;”
 onMouseOut = “window.status = ‘now you are out’;”
 onClick = “alert(‘now you have clicked’);”>
 Link With Three Event Handlers

5-8| Lesson 5: Introduction to Events

Copyright © August 2002 Pace University

You also have onMouseOver and onMouseOut events associated with buttons. Here is a
similar example coded for a button:

<form>

 <input type="button" value="click" onMouseOver = "alert('over');"
onMouseOut=”alert(‘out’);” onClick = “alert(‘click’);”>

</form>

Even with these simple events, you now have a lot of power in your hands. Users are
constantly moving the mouse. To see how often this event handler is used, just visit a few
Web sites and notice what happens when you move the mouse. Does the appearance of the
page change? What happens to the status bar? In the lab you will shortly learn to write the
code that carries out these things yourself.

JavaScript 101 | 5- 9

Copyright © August 2002 Pace University

In the Lab
This week in the lab you will use JavaScript to write event-driven programs, responding to
the click event, and the onMouseOn and onMouseOver events.

Start 1st Page 2000 and begin a new HTML document. Save the file giving it the name
lesson0501.html. For the exercises in this lesson, script tags are not needed.

Now type in exactly the following code:

<html>

<head>
 <title>Lesson 05: Introduction to Events</title>
</head>

<body>

<center>

<h1>Click your favorite color:</h1>

Red

<p>

Blue

<p>

Green

<p>

</center>

</body>

</html>

When you run this code, it allows you to select different background colors for your
document. Run your program and test that each color works properly. If you have problems,
confirm that you have double quotes defining both the beginning and end of the onClick
event handler, and that you use single quotes for the colors. Be especially careful about
spelling event handlers and property names. Pay close attention to what letters are upper case
and what letters are lower case.

Let’s look in more detail at the code that changes the background color:

onClick="document.bgColor='red';"

5-10| Lesson 5: Introduction to Events

Copyright © August 2002 Pace University

bgColor is a property of the document object, and it stands for background color. It is the
JavaScript equivalent of the <body bgcolor> tag, although in JavaScript the property name is
case sensitive. The other body tag attributes also have JavaScript equivalents. Here is a table
of the properties and a description of what they do:

document property description

fgColor color of text

linkColor color of link the user has not yet visited

vlinkColor color of link user has already visited

alinkColor color of link user clicks

You can use JavaScript statements to change the value of these properties as well. Consider
the following:

document.fgColor = ‘yellow’;

This code changes the color of the text to yellow. The difference between using HTML to set
these values and using JavaScript is that you can allow the user to select, through events and
event handlers, the way the page is displayed. This makes pages containing JavaScript
dynamic and interactive compared with those created only with HTML.

Student Modifications

• Refer to Appendix C and select three additional colors. Add three new links along
with onClick event handlers that change the bgColor property to the new colors. Test
the added colors to ensure they are working properly.

• For each color (you should now have six), select a contrasting value for the fgColor
property (document.fgColor). The fgColor property controls the color of the text.
Insert a second statement for each onClick event handler changing the fgColor
property to a selected contrasting color. Be very careful adding this additional
statement. Be sure that the first statement ends with a semi-colon and that you
terminate the entire event handler with closing double quotes. Here is a sample link
that sets the bgColor property to red and the fgColor property to yellow:

<a href="#" onClick="document.bgColor='red';
document.fgColor='yellow';">Red

JavaScript 101 | 5- 11

Copyright © August 2002 Pace University

Run your code and experiment with your color combinations. Select some that look nice
together. Also try to get find a worst possible combination. What happens when bgColor and
fgColor are the same? Save your file with its modifications.

The onClick Event Handler and Buttons
Now you will learn to use the click event with buttons.

Start a new html document, add the script tags, and save it as lesson0502.html Now type in
exactly the following code:

<html>

<head>
 <title>Click Event With Buttons</title>
</head>

<body>

<h1>Click the button to see the greeting</h1>

<center>

<form>

<input type="button" value="Hello" onClick="alert(‘Welcome to
CIS101’);">

<input type="button" value="Goodbye " onClick="alert(‘So long, come
back soon!’);">

</form>

</center>

</body>

</html>

After you have entered this code, test both buttons to ensure they work properly. Then add a
third message of your own choice.
Swapping Images With Mouse Events
A common use of mouse events is for swapping images. The following code swaps a red
arrow for a blue arrow as you move the mouse over a link. Save your earlier work and begin
a new Web document and save it with the name lesson0503.html. Obtain from your
instructor the two image files needed, redArrow.gif and blueArrow.gif, and save them in the
same folder as your HTML document lesson0503.html.

Now type in the following code:

5-12| Lesson 5: Introduction to Events

Copyright © August 2002 Pace University

<html>

<head>

<title>Creating A Simple Rollover</title>

</head>

<body bgcolor=”white”>

<h1>Creating A Simple Rollover</h1>

<p>

<h2>Roll your mouse on top of the blue arrow and then away from it and
watch the arrow color change!</h2>

<center>

<a href="#" onMouseOver="document.arrow.src='blueArrow.gif';"
onMouseOut="document.arrow.src='redArrow.gif';">

<img src="blueArrow.gif" width="300" height="82" border="0"
name="arrow">

</center>

</body>

</html>

After entering this code, try it out. You should see the arrow change from red to blue as you
move the mouse arrow over and away from the link. If it is not working properly, check for
the common causes of errors:

• mis-spelled keywords – be sure to check upper and lower case letters

• mis-matched quote marks, you need double quotes for the event handler, single
quotes for the image file

• mis-spelling the image file name

• the image file not in the same folder as your html file

After you have the code working, read this section that explains how it works. Even though
this code swaps two images, there is only one image tag in above code. Here is how it works.
Before you can use JavaScript to swap an image, you first have to assign that image a name.
Notice the following code inside the image tag:

name=”arrow”

JavaScript 101 | 5- 13

Copyright © August 2002 Pace University

This assigns the name arrow to the image. The code that actually swaps the image is in the
event handlers:

<a href="#" onMouseOver="document.arrow.src='blueArrow.gif';"
onMouseOut="document.arrow.src='redArrow.gif';">

Notice the syntax document.arrow.src. This is dot notation, once again. It means that arrow is
part of document, and src (source) is part of arrow. The swap is executed by changing the
source property of the arrow image that is part of the document. If the mouse is over the link,
the arrow is blue. If the mouse arrow moves off the link, the arrow is red.

Once you have this code working, try it out with other pairs of images. You can also add
another statement to the event handlers to change the bgcolor property when you change the
image.

5-14| Lesson 5: Introduction to Events

Copyright © August 2002 Pace University

Key Terms and Definitions

• event-driven programming – programming method used to create interactive Web

pages. Event driven programming executes code in response to user actions.

• event - action by the user, such as clicking a mouse, that triggers a response from a Web
page.

• event handler - code that a Web page executes in response to an event by the user.

• onClick event handler - JavaScript keyword that is used in code to define how a Web
page responds to a click event intiated by a user.

• onMouseOver event handler – JavaScript keyword that is used in code to define how a
Web page responds to the event triggered when the user places the mouse arrow over a
link.

• onMouseOut event handler - JavaScript keyword that is used in code to define how a
Web page responds to the event triggered when the user places the mouse arrow away
from a link.

• window.status - status is a property of the JavaScript built-in object window. It controls
what is displayed in the browser’s status bar.

• document.bgColor - bgColor is a property of the JavaScript built-in object document. It
controls the background color of the page displayed by the browser.

• document.fgColor - fgColor is a property of the JavaScript built-in object document. It
control the foreground color of the page displayed by the browser. The foreground color
controls the color of any text displayed.

Lesson 5 Summary
In Lesson 5 you learned that event-driven Web pages respond to user actions, and allow
the user to control the order of program execution through the use of events and event
handlers. You learned how to write code for the onClick event handler for both
hyperlinks and buttons. You learned how to write the onMouseOver and onMouseOut
event handlers as well. You used these events to allow the user to alter the appearance of
the page by changing the background color, the foreground color, and the contents of the
status bar. Finally you learned to perform an image swap using mouse events with a
hyperlink.

JavaScript 101 | 5- 15

Copyright © August 2002 Pace University

Lesson 5 Exercises

5_01. The following table lists the distance from the sun to the planets in our solar system.

Planet Mean Distance From
Sun (millions of miles)

Mercury 36.0
Venus 67.1
Earth 92.9
Mars 141.5
Jupiter 483.5
Saturn 886.7
Uranus 1782.7
Neptune 2794.3
Pluto 3666.1

Create a Web page and add nine buttons to your page, one for each planet. Remember you
need to use the form tags when using buttons. Set the caption of each button to a name of a
planet (i.e. value= “Mars”). When the user clicks a planet, display an alert message with its
distance from the sun.

5_02. Remember that HTML allows an image to act as a hyperlink through the following
syntax:

If you use this code to turn an image into a link, the image can now respond to mouse events.

Create a Web page and include a picture of yourself. Turn your picture into a link using the
syntax above. Use the stationary link syntax (href=“#”). When the mouse arrow goes over
your picture, use the onMouseOver event handler to display an alert box with the message
“Get that mouse arrow off my face!”

5-16| Lesson 5: Introduction to Events

Copyright © August 2002 Pace University

5_03. The following code uses the onMouseOver event handler to write to the status bar:

<html>

<head>
 <title>onMouseOver Example</title>
</head>

<body>

<center>

<h1> onMouseOver and Status Bar</h1>

<a href="#" onMouseOver="window.status='over first';
 return true;">First

<p>

<a href="#" onMouseOver="window.status='over second';
 return true;">Second

<p>

<a href="#" onMouseOver="window.status='over third';
return true;">Third

<p>

</center>

</body>

</html>

If you run this code and place your mouse arrow over “First,” the status bar changes to “over
first.” However, when you move the mouse arrow off the link, the status bar still displays the
now outdated message. To fix this you need to reset the status bar to blank (‘ ’) when the
mouse arrow is moved away from the link. Add the event handler onMouseOut that sets
window.status equal to blank (‘ ’). You will need to use two single quotes in order to do
this, i.e.

onMouseOut=”window.status=' ';”

5_04. Another interesting property of the window object is location. You can point the
window to a new Web page by setting a new value to the location property, i.e. the code

window.location='http://cnn.com'

connects this window to the Web site for CNN.

Find three or four Web pages related to each other. For example, find the Web sites of four
news organizations, like www.cnn.com, and www.nytimes.com. Create a Web page and add

JavaScript 101 | 5- 17

Copyright © August 2002 Pace University

three or four buttons to the page. Use each button to connect to a different news service Web
site by altering the window.location property in each button’s onClick event handler.

JavaScript 101 | 6- 1

Copyright © August 2002 Pace University

Lesson 6: Introduction to Functions

OBJECTIVES: In this lesson you will learn about

• Functions

• Why functions are useful

• How to declare a function

• How to use a function

• Why functions are used with event handlers

6-2| Lesson 6: Introduction to Functions

Copyright © August 2002 Pace University

Preparing to Program
As programs become larger and more complex, they need to be structured and organized.
This is true for most things. Think about how textbooks are organized. There are chapters,
sections, and units that break up the material into smaller pieces. Smaller pieces are easier to
understand and create.

The same idea applies to programs and programming languages. As programs grow in size,
they need to be broken up into smaller pieces. These smaller parts are called functions,
methods, sub-routines, or sub-programs, depending on the programming language.
JavaScript uses the term function or method to describe these smaller units of code. There is
no formal definition to describe when you use the term function or method. In general,
methods are associated with objects, and functions are free standing, not connected to a
particular object.

A function or method is a unit of code that performs a specific, well defined task. You have
already used these JavaScript functions:

• document.write – to write text to a Web page

• alert– to display a message inside a small window with an OK button

• prompt– to collect input from the user and store it in a variable

There are many other JavaScript functions that you can use. These functions give additional
power and utility to your code. Functions are collected into function libraries. Much of the
effort of learning a programming language centers on becoming familiar with what function
libraries are available for use.

Why Functions Are Useful
Besides giving some structure and organization to your code, functions make programming
much easier. As you program more, you will find that you are often repeating and rewriting
similar sets of instructions again and again. Using functions means you do not have to repeat
your code. Instead of copying the code over and over again, you can place it inside a function
and then use the function repeatedly.

In JavaScript, functions are often used as event handlers. Recall that when you write code for
an event handler, you must insert the code inside the definition of the link, button, or other
Web element that generates the event. If you write more than one or two statements, it gets
very messy. The preferred technique is to place the statements inside a function, and to then
execute the function when the event handler is triggered.

JavaScript 101 | 6- 3

Copyright © August 2002 Pace University

Defining Functions
This lesson will show you how to define and use your own functions. The code that defines
your function is normally placed in the head section of your HTML document. This allows
your function to be loaded with the page and available for use when needed.

You begin by first declaring your function. A function declaration is similar to a variable
declaration. In the first line of your function, your declare it as a function, give it a name, and
indicate if it accepts any parameters. To declare a function, you start with the key word
function, followed by its name, and then a set of parentheses:

function functionname()

The same rules for variable names also apply to function names. Function names must begin
with a letter or underscore (_), and can only contain letters, numbers, and underscore.
Function names, like variable names, are case sensitive.

We will briefly defer the discussion of parameters. After the first line, there is a required
open curly brace {. After the opening brace, you place all the code to be executed when the
function performs its task. The end of the function is marked with a closing curly brace }.

The general structure of a function is

function function-name ()
{
 JavaScript statements
 go here
} // end of function-name

 The left brace defines the beginning of the function body, and the right brace indicates the
end of the function body.

Parameters and Functions

Functions carry out tasks. Often, it is useful to have data available for the function to use
when performing its task. Data is provided to a function by using parameters. You have
already used parameters with JavaScript methods like alert and document.write. When you
use these methods, you provide information within the parentheses that the function uses to
carry out its task.

The syntax for a function with parameters is as follows:
function functionname(parametername1, parametername2,...)

6-4| Lesson 6: Introduction to Functions

Copyright © August 2002 Pace University

These parameters are special variables made available to the function. Each parameter name
must be a legal variable name, and that name must be unique within the list of parameters.
Notice that each name is separated by commas. A function can have zero or more
parameters. Even if a function has no parameters, the parentheses after the function name is
required.

Return Statements and Functions
A common task that functions perform is some kind of calculation. For example, you could
write a function that calculates the sales tax on a purchase. Once the function determines its
result, it returns the result back to the main part of your program. This is accomplished by
using the keyword return statement. The syntax of the return statement is straightforward:

return variablename;

For example, to return the calculated sales tax amount, you include the following code in
your sales tax function:

return salesTaxAmount;

Calling Functions in JavaScript
There are two code sctions required when you use functions. The first part, described above,
declares the function. It has specific syntax requirements, and it usually placed in the head
section of your Web document.

The second part is the code that actually allows you to use the function. In programming
languages, using a function is referred to as a function call. A function is not executed until
it is called. It is available on standby for use, but will not be executed unless a statement
inside your page calls that function.

The syntax for a function call is also straightforward. If the function has no parameters, than
the function call looks this:
functionname();

For example, here is a small JavaScript program that calls a function without parameters.

JavaScript 101 | 6- 5

Copyright © August 2002 Pace University

<html>

<head>

<script language="javascript">

function myFunction()
{
alert("HELLO");
}
</script>

</head>

<body>

<form>

<input type="button"

onClick="myFunction();"

value="Call function">

</form>

</body>

</html>

When executed, this code displays the following:

(insert screen shot of above code)

The function is named myFunction. It is declared within the head section of the Web
document. Notice that you still must use the script tags for the function declaration. The
function call is within the event handler onClick. Once you click on the button, the event
handler calls the function. myFunction executes, and it displays an alert message. Although
this is a simple example, it demonstrates the basic syntax of function declarations and
function calls.
Calling a Function With Parameters
When calling a function that has parameters, the function call must include the exact number
of parameters as required by the function. If the function has two parameters, the function
call must include two parameters.

A function call with parameters takes the following form:
functionname(parametername1, parametername2, ...);

6-6| Lesson 6: Introduction to Functions

Copyright © August 2002 Pace University

The code above can be modified to add a parameter to myFunction. Here is what the revised
program looks like:
<html>

<head>

<script language="javascript">

function myFunction(message)
{
alert(message);
}

</script>

</head>

<body>

<form>

<input type="button"

onClick="myFunction('hello with a parameter');"

value="Call function">

</form>

</body>

</html>

Notice the following changes. myFunction now has a parameter called message inside its
parentheses. The alert statement uses the parameter message when it produces its message
box. And the function call now has a value inside its parentheses; that is passed to the
function.

When this code executes, the following is displayed:

(insert screen shot of above code)

With this version, myFunction is defined with one parameter. The value of that parameter is
used by the alert statement. The function call is once again triggered by the onClick event
handler. The words ‘hello with a parameter’ are now passed along to the function when it is
called by the event handler. If you change the words inside the function call, the result of the
function will be different.

JavaScript 101 | 6- 7

Copyright © August 2002 Pace University

Function Calls and Event Handlers
Functions are often used in conjunction with event handlers to respond to user events. One
simple reason is that event handler code looks cleaner and is easier to understand if you use a
function. To demonstrate this, consider this example. The following code does not use a
function to handle an event.
<html>

<head>
 <title>Event Handler Without Function</title>
</head>

<body>

<form>

<input type="button"

onClick="alert('one');alert('two');alert('three');alert('four');"

value="Alerts Without Function">

</form>

</body>

</html>

This crams all the statements between a set of quotes next to the event handler. If you make a
mistake, it can be difficult to spot. If you wanted to add anything, you could start to have
problems. The solution is to use a function.

Here is the same program re-written using a function:
<html>

<head>
 <title>Event Handler Without Function</title>

 <script language="Javascript">

<!--
function someAlerts()
{
 alert('one');
 alert('two');
 alert('three');
 alert('four');
}
//-->
</script>

</head>

6-8| Lesson 6: Introduction to Functions

Copyright © August 2002 Pace University

<body>

<form>

<input type="button"

onClick="someAlerts();"

value="Alerts With A Function">

</form>

</body>

</html>

Instead of cramming many statements on one line, the event handler has a single statement,
the function call itself. When the event is triggered, the event handler calls the function, and
the function displays the four alert statements. In the lab you will use functions that will be
used by event handlers to respond to user events.

JavaScript 101 | 6- 9

Copyright © August 2002 Pace University

In the Lab
This week in lab you will use learn to write your own functions and use them in your code.

Start 1st Page 2000 and begin a new HTML document. Save it giving it the name
lesson0601.html.
Now type in exactly the following code:

<html>

<head>

<title>The Don't Click Function Demo</title>

<script language="Javascript">

<!--

 function sayOuch()

 {

 document.bgColor = "red";

 alert ("ouch!!");

 document.bgColor = "white";

 } // end of function

//-->

</script>

</head>

<body>

<center><h1>Don't Click Function</h1>

</center>

<hr>

<center>

<form name = myForm>

<input type = button

 value = "really, don't click me."

 onClick = "sayOuch();">

6-10| Lesson 6: Introduction to Functions

Copyright © August 2002 Pace University

</form>

</center>

</body>

</html>

If you enter the above code correctly and run it, you will see the following output:

(insert screen shot of above code)

Notice that you place the function declaration in the head section of your html document,
inside the same script tags you have already used. Notice also the function call from the
onClick event handler. When the user clicks the button, the function sayOuch() is executed.
The function sayOuch() changes document.bgColor to red, displays an alert box with the
word ‘ouch!’, and then changes the document.bgColor back to white.
Student Modifications
• change the colors used by the function.

• add a second button and second function that use different colors and a different message.
Test it out using both buttons.

Using a Function With a Parameter
Save your work from the previous exercise. Start a new document, and name it
lessson0602.html. This example will show you how to use a function with a parameter.

Now type in exactly the following code:
<html>

<head>

 <title>Event Handlers and Functions</title>

 <script language = “Javascript”>

 <!-- Hide script from older browsers

 function saySomething (message) {

 alert (message)

 }

 //end hiding script from older browsers -->

JavaScript 101 | 6- 11

Copyright © August 2002 Pace University

 </script>

</head>

<body bgcolor=white>

<h2>Using a Function With a Parameter</h2>

<h2>Famous Quotes
(Click a button to see what they have to say!)
</h2>

<hr>

<form>

<input type="button" value="Lincoln"

onClick="saySomething ('Four score and seven years ago...')">

<input type="button" value="Kennedy"

onClick="saySomething ('Ask not what your country can do for you...')">

<input type="button" value="Nixon"

onClick="saySomething ('I am not a crook!')">

</form>

</body>

</html>

If you click the Lincoln button, the following is displayed:

(insert screen shot of above code)

This example also uses a function to display a message. Notice the same function can be used
for all three buttons. By using a parameter, the message displayed can change.

Student Modifications
• add another button for another famous quote. Use the existing function, and display the

message by using the parameter.

• add a second parameter, and use it to display a second alert box with the name of the
person being quoted. You need to add the second parameter into the function declaration.

6-12| Lesson 6: Introduction to Functions

Copyright © August 2002 Pace University

Then you have to add another alert statement in the function, and change all the function
calls to include the second parameter.

JavaScript 101 | 6- 13

Copyright © August 2002 Pace University

Key Terms and Definitions

• function or method – a set of statements that carries out a specific task.

• function libraries – collections of functions available for programmers to use in their
programs.

• function declaration – required syntax that defines how the function carries out its task.

• parameters – special variables that are declared within parentheses along with the
function. Parameters contain data the function uses in carrying out its task.

• return statement – return is a JavaScript key word that allows a function to send or
return a value to the main program.

• function call – a statement that uses the function. Code inside functions does not execute
without a function call.

Lesson 6 Summary
You have learned that when programs grow in size, it is important to organize and structure
them by breaking them into smaller pieces. In JavaScript, these smaller pieces are called
functions or methods. A function is a set of statements that carries out a specific task. You
can create your own functions by first writing a function declaration in the head of your Web
document. The function declaration gives the function a name, lists its parameters, and inside
a set of curly braces contains the statements that will execute when the function carries out its
task. In order to use the function, you write a function call. The function call consists of the
function name plus any required parameters. Finally, you learned that functions are often
used with event handlers to organize and simplify a Web page’s response to a user event.

6-14| Lesson 6: Introduction to Functions

Copyright © August 2002 Pace University

Lesson 6 Exercises
6_1. Create a Web page that does the following. Write a function
combineWords(word1,word2) that displays both words (i.e. the words in the parameters) in
an alert box with a space between them. Be sure to place the function declaration in the head
section of your document, inside script tags.

Then in the body section, add script tags and include JavaScript code that prompts the user to
input two words. Store this input in two variables, word1 and word2. Then write a function
call to combineWords, passing the value’s input to the functions. Hint: use concatenation
inside the function to combine the words.

6_2. Here is the code for less0501.html from Lesson 5:

<html>

<head>
 <title>Lesson 05: Introduction to Events</title>
</head>

<body>

<center>
<h1>Click your favorite color:</h1>

Red

<p>

Blue

<p>

Green

<p>

</center>

</body>

</html>

Rewrite this code using functions for each event handler. Name your functions clickRed(),
clickBlue(), and clickGreen(). Place each function in the head section of your Web page.
Change the onClick event handler for each link so that it calls the appropriate function. Inside
each function, include code to change document.fgColor to a different value. Also include a
statement that uses window.status to display the name of the color that was linked.

JavaScript 101 | 6- 15

Copyright © August 2002 Pace University

6_3. Rewrite exercise 4_2 using a function milesPerGallon that calculates and displays the
miles per gallon in an alert box.

Here is the origianl description for the exercise:
Write a JavaScript program that calculates miles per gallon. Use parseFloat and a prompt to
ask the user to input the total number of miles driven and store it in numeric format. Use
parseFloat and a prompt to ask the user to enter the number of gallons consumed. Calculate
the miles per gallon with the following formula:
milesPerGallon = milesDriven/gallonsConsumed
Write a function milesPerGallon(milesDriven). It should take the value passed in the
parameter milesDriven and use it to calculate the miles per gallon. In the function, use an
alert statement to display the result.

Then in the body section of your Web page, prompt the user to enter the number of gallons
consumed. Store the user’s answer in the variable milesDriven. Then write a function call to
milesPerGallon, passing the value in milesDriven to the function.

JavaScript 101 | 7- 1

Copyright © August 2002 Pace University

Lesson 7: If Statement and Comparison Operators

OBJECTIVES: In this lesson you will learn about

• Branching or conditional satements

• How to use the comparison operators: ==, !=, < <=, >, >=

• How to use if and if … else to evaluate conditions and make decisions

7-2| Lesson 7: If statement and comparison operators

Copyright © August 2002 Pace University

Preparing to Program
It is often useful to take a course of action depending on some circumstance. It does not
always rain, so you do not always take an umbrella with you. But if it is raining, or is
expected to rain soon, you would be wise to take your umbrella.

Programs and Web pages are often faced with a similar situation. For example, we have
already discussed the fact that a Web page with JavaScript works differently depending on
whether you are using Netscape or Internet Explorer. So it is useful for a Web page to
determine if you are using Netscape or Internet Explorer, and to execute different code
depending on the result.

In programming, code that asks a question and executes different paths depending on the
answer is known as a branching or conditional statement. Picture in your mind a branch in
the shape of a fork: you can go either left or right. The term conditional statement implies
that execution depends on a condition. If the condition has a certain value, do this; if it does
not do something else.

This lesson will teach you how to use the if and if .. else statement. The if and if … else
statements are examples of a conditional statement. Conditional statements work in the
following way: they ask a question, then execute certain code depending on the answer. In
JavaScript, and in most other programming languages, conditional statements ask a question
by using comparison operators. Before we discuss the syntax of the if statement, we need to
explore the topic of comparison operators.

Comparison operators

Comparison operators are used to make comparisons. For example you can compare two
variables to test if they are equal. Other comparisons are available (see the table below). For
each of the comparison operators, the result of the comparison is always either true or false.
True or false values are known as boolean values.

JavaScript 101 | 7- 3

Copyright © August 2002 Pace University

Here is a table that describes the comparison operators available to you in JavaScript:

Operator

Meaning Comments

== equal True if the two operands are equal; false
otherwise.

!= not equal True if the operands are not equal; false
otherwise.

< less than True if the left operand is less than the right
operand; false otherwise.

<= less than or
equal to

True if the left operand is less than or equal
to the right operand; false otherwise.

> greater than True if the left operand is greater than the
right operand; false otherwise.

>= greater than
or equal to

True if the left operand is greater than or
equal to the right operand; false otherwise.

These operators should already be familiar to you. You have used them in math class to make
comparisons.

Here are some simple examples that demonstrate how to use comparison operators:

Assume: a = 7, b = 4 and c= 10.
a < b is false.
a < b+c is true.
a*b >= 2*c is true
a+b != 0 is true
a+b+c == 21 is true

Assume: name = "Pace",
 state = "NY",
 address = "1 Pace Plaza"

name <= state is false
name > address is true
state == address is false

7-4| Lesson 7: If statement and comparison operators

Copyright © August 2002 Pace University

The if Statement

The if statement is an example of a conditional or branching statement. The if statement
works in the following way: it asks a question, normally by using comparison operators.
Depending on the answer, it will execute certain code.

Here is the general syntax for the if statement:

if (condition)
{
 JavaScript statements go here
}

If the condition is true, the statements between { ... } will be executed. If the condition is
false, the statements between { ... } will be skipped. The group of statements between { ... }
is called the if block. Any statements may be placed in this if block, including additional if
statements.

Recall that you used curly braces { and } to define the boundaries for a function in the last
lesson. Notice also, that the condition can only be true or false. In programming, you can
only ask yes/no or true/false questions. If you ever played the game 20 Questions, you know
it can be quite a challenge to figure out something by only using yes/no questions. This is one
of the restrictions that can make programming a difficult task.

Example

if (city == "New York")

{
 state = "NY"

 areacode = "212"

 document.write(city,state)

}

If the condition city == "New York" is true, all of the statements in the if block will be
executed. If the city does not match "New York," none of the if block's statements will be
executed.

JavaScript 101 | 7- 5

Copyright © August 2002 Pace University

The if … else Statement

An if statement can also have an else clause that executes if the condtion is false. This
enables a two-way branch so that one block of statements can be executed when the
condition is true, and a second block of statements can be executed if the condition is false.

Syntax for if ... else:
 if (condition)
{

statementgroup1

}

else
{

statementgroup2

}

If the condition is true, statementgroup1 (the if block) will be executed and statementgroup2
will not be executed; otherwise (when the condition is false), statementgroup1 will not be
executed and statementgroup2 (the else block) will be executed.

Example

if (city == "New York")
{

 state = "NY";

 areacode = "212";

}
else
{

 state = "CT";

 areacode = "203";

}

document.write(city,state);

In this example, if city has the value "New York," then the two statements in the if block will
be executed and the statements in the else block will not. If city does not have the value

7-6| Lesson 7: If statement and comparison operators

Copyright © August 2002 Pace University

"New York," the statements in the if block will be skipped and the statements in the else
block will be executed. This is why the if … else statement is called a branch.

Note
When the if block and/or the else block have only one statement, the curly braces
can be omitted. If the braces are omitted, the statement must appear on the same
line as the if and/or else. For example:

if (city == "New York") state = "NY"
else state = "CT"
document.write(city,state)

JavaScript 101 | 7- 7

Copyright © August 2002 Pace University

if Statement and Browser Detection

Recall at the beginning of the lesson we mentioned that it is useful for a Web page to
determine what broswer is being used to view the page. This can be done with an if …
else statement. Here is what the code looks like:

 var browserName = navigator.appName;

 if (browserName == "Netscape")
 {

 alert("You are using Netscape");

 }
 else if (browserName == "Microsoft Internet Explorer")
 {

 alert("You are using Internet Explorer");

 }

If you insert this code in a Web page then open it with Internet Explorer you will see the
following message:

(insert screen shot)

If you open it with Netscape, you will see this message:

(insert screen shot)

What do you think will happen if you open this page with a browser other than Netscape or
Internet Explorer?

This code works in the following way. The variable browserName is assigned a value from
navigator.appName. The navigator object is another example of a JavaScript built in object.
The navigator object stores information about what browser is being used. The appName
property stores the name of the browser being used. Another navigator property available is
appVersion, which indicates what version number of the broswer is being used.

In the if statement, browserName is compared for equality with the string “Netscape” by

7-8| Lesson 7: If statement and comparison operators

Copyright © August 2002 Pace University

using the == operator. If the comparison is true, then the alert box announces you are using
Netscape. If the comparison is false, it makes a second comparison. It now compares
browserName with the string “Microsoft Internet Explorer.” If they are equal, the alert box
announces you are using Internet Explorer. Many Web pages use JavaScript to determine
what browser you are using and then they execute different code depending on the result.

JavaScript 101 | 7- 9

Copyright © August 2002 Pace University

In the Lab
In this lesson you will learn how to use comparison operators and the if and if .. else
statements.
Start 1st Page 2000 and begin a new HTML document. Save it giving it the name
lesson0701.html.
Now type in exactly the following code:
<html>

<head>
 <title>Simple If Statement</title>
</head>

<body>

<h1>Using an If Statement</h1>

<script language="Javascript">

<!--

var number=parseInt(prompt("Enter a number",""));

if (number > 10)
{

 alert("The number was greater than 10");

}

//-->

</script>

</body>

</html>

If you run this code and enter the number 11, you see this result:

(insert screen shot)

This code prompts the user to enter a number. The number entered by the user is stored in the
variable number in numeric format by the JavaScript function parseInt. Refer to Lesson 04
for a description of how parseInt works.
Next the code performs a simple if statement. The number entered is compared with 10. If it

7-10| Lesson 7: If statement and comparison operators

Copyright © August 2002 Pace University

is greater than 10, then and only then is an alert box displayed. Run the program a few times
with numbers above 10 and below 10. If they are above 10, your code should display an alert
box. If the number entered is below 10, it should do nothing. What happens when you enter
10 exactly?

Student Modifications

• add an else clause to the if statement that displays an alert box with the message that the
number was less than or equal to 10.

• instead of comparing the input number to 10, prompt the user to enter two numbers and
compare the first number to the second number, i.e. display either “The first number is
greater than the second number,” or “ The first number is less than or equal to the second
number,” depending on the result of your comparison.

JavaScript 101 | 7- 11

Copyright © August 2002 Pace University

Save your code from the previous exercise and start a new document. Save it using the name
lesson0702.html.

Now type in exactly the following code:
<html>

<head>
 <title>Testing the Temperature</title>
</head>

<body>

<h1>What is the temperature?</h1>

<script language="Javascript">

<!--

var temperature = parseFloat(prompt("Enter the outside temperature in
Fahrenheit"," "));

document.write("You entered a temperature of ",temperature,"
");

if (temperature >=80)
{

 document.write("It's hot!!! Wear your shorts!!!
");

}
else
{

 document.write("It's not so hot!! Wear a sweater!!!
");

}

//-->

</script>

</body>

</html>

If you run this code and enter a value of 90, you will see this result:

(insert screen shot)

If you run this code, and enter a value of 50, you will see this result:

7-12| Lesson 7: If statement and comparison operators

Copyright © August 2002 Pace University

(insert screen shot)

This code uses an if statement to test the value of the temperature. It prompts the user to enter
a number, and converts the number to floating point format using the JavaScript function
parseFloat. Recall from Lesson 04 that parseFloat stores numbers that can have a fractional
value. Try this code a few times, entering both whole numbers and numbers with a fractional
value. Enter the number 79.999. What is the result? Enter the number 80.001. What is the
result?

JavaScript 101 | 7- 13

Copyright © August 2002 Pace University

Student Modifications

• Most of the world uses Celsius or Centigrade temperature values. What is considered a
hot temperature in Centigrade? Re-write this program to ask the user to enter a
Centigrade temperature. You also have to change the if statement to reflect a Centigrade
value.

• Add additional if … else statements to test different levels of temperature. Here is what
your if … else statements should look like:

if (temperature >= 100)

{

alert ("wow is it hot!")

}

else if (temperature >=90)

{
alert (.....)

}

else if

7-14| Lesson 7: If statement and comparison operators

Copyright © August 2002 Pace University

JavaScript Guessing Game

Now you will use the if statement in a guessing game. This program prompts the user to
guess a number between 1 and 10. If the guess is correct, an alert box tells the user they
guessed the right number. If it is not correct, the alert box tells the user they guessed the
wrong number.
Save your code from the previous exercise and start a new Web document. Save it using the
name lesson0703.html.
Now type in exactly the follwing code:
<html>

<head>
 <title>JavaScript Guessing Game</title>

 <script language="Javascript">

<!--

function makeGuess()

{ var guess = parseInt(prompt('Guess a number from 1 to 10', ' '));

 if(guess == number)

 alert('You guessed right :)')

 else

 alert('Wrong number guess again :(');

}

//-->

</script>

</head>

<body>

<center>

<h1>Guess The Right Number</h1>

<h2>Welcome to the guessing game!</h2>

<h2>Guess a number between 1 and 10</h2>

</center>

<script language="Javascript">

JavaScript 101 | 7- 15

Copyright © August 2002 Pace University

<!--

var number=(Math.floor(Math.random()*10))+1;

//-->

</script>

<center>

<input type="button" value="Make a Guess" onClick="makeGuess();">

</center>

</body>

</html>

This code is the start of a guessing game. It allows the user to make a guess. If you run this
code and guess the wrong number, you get the following message:

(insert screen shot)

If you run this code and guess the correct number, you get this message:

(insert screen shot)

This code works in the following way.

The computer has to first “pick” the secret number for you to guess. It does this in the
following line:

var number=(Math.floor(Math.random()*10))+1;

Although this code looks quite complicated, it is basically doing a simple thing – guessing a
number from 1 to 10. In order to do this, it uses two JavaScript functions, Math.random()
and Math.floor(). Math.random() is a special function that generates random numbers.
Random numbers are very useful in computer science. They are used by many computer
games, and can be used to simulate animation, and also to generate passwords.

7-16| Lesson 7: If statement and comparison operators

Copyright © August 2002 Pace University

Math.random() generates a random fractional number between the range of just above 0
(zero) up to 1. This code takes the fractional number from Math.random(), multiplies it by 10
and adds 1. This now expands the range of the random number from just above 1 (i.e. 1.413
or 1.232) to just above 10 (i.e. 10.003, or 10.4411.

For our guessing game, we are not at all interested in any of those fractional values; we just
want to chop them off. That is what Math.floor() does for us; it chops off any fractional
numbers, leaving just the whole number, from 1 to 10. Once we have this number, the
assignment operator (=) stores it in the variable number.

After the computer has “picked” the secret number, the user makes a guess by clicking a
button. The onClick event handler for that button now executes the makeGuess() function.
Recall in the last lesson we learned that functions are often used with event handlers to
respond to user events once the code becomes more than one or two lines. The makeGuess()
function prompts the user to enter a number. It uses parseInt to store the user’s number in
numeric format in the variable guess. It then uses an if statement to compare guess with
number. If they are equal, the user has guessed correctly; otherwise they have not guessed
correctly.

This is just the start of the Guessing Game. Now we are going to start making some
additions. After a few wrong guesses, you may get tired of the game and want to see what the
right answer is. We will now add a button and a function to let the user see what the correct
number is.

Add another button to this code in the line right after the first button by entering this code on
a new line:

<input type="button" value="I Give Up!" onClick="showAnswer();">

Now you need to add the showAnswer() function to your code. Place this in the head section
right after the closing brace of the makeGuess() function, but before the closing script tag
(i.e. after line xx. Here is the code you should insert:

function showAnswer()

{

 alert("The correct number is " + number);

}

If you run this code and click the “I give up!” button you will see the following display:

Cathy Dwyer
Comment [1]: must insert correct line
number here after line numbers are generated

JavaScript 101 | 7- 17

Copyright © August 2002 Pace University

(insert screen shot)

Student Modifications

• Provide a hint to the user if they guess the wrong number. Tell them if their guess was
too high or too low. Use an if statement inside the makeGuess() function in order to do
this. Be careful. Only give this hint if they guess the wrong number.

• Add a button with the value= “New Game” that changes the secret number. Add a new
function rePlay() that re-sets the value of number. Place this code inside your function to
reset the number

number=(Math.floor(Math.random()*10))+1;

Also display an alert message to the user to let them know they are starting a new game
with a new number.

7-18| Lesson 7: If statement and comparison operators

Copyright © August 2002 Pace University

Key Terms and Definitions

• branching or conditional statement – a statement in a programming language that asks

a question or determines a condition and executes different instructions depending on the
answer.

• if and if … else statement – if and if ... else are examples of conditional statements that
are part of JavaScript. Both if and if … else examine a condition. For the if statement,
code is executed if the condition is true. For the if … else statements, one block of code is
executed if the condition is true and a separate block of code is executed if the condition
is false.

• comparison operators – operators that allow code to compare two values, and return a
result of either true or false. The comparison operators available are == (equal), != (not
equal), > (greater), >= (greater equal), < (less), and <= (less equal).

• boolean values – these are values that can have only two possible states: true or false.

• if block – section of code that is executed within an if statement if the tested condition is
true.

• else block – section of code that is executed within an if … else statement if the tested
condtion is false.

• Math.random() – JavaScript function that generates a random number.

• Math.floor() – JavaScript function that removes the fractional portion of a floating point
number.

Lesson 7 Summary
The lesson taught you how to use conditional or branching statements. Conditional
statements are a very important component of programming languages. Conditional
statements ask a question, then execute different code depending on the answer. You learned
that you can use the comparison operators to ask questions in JavaScript. Comparison
operators compare two values, and return an answer of either true or false. You also learned
that you can use the if and if … else statements to branch to different code blocks depending
on the result of a comparison. Finally, in the lab you used the if statement and comparison
operators to create a simple guessing game.

JavaScript 101 | 7- 19

Copyright © August 2002 Pace University

Lesson 7 Exercises
7_1. Write a program that inputs the number of items to be purchased and inputs the price per
item, then prints the discounted price. The purchase is discounted by 15% only if there are
10 or more items purchased.
Prompt the user to input the number of items purchased and store it in a variable named
numItems. Prompt the user to enter the price per item and store it in a variable price. Then
use an if statement to determine if numItems is greater or equal to 10. If this is true, discount
the price by 15%. If total is a variable that contains the total cost of all the items, the code
that applies the discount looks like this:
total = total * .85;

Display the total cost in an alert box. Include in the alert message to total cost and whether a
discount was applied.

7_2. Modify the previous program to allow a second level of discount of 25% for 50 items or
more. Add another variable called discount, and set its value to .25 if they have purchased 50
or more items, .15 if they have purchased at least 10 to 49 items, and to 0 if they have
purchased less than 10 items. Use the value in discount to calculate the final total and display
it using an alert box. Include in the alert box the total amount due and the amount of the
discount (if applicable).

7_3. Using the previous programs as guides, create a page with JavaScript that asks in
two prompt boxes for the quantity and the price, and then calculates and displays the total
price including:

• no discount for totals below $100

• a 15% discount only if the total price exceeds $100.

• a 25% discount only if the total purchase exceeds $1000.

• a 30% discount only if the total purchase exceeds $10,000.

7_4. Write a JavaScript program that prompts the user to enter their final average as a
number. Use an if … else statement to display their grade as a letter equivalent, i.e. 90 or
above is an A, 80 or above is a B, etc.

JavaScript 101 | 8- 1

Copyright © August 2002 Pace University

Lesson 8: Loops

OBJECTIVES: In this lesson you will learn about

• Loops

• The advantages of loops

• Increment and decrement operators

• For loop and while loop syntax

• Controlling loops with conditional expressions

8-2| Lesson 8: Loops

Copyright © August 2002 Pace University

Preparing to Program

One of the strongest features of a computer is its ability to repeat steps over and over as many
times as is necessary without complaint or mistakes. For a computer, generating a payroll of
100 employees or 10,000 employees means doing the same thing 10,000 times rather than
100 times. It is not a hardship for a computer to repeat things over and over.

In this lesson , you will learn about JavaScript statements that command the computer to
repeatedly execute a set of programming statements. The generic name for a programming
statement that repeats is a loop. These statements are called loops because of the execution
pattern they follow: they start at the beginning, execute all the statements that are to be
repeated, go back to the top, and do it all over again. If you drew a line following this pattern,
you would draw a series of circles or loops. The set of statements which is repeatedly
executed is called the body of the loop.
We will examine two types of JavaScript loops: the for loop and the while loop.
Before we explore the syntax of loops, you will learn about two operators used frequently
with loops, the increment operator and the decrement operator.

The Increment and Decrement Operators

An important part of controlling a loop requires the computer to be able to count. For
example, you may want to write a loop that repeats 40 times, so the computer needs to be
able to count from 1 to 40. JavaScript has two operators to help with this. One adds +1 to a
variable (the increment operator). This is useful when you want to count up to a certain
value, i.e. 1, 2, 3. One subtracts 1 (-1) from a variable (the decrement operator). This is
useful when you want to count down to a certain value, i.e. 3, 2, 1.

The increment operator ++

The increment operator ++ is used with a variable, either prefix (before) or postfix (after).
The operator ++ increments the value of the variable by 1.
For example:

num++; //increases num by 1

++num; //increases num by 1

Both num++ and ++num increment the value of num by 1, but at different times (see below).

JavaScript 101 | 8- 3

Copyright © August 2002 Pace University

The decrement operator --

The decrement operator -- is used with a variable, either prefix (before) postfix (after).
The operator -- decreases the value of the variable by 1.
For example:

num--; //decreases num by 1

--num; //decreases num by 1

Both num-- and --num decrement the value of num by 1, but at different times (see below).

What is the difference between ++num and num++?
The difference between ++num and num++ is slight. For the programs you will write in
CIS101, they behave in the same way, so you may skip this optional explanation if you wish.

The prefix operator, ++num, increments first and then uses the value of the variable num.
The postfix operator, num++, increments after using the value of the variable num.

Example
 num=5;
 document.write(num); // prints 5
 document.write(num++); // prints 5, then adds one, so num becomes 6 after printing
 document.write(num); // prints 6
 document.write(++num); // prints 7 since it adds the one prior to printing
 document.write(num); // prints 7

You can avoid any confusion about the difference between ++num and num++ by only using
the ++ operator in a simple statement, i.e. not combined with any other code like a write
statement or an assignment statement.

8-4| Lesson 8: Loops

Copyright © August 2002 Pace University

Loops

Loops have the following structure:

loop test
//loop begins
{
body of the loop
}
loop ends
Loops have a test to determine whether the next iteration of the loop should proceed. Just
like with the if statement, the test is a true false condition. You will use the same kinds of
conditional expressions to control a loop as you did to control an if statement.

When the loop test proves true, the set of program commands in the body of the loop is
executed again. When the test turns false, the loop terminates by skipping the body of the
loop and continuing with the next command that follows the loop. With the loops we will
use in CIS101, if the test is false the very first time, the loop is skipped and never entered.

This lesson will explain the syntax of two loop statements, the for loop and the while
loop.

JavaScript 101 | 8- 5

Copyright © August 2002 Pace University

The for Loop

The for loop enables you to specify how many times the body of the loop will execute.

Syntax:
for (expression1; expression2; expression3)
 {

statements to be repeated go here
}

where:

expression1 is used to initialize a variable (named the control variable).

expression2 is the loop test that determines whether the loop should continue.

expression3 is used to modify the value of the control variable.

The for statement is implemented using the following steps:

• step 1: initialize the control variable in expression1

• step 2: if expression2 is true, execute the body of the loop.

• step 3: update the value of the control variable using expression3.

• Repeats steps 2 and 3, until expression2 becomes false.

Example
for (n = 1; n <=100 ; n++) {

body of loop

}

Here n is the loop control variable, and the body of the loop will be repeated 100 times.
In step 3, the value of n is increased by one through the use of the increment operator ++.
You often use the increment operator ++ in this part of a for loop.

8-6| Lesson 8: Loops

Copyright © August 2002 Pace University

Notes

If the body of the loop has only one statement, the curly braces {...} can be omitted.

Traditionally, the control variables for loops are often i, j, k, etc. (This comes from
languages like Fortran where they were the only variables allowed for counting loop
iterations. Old habits die hard.)

Here is an example of code using a for loop that prints the numbers 1 through 10 to the
screen:

<html>

<head>
 <title>Using the For Loop</title>
</head>

<body>

<h1>The page uses a for loop to display 10 numbers</h1>

<script language="Javascript">

<!--

for (i = 1; i <=10 ; i++)

{

 document.write("Here is the number: " + i + "
");

}

//-->

</script>

</body>

</html>

When you run this code, this is the output it produces:

(insert screen shot of above code)

JavaScript 101 | 8- 7

Copyright © August 2002 Pace University

The while Loop

The next loop you will learn about in this lesson is the while loop. Here is the syntax of the
while loop:

Syntax:
while (condition)
{

statements to be repeated

}

where condition is a true false test, the same as in the if statement and the for loop.
The condition is tested to see whether it is true or false. If it is true, the body of the loop
is executed. After all the statements in the body of the loop have been executed, the
condition is tested again. If the condition is still true, the entire process is repeated (do
the commands and loop back to test the condition). When the condition does become
false, the body of the loop is not executed, and execution jumps to the statement that
follows the loop. Thus, the body of the loop is repeatedly executed only as long as
the condition remains true.

Example

n = 0

while (n <=100)
{
 document.write(n)

 n++

}

You can often use either a for loop or a while loop to produce the same result. Here is
another example of JavaScript code that uses a while loop to print the numbers 1 through
10 on the screen:

8-8| Lesson 8: Loops

Copyright © August 2002 Pace University

<html>

<head>
 <title>Using the While Loop</title>
</head>

<body>

<h1>The page uses a while loop to display 10 numbers</h1>

<script language="Javascript">

<!--

var i = 1;

while (i <=10)

{
 document.write("Here is the number: " + i + "
");

 i++;

}

//-->

</script>

</body>

</html>

If you execute this code, this will display on the screen:

(insert screen shot of above code)

JavaScript 101 | 8- 9

Copyright © August 2002 Pace University

In the Lab

In this lesson you will learn to use loops.
Start 1st Page 2000 and begin a new HTML document. Save it giving it the name
lesson0801.html. You will also need to obtain from your instructor the image file start.gif,
and save a copy of this file in the same folder as lesson0801.html.
Now type in exactly the following code:
<html>

<head>
 <title>Writing Stars With a Loop</title>
</head>

<body>

<h1>This JavaScript Uses a Loop to Insert Stars on This Page</h1>

<script language="Javascript">

<!--

var num=parseInt(prompt("How many stars to display?", "10"));

for (i=1; i <=num; i++)

{

 document.write("");

}

//-->

</script>

</body>

</html>

This code prompts the user for the number of stars they want to display. The default input
value is 10. Then a for loop is executed beginning with the control variable i equal to 1, and
ending when the control variable is equal to the number input by the user. Notice that the
increment operator ++ is used to increment the control variable i. Also notice that image tags
for each star are written to the document using the command document.write.

If you run this code with an input value of 7, you see the following output:

(insert screen shot of this code with input of 7)

8-10| Lesson 8: Loops

Copyright © August 2002 Pace University

Student Modifications

• Execute your code with different values. Enter a value of 0. Enter a negative value.
Enter a very large value, like 3000.

• Find another image that you want to display. Insert another document.write statement
to first display the star image and then to display the second image each time the loop
body executes. To do this, repeat the document.write statement inside the body of the
loop referencing a second image file. That second image file must also be loaded in
the same folder as your code file, lesson0801.html.

• Rewrite this code using a while loop instead of a for loop. Which loop do you prefer
to use?

JavaScript 101 | 8- 11

Copyright © August 2002 Pace University

Using Loops to Shake the Browser Window

You can use loops to shake your browser window. Save your work from the previous
exercise and start a new file, and save it with the name lesson0802.html. For this code, you
must test it by opening it with a browser rather than with the preview mode of 1st Page 2000.
This code will only work with Internet Explorer 4.0 or above or Netscape 4 or above.

Now type in exactly the following code:
<html>

<head>
 <title>JavaScript Shaking Screen</title>

 <SCRIPT LANGUAGE="Javascript">

<!-- Begin

function shake(n)

{

 for (i = 10; i > 0; i--)

 {

 for (j = n; j > 0; j--)

 {

 self.moveBy(0,i);

 self.moveBy(i,0);

 self.moveBy(0,-i);

 self.moveBy(-i,0);

 } //end inner loop

 }// end outer loop

} //end function

// End -->

</script>

</head>

<BODY BGCOLOR="#CDCDCD" TEXT="#23238E" LINK="#FF2400"
VLINK="#FF2400" ALINK="#E6E8FA">

<h1>This only works with IE 4 or above or Netscape 4 or above</h1>

8-12| Lesson 8: Loops

Copyright © August 2002 Pace University

<p>

 <form>

 <input type=button onClick="shake(2)" value="Shake Screen"
name="button">

 </form>

</p>

</body>

</html>

Test this code by running it in a browser, and you will see your browser window shake when
you click the button. This code uses two for loops, one inside the other, along with the
function self.moveBy to shake the screen.

A loop inside a loop is called a nested loop. The loop on the outside is called the outer loop.
The loop on the inside is called the inner loop.
The outer loop for this code controls how many times the window shakes altogether.
The inner loop controls how far in each direction (up and down, and left and right), your
window shakes.

When you click the button you call a function shake with a parameter value of 2. This value
is used by shake to control how much the window shakes.

Student Modifications

• Add a second button that calls the function shake with a different value for the parameter.
Try it with different values, like 1, 5, or 10.

• You can add code that will shake your window as soon as it is loaded by using the
onLoad event handler. The onLoad event is triggered when your page is loaded. Add
the following event handler code to the body tag of your file:

onLoad = “shake(3);”

JavaScript 101 | 8- 13

Copyright © August 2002 Pace University

Key Terms and Definitions

• loop – A programming statement that repeats a set of statements. It is controlled by a test

condition. The statements are repeated as long as the test condition is true. The loop ends
when the test condition is false.

• body of the loop – The portion of a loop that is repeated.

• for loop – JavaScript statement that allows you to repeat a section of code a specified
number of times.

• while loop – JavaScript loop statement that repeats a section of code as long as its test
condition is true. The loop will terminate when the test condtion is false.

• increment operator – JavaScript operator that increases the value of a variable by +1.

• decrement operator – JavaScript operator that decreses the value of a variable by –1.

• control variable – Variable used to control a loop. Once the control variable reaches or
achieves a certain value, the loop is terminated.

• nested loop – One loop inside another loop is a nested loop.

• onLoad event handler – Event handler that is part of the body tag. It is triggered when
the Web page is loaded by the browser.

Lesson 8 Summary

In this lesson you have learned that programming languages have statements that allow the
programmer to specify sections of code that can repeat over and over. You learned that these
statements are called loops, because they continually loop back to the beginning of their
code. You learned the syntax of two JavaScript loop statements, the for loop and the while
loop. You also learned about the increment operator and the decrement operator, that are
frequently used to control loops. Finally you learned how to use the onLoad event handler in
order to trigger code as a Web page is being loaded by the browser.

8-14| Lesson 8: Loops

Copyright © August 2002 Pace University

Lesson 8 Exercises

8_1. Create a Web page using JavaScript that displays all the even numbers between 1 and
100. Hint: create a variable num and set it equal to 2. Display its value using document.write,
then add 2 to num each time you repeat the loop body. Keep on repeating until you reach
100.

8_2. Create a page that prompts the user to enter a starting number and an ending number.
Use a loop that displays all the numbers between the starting number and the ending number.
For example, if the user entered 5 as the starting number and 9 as the ending number, the
output would look like this:
5
6
7
8
9

8_3. Here is song you probably remember from long bus trips:
99 bottles of beer on the wall,
99 bottle of beer!
If one of those bottle should happen to fall,
98 bottle of beer on the wall.

98 bottle of beer ….
You can use a loop along with the decrement operator to write out the words to this song.
Create a variable num and initialize it to 99. Create a series of document.write statements,
one for each line in the song. But instead of including the actual number in the
document.write statement, use the variable num.
For example, this code will display the first line of the first verse:
var num = 99;

document.write(num + “ bottles of beer on the wall,
”);

Before you write out the last line of the verse, add a statement that decreases the value in
num, i.e. num--. Place all your document.write statements inside a loop. Be sure that the last
verse displayed is for no (zero) bottles of beer.

JavaScript 101 | A- 1

Copyright © August 2002 Pace University

Appendix A: JavaScript Reserved Words

The reserved words in this list cannot be used as JavaScript variables, functions, methods,
or object names. Some of these words are keywords used in JavaScript; others are
reserved for future use.

abstract
boolean
break
byte
case
catch
char
class
const
continue
default
delete
do
double

else
extends
false
final
finally
float
for
function
goto
if
implements
import
in
instanceof

int
interface
long
native
new
null
package
private
protected
public
return
short
static
super

switch
synchronized
this
throw
throws
transient
true
try
typeof
var
void
while
with

JavaScript 101 |B - 1

Copyright © August 2002 Pace University

Appendix B: Using 1st Page 2000 to Write JavaScript Code

You will continue using the software 1st Page 2000 to develop and execute your JavaScript
code.

This tutorial demonstrates the steps to follow to create a Web page with JavaScript code. It
reviews how to begin 1st Page 2000. It then shows you how use the scripting window to
insert script tags, where to insert your JavaScript, and how to test (preview) your code in 1st
Page 2000. It then reviews how you save a file. Finally, it shows you how to view your page
in both Internet Explorer and Netscape.

1. To start 1st Page2000::

a) Click the Start button.

b) Move the mouse up to Programs.

c) Move the mouse to the Evrsoft folder.

d) Move the mouse to the 1st Page 2000 folder.

e) Click Normal.

2. If the Ist Page 2000 “Start Manager” window pops up

Leave the “Create a new document on startup” checkbox checked. Check it if it is
unchecked. Cilck the “Close” button.

B-2| Appendix B: Using 1st Page 2000 to Write JavaScript Code

Copyright © August 2002 Pace University

1st Page launches a new Web document and you should see the “New Document”
window as shown below

3. Please note: 1st Page 2000 has a different startup routine that depends on whether the
option “Show this screen everytime 1st Page starts” has been checked or unchecked
by a previous user of the program. If it is unchecked, you will not see the “Start
Manager” window. Instead, you will immediately see the above window.

If the “Create a new document on startup” on the “Start Manager” window is also
unchecked, you will see this window:

JavaScript 101 |B - 3

Copyright © August 2002 Pace University

Follow the instruction on the window –“Double Click anywhere within this window
to create a New Document”. You will see the New Document window as shown in
Step 2 above.

4. Now you will start to set up your document. You will need line numbers to find
errors and follow instructions in the text. Click the “#”(Show line numbers symbol)
button to display the number line. Depending on your settings, you may also have to
click the “Show Gutter” button to see the line numbers. The two buttons are
highlighted with arrows in the next two screen shots.

B-4| Appendix B: Using 1st Page 2000 to Write JavaScript Code

Copyright © August 2002 Pace University

Your screen should now look like this

5. Now you will insert the script tags needed for JavaScript code. First place your

cursor somewhere between the <body> and </body> tags. Click “Scripting” on the
menu bar, select “Define Script Language…”. Select Javascript from the “Script
Language” drop down menu and click OK.

JavaScript 101 |B - 5

Copyright © August 2002 Pace University

Your window should now look like this

B-6| Appendix B: Using 1st Page 2000 to Write JavaScript Code

Copyright © August 2002 Pace University

6. Enter the following lines between the two yellow highlighted lines. Be sure to type
them in correctly.

document.write(“This is my first JavaScript.
”);

document.write(“It works!
”);

7. Run the code by clicking the “Preview[F12]” button(arrowed below). You should

see the following output.

JavaScript 101 |B - 7

Copyright © August 2002 Pace University

8. If you were able to see the above window, congratulations! You have just used 1st

Page2000 to write and execute your first JavaScript code. If it did not work properly,
go back and complete each step carefully and completely before moving on to the
next step.

9. You will now save the Web page you just created in a folder called cis101 on your

computer “Desktop” as “first.html”.
a) Click File on the menu toolbar, select “Save as…”. The Save window(shown

below) pops up. Select Desktop from the “Save in:” drop down menu.

b) Skip this step if you have already have a folder named “cis101” on your desktop.

If you do not have a folder named “cis101” on your desktop then do the following:

Click the “Create New Folder” button to create a new folder.

Type “cis101” over the blinking “New Folder” name.

c) Double-click “cis101” folder to open it. Type “first.html” in the “File Name” text

box. Click on “Save”.

10. After you have previewed your JavaScript program, you need to test it out using both

Internet Explorer and Netscape Navigator browsers. This step assumes that you have
both Internet Explorer and Nescape Navigator installed on your computer.

B-8| Appendix B: Using 1st Page 2000 to Write JavaScript Code

Copyright © August 2002 Pace University

Double click to open the cis101 folder on your Desktop. The file you just created,
first.html, should be visible either with a Netscape icon or an Internet Explorer icon.

What icon you see depends on individual settings for the computer you are working
on. If Netscape has been configured as your default browser, then the icon you will
see will be for Netscape Naviagator. If Internet Explorer is the default browser, then
your file will be displayed with the Internet Explorer icon. For this illustration, the
default browser is Internet Explorer.

Double click the first.html file to open it. You should see the following window if the
default brower on your computer is Internet Explorer.

JavaScript 101 |B - 9

Copyright © August 2002 Pace University

If the default browser on your machine is Netscape Navigator, you should see the
window below.

Now go back to cis101 folder.

B-10| Appendix B: Using 1st Page 2000 to Write JavaScript Code

Copyright © August 2002 Pace University

a) The next step is to try out your file with the second browser. Right-click the
first.html file, select “Open With”. From the menu list select your computer’s
non-default browser. For example, select Netscape Navigator, as shown below:

If Netscape Navigator is not part of the list, select “Choose Program…”. The
“Open With” window pops up. Look for and select Netscape Navigator. You
may have to scroll down the window to see it. Click Ok. The file should open in
Navigator as shown above.

b) If your default browser is Netscape Communicator i.e if the window you saw

was the second one, right-click the first.html file, select “Open With”. From the
menu list select Internet Explorer, the file should open in Explorer as shown
above.

If Internet Explorer is not part of the list, select “Choose Program…”. The “Open
With” window pops up. Look for and select Internet Explorer. You may have to
scroll down the window to see it. Click on Ok, the file should open in Explorer as
shown above.

JavaScript 101 |C - 1

Copyright © August 2002 Pace University

Appendix C: Netscape Named Colors

You can use any of the following names colors in any JavaScript or HTML statement that
uses a color. For example:

document.bgColor=”cornflowerblue”

 Netscape Name Value
Blues: azure F0FFFF
 aliceblue F0F8FF
 lavender E6E6FA
 lightcyan E0FFFF
 powderblue B0E0E6
 lightsteelblue B0C4DE
 paleturquoise AFEEEE
 lightblue ADD8E6
 blueviolet 8A2BE2
 lightskyblue 87CEFA
 skyblue 87CEEB
 mediumslateblue 7B68EE
 slateblue 6A5ACD
 cornflowerblue 6495ED
 cadetblue 5F9EA0
 indigo 4B0082
 mediumturquoise 48D1CC
 darkslateblue 483D8B
 steelblue 4682B4
 royalblue 4169E1
 turquoise 40E0D0
 dodgerblue 1E90FF
 midnightblue 191970
 aqua 00FFFF
 cyan 00FFFF
 darkturquoise 00CED1
 deepskyblue 00BFFF
 darkcyan 008B8B
 blue 0000FF
 mediumblue 0000CD
 darkblue 00008B
 navy 000080

C-2| Appendix C: Named Colors

Copyright © August 2002 Pace University

 Netscape Name Value

Greens: mintcream F5FFFA
 honeydew F0FFF0
 greenyellow ADFF2F
 yellowgreen 9ACDC2
 palegreen 98FB98
 lightgreen 90EE90
 darkseagreen 8FBC8F
 olive 808000
 aquamarine 7FFFD4
 chartreuse 7FFF00
 lawngreen 7CFC00
 olivedrab 6B8E23
 mediumaquamarine 66CDAA
 darkolivegreen 556B2F
 mediumseagreen 3CB371
 limegreen 32CD32
 seagreen 2E8B57
 forestgreen 228B22
 lightseagreen 20B2AA
 springgreen 00FF7F
 lime 00FF00
 mediumspringgreen 00FA9A
 teal 008080
 green 008000
 darkgreen 006400

JavaScript 101 |C - 3

Copyright © August 2002 Pace University

 Netscape Name Value

Reds: lavenderblush FFF0F5
 mistyrose FFE4E1
 pink FFCOCB
 lightpink FFB6C1
 orange FFA500
 lightsalmon FFA07A
 darkorange FF8C00
 coral FF7F50
 hotpink FF69B4
 tomato FF6347
 orangered FF4500
 deeppink FF1493
 fuchsia FF00FF
 magenta FF00FF
 red FF0000
 salmon FA8072
 lightcoral F08080
 violet EE82EE
 darksalmon E9967A
 plum DDA0DD
 crimson DC143C
 palevioletred DB7093
 orchid DA70D6
 thistle D8BFD8
 indianred CD5C5C
 mediumvioletred C71585
 mediumorchid BA55D3
 firebrick B22222
 darkorchid 9932CC
 darkviolet 9400D3
 mediumpurple 9370DB
 darkmagenta 8B008B
 darkred 8B0000
 purple 800080
 maroon 800000

C-4| Appendix C: Named Colors

Copyright © August 2002 Pace University

 Netscape Name Value

Yellows: ivory FFFFF0
 lightyellow FFFFE0
 yellow FFFF00
 floralwhite FFFAF0
 lemonchiffon FFFACD
 cornsilk FFF8DC
 gold FFD700
 khaki F0E68C
 darkkhaki BDB76B

 Netscape Name Value
Browns: snow FFFAFA
 seashell FFF5EE
 papayawhite FFEFD5
 blanchedalmond FFEBCD
 bisque FFE4C4
 mocassin FFE4B5
 navajowhite FFDEAD
 peachpuff FFDAB9
 oldlace FDF5E6
 linen FAF0E6
 antiquewhite FAEBD7
 beige F5F5DC
 wheat F5DEB3
 sandybrown F4A460
 palegoldenrod EEE8AA
 burlywood DEB887
 goldenrod DAA520
 tan D2B48C
 chocolate D2691E
 peru CD853F
 rosybrown BC8F8F
 darkgoldenrod B8860B
 brown A52A2A
 sienna A0522D
 saddlebrown 8B4513

JavaScript 101 |C - 5

Copyright © August 2002 Pace University

 Netscape Name Value

Grays: white FFFFFF
 ghostwhite F8F8FF
 whitesmoke F5F5F5
 gainsboro DCDCDC
 lightgray D3D3D3
 silver C0C0C0
 darkgray A9A9A9
 gray 808080
 lightslategray 778899
 slategray 708090
 dimgray 696969
 darkslategray 2F4F4F
 black 000000

JavaScript 101 |E - 1

Copyright © August 2002 Pace University

Appendix D: Simple Debugging Guide

Learning to program means learning how easy it is to make a mistake, and how hard it
can be to find the mistake and correct it. When you first write a program, it is very likely
to contain an error. This is true for professional programmers as well. In programming,
your code will not execute at all if it has an error. It is most likely a small error, like miss
spelling a keyword. No matter how tiny the error seems to be, you need to find it and fix
it before your code will run.

Common sources of JavaScript errors involve the following aspects of code:

• Case: Unlike HTML, JavaScript is case sensitive. This means that JavaScript

distinguishes between upper-case and lower-case letters. Most built-in features,
including objects and statements, are all lower case.

• Matching Quotation Marks: JavaScript expects beginning and ending quotation marks.

You also must end with the same kind of quotation mark as you begin with. In other
words, if you begin with a double quote you need to end with a double quote.

• Errors in the HTML Tags. Sometimes you can make a typing error in the <script> tag.

For example, the following tag has a missing quotation mark, which will prevent the
code from executing .

<scriptlanguage=“JavaScript>

This can be an especially tricky error to catch.

Debugging Your JavaScript Code

There are several approaches to take to debugging(finding and fixing errors) JavaScript
code and several debugging tools exist for this purpose. However for simplicity, we shall
be using the error information provided by built-in debuggers in Internet Explorer and
Netscape Navigator to find errors in JavaScript code. We will use our knowledge of
JavaScript to fix the errors using 1st Page2000.

This tutorial assumes that you have Internet Explorer 6.0 and/or NetScape Navigator 4.77
installed on your computer.

The browser settings for Internet Explorer 6 control how error messages are displayed
when the browser detects errors in a JavaScript program or script. For uniformity, we are
going to standardize our Internet Explorer settings to “disable script debugging” and
“display a notification about every script error”.

Please adjust your Internet Explorer settings by following these instructions:
a) Launch Internet Explorer
b) Click “Tools” on the menu tool bar and select Internet Options as shown below

E-2| Appendix E: Debugging JavaScript Code

Copyright © August 2002 Pace University

c) Click on the “Advanced” tab. From the list, check both “disable script debugging” and

“display a notification about every script error” as shown arrowed below.

Click OK to close the “Internet Options” window.

JavaScript 101 |E - 3

Copyright © August 2002 Pace University

We shall now proceed by introducing errors in the “first.html” file we wrote for Appendix B:
Using 1st Page 2000 to Write JavaScript Code. Please complete the example from Appendix
B if you have not done so already before proceeding.

1. Launch 1st Page 2000 and open the “first.html” file from the “cis101” folder on your

Desktop.
2. Preview the file in 1st Page 2000 to confirm that it works properly. To do this, open the

file with Internet Explorer and /or Netscape Navigator.
3. Return to 1st Page to introduce the following error: remove the opening quote for the

second statement in the script tag. The altered statement (it now has an error) should
read

document.write(It works!
”);

Save the file with the changes by clicking the “Save” button as indicated in the above
screen shot.

4. Click the Preview[F12] button and you should see the following window

E-4| Appendix E: Debugging JavaScript Code

Copyright © August 2002 Pace University

This tells you that “An error has occurred in the script on this page”. The window also
has other information on the “possible” line the error is on as well as the “possible” cause
of the error. Please note that we say “possible” here because the information provided
here is often times incorrect and misleading.

The window asks you the following question: “Do you want to continue running scripts
on this page?” Click “No” to close the “Internet Explorer Script Error” window.

5. You may also get different error messages when running your script with Internet
Explorer or Netscape rather than when you run the script within 1st Page 2000. To see
what error messages are produced by each browser, open the “first.html” file again using
both Internet Explorer and Netscape Navigator.

JavaScript 101 |E - 5

Copyright © August 2002 Pace University

This is the message generated by Internet Explorer:

You may have to click the “Show Details >>” button if you don’t see the error details the
first time.

For Netscape Navigator, you are most likely to get a blank screen. To produce error
messages from Netscape you must type “javascript:” in the “Location” box (see arrow on
screenshot below).

enter “javascript:” in
the location box to see
error messages.

E-6| Appendix E: Debugging JavaScript Code

Copyright © August 2002 Pace University

After you enter “javascript:” in the location box, you invoke the “Communicator
Console” as shown below.

The console shows the file containing error, the line, the possible cause as well as the
statement that contains the error.

6. Now tab through the three windows and review the error messages generated by 1st Page

2000 (they should be the same as with Internet Explorer), Internet Explorer, and
Netscape Navigator. Notice that they either report “missing) after argument list.” Or
“Expected)” as the cause of the error.

The error message generated is wrong for all three windows: the cause of the error is a
missing quote mark(“), not a missing parenthesis. We know these messages are wrong
because we “planted” the error in the first place. It is obvious that you can be easily
misled about the cause of the error.

The point to note is that the debuggers built into the Web browsers often do not work
very well. While Netscape may provide better information than does Internet Explorer
about the location of an error, neither one does a good job of describing the cause of a
script error. This software, in other words, is not perfect. If you keep that in mind, it will
be easier to fix problems with your code. But this is an important point: although the
browser is not good at describing the error, it will not run your code until you find that
error and fix it.

Your understanding and experience with the JavaScript language are factors you are
going to rely on in successfully fixing scripting errors. The information provided by the
browsers should only be used as a guide to help you to find the errors.

JavaScript 101 |E - 7

Copyright © August 2002 Pace University

7. Return to 1st Page and correct the error by putting the opening quote in the proper place.
Save the file, preview in 1st Page and open in both browsers to confirm that it is working
as expected again.

	cover
	JavaScript101
	Intro
	lesson01
	lesson02
	lesson03
	lesson04
	lesson05
	lesson06
	lesson07
	lesson08
	Appendix A Reserved Words
	Appendix B 1st Page 2000 082002
	Appendix C Named Colors
	Appendix D Debugging JavaScript Code 082002

