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Polynomial Counting in

Anonymous Dynamic Networks
with Applications to Anonymous Dynamic Algebraic Computations

Dariusz R. Kowalski ∗ Miguel A. Mosteiro †

Abstract

Starting with Michail, Chatzigiannakis, and Spirakis work [15], the problem of Counting the number
of nodes in Anonymous Dynamic Networks has attracted a lot of attention. The problem is challenging
because nodes are indistinguishable (they lack identifiers and execute the same program) and the topology
may change arbitrarily from round to round of communication, as long as the network is connected in
each round. The problem is central in distributed computing as the number of participants is frequently
needed to make important decisions, such as termination, agreement, synchronization, and many others.
A variety of algorithms built on top of mass-distribution techniques have been presented, analyzed, and
also experimentally evaluated; some of them assumed additional knowledge of network characteristics,
such as bounded degree or given upper bound on the network size. However, the question of whether
Counting can be solved deterministically in sub-exponential time remained open. In this work, we answer
this question positively by presenting Methodical Counting, which runs in polynomial time and
requires no knowledge of network characteristics. Moreover, we also show how to extend Methodical
Counting to compute the sum of input values and more complex functions without extra cost. Our
analysis leverages previous work on random walks in evolving graphs, combined with carefully chosen
alarms in the algorithm that control the process and its parameters. To the best of our knowledge, our
Counting algorithm and its extensions to other algebraic and Boolean functions are the first that can be
implemented in practice with worst-case guarantees.

1 Introduction

In this work, we address the standing question of whether the number of nodes of an Anonymous Dynamic
Network (ADN) can be counted deterministically in polynomial time or not. We answer this question posi-
tively by presenting the Methodical Counting algorithm, and proving formally that after a polynomial
number of rounds of communication all nodes know the size of the network and stop.

The problem has been thoroughly studied [15, 7, 8, 9, 6, 16, 4] because Counting is central for distributed
computing. Indeed, more complex tasks need the network size to make various decisions on state agreement,
synchronization, termination, and others. However, Anonymous Dynamic Networks pose a particularly
challenging scenario. On one hand, nodes are indistinguishable from each other. For instance, they may
lack identifiers or their number may be so massive that keeping record of them is not feasible. On the other
hand, the topology of the network is highly dynamic. Indeed, the subsets of nodes that may communicate
with each other may change all the time. All these features make ADN a valid model for anonymous ad hoc
communication and computation.

In such a restrictive scenario, finding a way of providing theoretical guarantees of deterministic poly-
nomial time has been elusive until now. Indeed, previous papers have either weaken the objective (e.g.,
computing only upper bound, only stochastic guarantees, etc.), assumed availability of network information
(e.g., maximum number of neighbors, size upper bound, etc.), relied on a stronger model of communication,
or provided only superpolynomial time guarantees.

∗Computer Science Department, University of Liverpool, Liverpool, UK. E-mail: D.Kowalski@liverpool.ac.uk
†Computer Science Department, Pace University, New York, NY, USA. E-mail: mmosteiro@pace.edu
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Methodical Counting uses no information about the network. After completing its execution, all
nodes obtain the exact size of the network and stop. Moreover, they stop all at the same time, allowing the
algorithm to be concatenated with other computations.

Our algorithm is based on nodes continuously sharing some magnitude, which we call potential,1 resem-
bling mass-distribution and push-pull algorithms. Unlike previous algorithms, in Methodical Counting
carefully and periodically (i.e. , “methodically”) some potential is removed from the network, rather than
greedily doing so continuously. This approach is combined with another methodological innovation testing
whether the candidate value (for the network size) is within some polynomial range of the actual network
size. This complex strategy yields an algorithm in which the progress in mass-distribution can be analyzed
as a sequence of parametrized Markov chains (even though the algorithm itself is purely deterministic) en-
hanced by mass drift and alarms controlling the process and its parameters. Our analysis approach opens
the path to study more complex tasks in Anonymous Dynamic Networks applying similar techniques.

Finally, we also present a variety of extensions of Methodical Counting to compute more complex
functions. Most notably, we present an extension that, concurrently with finding the network size, computes
the sum of input values held at each node without asymptotic time overhead. Having a method to compute
the sum and network size, more complex computations are possible in polynomial time as well. Indeed, we
also describe how to compute a variety of algebraic and Boolean functions. To the best of our knowledge,
ours are the first algorithms for anonymous dynamic Counting and other algebraic computations that can
be implemented in practice with worst-case guarantees.

Roadmap:

The rest of the paper is organized as follows. We specify the model and notation details in Section 2. Then,
we overview previous work in Section 3 and present our results in Section 4. Section 5 includes the details of
Methodical Counting, and we prove its correctness and running time in Section 6. Extensions to other
functions are presented in Section 7.

2 Model, Problem, and Notation

The Counting Problem:

The definition of the problem is simple. An algorithm solves the Counting Problem if, after completing its
execution, all nodes have obtained the exact size of the network and stop.

Anonymous Dynamic Networks:

The following model is customary in the Anonymous Dynamic Networks literature. We consider a network
composed by a set V of n > 1 network nodes with processing and communication capabilities. It was shown
in [15] that Counting cannot be solved in Anonymous Networks without the availability of at least one
distinguished node in the network. Thus, we assume the presence of such node called leader. Aside from the
leader, we assume that all other nodes are indistinguishable from each other. That is, we do not assume the
availability of labels or identifiers, and all non-leader nodes execute exactly the same program.

Each pair of nodes that are able to communicate define a communication link, and the set of links is
called the topology of the network. The nodes in a communication link are called neighbors. The event
of sending a message to neighbors is called a broadcast or transmission. Nodes and links are reliable, in
the sense that no communication or node failures occur. Hence, a broadcasted message is received by all
neighbors. Moreover, links are symmetric, that is, if node a is able to send a message to node b, then b is
able to send a message to a.

1In previous related works this quantity, used in a different way, was termed energy. We steer away from such denomination
to avoid confusion with node energy supply.
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Without loss of generality, we discretize time in rounds. In any given round, a node may broadcast a
message, receive all messages from broadcasting neighbors, and carry out some computations, in that order.
The time taken by the computations is assumed to be negligible.

The set of links among nodes may change from round to round, and nodes have no way of knowing which
were the neighbors they had before. These topology changes are arbitrary, limited only to maintain the
network connected in each round. That is, at any given round the topology is such that there is a path, i.e.,
a sequence of links, between each pair of nodes, but the set of links may change arbitrarily from round to
round. This adversarial model of dynamics was called 1-interval connectivity in [14].

The following notation will be used. The maximum number of neighbors that any node may have at
any given time is called the dynamic maximum degree and it is denoted as ∆. The maximum length of a
path between any pair of nodes at any given time is called the dynamic diameter and it is denoted as D.
The maximum length of an opportunistic path between any pair of nodes over many time slots is called the
chronopath [10] and it is denoted as D.

algorithm
needs

computes stops?
complexity

size
upper
bound
N

dynamic
maximum
degree u.b.

dmax

time space

Degree
Counting [15]

O(dnmax) O(n)

Conscious [7] n
O(eN

2
N3)⇒

O(ed
2n
maxd3nmax) using [15]

Unconscious [7] n No
No theoretical

bounds

AOP [8]
Degree oracle
for each node

n Eventually Unknown

EXT [6] n O(nn+4) EXPSPACE

Incremental
Counting [16]

n O
(
n (2dmax)n+1 lnn

ln dmax

)
Methodical
Counting
[This work]

n O(n5 ln2 n) PSPACE

Table 1: Comparison of Counting protocols for Anonymous Dynamic Networks.

3 Previous Work

In this section we overview previous work directly related to this paper. A comprehensive overview of work
related to Anonymous Dynamic Networks can be found in a survey by Casteigts et al. [3] and references
in the papers cited here. The related work overviewed, in comparison with our results, is summarized in
Table 1.

With respect to lower bounds, it was proved in [5] that at least Ω(logn) rounds are needed, even if D is
constant. Also, a trivial observation is that Ω(D) is a lower bound as at least one node needs to hear about
all other nodes to obtain the right count, and the chronopath D is the largest number of hops that a message
from some node needs to take to reach other node in the network, possibly along multiple time slots.

Counting was already studied in [15], together with the problem of Naming, for dynamic and static
networks. It was shown in this work that it is impossible to solve Counting without the presence of a
distinguished node, even if nodes do not move. The Counting protocol presented for Anonymous Dynamic
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Networks requires knowledge of an upper bound on ∆, and the count obtained is only an upper bound on
the network size, which may be as bad as exponential.

An exact count is obtained by the Conscious Counting algorithm presented in [7]. However, the compu-
tation relies on knowing initially an upper bound on the network size. The running time of this protocol is
exponential only if the initial upper bound is tight.

In the same work and follow-up papers [8, 9], the authors presented protocols under more challenging
scenarios where ∆ is not known. However, either the protocol does not terminate [7], and hence the running
time cannot be bounded, or the protocol is terminated heuristically [9]. In experiments [9], such heuristic
was found to perform well on dense topologies, but for other topologies the error rate was high. That is, the
results only apply to dense Anonymous Dynamic Networks. Another protocol in [8] is shown to terminate
eventually, without running-time guarantees and under the assumption of having for each node an estimate
of the number of neighbors in each round. In [15] it was conjectured that some knowledge of the network
such as the latter would be necessary, but the conjecture was disproved later in [6]. On the other hand the
protocol in [6] requires exponential space.

Recently, a protocol called Incremental Counting was presented in [16]. This algorithm reduced expo-
nentially the running time guarantees with respect to previous works developed under the same model.
Incremental Counting obtains the exact count, all nodes terminate simultaneously, the topology dynamics is
only limited to 1-interval connectivity, it only requires polynomial space, and it only requires knowledge of
the dynamic maximum degree ∆. The superpolynomial running time proved still does not provide enough
guarantee for practical application, but reducing from doubly-exponential to exponential was an important
step towards understanding the complexity of Counting.

In a follow-up paper [4], Incremental Counting was tested experimentally showing a promising polynomial
behavior. The study was conducted on pessimistic inputs designed to slow the convergence, such as bounded-
degree trees rooted at the leader uniformly chosen at random for each round, and a single path starting at the
leader with non-leader nodes permuted uniformly at random for each round. The protocol was also tested
on static versions of the inputs mentioned, classic random graphs, and networks where some disconnection is
allowed. The results exposed important observations. Indeed, even for topologies that stretch the dynamic
diameter, the running times obtained are below ∆n3. It was also observed that random graphs, as used
in previous experimental studies [9], reduce the convergence time, and therefore are not a good choice to
indicate worst-case behavior. These experiments showed good behavior even for networks that sometimes
are disconnected, indicating that more relaxed models of dynamics, such as (α, β)-connectivity [10, 11], are
worth to study. All in all, the experiments in [4] showed that Incremental Counting behaves well in a variety
of pessimistic inputs, but not having a proof of what a worst-case input looks like, and being the experiments
restricted to a range of values of n far from the expected massive size of an Anonymous Dynamic Network,
a theoretical proof of polynomial time remained an open problem even from a practical perspective.

In a recent manuscript [2] a polynomial Counting algorithm is presented relying on the availability of
an algorithm to compute average with polynomial convergence time. Such average computation is modeled
as a Markov chain with underlying doubly-stochastic matrix, which requires topology information within
two hops (cf. [17]). In our model of Anonymous Dynamic Network, such information is not available, and
gathering it may not be possible due to possible topology changes from round to round.

4 Our Contributions

We present and analyze a deterministic distributed algorithm to compute the number of nodes in an Anony-
mous Dynamic Network. We call such algorithm Methodical Counting. As opposed to previous works,
our algorithm does not require any knowledge of network characteristics, such as dynamic maximum degree
or an upper bound on the size. After O(n5 ln2 n) communication rounds of running Methodical Count-
ing, all nodes obtain the network size and stop at the same round. To the best of our knowledge, this is the
first polynomial deterministic Counting algorithm in the pure model of Anonymous Dynamic Network.

Our algorithm is based on distributing potential in a mass-distribution fashion, similarly as previous
works for Counting. The main algorithmic novelty in our approach is that the leader participates in the
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process as any other node, removing potential only after it has accumulated enough. This approach allowed
us to leverage previous work on random walks in evolving graphs. For this approach to work, we combine it
with testing whether the candidate value for the network size is polynomially close to the actual value. Our
approach also opens the path to study more complex computations in Anonymous Dynamic Networks using
the same analysis.

Finally, we also present extensions of Methodical Counting to compute more complex functions.
Most notably, we show how to modify Methodical Counting to compute the sum of input values held
by nodes at the same time than counting. Having an algorithm to compute the network size and the sum of
input values, we also show how to compute other algebraic and Boolean functions.

5 Methodical Counting

In this section we present Methodical Counting. First, we give the intuition of the algorithm, the details
can be found in Figures 1 and 2. (References to algorithm lines are given as 〈figure#〉.〈line#〉.)

Initially, the leader is assigned a potential of 0 and all the other nodes are assigned a potential of 1.
Then, the algorithm is composed by epochs, each of which is divided into phases composed by rounds of
communication. Epoch k corresponds to a size estimate k that is iteratively increased from epoch to epoch
until the correct value n is found. Each epoch is divided into p phases. The purpose of each phase is for the
leader to collect as much potential as possible from the other nodes in a mass-distribution fashion as follows.

Each phase is composed by r rounds of communication. In each round, each node2 broadcasts its potential
and receives the potential of all its neighbors. Each node keeps only a fraction 1/d of the potentials received.
The parameters p, r, and d are functions of k. The specific functions needed to guarantee correctness and
saught efficiency are defined in Theorem 2. This varying way of distributing potential is different from
previous approaches using mass distribution. After communication, each node updates its own potential
accordingly (cf. Lines 1.11 and 2.10). That is, it adds a fraction 1/d of the potentials received, and subtracts
a fraction 1/d of the potential broadcasted times the number of potentials received. Then, a new round
starts.

At the end of each phase the leader “consumes” its potential. That is, it increases an internal accumulator
ρ with its current potential, which is zeroed for starting the next phase (cf. Lines 1.19 and 1.20). A node
stops the update of potential described, raises its potential to 1, and broadcasts an alarm in each round until
the end of the epoch if any of the following happens: 1) at the end of the first phase its potential is above
some threshold τ as defined in Theorem 2 (cf. Lines 1.15 and 2.14), 2) at any round it receives more than
d − 1 messages (cf. Lines 1.12 and 2.11), or 3) at any round it receives an alarm (cf. Lines 1.12 and 2.11).
The alarm for case 1) allows the leader to detect that the estimate is wrong when k1+ε < n for some ε > 0
(Lemmas 3 and 4), the alarm for case 2) allows the leader to detect that d is too small and hence the estimate
is wrong, and the alarm for case 3) allows dissemination of all alarms. In the alarm status the potential is
set to 1 to facilitate the analysis, but it is not strictly needed by the algorithm.

At the end of each epoch, the leader checks the value of ρ. If k−1−1/k ≤ ρ ≤ k−1 the current estimate
is correct and the leader changes its status to “done” (cf. Line 1.21). Otherwise, all its variables are reset to
start a new epoch with the next estimate (cf. Line 1.23). Before starting a new epoch the network is flooded
with the status of the leader for k rounds (cf. Lines 1.28 and 2.17). If k = n, the leader initiates message
“done” and the k rounds are enough for all the nodes to receive the “done” status and after completing the
k rounds stop. Otherwise, nodes will not receive the “done” status and after completing the k rounds they
start a new epoch.

6 Analysis

In this section we analyze Methodical Counting. References to algorithm lines are given as
〈figure#〉.〈line#〉. We will use the standard notation for the Lp norm of vector x = (x1, x2, . . . , xn)

2As opposed to previous work, in Methodical Counting the leader also follows this procedure.
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Figure 1: Methodical Counting algorithm for the leader. N is the set of neighbors of the leader in the
current round. The parameters d, p, r and τ are as defined in Theorem 2.

1: procedure Count
2: ρ← 0 // accumulator of consumed potential

3: Φ← 0 // current potential

4: k ← 2 // current estimate

5: status← normal // status=normal|alarm|done
6: while status 6= done do // iterating epochs

7: for phase = 1 to p do // iterating phases

8: for round = 1 to r do // iterating rounds

9: Broadcast 〈Φ, status〉 and Receive 〈Φi, statusi〉,∀i ∈ N
10: if status = normal and |N | ≤ d− 1 and ∀i ∈ N : statusi = normal then
11: Φ← Φ +

∑
i∈N Φi/d− |N |Φ/d // update potential

12: else // k is wrong

13: status← alarm
14: Φ← 1

/* r rounds completed */

15: if phase = 1 and Φ > τ then // k is wrong

16: status← alarm
17: Φ← 1
18: if status = normal then // prepare for next phase

19: ρ← ρ+ Φ
20: Φ← 0

/* p phases completed */

21: if status = normal and k − 1− 1/k ≤ ρ ≤ k − 1 then // the size is k
22: status← done
23: else // prepare for next epoch

24: ρ← 0
25: Φ← 0
26: k ← k + 1
27: status← normal
28: for round = 1 to k do // disseminate termination

29: Broadcast 〈status〉 and Receive 〈statusi〉,∀i ∈ N
/* epoch completed */

30: return k
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Figure 2: Methodical Counting algorithm for each non-leader node i. N is the set of neighbors of i in
the current round. The parameters d, p, r and τ are as defined in Theorem 2.

1: procedure Count
2: Φ← 0 // current potential

3: k ← 2 // current estimate

4: status← normal // status=normal|alarm|done
5: while status 6= done do // iterating epochs

6: for phase = 1 to p do // iterating phases

7: for round = 1 to r do // iterating rounds

8: Broadcast 〈Φ, status〉 and Receive 〈Φi, statusi〉,∀i ∈ N
9: if status = normal and |N | ≤ d− 1 and ∀i ∈ N : statusi = normal then

10: Φ← Φ +
∑
i∈N Φi/d− |N |Φ/d // update potential

11: else // k is wrong

12: status← alarm
13: Φ← 1

/* r rounds completed */

14: if phase = 1 and Φ > τ then // k is wrong

15: status← alarm
16: Φ← 1

/* p phases completed */

17: for round = 1 to k do // disseminate termination

18: Broadcast 〈status〉 and Receive 〈statusi〉,∀i ∈ N
19: if ∃i ∈ N : statusi = done then
20: status← done
21: if status 6= done then
22: k ← k + 1
23: status← normal

/* epoch completed */

24: return k

7



as ||x||p = (
∑n
i=1 |xi|p)

1/p
, for any p ≥ 1. Only for the analysis, nodes are labeled as 0, 1, 2, . . . , n−1, where

the leader has label 0. The potential of a node i at the beginning of round t is denoted as Φt[i], and the
potential of all nodes at the beginning of round t is denoted as a vector Φt. The aggregated potential is then
||Φt||1. The subindex t is used for rounds, phases, or dropped as needed. We will refer to the potential right
after the last round of a phase as Φr+1. Such round does not exist in the algorithm, but we use this notation
to distinguish between the potential right before the leader consumes its own potential (cf. Line 1.23) and
the potential at the beginning of the first round of the next phase.

First, we provide a broad description of our analysis of Methodical Counting. Consider the vector
of potentials Φi held by nodes at the beginning of any given phase i. The way that potentials are updated
in each round (cf. Lines 1.11 and 2.10) is equivalent to the progression of a d-lazy random walk on the
evolving graph underlying the network topology [1], where the initial vector of potentials is equivalent to
an initial distribution pi on the overall potential ||Φi||1 and the probability of choosing a specific neighbor
is 1/d. For instance, the initial vector of potentials Φ0 = 〈0, 1, 1, . . . 〉, corresponds to a distribution p0 =
〈0, 1/(n− 1), 1/(n− 1), . . . 〉 on the initial ||Φ0||1 = n− 1.

Note that our Methodical Counting is not a simple “derandomization” of the lazy random walk on
evolving graphs. First, in the Anonymous Dynamic Network model neighbors cannot be distinguished, and
even their number is unknown at transmission time (only at receiving time the node learns the number of its
neighbors). Second, due to unknown network parameters, it may happen in an execution of Methodical
Counting that the total potential received could be bigger than 1. Third, our algorithm does not know a
priori when to terminate and provide result even with some reasonable accuracy, as the formulas on mixing
and cover time of lazy random walks depend on (a priori unknown) number of nodes n. Nevertheless, we
can still use some results obtained in the context of analogous lazy random walks in order to prove useful
properties of parts of algorithm Methodical Counting, namely, some parts in which parameters are
temporarily fixed and the number of received messages does not exceed parameter d.

It was shown in [1] that random walks on d-regular explorable evolving graphs have a uniform stationary
distribution, and bounds on the mixing and cover time were proved as well. Moreover, it was observed that
those properties hold even if the graph is not regular and d is only an upper bound on the degree.3

Thus, for the cases where d is an upper bound on the number of neighboring nodes, we analyze the
evolution of potentials within each phase leveraging previous work on random walks on evolving graphs.
Specifically, we use the following result which is an extension of Corollary 14 in [1].

Theorem 1. (Corollary 14 in [1].) After t rounds of a dmax-lazy random walk on an evolving graph with n
nodes, dynamic diameter D, upper bound on maximum degree dmax, and initial distribution p0, the following
holds. ∣∣∣∣∣∣∣∣pt − I

n

∣∣∣∣∣∣∣∣2
2

≤
(

1− 1

dmaxDn

)t ∣∣∣∣∣∣∣∣p0 −
I

n

∣∣∣∣∣∣∣∣2
2

In between phases the leader “consumes” its potential, effectively changing the distribution at that point.
Then, a new phase starts.

In Methodical Counting, given that d is a function of the estimate k, if the estimate is low there may
be inputs for which d is not an upper bound on the number of neighbors. We show in our analysis that in
those cases the leader detects the error and after some time all nodes increase the estimate.

First, we prove correctness when k = n as follows.

Lemma 1. If d ≥ k and k = n, after running the Methodical Counting protocol for p ≥ k
1−1/k ln(k(k−

1)) phases, each of r ≥ 4dk2 ln k rounds, the potential ρ consumed by the leader is k − 1− 1/k ≤ ρ ≤ k − 1.

Proof. The second inequality is immediate because the initial total potential in the network is n− 1 and it
does not increase during the execution. So, if k = n, the potential consumed by the leader cannot be more
than k − 1.

3Their analysis relies on Lemma 12, which bounds the eigenvalues of the transition matrix as long as it is stochastic,
connected, symmetric, and non-zero entries lower bounded by 1/d. Those conditions hold for all the transition matrices, even
if the evolving graph is not regular.
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For the first inequality, consider the vector of potentials Φ1 at the beginning of round 1 of any phase i.
As explained above, we analyze the evolution of potentials within phase i as a random walk on the evolving
graph underlying the network topology. Consider the initial distribution pi on the overall potential ||Φ1||1.
Then, using Theorem 1, we know that after a phase i of r ≥ 4dk2 ln k rounds the distribution is such that∣∣∣∣∣∣∣∣pr+1 −

I

k

∣∣∣∣∣∣∣∣2
2

≤
(

1− 1

dDk

)r ∣∣∣∣∣∣∣∣p1 −
I

k

∣∣∣∣∣∣∣∣2
2

(1)

≤ exp
(
− r

dDk

)
≤ exp

(
−4dk2 ln k

dDk

)
, given that k = n > D,

≤ exp (−4 ln k)

=
1

k4
.

Given that (pr+1[0] − 1/k)2 ≤
∣∣∣∣pr+1 − I

k

∣∣∣∣2
2
, we have that (pr+1[0] − 1/k)2 ≤ 1/k4 and hence pr+1[0] ≥

1/k−1/k2. Notice that the latter is true for any initial distribution, as the distance to uniform in Equation 1
has been upper bounded by 1. Thus, applying recursively we have that after p ≥ k

1−1/k ln(k(k − 1)) phases
it is

||Φp||1 ≤
(

1− 1

k

(
1− 1

k

))p
(k − 1)

≤ exp

(
−p
k

(
1− 1

k

))
(k − 1)

≤ 1/k.

Thus, the claim follows. �

The previous lemma shows that if ρ > k − 1 or ρ < k − 1 − 1/k we know that the estimate k is wrong,
but the complementary case, that is, k − 1− 1/k ≤ ρ ≤ k − 1, may occur even if the estimate is k < n and
hence the error has to be detected by other means. To prove correctness in that case, we show first that if
k < n ≤ k1+ε for some ε > 0 the leader must consume ρ > k− 1 potential if the protocol is run long enough.
To ensure that d ≥ ∆ + 1, we restrict d ≥ k1+ε.

Lemma 2. If 1 < k < n ≤ k1+ε ≤ d, ε > 0, after running the Methodical Counting protocol for

p ≥ (2+ε)k1+ε

1−1/k ln k phases, each of r ≥ (4 + 2ε)dk2+2ε ln k rounds, the potential ρ consumed by the leader is

ρ > k − 1.

Proof. Given that d ≥ n, we can use Theorem 1 as in Lemma 1 to show that after a phase i of r ≥
(4 + 2ε)dk2+2ε ln k rounds the distribution is such that∣∣∣∣∣∣∣∣pr+1 −

I

n

∣∣∣∣∣∣∣∣2
2

≤
(

1− 1

dDn

)r ∣∣∣∣∣∣∣∣p1 −
I

n

∣∣∣∣∣∣∣∣2
2

≤ exp
(
− r

dDn

)
≤ exp

(
− (4 + 2ε)dk2+2ε ln k

dDn

)
, given that k1+ε ≥ n > D,

≤ exp (−(4 + 2ε) ln k)

=
1

k4+2ε
.
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Given that (pr+1[0]−1/n)2 ≤
∣∣∣∣pr+1 − I

n

∣∣∣∣2
2
, we have that (pr+1[0]−1/n)2 ≤ 1/k4+2ε and hence pr+1[0] ≥

1/n−1/k2+ε. The latter is true for any initial distribution, as the distance to uniform has been upper bounded

by 1. So, applying recursively, we have that after p ≥ (2+ε)k1+ε

1−1/k ln k phases it is

||Φp||1 ≤
(

1−
(

1

n
− 1

k2+ε

))p
(n− 1)

≤ exp

(
−p
(

1

n
− 1

k2+ε

))
(n− 1) , since k1+ε ≥ n,

≤ exp

(
− p

k1+ε

(
1− 1

k

))
(n− 1) , replacing p,

≤ n− 1

k2+ε
, given that k1+ε > n− 1,

< 1/k .

Thus, the potential consumed by the leader is ρ ≥ n− 1− 1/k > k − 1 for any integers n > k > 1. �

It remains to show that even if n > k1+ε Methodical Counting still detects that the estimate is low.
First, we prove the following two claims that establish properties of the potential during the execution of
Methodical Counting. (Recall that we use round r + 1 to refer to potentials at the end of the phase
right before the leader consumes its potential in Line 1.23.)

Claim 1. Given an Anonymous Dynamic Network of n nodes running Methodical Counting with pa-
rameter d, for any round t of the first phase, such that 1 ≤ t ≤ r + 1, if d was larger than the number of
neighbors of each node x for every round t′ < t, then ||Φt||1 = n− 1.

Proof. For the first round the claim holds as the initial potential of each node is 1 except the leader that
gets 0. That is, ||Φ1||1 = n− 1. For any given round 1 < t ≤ r + 1 in phase 1 and any given node x, if d is
larger than the number of neighbors of x, the potential is updated only in Lines 1.11 and 2.10 as

Φt+1[x] = Φt[x] +
∑

i∈Nt[x]

Φt[i]/d− |Nt[x]|Φt[x]/d .

Where Nt[x] is the set of neighbors of node x in round t. Inductively, assume that the claim holds for some
round 1 ≤ t ≤ r. We want to show that consequently it holds for t+ 1. The potential for round t+ 1 is

||Φt+1||1 = ||Φt||1 +
1

d

∑
x∈V

 ∑
y∈Nt[x]

Φt[y]− |Nt[x]|Φt[x]

 . (2)

In the Anonymous Dynamic Network model, communication is symmetric. That is, for every pair of
nodes x, y ∈ V and round t, it is x ∈ Nt[y] ⇐⇒ y ∈ Nt[x]. Fix a pair of nodes x′, y′ ∈ V such that
in round t it is y′ ∈ Nt[x

′] and hence x′ ∈ Nt[y
′]. Consider the summations in Equation 2. Due to

symmetric communication, we have that the potential Φt[y
′] appears with positive sign when the indeces

of the summations are x = x′ and y = y′, and with negative sign when the indices are x = y′ and y = x′.
This observation applies to all pairs of nodes that communicate in any round t. Therefore, we can re-write
Equation 2 as

||Φt+1||1 = ||Φt||1 +
1

d

∑
x,y∈V :
y∈Nt[x]

(
Φt[y]− Φt[x] + Φt[x]− Φt[y]

)
= ||Φt||1 .

Thus, the claim follows.
�
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Claim 2. Given an Anonymous Dynamic Network of n nodes running Methodical Counting, for any
round t of any phase and any node x, it is 0 ≤ Φt[x] ≤ 1.

Proof. If t = 1 the potential of the leader is Φ1[0] = 0 and the potential of any non-leader node x is Φ1[x] = 1.
Thus, the claim follows. Inductively, for any round 2 < t ≤ r + 1, we consider two cases according to node
status. If a node x is in alarm status at the beginning of round t, then it is Φt[x] = 1 as, whenever the
status of a node is updated to alarm, its potential is set to 1 and will not change until the next epoch (cf.
Figures 1 and 2). On the other hand, if a node x is in normal status at the beginning of round t, it had its
potential updated in all rounds t′ < t only in Lines 1.11 and 2.10 as

Φt′+1[x] = Φt′ [x] +
∑

y∈Nt′ [x]

Φt′ [y]/d− |Nt′ [x]|Φt′ [x]/d.

For all rounds t′ < t, node x exchanged potential with less than d neighbors, because otherwise it would
have been changed to alarm status in Lines 1.13 and 2.12. Therefore it is |Nt′ [x]|Φt′ [x]/d < Φt′ [x] which
implies Φt[x] ≥ 0. It can also be seen that Φt[x] ≤ 1 because, for any t′ < t, it is

Φt′+1[x] = Φt′ [x] +
∑

y∈Nt′ [x]

Φt′ [y]/d− |Nt′ [x]|Φt′ [x]/d

≤ Φt′ [x] +
|Nt′ [x]|
d

− |Nt
′ [x]|
d

Φt′ [x]

= Φt′ [x] +
|Nt′ [x]|
d

(1− Φt′ [x])

≤ Φt′ [x] + 1− Φt′ [x] = 1.

�

It remains to show that even if n > k1+ε Methodical Counting still detects that the estimate is low.
We focus on the first phase. We define a threshold τ such that, after the phase is completed, all nodes that
have potential above τ can send an alarm to the leader, as such potential indicates that the estimate is low.
We show that the alarm must be received after k1+ε further rounds of communication.

Lemma 3. For ε > 0, after running the first phase of the Methodical Counting protocol, there are at
most k1+ε nodes that have potential at most τ = 1− 1/k1+ε.

Proof. We define the slack of node x at the beginning of round t as st[x] = 1−Φt[x] and the vector of slacks
at the beginning of round t as st. In words, the slack of a node is the “room” for additional potential up to
1. Recall that the overall potential at the beginning of round 1 of phase 1 is ||Φ1||1 = n − 1. Also notice
that for any round and any node x the potential of x is non-negative as shown in Claim 2. Therefore, the
overall slack with respect to the maximum potential that could be held by all the n nodes at the beginning
of round 1 is ||s1||1 = 1.

Consider a partition of the set of nodes {L,H}, where L is the set of nodes with potential at most
τ = 1− 1/k1+ε at the end of the first phase, before the leader consumes its own potential in Line 1.23. That
is, Φr+1[x] ≤ τ for all x ∈ L. Assume that the slack held by nodes in L at the end of the first phase is at most
the overall slack at the beginning of the phase. That is,

∑
x∈L sr+1[x] ≤ ||s1||1 = 1. By definition of L, we

have that for each node x ∈ L it is sr+1[x] = (1−Φr+1[x]) ≥ 1−τ . Therefore, |L|(1−τ) ≤
∑
x∈L sr+1[x] ≤ 1.

Thus, |L| ≤ 1/(1− τ) = k1+ε and the claim follows.
Then, to complete the proof, it remains to show that

∑
x∈L sr+1[x] ≤ 1. Let the scenario where d is

larger than the number of neighbors that each node has in each round of the first phase be called “case 1”,
and “case 2” otherwise. Claim 1 shows that in case 1 at the end of the first phase it is ||Φr+1||1 = n − 1.
Therefore, the slack held by all nodes is ||sr+1||1 = 1 and the slack held by nodes in L ⊆ V is

∑
x∈L st[x] ≤ 1.

We show now that indeed case 1 is a worst-case scenario. That is, in the complementary case 2 where some
nodes have d neighbors or more in one or more rounds, the slack is even smaller. To compare both scenarios

we denote the slack for each round t, each node x, and each case i as s
(i)
t [x].
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Assume that some node x is the first one to have d′ > d− 1 neighbors. Let 1 ≤ t ≤ r be the round of the

first phase when this event happened. We claim that ||s(2)t+1||1 ≤ ||s
(1)
t+1||1. The reason is the following. Given

that more than d− 1 potentials are received, node x increases its potential to 1 for the rest of the epoch (cf.

Lines 1.12 and 2.11). That is, the slack of x is s
(2)
t+1[x] ≤ s(2)t [x] = s

(1)
t [x]. Additionally, the potential shared

by x with all neighbors during round t is d′Φt[x]/d > Φt[x](1− 1/d) (cf. Lines 1.11 and 2.10). That is, the
potential shared by x with neighbors in case 2 is more than the potential that x would have shared in case
1. Then, combining both effects (the relative increase in potential of x and its neighbors’) the overall slack

is ||s(2)t+1||1 ≤ ||s
(1)
t+1||1. The same argument applies to all other nodes with d or more neighbors in round t.

Additionally, for any round t′ of the first phase, such that t < t′ ≤ r, we have to additionally consider the
case of a node y that, although it does not receive more than d−1 potentials, it moves to alarm status because
it has received an alarm in round t′. Then, notice that the potential of y is Φt′+1[y] = 1 ≥ Φt′ [y], and it will

stay in 1 for the rest of the epoch (cf. Lines 1.13 and 2.12). Therefore, the slack of y is s
(2)
t+1[y] ≤ s(1)t+1[y].

Combining all the effects studied over all rounds, the slack at the end of the first phase is ||s(2)r+1||1 ≤
||s(1)r+1||1. Given that L ⊆ V , it is

∑
x∈L s

(2)
r+1[x] ≤ ||s(2)r+1||1 ≤ ||s

(1)
r+1||1 ≤ 1 which completes the proof.

�

In our last lemma, we show that if k1+ε < n the leader detects the error.

Lemma 4. If k1+ε < n, ε > 0, and r ≥ (4 + 2ε− 2 ln(kε− 1)/ ln k)dk2 ln k, within the following k1+ε rounds
after the first phase of the Methodical Counting protocol, the leader has received an alarm message.

Proof. Using Theorem 1, we know that after phase 1 of r ≥ (4 + 2ε − 2 ln(kε − 1)/ ln k)dk2 ln k rounds, if
k = n, the distribution is such that∣∣∣∣∣∣∣∣pr+1 −

I

k

∣∣∣∣∣∣∣∣2
2

≤
(

1− 1

dDk

)r ∣∣∣∣∣∣∣∣p1 −
I

k

∣∣∣∣∣∣∣∣2
2

≤ exp
(
− r

dDk

)
≤ exp

(
− (4 + 2ε− 2 ln(kε − 1)/ ln k)dk2 ln k

dDk

)
, given that k = n > D,

≤ exp (−(4 + 2ε− 2 ln(kε − 1)/ ln k) ln k)

= 1/k4+2ε−2 ln(kε−1)/ ln k.

Given that for any node j, it is (pr+1[j] − 1/k)2 ≤
∣∣∣∣pr+1 − I

k

∣∣∣∣2
2
, we have that (pr+1[j] − 1/k)2 ≤

1/k4+2ε−2 ln(kε−1)/ ln k. Hence, it is pr+1[j] ≤ 1/k + 1/k2+ε−ln(k
ε−1)/ ln k for any node j. Moreover, if k = n

the total potential in the network would be k−1 (cf. Claim 1) and no individual node should have potential
larger than (k− 1)(1/k+ 1/k2+ε−ln(k

ε−1)/ ln k). We show that the latter is at most τ = 1− 1/k1+ε as follows.

(k − 1)(1/k + 1/k2+ε−ln(k
ε−1)/ ln k) ≤ 1− 1/k1+ε

(k − 1)/k2+ε−ln(k
ε−1)/ ln k ≤ (kε − 1)/k1+ε

k1−ln(k
ε−1)/ ln k ≥ (k − 1)/(kε − 1)(

1− ln(kε − 1)

ln k

)
ln k ≥ ln(k − 1)− ln(kε − 1)

ln k ≥ ln(k − 1).

And the latter is true for any k > 1.
Consider a partition of the set of nodes {L,H}, where L is the set of nodes with potential at most

τ = 1− 1/k1+ε at the end of the first phase. At the end of the first phase, the size of L is at most k1+ε (cf.
Lemma 3), and the size of H is at least 1 because n > k1+ε. Thus, there is at least one node changing to
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alarm status in Line 2.15 in round 1 of phase 2, and due to 1-interval connectivity at least one new node
moves from L to H in each of the following rounds. Thus, the claim follows.

�

Based on the above lemmata, we establish our main result in the following theorem.

Theorem 2. Given an Anonymous Dynamic Network with n nodes, after running Methodical Counting
for each estimate k = 2, 3, . . . , n with parameters

d = k1+ε,

p =

⌈
(2 + ε)k1+ε

1− 1/k
ln k

⌉
,

r =

⌈(
4 + 2ε+ max

{
0,−2 ln(kε − 1)

ln k

})
dk2+2ε ln k

⌉
,

τ = 1− 1/k1+ε,

where ε > 0, all nodes stop after
∑n
k=2(pr + k) rounds of communication and output n.

Proof. Notice that the above parameters fulfill the conditions of the previous lemmas.
First we prove that Methodical Counting is correct. To do so, it is enough to show that for each

estimate k < n the algorithm detects the error and moves to the next estimate, and that if otherwise k = n
the algorithm stops and outputs k. We consider three cases: k = n, k < n ≤ k1+ε, and k1+ε < n, for a
chosen value of ε > 0.

Assume first that k < n ≤ k1+ε. Then, even if the leader does not receive an alarm during the execution,
as shown in Lemma 2, at the end of the epoch in Line 1.21 the leader will detect that ρ is out of range
and will not change its status to done. Therefore, no other node will receive a termination message (loop in
Line 1.28), and all nodes will continue to the next epoch.

Assume now that k1+ε < n. Lemma 4 shows that within the following k1+ε rounds after the first phase the
leader has received an alarm message, even if no node has more than d − 1 neighbors during the execution
and alarms due to this are not triggered. For the given value of p and k ≥ 2, the epoch has more than
one phase. Therefore, within k1+ε rounds into the second phase the leader will change to alarm status in
Line 1.13, will not change its status to done later in this epoch, and no other node will receive a termination
message. Hence, all nodes will continue to the next epoch.

Finally, if k = n, Lemma 1 shows that the accumulated potential ρ will be k − 1 − 1/k ≤ ρ ≤ k − 1.
Thus, in Line 1.21 the leader will change its status to done, and in the loop of Line 1.28 will inform all
other nodes that the current estimate is correct. The number of iterations of such loop are enough due to
1-interval connectivity.

The claimed running time can be obtained by inspection of the algorithm, either for the leader or non-
leader since they are synchronized. Refer for instance to the leader algorithm in Figure 1. The outer loop in
Line 1.5 corresponds to each epoch with estimates k = 2, 3, . . . , n. For each epoch, Line 1.6 starts a loop of
p phases followed by k rounds in Line 1.28. Each of the p phases has r rounds. Thus, the overal number of
rounds is

∑n
k=2(pr + k).

�

Choosing ε = logk 2, the following holds.

Corollary 1. The time complexity of Methodical Counting is O(n5 log2 n).
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n∑
k=2

(pr + k) =
n∑
k=2

(⌈
(2 + ε)k2+ε

k − 1
ln k

⌉⌈(
4 + 2ε+ max

{
0,−2 ln(kε − 1)

ln k

})
k3+3ε ln k

⌉
+ k

)

=
n∑
k=2

(⌈
2(2 + logk 2)k2

k − 1
ln k

⌉ ⌈
(4 + 2 logk 2) 23k3 ln k

⌉
+ k

)

≤
n∑
k=2

(⌈
6k2

k − 1
ln k

⌉ ⌈
48k3 ln k

⌉
+ k

)
∈ O(n5 log2 n).

7 Extensions

We argue that Methodical Counting can be extended to compute the sum of values stored in the nodes,
and thus also the average (as it computes the number of nodes n), and other functions. Assume that each
node of the Anonymous Dynamic Network initially stores a value, represented as a sequence of bits. W.l.o.g.
we could assume that the value stored at the leader is zero; otherwise, the nodes could compute the sum
of other initial values (with the leader value set up to 0), and later the leader could propagate its actual
initial value appended to the message “done” at the end of the execution to be added to the computed sum
of other nodes.

The modified Methodical Counting prepends the potential to the sequence. Instead of sending
potential by the original Methodical Counting, each node transmits its current sequence (in which the
potential stands in the first location). Changes at each position of the sequence are done independly by the
same algorithm as used for the potential, cf. Figures 1 and 2. Re-setting the values, in the beginning of each
epoch, means putting back the initial values of the sequence. It means that the modified algorithm maintains
potential in exactly the same way as the original Methodical Counting, regardless of the initial values.
At the end of some epoch, with number corresponding to the number of nodes n, all nodes terminate. When
it happens, each node recalls the sequence stored in it at the end of the first phase of the epoch, multiplies
the values stored at each position of the sequence by the epoch number n, and rounds each of the results to
the closest integer; then it sums up the subsequent values multiplied by corresponding (consecutive) powers
of 2. Note that such “recalling” could be easily implemented by storing and maintaining the sequence after
the first phase of each epoch.

We argue that the computed value is the sum of the initial values. It is enough to analyze how the
modified algorithm processes values at one position of the sequence, as positions are treated independently;
therefore, w.l.o.g. we assume that each node has value 0 or 1 in the beginning. Consider the last epoch
before the leader sends the final sequence (in our case, representing one value). In the beginning of the
epoch, the values are re-set to the original one, and manipulated independently according to the rules in
Figures 1 and 2. Therefore, let us focus on the first phase of this epoch. Since we already proved that the
estimate of the last epoch is equal to the number of nodes, the value of d in this epoch (and thus also in its
first phase) is an upper bound on the node degree. Thus, the mass distribution scaled down by the sum of
the initial values behaves exactly the same as the probabilities of being at nodes in the corresponding round
of the lazy random walk, with parameter d and starting from initial distribution equal to the initial values
divided by the sum. Since the length of the phase is set up to guarantee that the distribution is close to
the stationary uniform within error 1/n, and the sum of bits is not bigger than n, at the end of the phase
the value stored by each node is close to the sum (i.e., scaling factor) divided by n by at most 1/n4 (cf.
Equation 1). Therefore, after multiplying it by n, each node gets value of sum within error of at most 1/n3,
which after rounding will give the integer equal to the value of the sum.

Once having the number n and the sum, each node can compute the average. As argued in [12], the
capacity of computing the sum of the input values makes possible the computation of more complex func-
tions. Moreover, as opposed to [12] where the computation only converges, our approach outputs the exact
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sum. Therefore, the extension to database queries that can be approximated using linear synopses 4 is
straightforward. Boolean functions f : {0, 1}n → {0, 1}, such as AND (sum = n), OR (sum > 0), and XOR
(sum = 1), as well as their complementaries NAND (sum 6= n), NOR (sum = 0), and XNOR (sum 6= 1), can
also be implemented having n and the sum. This applies also to other “symmetric” Boolean functions, i.e.,
which do not depend on the order of variables, as they could be computed based on computed sum of ones
and n [13]. Maximum (L∞ norm) and minimum can be computed subsequently by flooding. That is, each
node broadcasts the maximum and minimum input values seen so far. Due to 1-interval connectivity within
n rounds all nodes have the answers.

Note that all these computations, including the Methodical Counting, could be done using only
polynomial estimates of values, that is, with messages of length O(log n), multiplied by the maximum
number of coordinates of any of the initial values. This could be also traded for time: we could use only
messages of length O(log n) with time increased by the maximum number of coordinates of any initial value
(which is still polynomial in the size of the input,5 which in this case is at least n plus the maximum number
of coordinates).

8 Open Directions

Straightway questions emerging from our work include existence of polynomial (in n) lower bound and im-
provement of our upper bound. One of the potential ways could be through investigating bi-directional
relationships between random processes and computing algebraic functions in Anonymous Dynamic Net-
work. Extending the range of polynomially computable functions is another intriguing future direction.
Finally, generalizing the model by not assuming connectivity in every round or dropping assumption on syn-
chrony could introduce even more challenging aspects of communication and computation, including group
communication and its impact on the common knowledge about the system parameters.
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Dedicated to the memory of Mike Gargano. 

I had the good fortune to publish with Frank Harary, Mike Gargano, and Lou Quintas.  I learned 

much from them and thank them for my own modest success as a graph theorist and number 

theorist.  This  is a survey of papers from each collaboration, containing results and open questions. 

1. Connectivity

A graph is traceable if it has a spanning path.  If, in addition, any vertex can be chosen as 

the starting point, the graph is called homogeneous connected.  Any hamiltonian graph (a graph 

with a spanning cycle), for example, is homogeneous connected.   

Note, however, that a graph need not be hamiltonian to be homogeneous connected, as can 

be seen by analyzing the Peterson Graph.   

If both endvertices of the spanning path of a graph can be chosen randomly, the graph is 

called hamilton-connected [1].  The wheel, Wn, for example, is hamilton-connected.  A bipartite 

graph cannot have this property, since the colors of the endvertices depend on the parity of the 

order of the graph.  That is, an even path has oppositely colored endvertices, while the endvertices 

of an odd path have the same color.   

2. Hypercubes

The hypercube Qn is defined recursively by

1. Q1 = K2

2. Qn = Qn1  K2.



The second equation says that we get Qn by taking the union of two copies of Qn1 and rendering 
corresponding vertices adjacent. In Figure 1, the two vertices of Q1 are labeled 0 and 1. As Q2 contains two 
copies of Q1, we label the vertices in the first copy 00 and 01, while the vertices in the second copy are 
labeled 10 and 11.  

Let’s do this one more time before we generalize. Since Q3 contains two copies of Q2, we attach a 
0 to the labels of the vertices of the first copy of Q2 and a 1 to the labels of the those of the second copy, 
in which case V(Q3) = {000, 001, 010, 011} U {100, 101, 110, 111}.  

See Figure 1, in which Q3 contains labeled “inner” and “outer” copies of Q2. The outer labels start 
with 0’s while the inner ones start with 1’s.  On the other hand, we can view Q3 as a left copy of Q2 whose 
labels have a 0 in the second place, and a right copy of Q2 whose labels have a 1 in the second place.  
Finally, we can view Q3 as a lower copy of Q2 whose labels have a 0 in the third place, and an upper copy 
of Q2 whose labels have a 1 in the third place. 

 1   01  11 

 0  
00 10 

 Q1  
 Q2 

 001   011 

 101  111 

 100  110 

 000   010  Q3 

 Figure 1 

The vertex set of Qn consists of all of the binary strings of length n. Since each digit is a 0 or a 1, 
there are 2n such strings, implying that |V(Qn)| = 2n.  By the recursive definition, we see that the degree 
of each vertex of Qn is n, that is, Qn is n-regular.  



We can use Euler’s theorem to obtain the size of the edge set. The degree sum of a regular graph 
is the product of the degree and the number of vertices. For hypercubes, this is n2n. Since the degree sum 
is twice the number of edges, |E(Qn)| = (n2n)/2= n2n1.   

Since the hypercube Qn has the same number of black and white vertices, we show by 

induction in [2], that given any two vertices x and y in Qn of opposite color, there exists a spanning 

x-y path.  

3. Binary Meshes

Given graphs G and H with spanning subgraphs U and V, respectively, it is easy to see that 

U × V spans G × H.  Now let the positive integers n, r, and s satisfy n = r + s.  Then it is not hard 

to see that Qn = Qr × Qs.   

Since hypercubes are traceable, the paths
2rP and 

2sP span Qr and Qs, respectively.  Then we 

show in [3] that the mesh, M(2r, 2s) = 
2rP ×

2sP  spans Qn.  In particular, when r = 1, we find that 

the ladder  M(2, 2n-1) spans Qn.  Meshes of the form M(2r, 2s) are termed binary meshes.  They are 

the only meshes that span Qn. 

4. Equipartion Sets of Hypercubes

Consider the set S of vertices in Q3 given by {100, 011, 111}.  Note that no matter how we 

cut Q3 into two copies of Q2 (and there are three ways to do this), two vertices of S will be in one 

copy, and one vertex of S will be in the other.  In [4], we call this a (2,1) EPS (equipartition set) 

for Q3. This can be verified directly, or we can make the three labels the rows of a 3 by 3 binary 

matrix 

B = 

1 0 0

0 1 1

1 1 1

 
 
 
  

 

and observe that each of the columns of B contain two 1’s and one 0.  Note that B has three columns 

because we are in Q3. So the labels have three digits.  There is no problem if two columns are 

identical, but the rows must be distinct so that we have three distinct vertices.   



Observe that we can add copies of the last column of B to obtain a (2,1) EPS for any Qn 

for which n > 3.  This becomes a theorem in [4] to the effect that if Qm contains an (r,s) EPS for 

some m, so does any Qn where n > m.  Now given r and s, let f(r,s) be the smallest m for which Qm 

has an (r,s) EPS.  We obtain bounds for this function in [4] and find f(r,s) for certain interesting 

values of r and s.  Nevertheless, the elusive function f(r,s) is yet to be be found. 

5. k-long Numbers and k-long Graphs

Given a positive integer k, a number is called k-long in [5], if it can be written n(n + k).  

This generalizes oblong numbers, that is, numbers of the form n(n + 1), which are 1-long.  Among 

the various properties of k-long numbers that are presented in [5], a particularly important one 

asserts that the product of any pair of consecutive k-long numbers is k-long.   

In [6], a graph is called k-long if 

1. Its vertices are labeled by distinct k-long numbers.

2. Each edge is labeled by the product of the labels of its endvertices.

3. The edge labels are distinct k-long numbers.

(A given vertex and a given edge can share the same k-long label.)  

As an example, the path P4 of order 4 is 2-long, as can be seen by labeling the vertices by 

3, 8, 15, and 24 in that order. The edge labels are 24, 120, and 360, all of which are 2-long.   

Using the Pell Equation and its generalization, we produce infinite classes of k-long graphs, 

including all trees and various cycles.  Many questions about k-long graphs remain unanswered.  

(i) We ask for an infinite class of graphs that are not k-long.   

(ii) Are there k-long graphs that have various different labels and edge weights? 

6. Paintable Graphs

In [7] and [8], we call a graph on n vertices paintable, if its vertices can be labeled using 

the integers 1, 2, …, n, such that for each i = 1, 2, …, n – 1, the vertices i and i +  1 are not adjacent.  

Paths of order at least 4 and cycles of order at least 5 are paintable.  We show in [7] that a graph 

is paintable if and only if its complement is traceable.  Complete graphs, by the way, yield an 

infinite class of graphs that are not paintable.   



A graph is homogeneous paintable, if any vertex can be labeled 1.  Cycles of order at least 

5 are homogeneous paintable.  The path P4 is not.  One cannot label an endvertex 1. 

If a graph is not paintable, how many vertices can be painted before the process fails?  P3 

cannot be painted, but we can label the endvertices using the labels 1 and 2 successfully.  On the 

other hand, an attempt at painting Kn will fail after we label any vertex with a 1.  Given a graph, 

is there an efficient algorithm to find the maximum j such that j vertices can be painted before the 

process fails? 

7. Graph Theory and Pascal’s Triangle

In [9] we use the edge set of Qn to prove a well known identity involving the combinatorial 

coefficients in the rows of Pascal’s Triangle: 

12 3 2
1 2 3

n
n n n n

n n
n

       
           

       
    (1) 

Notice that the right side of equation (1) is the number of edges of Qn.  We show that the 

left side counts these edges too, so we have equality.  

Let v = (0, 0, 0, …, 0).  Now for k = 0, 1, 2, …, n,  let Dk be the set of all vertices whose 

distance from v is k.  Clearly, D0 = {v}.  Furthermore, Dk is the set of all vertices whose labels 

contain exactly k 1’s.  Then |Dk| = 
n

k

 
 
 

.  

All the edges of Qn have endvertices in Dk-1 and Dk, for some k = 1, 2, …, n.  Now a vertex 

in Dk is adjacent to the k vertices of Dk-1 obtained by changing any of its 1’s to a 0. Then there are 

n
k

k

 
 
 

 edges that have endvertices in Dk-1 and Dk.  Then the number of edges in Qn is indeed the 

left side of equation (1).  

The standard calculus proof of equation (1) starts with the binomial theorem expansion: 

2 3(1 )
0 1 2 3

n n
n n n n n

x x x x x
n

         
               

         

Differentiating both sides yields 

1 2 1(1 ) 2 3
1 2 3

n n
n n n n

n x x x n x
n

        
            

       



Letting x =1 yields equation (1). 

Are there other combinatorial identities involving Pascal’s Triangle that can be proven 

using hypercubes? 

The author thanks Anthony Delgado, doctoral candidate in Mathematics Education at 

Columbia University, for his help in writing this paper.  He is the first author on [4], [5], and [6]. 
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Abstract 

Let Cl(n) denote the set of unlabeled graphs of order n and U the graph 

with vertex set Cl(n) such that two vertices G and H in U are adjacent if 

and only if G and H differ by exactly by one edge. By introducing different 

Cl(n) and defining probabilities corresponding to one-edge 

transformations between vertices of U, Markov processes are introduced 

which yield a variety of random graph processes. The latter are fruitful 

areas to explore to determine the properties of Cl(n), U, and in particular 

the properties of these random graph processes. 

1. Introduction

Let Cl(n) denote a specified set of unlabeled graphs of order n. Define a 

one-edge transformation on the graphs of Cl(n) such that this 

transformation is probabilistically based and defines the transition 

probability between any two elements of Cl(n). Starting at any element of 

Cl(n) proceed on a random walk via this one-edge transformation and its 

transition probabilities. The union of all such random walks defines the 

transition digraph T(n) for this random graph process on Cl(n). The node 

set of T(n) is the set Cl(n) and its arcs (G, H) are between any pair of graphs 

G, H in Cl(n) for which H is a one-edge transformation of G.  

Investigations in this context consist of determining the properties of T(n), 

the elements of Cl(n), and of Cl(n) itself. 

We now explicitly define the concept of a one-edge transformation 

consisting of adding an edge to a given graph G in Cl(n). Namely, among 

the N possible edges {u, v} in the complement of G such that { , }G u v is 

in Cl(n) select one such edge with probability 1/N. This set of N edges is 

called the admissible edges for G. That is, select an edge to add to G with 

equal probability from among the set of admissible edges for G. 

In what follows a variety of explicit examples with comments on each are 

provided. 
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2. The bounded random graph process

Let Cl(n) denote the set of all unlabeled graphs of order n having no vertex 

of degree greater than f. The admissible edges here are those edges that 

when added to a graph G in Cl(n) do not introduce a vertex of degree greater 

than f. This defines the random f-graph process. The case f = n – 1 is the 

unrestricted case and is known simply as the random graph process. This 

model has been the subject of much study with results found in the books 

[1][2, p. 38]. Theoretical and implementation techniques for the bounded 

degree cases are provided in [1] and are applicable to the random graph 

processes given in the following Sections 3 to 6.  

The smallest order for which some of the properties of this random graph 

process can be visualized is n = 4. In Figure 2.1 the transition digraph T(n) 

for the random 3-graph process for n = 4, i.e., the (n – 1) case is shown. 

Note that the graph U in the abstract is the underlying graph for T(n). 

Displayed  in Figure 2.2, is the transition digraph for the random 2-graph 

process for n = 4.  

3. The at most unicyclic random graph process

Let Cl(n) denote the set of unlabeled graphs of order n having at most one 

cycle (such graphs are called at most unicyclic). Studies of this random 

graph process can be found in [3][4]. In this process the admissible edges 

are those that when added to a graph in Cl(n) do not create a graph with 

two or more cycles. The transition digraph for the at most unicyclic random 

graph process for n = 4 is shown in Figure 3.1. 

4. The unicyclic random graph process

Let Cl(n)  denote the set of unlabeled graphs of order n having exactly one 

cycle. Initial studies of this random graph process can to be found in [5]. 

This random process has the property that its transition digraph T(n) has 

n – 2 components. See Figure 4.1 for the case  n = 5. 



Figure 2.1 The transition digraph for the random graph process for n = 4 
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5. The at most uni-g-cyclic random graph process 

Let Cl(n)  denote the set of unlabeled graphs of order n having at most one 

cycle and that cycle has order g. Further combining this with the additional 

condition that no vertex have degree greater than f provides applications in 

chemistry. For such a chemistry application, using only the degree f = 4  

condition, see [6][7]. It is as an exercise for the reader to draw the transition 

digraph for the at most uni-3-cyclic random graph process for n = 6.  
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Figure 2.2 The transition digraph for the random 2-graph process for n = 4 



      Figure 3.1 The transition digraph for the at most unicyclic random graph process for n = 4 

Figure 4.1 The transition digraph for the unicyclic random graph process for n = 5 
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6. The reversible random graph process

Let Cl(n) denote the set of all unlabeled graphs of order n. The 

distinguishing feature of the random graph process defined here is that the 

one-edge transformations permit both adding and deleting edges to a given 

graph, see [8][9]. The admissible edges consist of both the edges in a given 

graph G and those in the complement of G. An admissible edge is selected 

with equal probability and if not in G, the edge is added to G or if the 

selected edge is in G, the edge is deleted from G. Note that the number N of 

admissible edges at each step is C(n, 2) and each selection is chosen with 

probability 1/ C(n, 2). 

The transition digraph for the reversible random graph process for n = 4 is 

shown in Figure 6.1.  

           Figure 6.1 The transition digraph for the reversible random graph process for n = 4 
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7. Initial graphs, terminal graphs, and levels

A graph G in Cl(n) is called an initial graph, if the deletion of any edge of 

G yields a graph not in Cl(n). If the empty graph nK1 is in Cl(n), then nK1 

is defined to be an initial graph.  

A graph G in Cl(n) is called a terminal graph, if the addition of any edge 

to G yields a graph not in Cl(n). If the complete graph Kn  is in Cl(n), then 

Kn is defined to be a terminal graph. 

A graph G in Cl(n) with L edges in a random graph process defined here is 

said to be on level L. Also note that each of the transition digraphs T(n) 

discussed here are bipartite graphs. 

8. Traceability

A path that contains every vertex of a graph is called a Hamilton path. A 

graph is called traceable if it contains a Hamilton path (see [10]). For 

directed graphs the Hamilton path required must be a directed path. In the 

case of the reversible random graph process, the transition digraph is 

traceable is equivalent to its underlying graph is traceable. 

9. Problems

For the above defined random graph processes study and resolve the 

following problems. 

P1 What is the order of Cl(n) = T(n)? 

P2 What is the size of T(n)?  

P3 What are the initial graphs of Cl(n) ? 

P4 What are the terminal graphs of Cl(n) ? 

P5 What is the probability distribution for the graphs on level L? or 

What is the probability distribution for the terminal graphs when not all 

of them are on the same level? 

P6 For the reversible random graph process is the underlying graph of 

T(n) traceable? 
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Abstract 

The n-th triangular number, 𝑡𝑛 =
𝑛(𝑛+1)

2
, where n is a natural number. A nontrivial graph is triangular if: 

1) its vertices are labeled by distinct triangular numbers,

2) each edge is weighted by the product of the labels of its end vertices, and

3) each edge weight is a distinct triangular number.

Similar graphs in which the vertex labels are oblong, (of the form 𝑛(𝑛 + 1)), and k-long (of the 

form 𝑛(𝑛 + 𝑘), where 𝑘 is a fixed positive integer) have been studied. [4, 5, 6].  Using Pell equations, we 

obtain various infinite classes of triangular graphs. 

I. Introduction 

The n-th triangular number 𝑡𝑛 equals 1 + 2 + 3 + ... + n. See [1, 2]. The closed form is given by 

𝑡𝑛 =
𝑛(𝑛+1)

2

The great 19th century mathematician, Gauss, proved that every positive integer can be 

expressed as the sum of three or fewer triangular numbers. See [1, 2]. 

It should be noted that there are infinitely many triangular numbers such as 𝑡8 = 36 that 

are squares, but their density in the set of triangular numbers is zero.  Note, also, that a given 

number 𝑚 is triangular if and only if 1 + 8𝑚 is a square. These facts will be required later on. 

We call 𝑡𝑛 and 𝑡𝑚 compatible, if the product 𝑡𝑛𝑡𝑚 is triangular. For example, t2 = 3 and     

t5 = 15 are compatible since 3×15 = 45 = t9. 

II. k-long Graphs



In [3], a number is called k-long if it is of the form 𝑛(𝑛 + 𝑘). This concept generalizes oblong 

numbers, that is, numbers of the form 𝑛(𝑛 + 1). It is shown there that the product of two 

consecutive k-long numbers is k-long.  In [4, 5], a graph G is called k-long if 

1. The vertices of G can be labeled with distinct k-long numbers.

2. The weights of the edges are the products of their end vertices.

3. The weights are distinct k-long numbers.

It should be noted that the set of labels and the set of weights need not be disjoint. 

III. Triangular Graphs

In the spirit of section II, a triangular graph is defined as follows. A graph G, is triangular if 

1. The vertices of G can be labeled with distinct triangular numbers.

2. The weights of the edges are the products of the labels of their end vertices.

3. The weights are distinct triangular numbers.

As was the case with k-long graphs, the set of labels and the set of weights need not be 

disjoint. 

We suspect that the product of consecutive triangular numbers (not including 1) is never 

triangular, thereby making triangular graphs more difficult to construct. A computer search 

involving the first ten million triangular numbers strengthened our suspicion.  

The path P5 is triangular, as can be seen by labeling the vertices sequentially 1, 3, 15, 66, 

and 406. These labels generate the weights (sequentially) 3, 45, 990, and 26796. The vertex labels 

are t1, t2, t5, t11, and t28, and the edge weights are t2, t9, t44, and t231.  

IV. The Pell Equation and its Generalization

It is well known [7] that the Pell equation x2 – ky2 = 1 is solvable in positive integers provided that 

k is not a square. 

It will be useful to convert the solution x = a and y = b into the formal expression 𝑎 + 𝑏√𝑘. 

If b is the smallest (positive) solution, then all solutions are the coefficients of (𝑎 + 𝑏√𝑘)
𝑛

.



The generalized Pell equation x2 – ky2 = j may or may not be solvable. 𝑥2 − 3𝑦2 = 2 has

no solution in integers as can be seen by writing it mod 3, yielding 𝑥2 ≡ 2  (mod 3).

On the other hand, if the generalized Pell equation x2 – ky2 = j has a solution, x = c and         

y = d, then it has infinitely many solutions expressed formally as (𝑐 + 𝑑√𝑘)(𝑎 + 𝑏√𝑘)
𝑛

. See [7].

Example: Given the generalized Pell equation x2 – 3y2 = 4, with solution x = 4, y = 2, first solve 

the associated ordinary Pell equation x2 – 3y2 = 1 and obtain its formally expressed solutions 

(2 + √3)
𝑛

. Then the given generalized Pell equation has the formal solutions

(4 + 2√3)(2 + √3)
𝑛

n = 2, for example, yields (4 + 2√3)(7 + 4√3) =  52 + 30√3, from which one obtains 

the solution x = 52 and y = 30. 

V. Finding Compatibles 

The Pell equations will now be employed to find infinitely many compatibles, 𝑡𝑟, for a given non-

square triangular number 𝑘. That is, indices, 𝑟, must be found for which  𝑘𝑡𝑟 is triangular. 

(Triangular numbers that are squares can easily be avoided in the construction of triangular graphs, 

as they have zero density in the set of triangular numbers.) 

Using the fact that a given number 𝑚 is triangular if and only if 1 + 8𝑚 is a perfect square, 

the following sequence of equations are obtained. 

8𝑘𝑡𝑟  +  1 =  𝑠2

8𝑘
𝑟(𝑟 + 1)

2
 +  1 =  𝑠2

4𝑘𝑟(𝑟 + 1) +  1 =  𝑠2

𝑘(4𝑟2 + 4𝑟 + 1) + (1 − 𝑘)  =  𝑠2

𝑘(2𝑟 + 1)2  + (1 − 𝑘)  =  𝑠2

𝑠2 −  𝑘(2𝑟 + 1)2  =  1 − 𝑘



Letting 𝑥 = 2𝑟 + 1, results in the generalized Pell equation 𝑠2 –  𝑘𝑥2 = 1 − 𝑘, which can be

written as 

𝑠̅2 –  𝑘𝑥̅2  =  1 –  𝑘 (1) 

to distinguish its solutions from those of the associated Pell equation s2 – kx2 = 1. 

Since 𝑥̅ = 2𝑟 + 1, it must be odd in order to obtain integer values of r. Observe that (1) 

has the formally expressed solution 1 + √𝑘, since 𝑠̅0 = 𝑥̅0 = 1 is a solution. 

Two lemmas are required. 

Let 𝑠1 + 𝑥1√𝑘 be a formal solution to the Pell equation, s2 –  𝑘x2 = 1. Then the n-th

solution, 𝑠𝑛 + 𝑥𝑛√𝑘 = (𝑠1 + 𝑥1√𝑘)𝑛. It follows that

𝑠𝑛+1 + 𝑥𝑛+1√𝑘 = (𝑠𝑛 + 𝑥𝑛√𝑘)(𝑠1 + 𝑥1√𝑘). 

Equating coefficients of 1 and √𝑘 yields Lemma 1. 

Lemma 1:  

𝑠𝑛+1 = 𝑠𝑛𝑠1 + 𝑘𝑥𝑛𝑥1 

𝑥𝑛+1 = 𝑠𝑛𝑥1 + 𝑥𝑛𝑠1 

The n-th formal solution to (1), 𝑠̅𝑛 + 𝑥̅𝑛√𝑘 = (𝑠𝑛 + 𝑥𝑛√𝑘)(1 + √𝑘). Equating coefficients 

yields Lemma 2. 

Lemma 2: 

𝑠̅𝑛 = 𝑠𝑛 + 𝑘𝑥𝑛 

𝑥̅𝑛 = 𝑠𝑛 + 𝑥𝑛 

It has now been established that the generalized Pell equation, 𝑠̅2 –  𝑘𝑥̅2  =  1 –  𝑘 has

infinitely many solutions. Recall, however, that 𝑥̅ must be odd, since 𝑥̅ = 2𝑟 + 1, where r is the 

index of a triangular number compatible with k. 

In light of the second equation of Lemma 2, this translates into the requirement that 𝑠𝑛 and 

𝑥𝑛 have opposite parity. To show this, two cases must be considered. 

Case 1: k is odd. 

It can be seen from the Pell equation s2 –  𝑘𝑥2 = 1, that x2 and s2 have opposite parity,

from which it follows that s and x have opposite parity, and we are done. 

Case 2: k is even. 



It can be seen from the Pell equation that 𝑠𝑛 is always odd. Then the second equation of 

Lemma 1 implies that 𝑥𝑛+1 ≡ 𝑥1 + 𝑥𝑛 (mod 2). If 𝑥1 is even, this becomes  𝑥𝑛+1 ≡ 𝑥𝑛 (mod 2), 

implying that 𝑥𝑛 is always even, and we are done. If 𝑥1 is odd, then 𝑥𝑛+1 ≡ 1 + 𝑥𝑛 (mod 2), so 

the parity of 𝑥𝑛will alternate. This will yield infinitely many solutions in which 𝑠𝑛 and 𝑥𝑛 have 

opposite parity, and the lemma is proven. 

In summary, every non-square triangular number has infinitely many compatibles. Infinite 

classes of triangular graphs will now be obtained. 

VI. Infinite Classes of Triangular Graphs

Theorem 1: All paths are triangular. 

Proof: Given n, let Sn be a strictly increasing sequence of n triangular numbers such that any two 

consecutive members of Sn are compatible. Such a sequence exists, for all n, by the result of the 

previous section. Then the path Pn is indeed triangular. Simply label its vertices consecutively 

using the members of Sn.     □ 

Theorem 2: All cycles are triangular. 

Proof: Given n, let Sn-1 = (s1, s2, s3, …, sn-1), be a strictly increasing sequence of n - 1 triangular 

numbers such that any two consecutive members of Sn-1 are compatible, and s1 = 1. Now given the 

cycle, Cn, label any n – 1 consecutive vertices with the triangular numbers of Sn-1. Since these 

triangular numbers are strictly increasing as we go around the cycle, we will obtain a strictly 

increasing sequence of weights, w1, w2, …, wn-2.  

Denote the label of the final vertex by t. Choose t so that it is compatible with, and greater 

than, sn-1. (Note that any t is compatible with 1.) Then the penultimate weight, wn-1, is strictly 

greater than wn-2 since t > sn-1. It follows that the weights, w1, w2, …, wn-1 are distinct since they 

form a strictly increasing sequence. Unfortunately, the final weight, wn = t < wn-1, since

wn-1 = tsn-1. To ensure that wn does not equal any of the previous weights w1, w2, …, wn-2, increase 

t if necessary so that it is greater than wn-2, which can be done since sn-1 has infinitely many 

compatibles.     □ 

Theorem 3: All trees are triangular. 

Proof: Let T be a rooted tree. Label the root with a triangular number which is denoted by a11. 

Label the second row of vertices from left to right by the strictly increasing triangular numbers a21, 

a22, a23… where all of these labels are compatible with a11. If we denote the weights of the edges 



linking the first and second rows of vertices (from left to right) by w11, w12, w13…, it follows that 

these weights form a strictly increasing sequence. 

Choose the triangular number, a31, that is the first vertex of the third row, so that it is 

compatible with its parent vertex label, and is greater than the maximum of the weights of all 

previous edges. This will ensure that the edge weights are distinct. As was the case with the second 

row of vertices, the sequence of labels of the vertices of the third row, a31, a32, a33, is strictly 

increasing. This guarantees that the vertex labels and edge labels thus far are distinct. Since each 

triangular number (except squares which are not considered) has infinitely many compatibles, 

arbitrarily large trees can be accommodated by continuing this algorithm. 

The algorithm terminates when the desired labeling is achieved.     □ 

Theorem 4: All unicyclic graphs are triangular. 

Proof: Label the cycle using the algorithm of Theorem 2. Let j be the smallest index for which 

deg (aj) > 2. Treating aj as the root of the pendant tree attached to it, label the first vertex of the 

second row of its pendant tree so that it is strictly greater than all the weights thus far. The 

remainder of the labeling using the algorithm of Theorem 3 will ensure the distinctness of the 

vertex labels and edge weights thus far. Note that aj is the initial vertex in the subsequence of 

vertices with degrees greater than 2. Continue the algorithm until the pendant trees of these vertices 

are fully labeled.      □ 

Theorem 5: All bicyclic graphs such that the two cycles share exactly one vertex are triangular. 

Proof: Label the shared vertex by 1, and apply several of the above algorithms.     □ 

Corollary 1: Let graph G contain an arbitrary number of cycles all containing a vertex, v, and such 

that the intersection of the vertices of any pair of cycles is v. G may contain tree structures. Then 

G is triangular. 

Proof: Assign the label 1 to v. Then apply the algorithms of Theorems 3 and 4.     □ 

Theorem 6: Let graph G be constructed as follows. Begin with the cycle Cn and label one of its 

vertices, v, with 1. Then add n – 3 edges so that deg(v) = n – 1. Then G is triangular. 

Proof: Label the vertices of the initial Cn using the algorithm of Theorem 2. Note that the added 

edges of the second step of the construction have the same weights as the vertices they are attached 

to that are not labeled 1. Hence, they will all be distinct.     □ 

VII. Conclusion

We close with the following definition and open questions. 



Definition: The distinct triangular numbers tn and tm, are mutually compatible, if there exists a 

triangular number other than 1 that is compatible with both of them. 

Example: t2 = 3 and t11 = 66 are mutually compatible, since they are both compatible with t5 = 15. 

Question 1: Are any given pair of distinct triangular numbers mutually compatible? A positive 

answer would dramatically enhance the discovery of new classes of triangular graphs, for example, 

the wheel, Wn.  

Question 2: As was previously indicated, with the exception of 1 and 3, we have not found a pair 

of consecutive compatible triangular numbers among the first ten million triangular numbers, and 

we conjecture that there are no such pairs.  We seek a proof or counter example. 
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In [1] a graph is called integrated if the vertices are colored either black or white, and at least half 

of the neighbors of each vertex have the opposite color of that vertex.  It follows that all bipartite 

graphs can be integrated using any valid bipartite color assignment, since all the neighbors of any 

vertex in a bipartite graph have the opposite color of that vertex.  In this sense, integrated graphs 

generalize bipartite graphs.    

While graphs are bipartite if and only if they contain no odd cycles, it is shown in [1] that 

all graphs can be integrated.  We present the proof after the following definition. 

Definition: Let the vertices of a graph G be colored using the colors black and white.  Then an 

edge of G is called balanced if its endvertices have opposite color. 

Now given a graph G, there are many ways to color its vertices black or white.  Since, 

however, there are only finitely many ways to color it, there is some coloring of G that has the 

maximum number of balanced edges.  This graph must be integrated!  If not, one can find a vertex, 

v, such that the majority of its neighbors have the same color as v.  But if we change the color of 

v, we can produce more balanced edges, contradicting the assumption that the original coloring 

has the maximum number of balanced edges.     

The algorithm that assigns a color to each vertex is not obvious, except for certain classes 

of graphs.   

Example 1: To integrate the complete graph, K2n, color any n vertices white, and the remaining n 

vertices black.  To integrate the complete graph, K2n+1, color any n vertices white, and the 

remaining n + 1 vertices black.  



Example 2: To color the wheel, C2n + v (that is, W2n+1), give C2n a bipartite color assignment and 

give v either color.   

It is well-known that if G and H are bipartite graphs, so is G × H. [2]  This is done by 

coloring a vertex in G × H white if its parent vertices in G and H have the same color, and coloring 

a vertex in G × H black if its parent vertices in G and H have opposite color.  Using this same 

algorithm, it can be shown that if graphs G and H are integrated, we can integrate G × H with ease.  

Definition: A graph G is strictly integrated, if the vertices are colored either black or white, and 

more than half of the neighbors of each vertex have the opposite color of that vertex.  It follows 

that all bipartite graphs can be strictly integrated using any valid bipartite color assignment, since 

all the neighbors of any vertex in a bipartite graph have the opposite color of that vertex. 

Not all graphs, however, can be strictly integrated, as can be seen by integrating K3.  

Question 1:  Characterize those graphs that cannot be strictly integrated. 

Question 2: Devise an efficient algorithm for integrating any graph. 
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Let G be a finite, simple graph. For a subset S of V (G), let N(S) be the neighbor set of S. 

The binding number of G, introduced by Woodall and denoted by bind(G), is the minimum value 

obtained by the ratio jN(S)j=jSj when considering all possible subsets S of V (G). If bind(G) _ b, 

we say that G is b-binding. We will discuss two theorems, one for 0 < b < 1 and one for b _ 1, 

which each provide a number k so that if deg(x) + deg(y) _ k for some non-adjacent vertices x; y 

of G, then G is b-binding if and only if G + xy is b-binding. It is also shown that our k values are 

best possible. 
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A GRAPHICAL PERSPECTIVE ON REARRANGEMENTS OF THE SIMPLE

RANDOM WALK

MARINA SKYERS

Abstract. Let Sn be the random walk de�ned on (0, 1) and let S∗n be the quantile of Sn. The Sn have
been the subject of intense study; their de�nition is immediately intuitive. Nevertheless, they are quite

disorderly and this disorder is mirrored by the fact that, pointwise,
(

Sn√
n
|n ∈ Z+

)
diverges. In this paper

we will see how to e�ectively rearrange Sn to arrive at S∗n and thus achieve almost sure convergence. This
is done via a suitable choice of permutation F : {0, 1}n → {0, 1}n such that S∗n = Sn ◦ F . We will describe
how to minimize the graph-theoretic complexity of these permutations and also show that they satisfy some
additional nice properties.

1. Introduction

For x ∈ C := {0, 1}N
+

excluding the two constant sequences, identify x with
∑∞
i=1

xi

2i ∈ (0, 1). For

dyadic rationals, choose the representation with a tale of zeros. De�ne for 1 ≤ i ≤ n, Ri (x) := (−1)1+xi

and Sn (x) :=
∑n
i=1Ri (x). De�ne Weightn (x) as the sum of the �rst n coordinates of x. Notice that

Sn (x) = −n+ 2Weightn (x).
Obviously, Sn (x) and Weightn (x) depend only on the �rst n coordinates of x. So, for binary sequences

r of length n, we can de�ne

Sn (r) := Sn (x) for any x ∈ C such that x ⊇ r

Weight (r) := Weightn (x) for any x ∈ C such that x ⊇ r.

Observe that Sn (r) = −n+2Weight (r). We can see this in the graph of Sn (x), at each level n. The graphs
of Sn (x), for n = 5, 6, 7, will be illustrated below.

In 1733, de Moivre postulated the �rst version of the central limit theorem for independent random
variables that take on values ±1. It is an important special case of the central limit theorem that the Sn√

n

converge in distribution to the standard normal on (0, 1). Well-known results ([4], [5] and [6]) show this
cannot possibly be improved to almost sure convergence.

The Sn have been the subject of intense study. The de�nition is accessible and intuitive and each Sn is
canonically represented as the sum of an i.i.d. family of n irreducibly simpler random variables (the Ri (x)).
Nevertheless the Sn are quite disorderly (as we can see in the below graphs for Sn, as n increases).

The quantile of Sn turns out to be a very orderly, non-decreasing step function, which we will call S∗n,
and it can be explicitly de�ned as follows. De�ne steps An,i, i = 0, . . . , n, where

An,i =

 1

2n

i−1∑
j=0

(
n
j

)
,
1

2n

i∑
j=0

(
n
j

) .
For such i, and for all x ∈ An,i we de�ne S∗n (x) = −n + 2i. For �xed n ∈ N+, let κ = κn = κn (x) be the

following integer: κ =
∑n
i=1 xi2

n−i. Then x ∈
[
κn(x)
2n , κn(x)+1

2n

)
.

We can compute S∗n (x) by identifying the step An,i that includes the interval κn (x). Note that, for each
n ∈ N+ and for κ ∈ [0, 2n) ∩ N, −n ≤ Sn (κ) , S∗n (κ) ≤ n and Sn, S

∗
n satisfy the dualization equations

Sn (κ) = −Sn (2n − 1− κ) ,

S∗n (κ) = −S∗n (2n − 1− κ) .
Below are the graphs for Sn and S∗n (x) when n = 5, 6, 7.

1
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In this paper we will investigate representations of the quantile of Sn that are as close as possible to the
canonical representation for Sn, via permutations F : {0, 1}n → {0, 1}n such that S∗n = Sn ◦ F . In fact, we
will see that (Fn|n ∈ N+) is uniformly primitive recursive ([1],[3]).

2. Representation results

Skorokhod proved the following in [7].

Theorem 1. Suppose that on a probability space, we have random variables Xn, n ∈ N+, and suppose the
Xn converge weakly to X. Then on ([0, 1] , B ([0, 1]) , λ), there are random variables Yn, n ∈ N+, and Y , with
the same distributions as the Xn and X, respectively, and such that the Yn converge almost surely to Y .

If in Skorokhod's Theorem, we start from Xn = Sn√
n
, then the Yn that result are exactly

S∗
n√
n
. So for each

n ∈ N+,
S∗
n√
n
has the same distribution as Sn√

n
and, more importantly, the

S∗
n√
n
converge almost surely to the

standard normal on (0, 1). An important question that arises here is, are there representations of S∗n similar
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to the canonical representation for Sn? And if so, how close can they be to the canonical representation for
Sn? We can answer these questions as follows [8]. (For additional work related to the following results, see
[2].)

Theorem 2. For any n, there is a canonical one to one correspondence between permutations F : {0, 1}n →
{0, 1}n such that S∗n = Sn ◦ F , and representations S∗n =

∑n
i=1R

∗
i , where

(
R∗i
∣∣1 ≤ i ≤ n) is an i.i.d. family

of random variables on (0, 1) such that each R∗i depends only on the �rst n coordinates of x and takes on
values −1, 1 with equal probability.

In addition, the following theorem shows there are many such permutations.

Theorem 3. For each n, there are exactly
∏n
i=0

((
n
i

)
!
)
permutations F : {0, 1}n → {0, 1}n such that

S∗n = Sn ◦ F .

Corollary 4. For each n, there are exactly
∏n
i=0

((
n
i

)
!
)
families

(
R∗i
∣∣i = 1, . . . , n

)
as above.

Additional criteria make some of these permutations more natural than (and therefore preferable to)
others. We say (Fn|n ∈ N+) is suitable if and only if for all n, Fn is a permutation of {0, 1}n satisfying
S∗n = Sn ◦ F and such that:

(a) (Fn|n ∈ N+) is explicitly and naturally de�nable, uniformly and highly e�ectively in n,
(b) if r ∈ {0, 1}n and S∗n (r) = Sn (r), then Fn (r) = r,
(c) Fn is as close as possible to being self-inverse (even for fairly small n (such as n = 5, 6, 7), it is

impossible for Fn to literally be self-inverse).

3. Rearrangements of the random walk

We �rst look at a variant, (Gn|n ∈ N+), satisfying only the �rst two criteria, (a) and (b), as well as the
composition equation, S∗n = Sn ◦Gn. So each Gn will map Step to Weight (Stepn (κ) = Weightn (Gn (κ))),
and further, the mapping will be in an order-preserving fashion (except as ruled out by criterion (b)). This
means that for all 0 ≤ κ < 2n,

(i) If Stepn (κ) = Weightn (κ), then Gn (κ) = κ,
(ii) If Stepn (κ) 6= Weightn (κ), and, if further, κ < m < 2n and Stepn (κ) = Stepn (m) 6= Weightn (m),

then Gn (κ) < Gn (m).

Lemma 5. (i) and (ii) de�ne a unique sequence (Gn|n ∈ N+) satisfying the composition equations Sn◦Gn =
S∗n.

Proof. We have An,i = {κ|Stepn (κ) = i} and we de�ne Bn,i := {κ|Weightn (κ) = i}. Further, let
A1
n,i := An,i rBn,i = An,i r (An,i ∩Bn,i) ,

B1
n,i := Bn,i rAn,i = Bn,i r (An,i ∩Bn,i) .

These are the sets of things that are out of place on the ith step, or of the ith weight, respectively. We have
the following equation:

card
(
A1
n,i

)
=

(
n

i

)
− card (An,i ∩Bn,i) = card

(
B1
n,i

)
.

Gn � A1
n,i is simply the order-preserving bijection between A1

n,i and B
1
n,i.

�

In fact (Gn|n ∈ N+) is uniformly primitive recursive in the following precise sense: there exists a single
primitive recursive function G (n, κ) such that for all n, G (n, ·) � {0, . . . , 2n − 1} = Gn. Simply take G (n, κ)
to be equal to Gn (κ), when 0 ≤ κ < 2n, and supply a suitable default value (e.g., G (n, κ) = 0, or
G (n, κ) = κ), when κ ≥ 2n or n = 0, then we have de�ned a unique function G : N2 → N. It is not very
di�cult to show that G primitive recursive.

We also have an additional property for G. Each Gn satis�es the dualization equation Gn (2
n − 1− κ) =

2n − 1−Gn (κ).
For n = 3, 4, 5, 6, 7 and each κ such that Step(n, κ) 6= Weight(κ) (i.e., κ is out of place at level n), the

orbit of κ under Gn is given in the following table.



A GRAPHICAL PERSPECTIVE ON REARRANGEMENTS OF THE SIMPLE RANDOM WALK 4

n Orbits under Gn

3 {3, 4}

4 {7, 3, 8, 12}

5 {16, 7, 3, 8, 5} , {15, 24, 28, 23, 26} , {11, 17} , {13, 18} , {14, 20}

6
{32, 42, 15, 34, 49, 30, 19, 40, 56, 60, 55, 58, 47, 27, 13, 24, 11, 6} ,

{31, 21, 48, 29, 14, 33, 44, 23, 7, 3, 8, 5, 16, 36, 50, 39, 52, 57}

7

{64, 15, 34, 21, 48, 73, 46, 69, 39, 25, 68, 30, 11, 5, 16, 36, 22, 65, 23, 66,

27, 80, 57, 84, 99, 31, 13, 6, 32, 14, 33, 19, 40, 26, 72, 45, 67, 29, 7} ,

{63, 112, 93, 106, 79, 54, 81, 58, 88, 102, 59, 97, 116, 122, 111, 91, 105, 62, 104,

61, 100, 47, 70, 43, 28, 96, 114, 121, 95, 113, 94, 108, 87, 101, 55, 82, 60, 98, 120} ,

{3, 8} , {51, 74} , {53, 76} , {124, 119}

Our construction of (Fn|n ∈ N+), which will satisfy all three criteria (a), (b) and (c), takes place within
the general framework implicit in the construction of (Gn|n ∈ N+). While G was implicitly constructed in
two stages, F will be built in three. As before, the �rst stage is that F is the identity on the κ's that are
in place: Fn (κ) = κ if Stepn (κ) = Weightn (κ). Then identify which κ's are part of a two-cycle and pair
them up. After we have maximized two-cycles (this satis�es criterion (c)), removing those from A1

n,i, B
1
n,i

leaves us with sets A2
n,i, B

2
n,i of equal cardinality and we map A2

n,i → B2
n,i in an order-preserving fashion.

As before, each Fn satis�es Fn (2
n − 1− κ) = 2n − 1− Fn (κ).

As noted in the table above, the �rst time there are values of κ that are out of place is when n = 3. Below
are the graphs of Fn for n = 3 and n = 4.
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The �rst time there are values of κ that are not part of a two-cycle is when n = 5. For n = 5, 6, 7, the
table below presents the orbits under Fn for those values of κ at level n.

n Orbits under Fn

5 {16, 28, 15, 3}

6 {32, 56, 60, 31, 7, 3}

7
{64, 108, 31, 11, 3} , {13, 72, 113, 47} ,

{14, 80, 114, 55} , {63, 19, 96, 116, 124}

The resulting cycles of these values of κ, corresponding to each of the rows of the table, are illustrated in
the graphs below. We have a single four-cycle at n = 5 and a single six-cycle at n = 6.
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At n = 7 we have two four-cycles and two �ve-cycles. Because the graph of Fn is rather complicated by
n = 7, we will leave out the swaps from the graph and only illustrate the cycles. The four-cycles are
highlighted in the �gure below.

4. Graph-theoretic complexity of the permutations

The results we have presented do indeed narrow the distance between the Sn and the S∗n with respect
to the important issue of representation. The form of the composition equation that we have used so far,
S∗n = Sn ◦Fn, emphasizes the point of view of providing suitable representations of the S∗n. But this equation
could just as well be written in the form Sn = S∗n ◦F−1n , which would emphasize the point of view of seeking
to tame the disorder of the Sn. This is related to the rearrangement idea that is illustrated in the above
graphs of Fn: we rearrange Sn to get S∗n, and thus achieve almost sure convergence. The question remains
how much rearranging of the Sn is optimal.

One point of view involves attempting to minimize the graph-theoretic complexity of the function F . As
described in the construction of F above, F maximizes the number of two-cycles (with the proper choice
of the two-cycles), but then will act just as the function G on the remaining κ's which are not part of a
two-cycle. Of course we know by Theorem 3 that there are many other possible variants for the function F .

One may add some additional stages to the construction of F . In stage three (which might no longer
be the terminal stage), we would seek to maximize the number of three-cycles just as we maximized the
number of two-cycles in stage two, and �xed all the κ's which were in place (thereby maximizing the number
of one-cycles) in stage one. If some κ remain outside the domain, proceed to stage four and continue. The
goal would be to minimize lengths of cycles which could be viewed as one way of seeking to minimize the
graph-theoretic complexity of the permutations. This idea is illustrated below for n = 6.
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The existence of values of κ that are not part of two-cycles at level n, starting at n = 5, is the last
phenomenon to create complications in the de�nition of the function F . It is conceivable that further
interesting phenomenon (which do not create additional complications for the de�nition of F ) �rst occur for
some n larger than 5, and it is far from certain whether there are �nitely many such n.
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Intersection and transformations of digraphs survey
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Abstract. The intersection number of a digraph D is the minimum size of a set U , such that D is the intersection
digraph of ordered pairs of subsets of U . The paper describes much of the work done in the area of intersection graphs
and digraphs. Connections with applications in survey design can be drawn. The paper proves two main results:

Theorem 1 The intersection number of the line digraph of D equals the number of vertices of D that are neither
sources nor sinks.

Theorem 2 If D contains no loops, the intersection numbers of total digraph, middle digraph and subdivision digraph
ofD are all equal to the number of vertices ofD that are not sources, added to the number of vertices ofD that are not sinks.

Keywords: intersection digraph, intersection number, line digraph, subdivision digraph, middle digraph, total digraph.

Introduction

A great deal of research has been done in the area of transformations on graphs and digraphs, found in connection
with work done in groups on graphs.

The best known and most thoroughly studied among these transformations has been the line graph, that was officially
introduced as such by Whitney [40] in 1932, and by 1970 has been completely characterized by Krausz [28], van Rooij
and Wilf [34] and Beineke [3]. The middle graph, was introduced independently by Chikkodimath and Sampathkumar
[10], and Hamada and Yoshimura [20]. Middle graphs have been characterized in several ways by Akiyama, Hamada and
Yoshimura [1]. The total graph, was introduced in 1967 and studied by Behzad [2].

For over half a century transformations on digraphs, introduced as analogues of the corresponding transformations on
graphs, have also received a great deal of attention. We refer to the line, total, and middle digraph, which have been
introduced in 1960 by Harary and Norman [24], in 1964 by Chartrand and Stewart [9], and in 1981 (1977 in her PhD
thesis) by Zamfirescu [42], respectively. Characterizations have been given by Heuchenne [25] for the line digraph, by
Zamfirescu [42] for the middle digraph, and by Skowronska, Syslo and Zamfirescu [36] for the total digraph. In addition,
a lot of research has been done studying these transformations in various contexts [1-44].

Using intersections of sets belonging to a family of sets, in order to define the edge connections in a graph is so natural
that it arose independently in a number of areas in connection with both pure and applied mathematics, and has been
studied for over 7 decades. Let U be a set, and F = {Fi}i a finite family of non-empty subsets of U . The intersection
graph Ω(F) is the graph with the vertex set F in which {Fi, Fj} is an edge if and only if the intersection of the sets Fi and
Fj is non-empty. At the same time, if G = Ω(F) then F is called a set representation of the graph G. As far as we know,
the first person to formulate this definition in such a broad fashion, without restricting the nature of either the set U or
of the family F appears to have been Marczewski [30] in 1945. He also established that every graph is the intersection
graph of some family of subsets of a finite set.

A lot of research has been done on various concepts that represent certain types of intersection graphs. Among these
is the interval graph, Ω(F), where U = <, the real line, and each set Fi in F is an interval; certain interval graphs
with various sorts of restrictions, such as unit-interval graphs, and multiple interval graphs; n-dimensional interval graph;
circular-arc graph, etc. The monograph written by Mc Kee and Mc Morris [31] on Intersection Graph Theory is an
excellent resource, as well as a good reference for most notations used in this paper. For other ones, not defined here,
please use Harary’s Graph Theory [22].

On the other hand, the study of similar concepts for digraphs has just started. Beineke and Zamfirescu [4] and Sen,
Das, Roy and West [35] introduced and studied in different contexts a natural analogue of the intersection graph model
for digraphs. Beineke and Zamfirescu [4] made for the first time a connection between these new intersection digraphs
and transformations on digraphs.

1Support for Christina Zamfirescu’s work was provided by PSC-CUNY Awards, jointly funded by The Professional Staff Congress and The
City University of New York.
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Definitions

A digraph D = (V,A) has V as vertex set, and A as arc set. We may also use the notations V (D) and A(D), to denote
V and A, respectively. Note that, unless otherwise specified, from now on D may have loops but no multiple arcs, D is
weakly connected, and has at least two points.

Let’s consider a family of ordered pairs of subsets of a set U , and to each ordered pair let’s assign a vertex v ∈ V . Let
Sv (source set) be the first set in the ordered pair assigned to v, and Tv (terminal set) be the second one. The intersection
digraph of this family of ordered pairs of sets, F = {(Sv, Tv)}v∈V , is the digraph D that has V as vertex set and uv ∈ A
iff Su ∩ Tv 6= ∅.

In [4], and [35], it was shown that every digraph is the intersection digraph of ordered pairs of subsets of some set U .
In [44] and [43], it was shown that the line, middle, total, and subdivision digraph of a digraph D can all be generated as
intersection digraphs of ordered pairs of subsets of a universal set of symbols U , which contains only vertices and arcs of
the digraph D, the digraph to be transformed.

This type of intersection digraph representation, using only elements of the transformed digraph, could make possible
a unique computer treatment of all these transformations of the same digraph.

Let the intersection number, i#(D), of a digraph D be the minimum size of a set U , such that D is the intersection
digraph of ordered pairs of subsets of U . We are raising here the problem of expressing the intersection number of a
transformed digraph as a function of the size of the vertex set or arc set of the original digraph that was transformed, and
we solve this problem for most transformation digraphs we mentioned here.

The transformations on digraphs we consider in this paper are all based on the concept of directed adjacency, which
throughout this paper will simply be called adjacency. This adjacency can be between two points (x is adjacent to y, iff
xy is an arc), two arcs (α is adjacent to β, iff the ending point of the first arc is the starting point of the second, e.g.
α = xy and β = yz), and one of each (x is adjacent to any arc α = xz having x as starting point, and any arc α = xz is
adjacent to its ending point, in this case z). Furthermore, x is called a source (sink), iff there are no points adjacent to
(from) x, and x is called a carrier iff it is adjacent both to exactly one other vertex, and from exactly one other vertex.

The transformations of the digraph D express adjacencies within D in various ways: The line digraph reflects the
adjacencies among the arcs in D, the original digraph. The total digraph reflects the adjacencies between all elements of
the original digraph: between vertices, between arcs, and between vertices and arcs (meaning one of each). The middle
digraph reflects the adjacencies in D between arcs, between vertices and arcs, but not the adjacencies between vertices.
The well-known subdivision digraph reflects only the adjacencies in D, that exist between vertices and arcs.

Next we will define these 4 transformations for a digraph D = (V,A), and mention theorems given in [44], that generate
these transformations as intersection digraphs, using U = V ∪A, which means that the universal set U , of the intersection
digraph consists only of elements of D.

The line digraph, denoted L(D), of the digraph D has as vertex set A, the arc set of D, and there is an arc in L(D)
from one vertex ûv [NB: ûv will denote the vertex in L(D), that represents the arc uv in D] to another vertex ŵz iff
v ≡ w, i.e. the adjacency of the arcs in D is preserved for the corresponding vertices in L(D).

The total digraph, denoted T (D), of the digraph D has as vertex set V ∪A, and two such elements are connected by
an arc in T (D) iff the corresponding elements in D are adjacent in D.

The middle digraph, denoted M(D), of the digraph D, has as vertex set V ∪ A, and two such vertices in M(D) are
connected by an arc inM(D) iff they are not both vertices in D, and the corresponding elements in D are adjacent in D.

The subdivision digraph, denoted S(D), of the digraph D, has as vertex set V ∪A, and two such elements are connected
by an arc in S(D) iff one of them is an arc and the other one a vertex of D, and they are adjacent in D. This is equivalent
to the more common definition of a subdivision digraph, which defines it is as the digraph we obtain from D by attaching
one extra point on each arc of D and thus subdivide each arc into two new arcs in S(D).

In the Figure below we exemplify all these transformations for a digraphD0, with the vertex set V (D0) = {a, b, c, d, e, f, g},
where the two types of vertices and the three types of arcs of the transformed digraphs are marked in such a way that
they intuitively show their provenience: The empty (bold) points represent the vertices of the original digraph D0, (re-
spectively those vertices corresponding to arcs in D0), while the wavy (double) [plain] arcs in any transformed or original
digraph represent the adjacencies that exist between vertices in the original digraph D0 (represent the adjacencies that
exist between arcs in D0) [represent the adjacencies that exist between vertices and arcs and arcs and vertices in D0].
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ĝg

d̂c

ĉb
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âc

c

D0

e

f

d

g

b

a

c

L(D0)
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Results

Theorem A [44]
L(D), the line digraph of D = (V,A), is the intersection digraph of the family F of ordered pairs of subsets of the

universal set U = V , defined by:
F = {(Sûv, Tûv)}ûv∈A(L(D)), where Sûv = {v}, and Tûv = {u}.

Theorem B [44]
T (D), the total digraph of D = (V,A), is the intersection digraph of the family F = {(Sε, Tε)}ε∈U , of ordered pairs of

subsets of the universal set U = V ∪A, defined by:
Sε = {ε}

⋃
{ε̂u : ε̂u ∈ A} and Tε = {ûε : ûε ∈ A}, for all ε ∈ V ,

Sε = Sûv = {ûv, v} and Tε = Tûv = {u}, for all ε ∈ A, ε = ûv

Theorem C [44]
M(D), the middle digraph of D = (V,A), is the intersection digraph of the family F = {(Sε, Tε)}ε∈U , of ordered pairs

of subsets of the universal set U = V ∪A, defined by:
Sε = {ε} and Tε = {ûε : ûε ∈ A}, for all ε ∈ V ,
Sε = Sûv = {ûv, v} and Tε = Tûv = {u}, for all ε ∈ A, ε = ûv

Theorem D [44]
S(D), the subdivision digraph of D = (V,A), is the intersection digraph of the family F = {(Sε, Tε)}ε∈U , of ordered

pairs of subsets of the universal set U = V ∪A, defined by:
Sε = {ε} and Tε = {µ ∈ U : ε adjacent to µ, and exactly one of ε, µ is an arc}

Next, we will aim at minimizing the number of symbols in the universal set, U .
The intersection number, i#(G), of an undirected graph G is the minimum size of a set U , such that G is the

intersection graph of subsets of U . For the undirected case, Erdös, Goodman, and Posa [12] showed that the intersection
number of G equals the minimum number of complete subgraphs needed to cover its edges. Sen, Das, Roy, and West [35]
proved an analogous result for digraphs. They defined the generalized complete bipartite subdigraph (abbreviated GBS)
to be the subdigraph generated by vertex sets X, Y , the arcs of which are all xy such that x ∈ X, and y ∈ Y . Note that
X and Y need not be disjoint (this is how loops are covered) which justifies the “generalized” term. If K is a GBS we
shall call X(K) and Y (K) its X, respectively Y , sets. They gave the following:

Theorem E ([35]). The intersection number of a digraph equals the minimum number of GBSs required to cover its
arcs.

We shall further give results that will express the intersection numbers of transformation digraphs of a digraph D, as
functions of the numbers of vertices of D, that are sinks, sources or not sinks or not sources.

We will study the case of the line digraph separately, as it has an additional property: it satisfies theHeuchenne Condition,
abbreviated here as H condition.

We say that a digraph fulfills the H condition iff for every four of its vertices, call them u, v, w and z, not necessarily
distinct, the existence of the arcs uv,wv,wz implies the existence of the arc uz.

Theorem F ([25]). A digraph is a line digraph iff the H condition is fulfilled.

Let D satisfy the H condition, and let C = {Kσ}1≤σ≤i#(D) be a set of minimum size, of GBSs that cover all arcs in D.
In D, let uv be an arc in some Kσ ∈ C. It is easy to see that, given the H condition, all arcs adjacent from u, and all

arcs adjacent to v in D, must also belong to Kσ since C is of minimum size. We can now define an equivalence relation R
on the arc set A(D) by stating that two arcs are related iff one of the following is fulfilled: (a) they have the same starting
point; (b) they have the same ending point; (c) there is an arc in A(D) from the starting point of one arc to the ending
point of the other. It is easy to see that the set of GBSs induced by the equivalence classes generated by R is of minimum
size, and we proved the following lemma.

Lemma 1 If H condition holds then C is uniquely determined in D.

Next, we can see that, if we apply Lemma 1 to L(D), which by Theorem F fulfills condition H, then each GBS, Kσ ∈ C,
induced in L(D) by the relation R defined above, corresponds to exactly one vertex in D. That vertex in D is 1) adjacent
from all arcs of D that correspond to the vertices in X(Kσ), which means that it is not a source, and 2) adjacent to all
arcs of D that correspond to the vertices in Y (Kσ), which means that it is not a sink. Since Kσ contains at least one arc,
that vertex in D must be neither a source nor a sink. This proves the next lemma and theorem.
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Lemma 2 There is a one-to-one correspondence between the set C of GBSs and the set of all vertices in D, that are
neither sources nor sinks.

Theorem 1 i#(L(D)), the intersection number of L(D) equals the number of vertices of D that are neither sources
nor sinks.

Let’s consider now the subdivision digraph, S(D), of the digraph D. It is easy to see that, since in S(D) in every
semipath (NB: walk in the graph without following the directions of the arcs, see [22]), every second vertex is a carrier,
S(D) satisfies the H condition. From Lemma 1 we know that S(D) has a unique minimum set of GBSs that cover all its
arcs, and each such GBS is induced by the arc set of one of the equivalence classes generated by the equivalence relation
R, defined for Lemma 1. In fact, the point (c) in the definition of R cannot occur in S(D), and thus each GBS in S(D)
is a star (see [22]), which (a) has a source as the center, and any remaining vertex is a sink, or (b) has a sink as the
center, and any remaining vertex is a source. We can attach these GBSs to only those vertices in S(D), that correspond
to vertices in D. To each source (sink) will correspond exactly one GBS, consisting in a star with n arms, where n is the
out-degree (in-degree) of the source (sink) in D. To each of the other vertices, we will attach exactly two GBSs, one for
the in-coming arcs, and the other for the out-coming arcs. We thus proved:

Lemma 3 i#(S(D)) equals the number of vertices of D that are not sources, added to the number of vertices of D
that are not sinks.

From now on, let’s consider that D contains no loops.
Neither M(D) nor T (D) satisfies the H condition, generally.
We will show next that, in the case of both M(D) and T (D), although the covering of the arcs by a set of GBSs of

minimum size may not be unique, their intersection numbers are equal to the intersection number of S(D). We will do
this by extending the GBSs we formed for the S(D) to also cover all the arcs that are inM(D) or T (D) but not in S(D),
by allocating each such arc, say xy, new to S(D), to the GBS that contains all arcs in S(D) adjacent to y. Similarly,
we could allocate xy to x, instead of to y, thus defining a generally different set of GBSs, that cover all arcs in M(D) or
T (D).

In order to prove that this new set of GBSs is of minimum size it is enough to show that we cannot construct a GBS
in M(D) or T (D) that contains two arcs α and β, that belong to two different GBSs in S(D). Any arc in S(D) joins a
vertex that represents a vertex in D with (i.e. to or from) a vertex that represents an arc in D. The latter must also be a
carrier in S(D). If α and β have a common endpoint, then this can only represent a vertex in D, as it is not a carrier. In
this case they must be in the same GBS in S(D). If the starting point of α is the same point as the ending of β, then by
the definition of the GBS, we would need to have a loop at that point, which is not allowed in S(D), even if D had loops.
If α and β do not have a common endpoint, say α is the arc xz and β is the arc yt, with all endpoints distinct, then the
GBS must also contain the arcs xt and yz. Let’s assume, without loss of generality, that x and t represent vertices, while
y and z represent arcs in the original D, that we transformed. In addition, note that the arc in D represented by y must
be adjacent to the arc in D represented by z. A contradiction follows from the fact that y and z must both be carriers in
S(D), and D may not contain a loop. We therefore proved the following results.

Lemma 4 No GBS in M(D) or T (D) may contain two arcs that belong to two different GBSs in S(D).

Theorem 2 If D contains no loops, i#(T (D)) = i#(M(D)) = i#(S(D)), that is the intersection numbers of T (D),
M(D) and S(D) are all equal to the number of vertices of D that are not sources, added to the number of vertices of D
that are not sinks.

We would like to note here, that Lemma 4 is no longer true when D has loops, as the number of GBSs covering all arcs

in T (D) might be reduced from the one covering S(D). For instance, the subgraph induced by the vertex set {g, ĝg, ĝf}
in T (D0) in our Figure forms one GBS, while in S(D) and M(D) the same subgraph must be covered by two GBSs, due
to the lack of the loop at the vertex g in S(D) and M(D).

The problem of finding equivalent results for other transformations of digraphs, such as various power digraphs, remains
also open.
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