Introduction to the
New Mainframe:
z/0S Basics

Basic mainframe concepts, including
usage and architecture

“ 2/0S fundamentals for students
and beginners

“ Mainframe hardware and
peripheral devices

Mike Ebbers

John Kettner
Wayne 0’Brien
Bill Ogden

Redhooks

ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Introduction to the New Mainframe: z/OS Basics

August 2009

SG24-6366-01

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Second Edition (August 2009)

© Copyright International Business Machines Corporation 2006, 2009. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Notices Xi
Trademarks e Xii
Preface XV
How thistextisorganized i, XVi
How each chapterisorganized XVi
Aboutthe authors. e XVii
Acknowledgements XVii
Comments WelComeE. XX
Summaryofchanges. XXi
August 2009, Second Edition. XXi

Part 1. Introduction to z/OS and the mainframe environment

Chapter 1. Introduction to the new mainframe....................... 3
1.1 The newmainframe. 4
1.2 The S/360: A turning point in mainframe history 4
1.3 Anevolving architecture 5
1.4 Mainframesinourmidst 8
1.5 Whatisamainframe? e 9
1.6 Who uses mainframe computers?.c ... 12
1.7 Factors contributing to mainframeuse 14
1.8 Typical mainframe workloads oo, 21
1.9 Roles inthe mainframeworld 28
1.10 z/OS and other mainframe operatingsystems 35
111 SUMMANY . .. 38
1.12 Questionsforreview 39
1.13 Topics for further discussion i 39
Chapter 2. Mainframe hardware systems and high availability 41
2.1 Introduction to mainframe hardware systems 42
2.2 Earlysystemdesign 43
2.3 Currentdesign.o 46
2.4 ProcessinQuNits 57
2.5 MURIPrOCESSOrS . . . oot 59
2.6 DiskdeviCes e 60
2.7 Clustering 62
2.8 Basicshared DASD.t 63

© Copyright IBM Corp. 2006, 2009. All rights reserved. iii

iv

2.9 Whatis a sysplex? e 66

2.10 Intelligent Resource Director. 72
2.11 Typical mainframe systemgrowth. 73
2.12 Continuous availability of mainframes. 74
213 SUMMANY . . o 82
2.14 Questionsforreview 84
2.15 Topics for further discussion i 84
2,16 EXEICISES. . oo e 84
Chapter 3. z/OS overview. i 87
3.1 Whatis an operating system?. i 88
3.2 Whatis z/0S? 88
3.3 Overview of zZ/OS facilities. 94
3.4 Virtual storage and other mainframe concepts 96
3.5 Whatis workload management?. i 120
3.6 I/Oanddatamanagement. i 123
3.7 Supervising the execution of work inthe system 125
3.8 Defining characteristics of zZ/OS L. 135
3.9 Additional software productsforz/OS........................... 136
3.10 Middleware for z/OS 138
3.11 A brief comparison of zZOSand UNIX. 139
3.12 CroSS-MEemMOIY SEIVICES. . .« v ot v it e it e e e e e et e s 142
3.13 Predictive analysis. 143
.14 SUMMANY . . e 144
3.15 Questions forreview 145
3.16 Topics for furtherdiscussion oL 146
Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/0S 149
41 Howdoweinteractwithz/OS? 150
4.2 TSO OVEIVIEW . . .ottt e e e e et e e e e 150
4.3 ISPF OVeIVIEWo e e 155
4.4 z/OS UNIX interactive interfaces. 173
4.5 SUMMAIY . o ottt e ettt e e 180
4.6 Questionsforreview 181
4.7 EXErCISesS. . . oo e 182
Chapter 5. Working withdatasets. 187
5.1 Whatisadataset? i 188
5.2 Wherearedatasetsstored?.......... 189
5.3 Whatareaccessmethods?. 190
5.4 How are DASD volumes used?. ..., 190
5.5 Allocatingadataset e 191
5.6 Howdatasetsarenamed, 192
5.7 Allocating space on DASD volumes through JCL 193

Introduction to the New Mainframe: z/OS Basics

5.8 Datasetrecordformats. 195

5.9 Typesofdatasets. 198
5,10 Whatis VSAM?o e 203
5.11 Catalogs and VTOCSot 205
5.12 Role of DFSMS in managing spacecuuuuuuaninnn. 210
5.13 zZ/OS UNIXfilesystems. i 211
5.14 Working with a zFSfilesystem 214
515 QUMM . . oo e 215
5.16 Questionsforreview i e 216
5.7 EXEICISES. . . ottt e 217
5.18 Listing a data set and other ISPF 3.4 options 221
Chapter 6. UsingJCLandSDSF 223
6.1 Whatis JCL?. 224
6.2 JOB, EXEC,and DD parametersc..uiiiinnnennnnn. 226
6.3 Data set disposition, DISP parameter........................... 228
6.4 Continuation and concatenation 230
6.5 Why z/OS uses symbolicfilenames............. 231
6.6 Reserved DDNAMES e 233
6.7 JCL procedures (PROCS)o it 234
6.8 Understanding SDSF e 237
6.9 Utilities. 242
6.10 Systemlibraries. 242
B.11 SUMMANY . . . e 243
6.12 Questions forreview 243
6.13 Topics for furtherdiscussion 244
6.14 EXErCISeS. . . .t 244
Chapter 7. Batch processingand JES. 253
7.1 Whatis batch processing? i 254
7.2 Whatis JES?. . ..o 255
7.3 Whatdoes an initiator do?. 257
7.4 Job and output management with JES and initiators 258
7.5 Job flow throughthesystem 265
7.6 JES2comparedto JES3. 268
T.7 SUMMAIY . o .ottt e e e e e e e e 269
7.8 Questions forreview e 270
7.9 EXEICISES. . o i e 271

Part 2. Application programming on z/OS

Chapter 8. Designing and developing applications for z/0S 279
8.1 Application designers and programmers. 280
8.2 Designing an applicationforz/OS............ 281

Contents v

8.3 Application development life cycle: Anoverview. 283

8.4 Developing an application on the mainframe 288
8.5 Going into production on the mainframe 296
8.6 SUMMANY 297
8.7 Questionsforreview 298
Chapter 9. Using programming languageson z/0S. 299
9.1 Overview of programminglanguagesccvin.... 300
9.2 Choosing a programming language forz/OS 301
9.3 Using Assembler languageonz/OS.......... 302
9.4 UsingCOBOL ONZ/OS e 304
9.5 HLL relationship between JCL and programfiles 312
9.6 UsingPL/lon z/OS e 313
9.7 Using C/C++0n Z/OS e 317
9.8 UsingJavaon z/OS. e 317
9.9 Using CLIST language on z/OS i, 319
9.10 Using REXX 0on z/OS e 322
9.11 Compiled versus interpreted languages 324
9.12 What is z/OS Language Environment? 325
.13 SUMMANY . . ottt e 333
9.14 Questionsforreview 334
9.15 Topics for further discussion i 335
Chapter 10. Compiling and link-editing a programon z/OS 337
10.1 Source, object,andloadmodules. 338
10.2 What are source libraries? i 338
10.3 Compiling programs on z/OS i 339
10.4 Creating load modules for executable programs. 356
10.5 Overview of compilation to execution 360
10.6 USINg Procedurest e 361
10.7 SUMMANY . . oo e e e 362
10.8 Questionsforreview 363
10.9 EXercises. 363

Part 3. Online workloads for z/OS

Chapter 11. Transaction management systems onz/0S............. 371
11.1 Online processing on the mainframe. 372
11.2 Example of global online processing - the new big picture 372
11.3 Transaction systems for the mainframe 374
11.4 Whatis ClCS e 379
11.5 Whatis IMS 2. 394
11.6 SUMMaANY e e e 398
11.7 Questionsforreview 399

Vi Introduction to the New Mainframe: z/OS Basics

11.8 Exercise: Create a CICS program.ouiinennennn.. 400

Chapter 12. Database management systemsonz/0OS............... 403
12.1 Database management systems for the mainframe 404
12.2 Whatisadatabase? 404
12.3 Whyuse adatabase? 405
12.4 Who is the database administrator? 407
12.5 How is a database designed? 408
12.6 What is a database management system?...................... 411
127 Whatis DB2? 413
12.8 Whatis SQL? 419
12.9 Application programmingforDB2............ 426
12.10 Functions of the IMS Database Manager 431
12.11 Structure of the IMS Database subsystem 431
12,12 SUMMANY . . .o e e 435
12.13 Questionsforreview 436
12.14 Exercise 1 -- Use SPUFIina COBOL program 437
Chapter 13. zZ/OSHTTP Server 443
13.1 Introduction to Web-based workloads onz/OS................... 444
13.2 Whatis ZZOS HTTP Server? 444
13.3 HTTP Server capabilities. 448
184 SUMMaANY e e 452
13.5 Questionsforreview 452
18.6 EXEICISES.o e 452
Chapter 14. WebSphere Application Serveronz/0OS................ 455
14.1 What is WebSphere Application Server forz/OS? 456
14.2 SOIVEIS . .ttt e 457
14.3 Nodes (andnode agents)t 457
14.4 Cells . .. 457
14.5 J2EE applicationmodelonz/OS. 458
14.6 Running WebSphere Application Serveronz/OS................. 459
14.7 Application server configuratononz/OS 463
14.8 Connectors for Enterprise Information Systems 465
14.9 Questionsforreview 470
Chapter 15. Messagingand queuing. 471
15.1 What WebSphere MQiis 472
15.2 Synchronous communication 472
15.3 Asynchronous communication 473
15.4 MesSsage types . .. oot 474
15.5 Message queues and the queue manager 475
15.6 Whatisachannel? 477

Contents vii

15.7 How transactional integrityisensured. 477

15.8 Example of messagingandqueuing.c. ... 478
15.9 Interfacing with CICS, IMS, batch,or TSO/E 480
15,10 SUMMANY 480
15.11 Questionsforreview 481

Part 4. System programming on z/OS

viii

Chapter 16. Overview of system programming 485
16.1 The role of the system programmer 486
16.2 What is meant by separationof duties 487
16.3 Customizingthesystem i, 488
16.4 Managing system performance. 500
16.5 Configuring /O devices. 500
16.6 Following a process of change control 501
16.7 Configuring consoles. it 504
16.8 Initializing the system 507
16.9 SUMMANY . . .o 515
16.10 Questionsforreview 516
16.11 Topics for further discussion o, 516
16.12 EXerCises.o 517
Chapter 17. Using SMP/E i 519
17.1 Whatis SMP/E? 520
17.2 The SMP/E view of thesystem 520
17.3 Changing the elements of the system.......................... 522
17.4 Introducing an element intothe system. 524
17.5 Preventing or fixing problems withanelement 526
17.6 Fixing problems withanelement.............. 527
17.7 Customizing an element - USERMOD SYSMOD 528
17.8 Keeping track of the elements of the system 530
17.9 Tracking and controlling requisites 533
17.10 How does SMP/E WOrk? i e e 533
17.11 Workingwith SMP/E 536
17.12 Datasetsusedby SMP/E 546
1713 SUMMArNY . . o e 549
17.14 Questionsforreview 549
17.15 Topics for further discussion o, 550
Chapter 18. Securityonz/OS........... 551
18.1 Why security? 552
18.2 Security facilitiesof zZ/OS. 552
18.3 Security roles. 553
18.4 The IBM Security Server. 553

Introduction to the New Mainframe: z/OS Basics

18.5 Security administration 557

18.6 Operator console securityt 558
18.7 Integrity oo 558
18.8 SUMMAIY . . .o 561
18.9 Questionsforreview e 563
18.10 Topics for further discussion 563
18.11 EXEICISES. . oot e 564
Chapter 19. Network Communicationsonz/0OS 567
19.1 Communications in z/OS. e 568
19.2 Brief history of datanetworks L. 569
19.3 z/OS Communications Server. 572
19.4 TCP/IP OVEIVIEW e e e e e 573
19.5 VTAM OVEIVIEWottt e e e e e e 577
19.6 SUMMANY e e e 584
19.7 Questionsforreview e 585
19.8 Demonstrations and exercises, 585
Appendix A. A brief look at IBM mainframe history................. 587
Appendix B. DB2 sampletables 597
Department table (DEPT). 597
Employee table (EMP) 599
Appendix C. Utilityprograms. 603
Basic utilities. 604
System-oriented utilities 611
Application-level utilities 613
Appendix D. EBCDIC-ASCIitable. 615
Appendix E. ClassProgram 617
COBOL-CICS-DB2 programco i e 618
COBOL-Batch-VSAM program. oo e e 627
DSNTEP2 utilityo e e 634
QMF batchexecution. i e 635
Batch C programtoaccessDB2 636
Java ServletaccesstoDB2......... 640
Cprogramtoaccess MQ it 643
Java programtoaccess MQ 653
Appendix F. Operatorcommands 657
Operator Commands.ottt e e e 658
Related publications 661

Contents ix

IBM RedbooKS 663

ONliNE reSOUICESttt e e e e 664
HowtogetIBM Redbooks 664
Helpfrom IBM 664
GlOSSarY 665
INdeX ... e 705

X Introduction to the New Mainframe: z/OS Basics

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2006, 2009. All rights reserved. Xi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/Tegal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,

other countries, or both:

AD/Cycle® HiperSockets™ System z10™
AIX® IBM® System z9®
C/370™ Language Environment® System z®
CICSPlex® Lotus® System/390®
CICS® NetView® Tivoli®
DB2® Open Class® TotalStorage®
Domino® 0OS/390® VisualAge®
DRDA® Parallel Sysplex® VTAM®
DS8000® PR/SM™ WebSphere®
ECKD™ Processor Resource/Systems z/Architecture®
Enterprise Storage Server® Manager™ z/OS®
ESCON® RACF® zZ/NM®
FICON® Rational® z/VSE™
FlashCopy® Redbooks® z9®
GDPS® Redbooks (logo) ¢@ ® zSeries®
Geographically Dispersed S/390®

Parallel Sysplex™ Sysplex Timer®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

ACS, Interchange, and the Shadowman logo are trademarks or registered trademarks of Red Hat, Inc. in the
U.S. and other countries.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

VMware, the VMware "boxes" logo and design are registered trademarks or trademarks of VMware, Inc. in
the United States and/or other jurisdictions.

EJB, J2EE, Java, JDBC, JMX, JNI, JSP, JVM, RSM, Sun, Sun Java, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, MS, Visual Basic, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Xii Introduction to the New Mainframe: z/OS Basics

http://www.ibm.com/legal/copytrade.shtml

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices Xiii

Xiv Introduction to the New Mainframe: z/OS Basics

Preface

This IBM® Redbooks® publication provides students of information systems
technology with the background knowledge and skills necessary to begin using
the basic facilities of a mainframe computer. It is the first in a planned series of
textbooks designed to introduce students to mainframe concepts and help
prepare them for a career in large systems computing.

For optimal learning, students are assumed to have successfully completed an
introductory course in computer system concepts, such as computer
organization and architecture, operating systems, data management, or data
communications. They should also have successfully completed courses in one
or more programming languages, and be PC literate.

This textbook can also be used as a prerequisite for courses in advanced topics
or for internships and special studies. It is not intended to be a complete text
covering all aspects of mainframe operation, nor is it a reference book that
discusses every feature and option of the mainframe facilities.

Others who will benefit from this course include experienced data processing
professionals who have worked with non-mainframe platforms, or who are
familiar with some aspects of the mainframe but want to become knowledgeable
with other facilities and benefits of the mainframe environment.

As we go through this course, we suggest that the instructor alternate between
text, lecture, discussions, and hands-on exercises. Many of the exercises are
cumulative, and are designed to show the student how to design and implement
the topic presented. The instructor-led discussions and hands-on exercises are
an integral part of the course material, and can include topics not covered in this
textbook.

In this course, we use simplified examples and focus mainly on basic system
functions. Hands-on exercises are provided throughout the course to help
students explore the mainframe style of computing.

At the end of this course, you will know:

» Basic concepts of the mainframe, including its usage, and architecture

» Fundamentals of z/OS®, a widely used mainframe operating system

» An understanding of mainframe workloads and the major middleware
applications in use on mainframes today

» The basis for subsequent course work in more advanced, specialized areas of
z/0S, such as system administration or application programming

© Copyright IBM Corp. 2006, 2009. All rights reserved. XV

How this text is organized

This text is organized in four parts, as follows:

>

Part 1. “Introduction to z/OS and the mainframe environment” provides
an overview of the types of workloads commonly processed on the
mainframe, such as batch jobs and online transactions. This part of the text
helps students explore the user interfaces of z/OS, a widely used mainframe
operating system. Discussion topics include TSO/E and ISPF, UNIX®
interfaces, job control language, file structures, and job entry subsystems.
Special attention is paid to the users of mainframes and to the evolving role of
mainframes in today’s business world.

Part 2. “Application programming on z/OS” introduces the tools and
utilities for developing a simple program to run on z/OS. This part of the text
guides the student through the process of application design, choosing a
programming language, and using a runtime environment.

Part 3. “Online workloads for z/0S” examines the major categories of
interactive workloads processed by z/OS, such as transaction processing,
database management, and Web-serving. This part includes discussions of
several popular middleware products, including DB2®, CICS®, and
WebSphere® Application Server.

Part 4. “System programming on z/OS” provides topics to help the student
become familiar with the role of the z/OS system programmer. This part of the
text includes discussions of system libraries, starting and stopping the
system, security, network communications and the clustering of multiple
systems. Also provided is an overview of mainframe hardware systems,
including processors and I/O devices.

In this text, we use simplified examples and focus mainly on basic system
functions. Hands-on exercises are provided throughout the text to help students
explore the mainframe style of computing. Exercises include entering work into
the system, checking its status, and examining the output of submitted jobs.

How each chapter is organized

Each chapter follows a common format:

>

>
>
>
>

Objectives for the student

Topics that teach a central theme related to mainframe computing
Summary of the main ideas of the chapter

A list of key terms introduced in the chapter

Questions for review to help students verify their understanding of the
material

XVi Introduction to the New Mainframe: z/OS Basics

» Topics for further discussion to encourage students to explore issues that
extend beyond the chapter objectives

» Hands-on exercises to help students reinforce their understanding of the
material

About the authors

John Kettner revised the second edition of this text. He is a Consulting Software
Architect in the WebSphere sales group. He has 35 years of mainframe
experience and holds a BS in Computer Science from L.I.U. His specialties are
System z® internals, WebSphere product integration, and capacity planning.
John has written several Redbooks and contributes to various education
programs throughout IBM.

Special thanks to the following advisors:
Timothy Hahn, IBM Raleigh

The first edition of this text was produced by technical specialists working at the
International Technical Support Organization, Poughkeepsie Center:

Mike Ebbers has worked with mainframe systems at IBM for 32 years. For part
of that time, he taught hands-on mainframe classes to new hires just out of
college. Mike currently creates IBM Redbooks, a popular set of product
documentation that can be found at http://www.ibm.com/redbooks

Wayne O’Brien is an Advisory Software Engineer at IBM Poughkeepsie. Since
joining IBM in 1988, he has developed user assistance manuals and online help
for a wide variety of software products. Wayne holds a Master of Science degree
in Technical Communications from Rensselaer Polytechnic Institute (RPI) of Troy,
New York.

Bill Ogden is a retired IBM Senior Technical Staff Member. He holds BSEE and
MS® (Computer Science) degrees and has worked with mainframes since 1962
and with z/OS since it was known as OS/360 Release 1/2. Since joining the ITSO
in 1978, Bill has specialized in encouraging users new to the operating system
and associated hardware.

Acknowledgements

The following people are gratefully acknowledged for their contributions to this
project:

Preface xvii

xviii

Dan Andrascik is a senior at the Pennsylvania State University, majoring in
Information Science and Technology. Dan is proficient in computer languages
(C++, Visual Basic®, HTML, XML, SQL), organizational theory, database theory
and design, and project planning and management. During his internship with
the ITSO organization at IBM Poughkeepsie, Dan worked extensively with
elements of the zSeries® platform.

Rama Ayyar is a Senior IT Specialist with the IBM Support Center in Sydney,
Australia. He has 20 years of experience with the MVS operating system and has
been in the IT field for over 30 years. His areas of expertise include TCP/IP,
security, storage management, configuration management, and problem
determination. Rama holds a Master’s degree in Computer Science from the
Indian Institute of Technology, Kanpur.

Emil T. Cipolla is an information systems consultant in the United States with 40
years of experience in information systems. He holds Master’s degrees in
Mechanical Engineering and Business Administration from Cornell University.
Emil is currently an adjunct instructor at the college level.

Mark Daubman is a senior at St. Bonaventure University, majoring in Business
Information Systems with a minor concentration in Computer Science. As part of
his internship with IBM, Mark worked extensively with many of the z/OS
interfaces described in this textbook. After graduation, Mark plans to pursue a
career in mainframes.

Myriam Duhamel is an IT Specialist in Belgium. She has 20 years of experience
in application development and has worked at IBM for 12 years. Her areas of
expertise include development in different areas of z/OS (such as COBOL, PL/I,
CICS, DB2, and WebSphere MQ). Myriam currently teaches courses in DB2 and
WebSphere MQ.

Per Fremstad is an IBM-certified I/'T Specialist from the IBM Systems and
Technology group in IBM Norway. He has worked for IBM since 1982 and has
extensive experience with mainframes and z/OS. His areas of expertise include
the Web, WebSphere for z/OS and Web enabling of the z/OS environment. He
teaches frequently on z/OS, zSeries and WebSphere for z/OS topics. Per holds a
BSc from the University of Oslo, Norway.

Luis Martinez Fuentes is a Certified Consulting IT Specialist (Data Integration
discipline) with Systems and Technology Group, IBM Spain. He has 20 years of
experience with IBM mainframes, mainly in the CICS and DB2 areas. He is
currently working in technical sales support for new workloads on the mainframe.
Luis is a member of the Iberia Technical Expert Council, which is affiliated with
the IBM Academy of Technology. Luis teaches about mainframes at two
universities in Madrid.

Introduction to the New Mainframe: z/OS Basics

Miriam Gelinski is a staff member of Maffei Consulting Group in Brazil, where
she is responsible for supporting customer planning and installing mainframe
software. She has five years of experience in mainframes. She holds a
Bachelor's degree in Information Systems from Universidade Sao Marcos in Sao
Paulo. Her areas of expertise include the z/OS operating system, its subsystems,
and TSO and ISPF.

Michael Grossmann is an IT Education specialist in Germany with nine years of
experience as a z/OS system programmer and instructor. His areas of expertise
include z/OS education for beginners, z/OS operations, automation, mainframe
hardware and Parallel Sysplex®.

Olegario Hernandez is a former IBM Advisory Systems Engineer in Chile. He
has more than 35 years of experience in application design and development
projects for mainframe systems. He has written extensively on the CICS
application interface, systems management, and grid computing. Olegario holds
a degree in Chemical Engineering from Universidad de Chile.

Roberto Yuiti Hiratzuka is an MVS system programmer in Brazil. He has 15
years of experience as a mainframe system programmer. Roberto holds a
degree in Information Systems from Faculdade de Tecnologia Sao Paulo
(FATEC-SP).

Georg Miiller is a student at the University of Leipzig in Germany. He has three
years of experience with z/OS and mainframe hardware. He plans to complete
his study with a Master's degree in Computer Science next year. For this
textbook, Georg wrote topics on WebSphere MQ and HTTP Server, coded
sample programs, and helped to verify the final sequence of learning modules.

Rod Neufeld is a Senior Technical Services Professional in Canada. He has 25
years of experience in MVS and z/OS system programming. His areas of
expertise include z/OS systems software and support, Parallel Sysplex, and
business continuance and recovery. Rod holds an Honors Bachelors degree in
Science from the University of Manitoba.

Paul Newton is a Senior Software Engineer in the Dallas, Texas, IBM Developer
Relations Technical Support Center. He has 25 years of experience with IBM
mainframe operating systems, subsystems and data networks. Paul holds a
degree in Business Administration from the University of Arizona.

Bill Seubert is a zSeries Software Architect in the United States. He has over 20
years experience in mainframes and distributed computing. He holds a
Bachelor’s degree in Computer Science from the University of Missouri,
Columbia. His areas of expertise include z/OS, WebSphere integration software,
and software architecture. Bill speaks frequently to IBM clients about integration
architecture and enterprise modernization.

Preface Xix

Henrik Thorsen is a Senior Consulting IT Specialist at IBM Denmark. He has 25
years of mainframe experience and holds an MS in Engineering from the
Technical University in Copenhagen and a BS in Economics from Copenhagen
Business School. His specialties are z/OS, Parallel Sysplex, high availability,
performance and capacity planning. Henrik has written several IBM Redbooks
and other documents and contributes to various education programs throughout
IBM and the zSeries technical community.

Andy R. Wilkinson is an IT Specialist in the United Kingdom. He has 25 years of
experience in reservation systems and z/OS system programming, and has
worked at IBM for six years. His areas of expertise include hardware
configuration and SMP/E. Andy holds a degree in Materials Science and
Technology from the University of Sheffield and a degree in Computing from the
Open University.

Lastly, special thanks to the editors at the ITSO center in Poughkeepsie, New
York:

» Terry Barthel
» Ella Buslovich (graphics)
» Alfred Schwab

Comments welcome

XX

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

» Use the online Contact us review form found at:
ibm.com/redbooks

» Send your comments in an e-mail to:
redbook @ us.ibm.com

» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

Introduction to the New Mainframe: z/OS Basics

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.developer.ibm.com/university/scholars/

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes

for SG24-6366-01

for Introduction to the New Mainframe: z/OS Basics
as created or updated on August 19, 2009.

August 2009, Second Edition

This revision reflects the addition, deletion, or modification of new and changed
information described below.

New and changed information

Chapters 1 through 3 have been updated with the latest System z hardware
and software information, including:

»

System z models (BC and EC)
Enhancements to security
Enhancements to architecture
Extensibility

Total cost of ownership
Environmentally friendly topics
Specialty engines

New I/O logical channelsubsystem
Processor Resource/Systems Manager (PR/SM)
Enhanced section on clustering
Capacity and scaling

Workload Manager (WLM)

Update on z/OS

System controls and partitioning

© Copyright IBM Corp. 2006, 2009. All rights reserved. XXi

Address space communication and cross memory

Virtual storage and 64-bit addressability

I/O and data management

Predictive Analysis and Health Checker

» Chapter 8 has received additional information about application development
on the mainframe:

— Interfaces for z/OS application programmers

— Using application development tools

— Producing well-tested code requires the use of tools: RDz
» Added Appendix F: Console Operator commands

XXii Introduction to the New Mainframe: z/OS Basics

Part 1

Introduction to
z/OS and the
mainframe
environment

Welcome to mainframe computing! We begin this text with an overview of the
mainframe computer and its place in today’s information technology (IT)
organization. We explore the reasons why public and private enterprises
throughout the world rely on the mainframe as the foundation of large-scale
computing. We discuss the types of workloads that are commonly associated
with the mainframe, such as batch jobs and online or interactive transactions,
and the unique manner in which this work is processed by a widely used
mainframe operating system—z/OS.

Throughout this text, we pay special attention to the people who use mainframes
and to the role of the New Mainframe in today’s business world.

© Copyright IBM Corp. 2006, 2009. All rights reserved. 1

2 Introduction to the New Mainframe: z/OS Basics

Introduction to the new
mainframe

Objective: As a technical professional in the world of mainframe computing,
you will need to understand how mainframe computers support your
company’s IT infrastructure and business goals. You will also need to know the
job titles of the various members of your company’s mainframe support team.

After completing this chapter, you will be able to:

» List ways in which the mainframe of today challenges the traditional
thinking about centralized computing versus distributed computing.

» Explain how businesses make use of mainframe processing power, the
typical uses of mainframes, and how mainframe computing differs from
other types of computing.

» Outline the major types of workloads for which mainframes are best suited.

» Name five jobs or responsibilities that are related to mainframe computing.

» Identify four mainframe operating systems.

© Copyright IBM Corp. 2006, 2009. All rights reserved.

1.1 The new mainframe

e-business
The
transaction of
business over
an electronic
medium such
as the Internet.

Today, mainframe computers play a central role in the daily operations of most of
the world’s largest corporations, including many Fortune 1000 companies. While
other forms of computing are used extensively in various business capacities, the
mainframe occupies a coveted place in today’s e-business environment. In
banking, finance, health care, insurance, public utilities, government, and a
multitude of other public and private enterprises, the mainframe computer
continues to form the foundation of modern business.

The long-term success of mainframe computers is without precedent in the
information technology (IT) field. Periodic upheavals shake world economies and
continuous—often wrenching—change in the Information Age has claimed many
once-compelling innovations as victims in the relentless march of progress. As
emerging technologies leap into the public eye, many are just as suddenly
rendered obsolete by some even newer advancement. Yet today, as in every
decade since the 1960s, mainframe computers and the mainframe style of
computing dominate the landscape of large-scale business computing.

Why has this one form of computing taken hold so strongly among so many of
the world’s corporations? In this chapter, we look at the reasons why mainframe
computers continue to be the popular choice for large-scale business computing.

1.2 The S/360: A turning point in mainframe history

System/360

The first general
purpose
computer,
introduced in
1964.

Mainframe development occurred in a series of generations starting in the 1950s.
First generation systems, such as the IBM 705 in 1954 and the successor
generation, the IBM 1401 in 1959, were a far cry from the enormously powerful
and economical machines that were to follow, but they clearly had characteristics
of mainframe computers. The IBM 1401 was called the Model T of the computer
business, because it was the first mass-produced digital, all-transistorized,
business computer that could be afforded by many businesses worldwide. These
computers were sold as business machines and served then—as now—as the
central data repository in a corporation's data processing center.

In the 1960s, the course of computing history changed dramatically when
mainframe manufacturers began to standardize the hardware and software they
offered to customers. The introduction of the IBM System/360 (or S/360) in 1964
signaled the start of the third generation: the first general purpose computers.
Earlier systems were dedicated to either commercial or scientific computing. The
revolutionary S/360 could perform both types of computing, as long as the
customer, a software company, or a consultant provided the programs to do so.

4 Introduction to the New Mainframe: z/OS Basics

The System
/360 was named
for its scope:
360 degrees of
coverage of
possible uses.

In fact, the name S/360 refers to the architecture’s wide scope: 360 degrees to
cover the entire circle of possible uses.

The S/360 was also the first of these computers to use microcode to implement
many of its machine instructions, as opposed to having all of its machine
instructions hard-wired into its circuitry. Microcode (or firmware) consists of
stored microinstructions, not available to users, that provide a functional layer
between hardware and software. The advantage of microcoding is flexibility,
where any correction or new function can be implemented by just changing the
existing microcode, rather than replacing the computer.

In passing decades, mainframe computers have steadily grown to achieve
enormous processing capabilities. Today’s mainframe has an unrivaled ability to
serve end users by the tens of thousands, manage petabytes' of data, and
reconfigure hardware and software resources to accommodate changes in
workload—all from a single point of control.

1.3 An evolving architecture

Architecture

describes the
organizational
structure of a
system.

An architecture is a set of defined terms and rules that are used as instructions
to build products. In computer science, an architecture describes the
organizational structure of a system. An architecture can be recursively
decomposed into parts that interact through interfaces, relationships that connect
parts, and constraints for assembling parts. Parts that interact through interfaces
include classes, components, and subsystems.

Starting with the first large machines, which arrived on the scene in the 1960s
and became known as “Big Iron” (in contrast to smaller departmental systems),
each new generation of mainframe computers has included improvements in one
or more of the following areas of the architecture:?

» More and faster processors

» More physical memory and greater memory addressing capability

» Dynamic capabilities for upgrading both hardware and software

» Increased automation along with hardware error checking and recovery

» Enhanced devices for input/output (I/O) and more and faster paths (channels)
between 1/O devices and processors

! Quadrillions of bytes

2 Since the introduction of the $/360 in 1964, IBM has significantly extended the platform roughly
every ten years: System/370 in 1970, System/370 Extended Architecture (370-XA) in 1983,
Enterprise Systems Architecture/390 (ESA/390) in 1990, and z/Architecture in 2000. For more
information about earlier mainframe hardware systems, see Appendix A, “A brief look at IBM
mainframe history” on page 587.

Chapter 1. Introduction to the new mainframe 5

» More sophisticated I/O attachments, such as LAN adapters with extensive
inboard processing

» A greater ability to divide the resources of one machine into multiple, logically
independent and isolated systems, each running its own operating system

» Advanced clustering technologies, such as Parallel Sysplex, and the ability to
share data among multiple systems

» Emphasis on utility savings with power and cooling reduction

» An expanded set of application runtime environments, including support for
POSIX applications, C, C++, Java™, PHP, Web Applications, Service
Oriented Architecture (SOA), and Web services

Despite the continual change, mainframe computers remain the most stable,
secure, and compatible of all computing platforms. The latest models can handle
the most advanced and demanding customer workloads, yet continue to run
applications that were written in the 1970s or earlier.

How can a technology change so much, yet remain so stable? It has evolved to
meet new challenges. In the early 1990s, the client-server model of computing,
with its distributed nodes of less powerful computers, emerged to challenge the
dominance of mainframe computers. In response, mainframe designers did what
they have always done when confronted with changing times and a growing list of
user requirements: they designed new mainframe computers to meet the
demand. With the expanded functions and added tiers of data processing
capabilities such as Web-serving, autonomics, disaster recovery, and grid
computing, the mainframe computer is poised to ride the next wave of growth in
the IT industry. IBM once again reporting annual sales growth in the double
digits.

Today’s mainframe generation provides a significant increase in system
scalability over the previous mainframe servers. With the increased performance
and the total system capacity customers continue to consolidate diverse
applications on a single platform. New innovations help to ensure that it is a
security-rich platform that can help maximize the resources and their utilization,
and can help provide the ability to integrate applications and data across a single
infrastructure. The current mainframe is built using a modular design that
supports a packaging concept based on books. One to four books can be
configured, each containing a processor housing that hosts the central processor
units, memory, and high-speed connectors for I/O. This approach enables many
of the high-availability, nondisruptive capabilities that differentiate it from other
platforms.

Figure 1-1 on page 7 displays the mainframe’s continued growth improvements
in all directions. While some of the previous generation of machines have grown
more along one graphical axis for a given family, later families focus on the other

6 Introduction to the New Mainframe: z/OS Basics

axes. The balanced design of today’s mainframe achieves improvement equally
along all four axes.

System 1/0 Bandwidth

288 GBlsec Balanced System
CPU, nWay, Memory,
/0 Bandwidth*

ITRs for
Memory : 1-way
15T8s 4 a -000

. 2Series 940

G4-wa i
*z9 EC and 210 EC exploit a subset of its designed O capability BPUS‘; u Z8eries 900

Figure 1-1 Growth of the mainframe and its components

The evolution continues. While the mainframe computer has retained its
traditional, central role in the IT organization, that role is now defined to include
being the primary hub in the largest distributed networks. In fact, the Internet
itself is based largely on numerous, interconnected mainframe computers
serving as major hubs and routers.

Today’s mainframe has taken on an additional critical role as an energy efficient
system. As energy costs are increasing at a rate of 2.8% per year, energy costs
to power equipment often exceed the purchase price of the hardware itself. IDC
surveys compare the total worldwide server spending to total server power and
cooling expenditure on a global basis. Customers are spending more than twice
as much on power and cooling as they are on total server purchases. The power
and cooling issues that data center managers face are not standalone
challenges. They have a cascading impact on other facilities issues such as
wiring, floor space, and lighting.

Chapter 1. Introduction to the new mainframe 7

This platform also contains an energy meter. The mainframe’s power
consumption today is 0.91 watts per MIPS and is expected to decrease with
future models. It has become an environmentally friendly platform on which to
run a business on a global basis.

As the image of the mainframe computer continues to advance, you might ask: is
the mainframe computer a self-contained computing environment, or is it one
part of the puzzle in distributed computing? The answer is that the new
mainframe is both. It is a self-contained processing center, powerful enough to
process the largest and most diverse workloads in one secure “footprint.” It is
also just as effective when implemented as the primary server in a corporation’s
distributed server farm. In effect, the mainframe computer is the definitive
platform in the client-server model of computing.

1.4 Mainframes in our midst

8

Despite the predominance of mainframes in the business world, these machines
are largely invisible to the general public, the academic community, and indeed
many experienced IT professionals. Instead, other forms of computing attract
more attention, at least in terms of visibility and public awareness. That this is so
is perhaps not surprising. After all, who among us needs direct access to a
mainframe? And, if we did, where would we find one to access? The truth,
however, is that we are all mainframe users, whether we realize it or not (more
on this later).

Most of us with some personal computer (PC) literacy and sufficient funds can
purchase a notebook computer and quickly put it to good use—running software,
browsing Web sites, and perhaps even writing papers for college professors to
grade. With somewhat greater effort and technical prowess, we can delve more
deeply into the various facilities of a typical Intel®-based workstation and learn its
capabilities through direct, hands-on experience—with or without help from any
of a multitude of readily available information sources in print or on the Web.

Mainframes, however, tend to be hidden from the public eye. They do their jobs
dependably—indeed, with almost total reliability—and are highly resistant to
most forms of insidious abuse that afflict PCs, such as e-mail-borne viruses and
Trojan Horses. By performing stably, quietly, and with negligible downtime,
mainframes are the example by which all other computers are judged. But at the
same time, this lack of attention tends to allow them to fade into the background.

Furthermore, in a typical customer installation, the mainframe shares space with
many other hardware devices: external storage devices, hardware network

routers, channel controllers, and automated tape library “robots,” to name a few.
The mainframe is physically no larger than many of these devices and generally

Introduction to the New Mainframe: z/OS Basics

does not stand out from the crowd of peripheral devices. There are different
classes of mainframe to meet diverse needs of customers. The mainframe can
grow in capacity as a business grows and still keep the same size physical
footprint.

So how can we explore the mainframe’s capabilities in the real world? How can
we learn to interact with the mainframe, learn its capabilities, and understand its
importance to the business world? Major corporations are eager to hire new
mainframe professionals, but there’s a catch: Some previous experience would
help.

1.5 What is a mainframe?

Server farm

A very large
collection of
servers.

First, let’s tackle the terminology. Today, computer manufacturers don’t always
use the term mainframe to refer to mainframe computers. Instead, most have
taken to calling any commercial-use computer—Ilarge or small—a server, with
the mainframe simply being the largest type of server in use today. We use the
term mainframe in this text to mean computers that can support thousands of
applications and input/output devices to simultaneously serve thousands of
users.

Servers are proliferating. A business might have a large server collection that
includes transaction servers, database servers, e-mail servers and Web servers.
Very large collections of servers are sometimes called server farms (in fact, some
data centers cover areas measured in acres). The hardware required to perform
a server function can range from little more than a cluster of rack-mounted
personal computers to the most powerful mainframes manufactured today.

A mainframe is the central data repository, or hub, in a corporation’s data
processing center, linked to users through less powerful devices such as
workstations or terminals. The presence of a mainframe often implies a
centralized form of computing, as opposed to a distributed form of computing.
Centralizing the data in a single mainframe repository saves customers from
having to manage updates to more than one copy of their business data, which
increases the likelihood that the data is current.

The distinction between centralized and distributed computing, however, is
rapidly blurring as smaller machines continue to gain in processing power and
mainframes become ever more flexible and multi-purpose. Market pressures
require that today’s businesses continually reevaluate their IT strategies to find
better ways of supporting a changing marketplace. As a result, mainframes are
now frequently used in combination with networks of smaller servers in a
multitude of configurations. The ability to dynamically reconfigure a mainframe’s
hardware and software resources (such as processors, memory, and device

Chapter 1. Introduction to the new mainframe 9

Platform

A computer
architecture
(hardware and
software).

Mainframe

A highly secured
computer system
designed to
continuously run
very large, mixed
workloads at high
levels of utilization
meeting
user-defined service
level objectives.

10

connections), while applications continue running, further underscores the
flexible, evolving nature of the modern mainframe.

While mainframe hardware has become harder to pigeon-hole, so, too, have the
operating systems that run on mainframes. Years ago, in fact, the terms defined
each other: a mainframe was any hardware system that ran a major IBM
operating system.3 This meaning has been blurred in recent years because
these operating systems can be run on very small systems.

Computer manufacturers and IT professionals often use the term platform to
refer to the hardware and software that are associated with a particular computer
architecture. For example, a mainframe computer and its operating system (and
their predecessors4) are considered a platform; UNIX on a Reduced Instruction
Set Computer (RISC) system is considered a platform somewhat independently
of exactly which RISC machine is involved; personal computers can be seen as
several different platforms, depending on which operating system is being used.

So, let us return to our question now: “What is a mainframe?” Today, the term
mainframe can best be used to describe a style of operation, applications, and
operating system facilities. To start with a working definition, “a mainframe is
what businesses use to host the commercial databases, transaction servers, and
applications that require a greater degree of security and availability than is
commonly found on smaller-scale machines.”

Early mainframe systems were housed
in enormous, room-sized metal boxes
or frames, which is probably how the
term mainframe originated. The early
mainframe required large amounts of
electrical power and air-conditioning,
and the room was filled mainly with I/O
devices. Also, a typical customer site
had several mainframes installed, with
most of the I/O devices connected to all
of the mainframes. During their largest period, in terms of physical size, a typical
mainframe occupied 2,000 to 10,000 square feet (200 to 1000 square meters).
Some installations were even larger than this.

3 The name was also traditionally applied to large computer systems that were produced by other
vendors.

4 IBM System/390 (S/390) refers to a specific series of machines, which have been superseded by
the IBM zSeries machines. Nevertheless, many S/390 systems are still in use. Therefore, keep in
mind that although we discuss the zSeries systems in this course, almost everything discussed also
applies to S/390 machines. One major exception is 64-bit addressing, which is used only with
zSeries.

Introduction to the New Mainframe: z/OS Basics

Starting around 1990, mainframe processors and most of
their /0 devices became physically smaller, while their
functionality and capacity continued to grow. Mainframe
systems today are much smaller than earlier
systems—about the size of a large refrigerator.

In some cases, it is now possible to run a mainframe
operating system on a PC that emulates a mainframe.

Model 9672 Such emulators are useful for developing and testing

business applications before moving them to a
mainframe production system.

Clearly, the term mainframe has expanded beyond merely describing the
physical characteristics of a system. Instead, the word typically applies to some
combination of the following attributes:

>

Backwards compatibility with previous mainframe operating systems,
applications, and data.

Centralized control of resources.

Hardware and operating systems that can share access to disk drives with
other systems, with automatic locking and protection against destructive
simultaneous use of disk data.

A style of operation, often involving dedicated operations staff who use
detailed operations procedure books and highly organized procedures for
backups, recovery, training, and disaster recovery at an alternative location.

Hardware and operating systems that routinely work with hundreds or
thousands of simultaneous 1/O operations.

Clustering technologies that allow the customer to operate multiple copies of
the operating system as a single system. This configuration, known as
Parallel Sysplex, is analogous in concept to a UNIX cluster, but allows
systems to be added or removed as needed, while applications continue to
run. This flexibility allows mainframe customers to introduce new applications,
or discontinue the use of existing applications, in response to changes in
business activity.

Additional data and resource sharing capabilities. In a Parallel Sysplex, for
example, it is possible for users across multiple systems to access the same
databases concurrently, with database access controlled at the record level.

Optimized for I/O for business-related data processing applications
supporting high speed networking and terabytes of disk storage.

As the performance and cost of such hardware resources as the central
processing unit (CPU) and external storage media improve, and the number and

Chapter 1. Introduction to the new mainframe 11

types of devices that can be attached to the CPU increase, the operating system
software can more fully take advantage of the improved hardware.

1.6 Who uses mainframe computers?

12

So, who uses mainframes? Just about everyone has used a mainframe computer
at one point or another. If you ever used an automated teller machine (ATM) to
interact with your bank account, you used a mainframe.

Today, mainframe computers play a central role in the daily operations of most of
the world’s largest corporations. While other forms of computing are used
extensively in business in various capacities, the mainframe occupies a coveted
place in today’s e-business environment. In banking, finance, health care,
insurance, utilities, government, and a multitude of other public and private
enterprises, the mainframe computer continues to be the foundation of modern
business.

Until the mid-1990s, mainframes provided the only acceptable means of handling
the data processing requirements of a large business. These requirements were
then (and are often now) based on large and complex batch jobs, such as payroll
and general ledger processing.

The mainframe owes much of its popularity and longevity to its inherent reliability
and stability, a result of careful and steady technological advances that have
been made since the introduction of the System/360 in 1964. No other computer
architecture can claim as much continuous, evolutionary improvement, while
maintaining compatibility with previous releases.

Because of these design strengths, the mainframe is often used by IT
organizations to host the most important, mission-critical applications. These
applications typically include customer order processing, financial transactions,
production and inventory control, payroll, as well as many other types of work.

One common impression of a mainframe’s user interface is the 80x24-character
“green screen” terminal, named for the old cathode ray tube (CRT) monitors from
years ago that glowed green. In reality, mainframe interfaces today look much the
same as those for personal computers or UNIX systems. When a business
application is accessed through a Web browser, there is often a mainframe
computer performing crucial functions “behind the scene’”

Many of today’s busiest Web sites store their production databases on a
mainframe host. New mainframe hardware and software products are ideal for
Web transactions because they are designed to allow huge numbers of users
and applications to rapidly and simultaneously access the same data without

Introduction to the New Mainframe: z/OS Basics

interfering with each other. This security, scalability, and reliability is critical to the
efficient and secure operation of contemporary information processing.

Corporations use mainframes for applications that depend on scalability and
reliability. For example, a banking institution could use a mainframe to host the
database of its customer accounts, for which transactions can be submitted from
any of thousands of ATM locations worldwide.

Businesses today rely on the mainframe to:

» Perform large-scale transaction processing (thousands of transactions per
second)®

» Support thousands of users and application programs concurrently accessing
numerous resources

» Manage terabytes of information in databases
» Handle large-bandwidth communication

The roads of the information superhighway often lead to a mainframe.

1.6.1 Two mainframe models

IBM has a mainframe to suit most business organizations, from small to large.
Each model provides for full- or sub-capacity processors, from very granular
processing capability up to the complete range of high-end computing needs.

The System z Business Class (BC) with a focus on small to midrange enterprise
computing, delivers an entry point with very granular scalability and an
unprecedented range of capacity settings to grow with the workload. It delivers
unparalleled qualities of service to help manage growth and reduce cost and risk.
The BC server further extends System z leadership by enriching its flexibility with
enhancements to the just-in-time capacity deployment functions in a single frame
housing. The BC provides for a maximum of up to 10 configurable CPs.

The BC shares many of the characteristics and processing traits of its bigger
sibling, the Enterprise Class (EC). This model also delivers granular scalability
and capacity settings on a much larger scale targeted to very high end
processing needs. It has a larger frame to house the extensive capacity to
support greater processing requirements. The EC offers up to 64 configurable
CPs and is considered IBM’s flagship platform.

Figure 1-2 shows the BC and the EC.

5 |BM’s series of mainframe computers; for example, the IBM System z10 Enterprise Class (EC) can
process over a staggering one billion transactions per day.

Chapter 1. Introduction to the new mainframe 13

Figure 1-2 System z Business Class and Enterprise Class

1.7 Factors contributing to mainframe use

The reasons for mainframe use are many, but most generally fall into one or more
of the following categories:

Reliability, availability, and serviceability
Security

Scalabilty

Continuing compatibility

Evolving architecture

Extensibility

Total cost of ownership

Environment friendly

vVVyVYyVYVYVYYVYYy

Let us look at each of these categories in more detail.
1.7.1 Reliability, availability, and serviceability

The reliability, availability, and serviceability (or “RAS”) of a computer system
have always been important factors in data processing. When we say that a

14 Introduction to the New Mainframe: z/OS Basics

Availability
The ability to
recover from
the failure of a
component
without
impacting the
rest of the
running
system.

particular computer system “exhibits RAS characteristics,” we mean that its
design places a high priority on the system remaining in service at all times.
Ideally, RAS is a central design feature of all aspects of this computer system,
including the applications. RAS is ubiquitous in the mainframe.

RAS has become accepted as a collective term for many characteristics of
hardware and software that are prized by mainframe users. The terms are
defined as follows:

Reliability The system’s hardware components have extensive
self-checking and self-recovery capabilities. The system’s
software reliability is a result of extensive testing and the ability to
make quick updates for detected problems.

One of the operating system’s features is a Health Checker
which identifies potential problems before they impact availability
or, in worst cases, cause system or application outages.

Availability The system can recover from a failed component without
impacting the rest of the running system. This applies to
hardware recovery (the automatic replacing of failed elements
with spares) and software recovery (the layers of error recovery
that are provided by the operating system).

Serviceability The system can determine why a failure occurred. This allows for
the replacement of hardware and software elements while
impacting as little of the operational system as possible. This
term also implies well-defined units of replacement, either
hardware or software.

A computer system is available when its applications are available. An available
system is one that is reliable; that is, it rarely requires downtime for upgrades or
repairs. And, if the system is brought down by an error condition, it must be
serviceable; that is, easy to fix within a relatively short period of time.

Mean time between failure (MTBF) refers to the availability of a computer
system. The New Mainframe and its associated software have evolved to the
point that customers often experience months or even years of system
availability between system downtimes. Moreover, when the system is
unavailable because of an unplanned failure or a scheduled upgrade, this period
is typically very short. The remarkable availability of the system in processing the
organization’s mission-critical applications is vital in today’s 24-hour, global
economy. Along with the hardware, mainframe operating systems exhibit RAS
through such features as storage protection and a controlled maintenance
process.

Beyond RAS, a state-of-the-art mainframe system might be said to provide high
availability and fault tolerance. Redundant hardware components in critical

Chapter 1. Introduction to the new mainframe 15

paths, enhanced storage protection, a controlled maintenance process, and
system software designed for unlimited availability all help to ensure a consistent,
highly available environment for business applications in the event that a system
component fails. Such an approach allows the system designer to minimize the
risk of having a single point of failure undermine the overall RAS of a computer
system.

Enterprises often require an on demand operating environment that offers
responsiveness, resilience, and a variable cost structure to provide maximum
business benefits. The mainframe’s Capacity on Demand (CoD) solutions offer
permanent or temporary increases in processor capacity and additional memory.
This robust serviceability allows for continual upgrades during concurrent
workload execution.

1.7.2 Security

16

One of a firm’s most valuable resources is its data: customer lists, accounting
data, employee information, and so on. This critical data needs to be securely
managed and controlled, and, simultaneously, made available to those users
authorized to see it. The mainframe computer has extensive capabilities to
simultaneously share, but still protect, the firm’s data among multiple users.

In an IT environment, data security is defined as protection against unauthorized
access, transfer, modification, or destruction, whether accidental or intentional.
To protect data and to maintain the resources necessary to meet the security
objectives, customers typically add a sophisticated security manager product to
their mainframe operating system. The customer’s security administrator often
bears the overall responsibility for using the available technology to transform the
company’s security policy into a usable plan.

A secure computer system prevents users from accessing or changing any
objects on the system, including user data, except through system-provided
interfaces that enforce authority rules. The mainframe provides a very secure
system for processing large numbers of heterogeneous applications that access
critical data.

The mainframe's built-in security throughout the software stack means that z/OS,
due to its architecture design and use of registries, will not suffer from the virus
attacks from buffer overflow related problems characteristic of many distributed
environments.

Hardware-enabled security offers unmatched protection for workload isolation,
storage protection, and secured communications. Built-in security embedded
throughout the operating system, network infrastructure, middleware, application
and database architectures delivers secured infrastructures, secured business

Introduction to the New Mainframe: z/OS Basics

processing, and fosters compliance. The mainframe’s cryptography executes at
multiple layers of the infrastructure, ensuring protection of data throughout its life
cycle.

In this book, we discuss one example of a mainframe security system in
Chapter 18, “Security on z/OS” on page 551.

The latest IBM System z now joins previous IBM mainframes as the world's only
servers with the highest level of hardware security certification, Common Criteria
Evaluation Assurance Level 5 (EALS5).

The EALS ranking will give companies confidence that they can run many
different applications on different operating systems such as: z/OS, z/VM, z/VSE,
z/TPF and Linux®-based applications containing confidential data—such as
payroll, human resources, e-commerce, ERP, and CRM systems—on one
System z divided into partitions that keep each application's data secure and
distinct from the others’ data. That is, System z architecture is designed to
prevent the flow of information among logical partitions on a single system.

1.7.3 Scalability

It has been said that the only constant is change. Nowhere is that statement truer
than in the IT industry. In business, positive results can often trigger a growth in
IT infrastructure to cope with increased demand. The degree to which the IT
organization can add capacity without disruption to normal business processes
or without incurring excessive overhead (nonproductive processing) is largely
determined by the scalability of the particular computing platform.

Scalability By scalability, we mean the ability of the hardware, software, or a distributed
Scalability is a system to continue to function well as it is changed in size or volume; for

oo oammore, example, the ability to retain performance levels when adding processors,
{gdei;i:tit:rs hi;snzFeility memory, and storage. A scalable system can efficiently adapt to work, with larger
growingamountsof Or smaller networks performing tasks of varying complexity. The mainframe

work in a graceful . f . litv f h ical hori | l h f

manner or to be provides functionality for both vertical and horizontal scaling where software and

readily enlarged. hardware collaborate to accommodate various application requirements.

As a company grows in employees, customers, and business partners, it usually
needs to add computing resources to support business growth. One approach is
to add more processors of the same size, with the resulting overhead in
managing this more complex setup. A company can consolidate its many smaller
processors into fewer, larger systems because the mainframe is a
share-everything architecture.

Mainframes exhibit scalability characteristics in both hardware and software, with
the ability to run multiple copies of the operating system software as a single

Chapter 1. Introduction to the new mainframe 17

entity called a system complex, or sysplex. We further explore mainframe
clustering technology and its uses in 2.9, “What is a sysplex?” on page 66.

The ease of this platform’s scalability is due to the mainframe’s inherent
virtualization capability, which has evolved over several decades through its
balanced synergy design.

1.7.4 Continuing compatibility

Compatibility
The ability of a
system both to
run software
requiring new
hardware
instructions
and to run
older software
requiring the
original
hardware
instructions.

Mainframe customers tend to have a very large financial investment in their
applications and data. Some applications have been developed and refined over
decades. Some applications were written many years ago, while others may
have been written “yesterday.” The ability of an application to work in the system
or its ability to work with other devices or programs is called compatibility.

The need to support applications of varying ages imposes a strict compatibility
demand on mainframe hardware and software, which have been upgraded many
times since the first System/360 mainframe computer was shipped in 1964.
Applications must continue to work properly. Thus, much of the design work for
new hardware and system software revolves around this compatibility
requirement.

The overriding need for compatibility is also the primary reason why many
aspects of the system work as they do, for example, the syntax restrictions of the
job control language (JCL), which is used to control job scheduling and
execution. Any new design enhancements made to JCL must preserve
compatibility with older jobs so that they can continue to run without modification.
The desire and need for continuing compatibility is one of the defining
characteristics of mainframe computing.

Absolute compatibility across decades of changes and enhancements is not
possible, of course, but the designers of mainframe hardware and software make
it a top priority. When an incompatibility is unavoidable, the designers typically
warn users at least a year in advance that software changes might be needed.

1.7.5 Evolving architecture

Technology has always accelerated the pace of change. New technologies
enable new ways of doing business, shifting markets, changing customer
expectations, and redefining business models. Each major enhancement to
technology presents opportunities. Companies that understand and prepare for
changes can gain advantage over competitors and lead their industries. To
support an on demand business, the IT infrastructure must evolve to support it.
At its heart the data center must transition to reflect these needs, it must be
responsive to changing demands, it must be variable to support the diverse

18 Introduction to the New Mainframe: z/OS Basics

environment, it must be flexible so that applications can run on the optimal
resources at any point in time, and it must be resilient to support an always
open-for-business environment.

For over four decades, the IBM mainframe has been a leader in data and
transaction serving. The announcement of the latest machine provides a strong
combination of heritage mainframe characteristics plus new functions designed
around scalability, availability, and security.

IBM further enhances the capabilities of the mainframe by introducing optimized
capacity settings with subcapacity central processors (CPs). With the
introduction of CPU capacity settings, the mainframe now has a comprehensive
server range to meet the needs of businesses spanning mid-range companies to
large enterprises. In addition, the availability of special purpose processors
improves cost of its ownership and provides greater overall throughput. These
specialty engines are discussed in a later chapter.

1.7.6 Extensibility

In software engineering, extensibility is a system design principle where the
implementation takes into consideration future growth. It is a systemic measure
of the ability to extend a system and the level of effort required to implement the
extension. Extensions can be provided by the addition of new functionality or
through modification of existing functionality. The mainframe’s central theme is to
provide for change while minimizing impact to existing system functions.

The mainframe as it evolves more as an autonomic system takes on tasks not
anticipated in its original design. Its ultimate aim is to create the definitive
self-managing computer environment to overcome its rapidly growing maturity
and to facilitate expansion. Many built-in features perform software
management, runtime health checking, and transparent hardware hot-swapping.

Extensibility also comes in the form of cost containment and has been with the
mainframe for a long time in different forms—it is a share-everything
architecture, that is, its component and infrastructure reuse is a characteristic of
its design.

1.7.7 Total cost of ownership

Many organizations are under the false impression that the mainframe is a server
that will be accompanied by higher overall software, hardware and people costs.
Most organizations do not accurately calculate the total costs of their server
proliferation, largely because chargeback mechanisms do not exist, because
only incremental mainframe investment costs are compared to incremental
distributed costs, or because total shadow costs are not weighed in. Many

Chapter 1. Introduction to the new mainframe 19

organizations also fail to recognize the path length delays and context switching
of running workloads across many servers which typically add up to a
performance penalty nonexistent on the mainframe.

Also, the autonomic capabilities of the mainframe (reliability, scalability,
self-managing design) may not be taken into consideration. Distributed servers
encounter an efficiency barrier whereby adding incremental servers after a
certain point fails to add efficiency. The total diluted cost of the mainframe is not
used correctly in calculations, rather the delta costs attributed to an added
workload often make the comparisons erroneous.

Distributed servers’ cost per unit of work never approximates the incremental
cost of a mainframe. However, over time, it is unlikely that a server farm could
achieve the economies of scale associated with a fully loaded mainframe,
regardless of how many devices are added. In effect there is a limit to the
efficiencies realizable in a distributed computing environment. These
inefficiencies are due to shadow costs, execution of only one style of workload
versus a balanced workload, underutilization of CPUs, people expense, and real
estate cost of a distributed operations management.

1.7.8 Environmentally friendly

20

Refurbishing existing data centers can also prove cost-prohibitive, such as
installing new cooling units that require reconfiguration of floors. The cost of
power over time also requires consideration as part of data center planning.

With the rising trends in energy costs is a trend toward high-density distributed
servers that stress the power capacity of today’s environment. However, this
trend has been met with rising energy bills, and facilities that just do not
accommodate new energy requirements. Distributed servers are resulting in
power and cooling requirements per square foot that stress current data center
power thresholds.

Because these servers have an attractive initial price point, their popularity has
increased. However, their compact electronics generate heat that can be costly
to remove.

The mainframe’s virtualization leverages the power of many servers using a
small hardware footprint. Today’s mainframe reduces the impact of energy cost
to a near-negligible value when calculated on a per logical server basis because
more applications, several hundred of them, can be deployed on a single
machine.

With mainframes, fewer physical servers running at a near constant energy level
can host multiple virtual software servers. This allows a company to optimize the

Introduction to the New Mainframe: z/OS Basics

utilization of hardware, and consolidate physical server infrastructure by hosting
servers on a small number of powerful System z servers. With server

consolidation onto a System z, often using Linux, companies get better hardware
utilization, reduce floor space and power consumption while driving down costs.

The mainframe is designed to scale up and out—for instance by adding more
processors to an existing hardware frame, and leveraging existing MIPS which
retain their value during upgrades. (With distributed systems, the hardware and
processing power are typically just replaced after 3-4 years of use.) By adding
MIPS to the existing mainframe, more workloads can be run cost-effectively
without changing the footprint. There is no need for another server that would in
turn require additional environmental work, networks, and cooling. The
mainframe's IFLs® can easily run hundreds of instances of Linux at an
incremental cost of 75 watts of power.

1.8 Typical mainframe workloads

Most mainframe workloads fall into one of two categories: batch processing or
online transaction processing, which includes Web-based applications
(Figure 1-3).

Application program

Processes data to
e Batch job Input perform a
data particular task

Output data

Application program

Il Accesses shared
e data on behalf of
. . i . an online user
e Online (interactive) transaction

Figure 1-3 Typical mainframe workloads

6 Integrated Facility for Linux. See 1.8.3.

Chapter 1. Introduction to the new mainframe 21

These workloads are discussed in several chapters in this book; the following
sections provide an overview.

1.8.1 Batch processing

Batch
processing
The running of
jobs on the
mainframe
without user
interaction.

One key advantage of mainframe systems is their ability to process terabytes of
data from high-speed storage devices and produce valuable output. For
example, mainframe systems make it possible for banks and other financial
institutions to perform end-of-quarter processing and produce reports that are
necessary to customers (for example, quarterly stock statements or pension
statements) or to the government (for example, financial results). With
mainframe systems, retail stores can generate and consolidate nightly sales
reports for review by regional sales managers.

The applications that produce these statements are batch applications; that is,
they are processed on the mainframe without user interaction. A batch job is
submitted on the computer, reads and processes data in bulk—perhaps
terabytes of data—and produces output, such as customer billing statements. An
equivalent concept can be found in a UNIX script file or a Windows® command
file, but a z/OS batch job might process millions of records.

While batch processing is possible on distributed systems, it is not as
commonplace as it is on mainframes because distributed systems often lack:

» Sufficient data storage
» Available processor capacity, or cycles
» Sysplex-wide management of system resources and job scheduling

Mainframe operating systems are typically equipped with sophisticated job
scheduling software that allows data center staff to submit, manage, and track
the execution and output of batch jobs”.

Batch processes typically have the following characteristics:

» Large amounts of input data are processed and stored (perhaps terabytes or
more), large numbers of records are accessed, and a large volume of output
is produced.

» Immediate response time is usually not a requirement. However, batch jobs
often must complete within a “batch window,” a period of less-intensive online
activity, as prescribed by a service level agreement (SLA).

7 In the early days of the mainframe, punched cards were often used to enter jobs into the system for
execution. “Keypunch operators” used card punches to enter data, and decks of cards (or batches)
were produced. These were fed into card readers, which read the jobs and data into the system. As
you can imagine, this process was cumbersome and error-prone. Nowadays, it is possible to transfer
the equivalent of punched card data to the mainframe in a PC text file. We discuss various ways of
introducing work into the mainframe in Chapter 7, “Batch processing and JES” on page 253.

22 Introduction to the New Mainframe: z/OS Basics

»

>

Important: Batch can be “workload” managed. This may help ensure that
batch window schedules can be met to attain the SLA.

Information is generated about large numbers of users or data entities (for
example, customer orders or a retailer’s stock on hand).

A scheduled batch process can consist of the execution of hundreds or
thousands of jobs in a pre-established sequence.

During batch processing, multiple types of work can be generated. Consolidated
information such as profitability of investment funds, scheduled database
backups, processing of daily orders, and updating of inventories are common
examples. Figure 1-4 shows a number of batch jobs running in a typical
mainframe environment.

In Figure 1-4, consider the following elements at work in the scheduled batch
process:

1.

At night, numerous batch jobs running programs and utilities are processed.
These jobs consolidate the results of the online transactions that take place
during the day.

2. The batch jobs generate reports of business statistics.

3. Backups of critical files and databases are made before and after the batch

window.

Reports with business statistics are sent to a specific area for analysis the
next day.

5. Reports with exceptions are sent to the branch offices.
6. Monthly account balance reports are generated and sent to all bank

customers.

Reports with processing summaries are sent to the partner credit card
company.

Chapter 1. Introduction to the new mainframe 23

24

Residence Main office

q Account balances,

%n;w bills, etc.

Statistics,

N o summaries,
rocessig exceptions
reports
Mainframe
Processing batch jobs
. Reports
Partners o ~ET o -
and clients = - s 0| =
exchange Reports - H. = 5
information

BaCkupse

Data Tape storage &

update Sequential
m data sets

/ Disk storage
= ﬁ databases

Production System
control Operator

Figure 1-4 Typical batch use

8. A credit card transaction report is received from the partner company.

9. In the production control department, the operations area is monitoring the
messages on the system console and the execution of the jobs.

10.Jobs and transactions are reading or updating the database (the same one
that is used by online transactions) and many files are written to tape.

Attention: Today’s mainframe can run standard batch processing such as
COBOL as well as batch UNIX and batch Java programs. These runtimes can
execute either as standalone or participate collaboratively within a single
jobstream. This makes batch processing extremely flexible by integrating
different execution environments centrally on a single server.

Introduction to the New Mainframe: z/OS Basics

1.8.2 Online transaction processing

Online
transaction
processing
(OLTP)
Transaction
processing that
occurs
interactively
with the end
user.

Transaction processing that occurs interactively with the end user is referred to
as online transaction processing or OLTP. Typically, mainframes serve a vast
number of transaction systems. These systems are often mission-critical
applications that businesses depend on for their core functions. Transaction
systems must be able to support an unpredictable number of concurrent users
and transaction types. Most transactions are executed in short time
periods—fractions of a second in some cases.

One of the main characteristics of a transaction system is that the interactions
between the user and the system are very short. The user will perform a
complete business transaction through short interactions, with immediate
response time required for each interaction. These systems are currently
supporting mission-critical applications; therefore, continuous availability, high
performance, and data protection and integrity are required.

Online transactions are familiar to most people. Examples include:

» ATM machine transactions such as deposits, withdrawals, inquiries, and
transfers

» Supermarket payments with debit or credit cards
» Purchase of merchandise over the Internet

For example, inside a bank branch office or on the Internet, customers are using
online services when checking an account balance or directing fund balances.

In fact, an online system performs many of the same functions as an operating
system:

» Managing and dispatching tasks
» Controlling user access authority to system resources

» Managing the use of memory

» Managing and controlling simultaneous access to data files
» Providing device independence

Some industry uses of mainframe-based online systems include:

» Banks - ATMs, teller systems for customer service and online financial
systems

Insurance - Agent systems for policy management and claims processing
Travel and transport - Airline reservation systems

Manufacturing - Inventory control, production scheduling

Government - Tax processing, license issuance and management

vvyyvyy

Chapter 1. Introduction to the new mainframe 25

26

How might the end users in these industries interact with their mainframe
systems? Multiple factors can influence the design of a company’s transaction
processing system, including:

» Number of users interacting with the system at any one time.
» Number of transactions per second (TPS).

» Availability requirements of the application. For example, must the application
be available 24 hours a day, seven days a week, or can it be brought down
briefly one night each week?

Before personal computers and intelligent workstations became popular, the
most common way to communicate with online mainframe applications was with
3270 terminals. These devices were sometimes known as “dumb” terminals, but
they had enough intelligence to collect and display a full screen of data rather
than interacting with the computer for each keystroke, saving processor cycles.
The characters were green on a black screen, so the mainframe applications
were nicknamed “green screen” applications.

Based on these factors, user interactions vary from installation to installation.
With applications now being designed, many installations are reworking their
existing mainframe applications to include Web browser-based interfaces for
users. This work sometimes requires new application development, but can often
be done with vendor software purchased to “re-face” the application. Here, the
end user often does not realize that there is a mainframe behind the scenes.

In this text, there is no need to describe the process of interacting with the
mainframe through a Web browser, as it is exactly the same as any interaction a
user would have through the Web. The only difference is the machine at the other
end!

Online transactions usually have the following characteristics:

» A small amount of input data, a few stored records accessed and processed,
and a small amount of data as output

Immediate response time, usually less than one second

Large numbers of users involved in large numbers of transactions
Round-the-clock availability of the transactional interface to the user
Assurance of security for transactions and user data

vvyyy

In a bank branch office, for example, customers use online services when
checking an account balance or making an investment.

Figure 1-5 shows a series of common online transactions using a mainframe.

Introduction to the New Mainframe: z/OS Basics

Account

activities SNAor TCP/IP

o network |
- = / Requests
Branch office \

,>//

Branch
offices
Mainframe

Accesses
database

Office
automation
systems

Queries e
and

updates

Central office

Business analysts Inventory control

Disk
storage
controller

Stores
database
files

Figure 1-5 Typical online use

1. A customer uses an ATM, which presents a user-friendly interface for various
functions: Withdrawal, query account balance, deposit, transfer, or cash
advance from a credit card account.

2. Elsewhere in the same private network, a bank employee in a branch office
performs operations such as consulting, fund applications, and money
ordering.

3. At the bank’s central office, business analysts tune transactions for improved
performance. Other staff use specialized online systems for office automation
to perform customer relationship management, budget planning, and stock
control.

All requests are directed to the mainframe computer for processing.

Programs running on the mainframe computer perform updates and inquiries
to the database management system (for example, DB2).

6. Specialized disk storage systems store the database files.

Chapter 1. Introduction to the new mainframe 27

1.8.3 Speciality engines to characterize workload

A feature of the mainframe provides customers the capability to characterize
their server configuration to the type of workload they elect to run on it. The
mainframe can configure CPUs as specialty engines to off-load specific work to
separate processors. This enables the general CPUs to continue processing
standard workload increasing the overall ability to complete more batch jobs or
transactions. In these scenarios the customer can benefit from greater
throughput and eases the overall total cost of ownership. These specialty
processors are described in Chapter 2, “Mainframe hardware systems and high
availability” on page 41.

1.9 Roles in the mainframe world

28

Mainframe systems are designed to be used by large numbers of people. Most of
those who interact with mainframes are end users—people who use the
applications that are hosted on the system. However, because of the large
number of end users, applications running on the system, and the sophistication
and complexity of the system software that supports the users and applications,
a variety of roles are needed to operate and support the system.

Mainframe jobs ‘4

- . Production control analyst
Application
developer

'

System z Business Class and Enterprise Class

-

Operator

End user

System System
programmer administrator

Figure 1-6 Who's who in the mainframe world

Introduction to the New Mainframe: z/OS Basics

In the IT field, these roles are referred to by a number of different titles; this text
uses the following:

» System programmers
» System administrators

» Application designers and programmers

» System operators

» Production control analysts

In a distributed systems environment, many of the same roles are needed as in
the mainframe environment. However, the job responsibilities are often not as
well-defined. Since the 1960s, mainframe roles have evolved and expanded to
provide an environment in which the system software and applications can
function smoothly and effectively and serve many thousands of users efficiently.
While it may seem that the size of the mainframe support staff is large and
unwieldy, the numbers become comparatively small when one considers the
number of users supported, the number of transactions run, and the high
business value of the work that is performed on the mainframe. This relates to
the cost containment mentioned earlier.

This text is concerned mainly with the system programmer and application
programmer roles in the mainframe environment. There are, however, several
other important jobs involved in the “care and feeding” of the mainframe, and we
touch on some of these roles to give you a better idea of what’s going on behind
the scene.

Mainframe activities, such as the following, often require cooperation among the
various roles:

» Installing and configuring system software

» Designing and coding new applications to run on the mainframe

» Introduction and management of new workloads on the system, such as
batch jobs and online transaction processing

» Operation and maintenance of the mainframe software and hardware

In the following sections, we describe each role in more detail.

Important: A feature of the mainframe is that it requires fewer personnel to
configure and run than other server environments. Many of the administration
roles are automated, offering the means to incorporate runtime rules by
allowing the system to run without manual intervention. These rules are based
on installation policies that are integrated with the configuration.

Chapter 1. Introduction to the new mainframe 29

1.9.1 Who is the system programmer?

System
programmer
The person
who installs,
customizes,
and maintains
the operating
system.

In a mainframe IT organization, the system programmer plays a central role. The
system programmer installs, customizes, and maintains the operating system,
and also installs or upgrades products that run on the system. The system
programmer might be presented with the latest version of the operating system
to upgrade the existing systems. Or, the installation might be as simple as
upgrading a single program, such as a sort application.

The system programmer performs such tasks as the following:

» Planning hardware and software system upgrades and changes in
configuration

» Training system operators and application programmers
» Automating operations

» Capacity planning

» Running installation jobs and scripts

» Performing installation-specific customization tasks

» Integration-testing the new products with existing applications and user
procedures

» System-wide performance tuning to meet required levels of service

The system programmer must be skilled at debugging problems with system
software. These problems are often captured in a copy of the computer's
memory contents called a dump, which the system produces in response to a
failing software product, user job, or transaction. Armed with a dump and
specialized debugging tools, the system programmer can determine where the
components have failed. When the error has occurred in a software product, the
system programmer works directly with the software vendor’s support
representatives to discover whether the problem’s cause is known and whether a
patch is available.

System programmers are needed to install and maintain the middleware on the
mainframe, such as database management systems, online transaction
processing systems and Web servers. Middleware is a software “layer” between
the operating system and the end user or end user application. It supplies major
functions that are not provided by the operating system. Major middleware
products such as DB2, CICS, and IMS can be as multifaceted as the operating
system itself.

Attention: For large mainframe shops, it is not unusual for system
programmers to specialize in specific products, such as CICS, IMS or DB2.

30 Introduction to the New Mainframe: z/OS Basics

1.9.2 Who is the system administrator?

System
administrator
The person
who maintains
the critical
business data
that resides on

the mainframe.

The distinction between system programmer and system administrator varies
widely among mainframe sites. In smaller IT organizations, where one person
might be called upon to perform several roles, the terms may be used
interchangeably.

In larger IT organizations with multiple departments, the job responsibilities tend
to be more clearly separated. System administrators perform more of the
day-to-day tasks related to maintaining the critical business data that resides on
the mainframe, while the system programmer focuses on maintaining the system
itself. One reason for the separation of duties is to comply with auditing
procedures, which often require that no one person in the IT organization be
allowed to have unlimited access to sensitive data or resources. Examples of
system administrators include the database administrator (DBA) and the security
administrator.

While system programmer expertise lies mainly in the mainframe hardware and
software areas, system administrators are more likely to have experience with
the applications. They often interface directly with the application programmers
and end users to make sure that the administrative aspects of the applications
are met. These roles are not necessarily unique to the mainframe environment,
but they are key to its smooth operation nonetheless.

In larger IT organizations, the system administrator maintains the system
software environment for business purposes, including the day-to-day
maintenance of systems to keep them running smoothly. For example, the
database administrator must ensure the integrity of, and efficient access to, the
data that is stored in the database management systems.

Other examples of common system administrator tasks can include:

Installing software

Adding and deleting users and maintaining user profiles
Maintaining security resource access lists

Managing storage devices and printers

Managing networks and connectivity

Monitoring system performance

vyvyvYyvYyYYvyy

In matters of problem determination, the system administrator generally relies on
the software vendor support center personnel to diagnose problems, read
dumps, and identify corrections for cases in which these tasks aren’t performed
by the system programmer.

Chapter 1. Introduction to the new mainframe 31

1.9.3 Who are the application designers and programmers?

32

The application designer and application programmer (or application developer)
design, build, test, and deliver mainframe applications for the company’s end
users and customers. Based on requirements gathered from business analysts
and end users, the designer creates a design specification from which the
programmer constructs an application. The process includes several iterations of
code changes and compilation, application builds, and unit testing.

During the application development process, the designer and programmer must
interact with other roles in the enterprise. For example, the programmer often
works on a team of other programmers who are building code for related
application program modules. When completed, each module is passed through
a testing process that can include function, integration, and system-wide tests.
Following the tests, the application programs must be acceptance tested by the
user community to determine whether the code actually satisfies the original user
requirement.

In addition to creating new application code, the programmer is responsible for
maintaining and enhancing the company’s existing mainframe applications. In
fact, this is often the primary job for many of today’s mainframe application
programmers. While mainframe installations still create new programs with
COmmon Business Oriented Language (COBOL) or PL/I, languages such as
Java and C/C++ have become popular for building new applications on the
mainframe, just as they have on distributed platforms.

Widespread development of mainframe programs written in high-level languages
such as COBOL and PL/I continues at a brisk pace, despite rumors to the
contrary. Many thousands of programs are in production on mainframe systems
around the world, and these programs are critical to the day-to-day business of
the corporations that use them. COBOL and other high-level language
programmers are needed to maintain existing code and make updates and
modifications to existing programs. Also, many corporations continue to build
new application logic in COBOL and other traditional languages, and IBM
continues to enhance their high-level language compilers to include new
functions and features that allow those languages to continue to take advantage
of newer technologies and data formats.

These programmers can benefit from state-of-the-art integrated development
environments (IDEs) to enhance their productivity. These IDEs include support
for sophisticated source code search and navigation, source code refactoring,
and syntax highlighting. IDEs also assist with defining repeatable build
processing steps and identifying dependent modules which must be rebuilt after
changes to source code have been developed.

Introduction to the New Mainframe: z/OS Basics

We will look at the roles of application designer and application programmer in
more detail in Part 2 of this book.

1.9.4 Who is the system operator?

The system operator monitors and controls the operation of the mainframe
hardware and software. The operator starts and stops system tasks, monitors the
system consoles for unusual conditions, and works with the system programming
and production control staff to ensure the health and normal operation of the
systems.

As applications are added to the mainframe, the system operator is responsible
for ensuring that they run smoothly. New applications from the Applications

System operator programming Department are typically delivered to the Operations Staff with a

The person who
monitors and
controls the
operation of the
mainframe
hardware and
software.

run book of instructions. A run book identifies the specific operational
requirements of the application, which operators need to be aware of during job
execution. Run book instructions might include, for example: application-specific
console messages that require operator intervention, recommended operator
responses to specific system events, and directions for modifying job flows to
accommodate changes in business requirements®.

The operator is also responsible for starting and stopping the major subsystems,
such as transaction processing systems, database systems, and the operating
system itself. These restart operations are not nearly as commonplace as they
once were, as the availability of the mainframe has improved dramatically over
the years. However, the operator must still perform an orderly shutdown and
startup of the system and its workloads, when it is required.

In case of a failure or an unusual situation, the operator communicates with
system programmers, who assist the operator in determining the proper course
of action, and with the production control analyst, who works with the operator to
make sure that production workloads are completing properly.

1.9.5 Who is the production control analyst?

Production
control analyst
The person who
ensures that
batch
workloads run
to completion
without error or
delay.

The production control analyst is responsible for making sure that batch
workloads run to completion—without error or delay. Some mainframe
installations run interactive workloads for online users, followed by batch updates
that run after the prime shift when the online systems are not running. While this
execution model is still common, world-wide operations at many
companies—uwith live, Internet-based access to production data—are finding the

8 Console messages were once so voluminous that operators often had a difficult time determining
whether a situation was really a problem. In recent years, tools to reduce the volume of messages
and automate message responses to routine situations have made it easier for operators to
concentrate on unusual events that might require human intervention.

Chapter 1. Introduction to the new mainframe 33

“daytime online/night time batch” model to be obsolete. Batch workloads
continue to be a part of information processing, however, and skilled production
control analysts play a key role.

A common complaint about mainframe systems is that they are inflexible and
hard to work with, specifically in terms of implementing changes. The production
control analyst often hears this type of complaint, but understands that the use of
well-structured rules and procedures to control changes—a strength of the
mainframe environment—nhelps to prevent outages. In fact, one reason that
mainframes have attained a strong reputation for high levels of availability and
performance is that there are controls on change and it is difficult to introduce
change without proper procedures.

1.9.6 What role do vendors play?

34

A number of vendor roles are commonplace in the mainframe shop. Because
most mainframe computers are sold by IBM, and the operating systems and
primary online systems are also provided by IBM, most vendor contacts are IBM
employees. However, independent software vendor (ISV) products are also used
in the IBM mainframe environment, and customers use original equipment
manufacturer (OEM) hardware, such as disk and tape storage devices, as well.

Typical vendor roles follow:
» Hardware support or customer engineer

Hardware vendors usually provide on-site support for hardware devices. The
IBM hardware maintenance person is often referred to as the customer
engineer (CE). The CE provides installation and repair service for the
mainframe hardware and peripherals. The CE usually works directly with the
operations teams when hardware fails or new hardware is being installed.

» Software support

A number of vendor roles exist to support software products on the
mainframe®. IBM has a centralized Support Center that provides entitled and
extra-charge support for software defects or usage assistance. There are also
information technology specialists and architects who can be engaged to
provide additional pre- and post-sales support for software products,
depending upon the size of the enterprise and the particular customer
situation.

» Field technical sales support, systems engineer, or client representative

9 This text does not examine the marketing and pricing of mainframe software. However, the
availability and pricing of middleware and other licensed programs is a critical factor affecting the
growth and use of mainframes.

Introduction to the New Mainframe: z/OS Basics

For larger mainframe accounts, IBM and other vendors provide face-to-face
sales support. The vendor representatives specialize in various types of
hardware or software product families and call on the part of the customer
organization that influences the product purchases. At IBM, the technical
sales specialist is referred to as the field technical sales support (FTSS)
person, or by the older term, systems engineer (SE).

For larger mainframe accounts, IBM frequently assigns a client
representative, who is attuned to the business issues of a particular industry
sector, to work exclusively with a small number of customers. The client
representative acts as the general “single point of contact” between the
customer and the various organizations within IBM.

1.10 z/OS and other mainframe operating systems

Much of this text is concerned with teaching you the fundamentals of z/OS, which
is IBM’s foremost mainframe operating system. We begin discussing z/OS
concepts in Chapter 3, “z/OS overview” on page 87. It is useful for mainframe
students, however, to have a working knowledge of other mainframe operating
systems. One reason is that a given mainframe computer might run multiple
operating systems. For example, the use of z/OS, z/VM, and Linux on the same
mainframe is common.

Mainframe operating systems are sophisticated products with substantially
different characteristics and purposes, and each could justify a separate book for
a detailed introduction. Besides z/OS, four other operating systems dominate
mainframe usage: z/VM, z/VSE, Linux for zSeries, and z/TPF.

1.10.1 z/VM

z/Virtual Machine (z/VM) has two basic components: a control program (CP)
and a single-user operating system, CMS. As a control program, z/VM is a
hypervisor because it runs other operating systems in the virtual machines it
creates. Any of the IBM mainframe operating systems such as z/OS, Linux for
zSeries, z/VSE, and z/TPF can be run as guest systems in their own virtual
machines, and z/VM can run any combination of guest systems.

The control program artificially creates multiple virtual machines from the real
hardware resources. To end users, it appears as if they have dedicated use of
the shared real resources. The shared real resources include printers, disk
storage devices, and the CPU. The control program ensures data and
application security among the guest systems. The real hardware can be shared
among the guests, or dedicated to a single guest for performance reasons. The
system programmer allocates the real devices among the guests. For most

Chapter 1. Introduction to the new mainframe 35

customers, the use of guest systems avoids the need for larger hardware
configurations.

z/VMI’s other major component is the Conversational Monitor System or CMS.
This component of z/VM runs in a virtual machine and provides both an
interactive end user interface and the general z/VM application programming
interface.

1.10.2 z/VSE

z/Virtual Storage Extended (z/VSE) is popular with users of smaller mainframe
computers. Some of these customers eventually migrate to z/OS when they grow
beyond the capabilities of z/VSE.

Compared to z/OS, the z/VSE operating system provides a smaller, less
complex base for batch processing and transaction processing. The design and
management structure of z/VSE is excellent for running routine production
workloads consisting of multiple batch jobs (running in parallel) and extensive,
traditional transaction processing. In practice, most z/VSE users also have the
z/VM operating system and use this as a general terminal interface for z/VSE
application development and system management.

z/VSE was originally known as Disk Operating System (DOS), and was the first
disk-based operating system introduced for the System/360 mainframe
computers. DOS was seen as a temporary measure until 0S/360 would be
ready. However, some mainframe customers liked its simplicity (and small size)
and decided to remain with it after OS/360 became available. DOS became
known as DOS/VS (when it started using virtual storage), then VSE/SP and later
VSE/ESA, and most recently z/VSE. The name VSE is often used collectively to
refer to any of the more recent versions.

1.10.3 Linux for zSeries

36

Several (non-IBM) Linux distributions can be used on a mainframe. There are
two generic names for these distributions:

» Linux for S/390 (uses 31-bit addressing and 32-bit registers)
» Linux for zSeries (uses 64-bit addressing and registers)

The phrase Linux on zSeries is used to refer to Linux running on an S/390 or
zSeries system, when there is no specific need to refer explicitly to either the
31-bit version or the 64-bit version. We assume students are generally familiar
with Linux and therefore we mention only those characteristics that are relevant
for mainframe usage. These include the following:

Introduction to the New Mainframe: z/OS Basics

Linux uses traditional count key data (CKD)disk devices and SAN-connected
SCSiI-type devices. Other mainframe operating systems can recognize these
drives as Linux drives, but cannot use the data formats on the drives. That is,
there is no sharing of data between Linux and other mainframe operating
systems.

» Linux does not use 3270 display terminals, while all other mainframe
operating systems use 3270s as their basic terminal architecture.! Linux
uses X Window System based terminals or X-Window System emulators on
PCs; it also supports typical ASCII terminals, usually connected through the
telnet protocol. The X-Window System is the standard for graphical interfaces
in Linux. It is the middle layer between the hardware and the window
manager.

» With the proper setup, a Linux system under z/VM can be quickly cloned to
make another, separate Linux image. The z/VM emulated LAN can be used
to connect multiple Linux images and to provide an external LAN route for
them. Read-only file systems, such as a typical /usr file system, can be
shared by Linux images.

» Linux on a mainframe operates with the ASCII character set, not the
EBCDIC'2 form of stored data that is typically used on mainframes. Here,
EBCDIC is used only when writing to such character-sensitive devices as
displays and printers. The Linux drivers for these devices handle the
character translation.

1.10.4 z/TPF

The z/Transaction Processing Facility (z/TPF) operating system is a
special-purpose system that is used by companies with very high transaction
volume, such as credit card companies and airline reservation systems. z/TPF
was once known as Airline Control Program (ACP). It is still used by airlines and
has been extended for other very large systems with high-speed, high-volume
transaction processing requirements.

z/TPF can use multiple mainframes in a loosely-coupled environment to routinely
handle tens of thousands of transactions per second, while experiencing
uninterrupted availability that is measured in years. Very large terminal networks,

10 CKD devices are formatted such that the individual data pieces can be accessed directly by the
read head of the disk.

" There is a Linux driver for minimal 3270 operation, in very restrictive modes, but this is not
commonly used. 3270 terminals were full-screen buffered non-intelligent terminals, with control units
and data streams to maximize efficiency of data transmission.

12 EBCDIC, which stands for extended binary coded decimal interchange code, is a coded character
set of 256 8-bit characters that was developed for the representation of textual data. EBCDIC is not
compatible with ASCII character coding. For a handy conversion table, see Appendix D, “EBCDIC -
ASCII table” on page 615.

Chapter 1. Introduction to the new mainframe 37

including special-protocol networks used by portions of the reservation industry,
are common.

1.11 Summary

38

Today, mainframe computers play a central role in the daily operations of most of
the world’s largest corporations, including many Fortune 1000 companies. While
other forms of computing are used extensively in business in various capacities,
the mainframe occupies a coveted place in today’s e-business environment. In
banking, finance, health care, insurance, utilities, government, and a multitude of
other public and private enterprises, the mainframe computer continues to form
the foundation of modern business.

The new mainframe owes much of its popularity and longevity to its inherent
richness in reliability and stability, a result of continuous technological advances
since the introduction of the IBM System/360 in 1964. No other computer
architecture in existence can claim as much continuous, evolutionary
improvement, while maintaining compatibility with existing applications.

The term mainframe has gradually moved from a physical description of IBM’s
larger computers to the categorization of a style of computing. One defining
characteristic of the mainframe has been a continuing compatibility that spans
decades.

The roles and responsibilities in a mainframe IT organization are wide and
varied. It takes skilled staff to keep a mainframe computer running smoothly and
reliably. It might seem that there are far more resources needed in a mainframe
environment than for small, distributed systems. But, if roles are fully identified on
the distributed systems side, a number of the same roles exist there as well.

Several operating systems are currently available for mainframes. This text
concentrates on one of these, z/OS. However, mainframe students should be
aware of the existence of the other operating systems and understand their
positions relative to z/OS.

Key terms in this chapter

architecture availability batch compatibility e-business
processing
mainframe online platform production run book
transaction control analyst
processing
(OLTP)

Introduction to the New Mainframe: z/OS Basics

Key terms in this chapter

scalability scalability system system System/360

operator programmer

1.12 Questions for review

To help test your understanding of the material in this chapter, complete the
following questions:

1.

List ways in which the mainframe of today challenges the traditional thinking
about centralized computing versus distributed computing.

Explain how businesses make use of mainframe processing power, and how
mainframe computing differs from other types of computing.

3. What are a few factors that contribute to mainframe use?

4. List three strengths of mainframe computing, and outline the major types of

workloads for which mainframes are best suited.

5. Name five jobs or responsibilities that are related to mainframe computing.

6. This chapter mentioned at least five operating systems that are used on the

mainframe. Choose three of them and describe the main characteristics of
each.

1.13 Topics for further discussion

1. What is a mainframe today? How did the term arise? Is it still appropriate?

Why is it important to maintain system compatibility for older applications?
Why not simply change existing application programming interfaces
whenever improved interfaces become available?

Describe how running a mainframe can be cost effective, given the large
number of roles needed to run a mainframe system.

. What characteristics, good or bad, exist in a mainframe processing

environment because of the roles that are present in a mainframe shop?
(Efficiency? Reliability? Scalability?)

Describe some similarities and differences between application development
for mainframe systems compared to other systems.

Most mainframe shops have implemented rigorous systems management,
security, and operational procedures. Have these same procedures been
implemented in distributed system environments? Why or why not?

Chapter 1. Introduction to the new mainframe 39

7. Can you find examples of mainframe use in your everyday experiences?
Describe them and the extent to which mainframe processing is apparent to
end users. Examples might include the following:

a. Popular Web sites that rely on mainframe technology as the back-end
server to support online transactions and databases.

b. Mainframes used in your locality. These might include banks and financial
centers, major retailers, transportation hubs, and the health and medical
industries.

8. Can you find examples of distributed systems in everyday use? Could any of
these systems be improved through the addition of a mainframe? How?

9. How is today’s mainframe environment-friendly? Discuss with examples.

40 Introduction to the New Mainframe: z/OS Basics

Mainframe hardware systems
and high availability

2

>

>

>

Objective: As a new z/OS system programmer, you will need to develop a
thorough understanding of the hardware that runs the z/OS operating system.
z/OS is designed to make full use of mainframe hardware and its many
sophisticated peripheral devices. You should also understand how the
hardware and software achieves near-continuous availability through concepts
such as Parallel Sysplex and “no single points of failure.”

After completing this chapter, you will be able to:

Discuss S/360 and zSeries hardware design.

Explain processing units and disk hardware.

Explain how mainframes differ from PC systems in data encoding.
List some typical hardware configurations.

Explain how Parallel Sysplex can achieve continuous availability.
Explain dynamic workload balancing.

Explain the single system image.

© Copyright IBM Corp. 2006, 2009. All rights reserved. 41

2.1 Introduction to mainframe hardware systems

This chapter provides an overview of mainframe hardware systems, with most of
the emphasis on the processor “box.”

Related reading: For detailed descriptions of the major facilities of
z/Architecture, the book z/3 Principles of Operation is the standard reference.
You can find this and other IBM publications at the z/OS Internet Library Web
site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Let’s begin this chapter with a look at the terminology associated with mainframe
hardware. Being aware of various meanings of the terms systems, processors,
CPs, and so forth is important for your understanding of mainframe computers.

In the early S/360 days a system had a single processor, which was also known
CPU as the central processing unit (CPU). The terms system, processor, and CPU
Synonymous Were used interchangeably. However, these terms became confusing when
with processor. systems became available with more than one processor. Today the mainframe
has a rich heritage of terms, as illustrated in Figure 2-1.

“BOX” “Processors’
“CEC” “CPUs”
u , “Engines”
CPC “PUs”
“CPU” “CPS”
“Machine’ (IFLs, ICFs, SAPs,
“Processor’ ZAAPs, ZIIPs,
spares)

“Sysplex’
“System”

Note: LPAR may be referred to as an “image” or “server”

Figure 2-1 Terminology overlap

42 Introduction to the New Mainframe: z/OS Basics

The term Box may refer to the entire machine or model; it is an expression used
due to its shape. The abbreviation CEC, pronounced keck, is for the Central
Electronic Complex that houses the central processing units (CPUs).

Processor and CPU can refer to either the complete system box, or to one of the
processors within the system box. Although the meaning may be clear from the
context of a discussion, even mainframe professionals must clarify which
processor or CPU meaning they are using in a discussion. System programmers
CPC use the IBM term central processor complex or CPC to refer to the mainframe
The physical “box” or centralized processing hub. In this text, we use the term CPC to refer to
collection of the physical collection of hardware that includes main storage, one or more

hardware that ;
includes main central processors, timers, and channels.

storage, one or o o) o
more central Partitioning and some of the terms in Figure 2-1 are discussed later in this

processors, chapter, although the term sysplex is an idiom made up of two words: system and
timers, and . . .
e complex suggest multiple systems. Briefly, all the S/390 or z/Architecture

processors within a CPC are processing units (PUs). When IBM delivers the
CPC, the PUs are characterized as CPs (for normal work), Integrated Facility for
Linux (IFL), Integrated Coupling Facility (ICF) for Parallel Sysplex configurations,
and so forth.

In this text, we hope the meanings of system and processor are clear from the
context. We normally use system to indicate the hardware box, a complete
hardware environment (with 1/O devices), or an operating environment (with
software), depending on the context. We normally use processor to mean a
single processor (CP) within the CPC.

In some text you may see a logical partition (LPAR) defined as an image or
server. This represents an operating system instance, such as z/OS, z/VM, or
Linux. You can run several different operating systems within a single mainframe
by partitioning the resources into isolated servers. The term LPAR is covered in
more detail later in this chapter.

2.2 Early system design

The central processor box contains the processors, memory,1 control circuits,
and interfaces for channels. A channel provides an independent data and control
path between 1/O devices and memory. Early systems had up to 16 channels; the
largest mainframe machines at the time of this writing can have over 1000
channels. A channel can be considered a high-speed data bus.

! Some S/360s had separate boxes for memory. However, this is a conceptual discussion and we
ignore such details.

Chapter 2. Mainframe hardware systems and high availability =~ 43

44

Channels connect to control units. A control unit contains logic to work with a
particular type of I/O device. A control unit for a printer would have much different
internal circuitry and logic than a control unit for a tape drive, for example. Some
control units can have multiple channel connections providing multiple paths to
the control unit and its devices.

Today’s channel paths are dynamically attached to control units as the workload
demands. This provides a form of virtualizing access to devices. More on this
later in the chapter.

Control units connect to devices, such as disk drives, tape drives, communication
interfaces, and so forth. The division of circuitry and logic between a control unit
and its devices is not defined, but it is usually more economical to place most of
the circuitry in the control unit.

Figure 2-2 presents a conceptual diagram of a S/360 system. Current systems
are not connected as shown in Figure 2-2. However, this figure helps explain the
background terminology that permeates mainframe discussions.

Uit Communication
Line

Figure 2-2 Simple conceptual S/360

Introduction to the New Mainframe: z/OS Basics

The channels in Figure 2-2 are parallel channels (also known as bus and tag
channels, named for the two heavy copper cables they use). A bus cable carried
information (one byte each way), and a tag cable indicates the meaning of the
data on the bus cable. The maximum data rate of the parallel channel is up to 4.5
MB/sec when in streaming mode, and the maximum distance achieved with a
parallel channel interface is up to 122 meters (400 feet).

Attention: Parallel channels are no longer used by the latest mainframes and
are mentioned here for completeness of this topic.

Each channel, control unit, and device has an address, expressed as a
hexadecimal number. The disk drive marked with an X in Figure 2-2 has address
132, derived as shown in Figure 2-3.

Address: 132

Channel number Control unit number Device number

Figure 2-3 Device address

The disk drive marked with a Y in the figure can be addressed as 123, 523, or
623 because it is connected through three channels. By convention the device is
known by its lowest address (132), but all three addresses could be used by the
operating system to access the disk drive. Multiple paths to a device are useful
for performance and for availability. When an application wants to access disk
123, the operating system will first try channel 1. If it is busy (or not available), it
will try channel 5, and so forth.

Figure 2-2 contains another S/360 system with two channels connected to
control units used by the first system. This sharing of I/O devices is common in all
mainframe installations since the mainframe is a share-everything architecture.
Tape drive Z is address A11 for the first system, but is address 911 for the
second system. Sharing devices, especially disk drives, is not a simple topic and
there are hardware and software techniques used by the operating system to
control exposures such as updating the same disk data at the same time from
two independent systems.

Attention: A technique used to access a single disk drive by multiple systems
is called multiple allegiance.

Chapter 2. Mainframe hardware systems and high availability =~ 45

As mentioned, current mainframes are not used exactly as shown in Figure 2-2
on page 44. Differences include:

» Parallel channels are not available on the newest mainframes and are slowly
being displaced on older systems. They are described here for the
completeness of the topic.

» Parallel channels have been replaced with ESCON (Enterprise Systems

ESCON CONnection) and FICON (FIber CONnection) channels. These channels
Enterprise connect to only one control unit or, more likely, are connected to a director
Systems (switch) and are optical fibers.

Connection

» Current mainframes can have over one thousand channels and use two
hexadecimal digits as the channel portion of an address.

» Channels are generally known as CHPIDs (channel path identifiers) or
PCHIDs (physical channel identifiers) on later systems, although the term
channelis also correct. The channels are all integrated in the main processor
box.

The device address seen by software is more correctly known as a device
number (although the term address is still widely used) and is indirectly related to
the control unit and device addresses.

For more information about the development of the IBM mainframe since 1964,
see Appendix A, “A brief look at IBM mainframe history” on page 587.

2.3 Current design

Current CPC designs are considerably more complex than the early S/360
design. This complexity includes many areas:

» 1/O connectivity and configuration
» |/O operation
» Partitioning of the system

I/O channels are part of the channel subsystem (CSS). They provide connectivity
for data exchange between servers, or between servers and external control
units (CU) and devices, or networks.

2.3.1 1/O connectivity

Figure 2-4 on page 48 illustrates a recent configuration. A real system would
have more channels and 1/O devices, but this figure illustrates key concepts.
Partitions, ESCON channels, and FICON channels are described later.

46 Introduction to the New Mainframe: z/OS Basics

CHPID

Channel path
identifier

Briefly, partitions create separate logical machines (servers) in the CPC. ESCON
and FICON channels are logically similar to parallel channels but they use fiber
connections and operate much faster. A modern system might have 300-500
channels or CHPIDs.? Key concepts partly illustrated here include the following:

» ESCON and FICON channels connect to only one device or one port on a
switch.

» Most modern mainframes use switches between the channels and the control
units. The switches are dynamically connected to several systems, sharing
the control units and some or all of its I/O devices across all the systems.

» CHPID addresses are composed of two hexadecimal digits.

» Multiple partitions can sometimes share CHPIDs. This is known as spanning.
Whether this is possible depends on the nature of the channel type and
control units used through the CHPIDs. In general, CHPIDs used for disks
can be shared.

» An I/O subsystem layer exists between the operating systems in partitions
and the CHPIDs.

» The largest machine today can support up to four Logical Channel
Subsystems (LCSS), each having a maximum of 256 channels.

» Infiniband (IFB) is used as the pervasive, low-latency, high-bandwidth
interconnect requiring low processing overhead and is ideal to carry multiple
traffic types. Beginning with the z10, it replaces the Self Timed Interface (STI)
cable.

An ESCON director or FICON switch is a sophisticated device that can sustain
high data rates through many connections. (A large director might have 200
connections, for example, and all of these can be passing data at the same time.)
The director or switch must keep track of which CHPID (and partition) initiated
which 1/O operation so that data and status information is returned to the right
place. Multiple I/0O requests, from multiple CHPIDs attached to multiple partitions
on multiple systems, can be in progress through a single control unit.

The I/O control layer uses a control file known as an IOCDS (I/O Control Data
Set) that translates physical I/O addresses (composed of CHPID numbers,
switch port numbers, control unit addresses, and unit addresses) into device
numbers that are used by the operating system software to access devices. This
is loaded into special storage called the Hardware System Area (HSA) at
power-on. The HSA is not addressable by users and is a special component of
the mainframe central storage area.

2 The more recent mainframe machines can have up to a maximum of 1024 channels, but an
additional setup is needed for this. The channels are assigned so that only two hexadecimal digits are
needed for CHPID addresses.

Chapter 2. Mainframe hardware systems and high availability =~ 47

48

Control unit addresses
(CUA)

Control
Unit

Control
Unit

Control
Unit

CEC box e mmmmmmmemooooo | prmmemnosnnoooees .
0 l
1 1 1 l
i Partition 1 i ! Partition 2 '
| i ' i
€ - - - - ————mm—— === == === == = = » /O Processing
Channels
cHPbsorpcripsy | 01 | 02 40 4A1 42 A0 | A1
° E E E E Other
systems
01 = —
Control | ESCON
LAN :
Uit Director
(switch)
Ly~ CO C1 01 02

Control

Unit

Unit addresses (UA) —>m ﬂ

E - ESC ON channel
F - FICON channel
O - OSA-Express channel

Figure 2-4 Recent system configuration

Many users still refer to these as “addresses” although the device numbers are
16-bit (2 bytes) arbitrary numbers between x'0000' and X’FFFF’. The newest
mainframes, at the time of writing, have two layers of I/O address translations
between the real I/O elements and the operating system software. The second
layer was added to make migration to newer systems easier.

Modern control units, especially for disks, often have multiple channel (or switch)
connections and multiple connections to their devices. They can handle multiple
data transfers at the same time on the multiple channels. Each disk device unit is
represented by a unit control block (UCB) in each z/OS image. The UCB is a
small piece of virtual storage describing the characteristics of a device to the
operating system and contains the device address to denote status as well as
tracking the progress of the I/O to the device. As an example, under certain
conditions if a disk device is busy servicing an I/0, another I/O to the same
device is queued up with a “device busy” condition recorded within the UCB.

Introduction to the New Mainframe: z/OS Basics

Attention: There is a feature to allow multiple I/Os to execute concurrently
against the same disk device without queuing. This functionality allows a
device to contain more than one access path using a base address along with
aliases. It is implemented through the Enterprise Storage System (ESS) using
a feature called Parallel Access Volumes (PAVSs).

e External device label

6830
e Four hex digits in range 0000-FFFF ' 6831
e Assigned by the system programmer
e Used in JCL, commands and messages

683F
FF00 @

- r§ 2000 [F 2008
[2001|2009

LPAR B u
Central Storage || ﬁ 2002 fh 200A
LPAR A [92003 [rig 2008

| [Fg2004 |pig200c

Central Storage

1 [F@2005 |Fig2000
ucB
2006 200E
2001 % 2007 2
FF02 200F
ucB
2000
ucB
183F V 200A,ONLINE
FFO3 C40 IEE3021 200A ONLINE

ra V 200B,0ONLINE

Figure 2-5 Device addressing

2.3.2 System control and partitioning

There are many ways to illustrate a mainframe’s internal structure, depending on
what we wish to emphasize. Figure 2-6 on page 50, while highly conceptual,
shows several of the functions of the internal system controls on current
mainframes. The internal controllers are microprocessors but use a much
simpler organization and instruction set than mainframe processors. They are
usually known as controllers to avoid confusion with mainframe processors.

Chapter 2. Mainframe hardware systems and high availability =~ 49

Logical
partition

A subset of the
processor
hardware that
is defined to
support an
operating
system.

| |
Specialized microprocessors for | |
internal control functions | |
! ! Memory
LPAR1 | LPAR2 I LPARS3
| |
| |
| |
m Control
vz System Contro
HMC SE \ CP CcP CP CcP Processors
PC ThinkPads
* \\ System Control
Located in operator area Located inside CEC but
can be used by operators
Channels
CHPID CHPID CHPID
CHPID CHPID CHPID CHPID

Figure 2-6 System control and partitioning

The IBM mainframe can be partitioned into separate logical computing systems.
System resources (memory, processors, 1/0 channels) can be divided or shared
among many such independent logical partitions (LPARs) under the control of
the LPAR hypervisor, which comes with the standard Processor Resource/
Systems Manager (PR/SM) feature on all mainframes. The hypervisor is a
software layer to manage multiple operating systems running in a single central
processing complex. The mainframe uses a Type 1 hypervisor. Each LPAR
supports an independent operating system (OS) loaded by a separate initial
program load (IPL) operation.

For many years there was a limit of 15 LPARs in a mainframe; today’s machines
can be configured with up to 60 logical partitions. Practical limitations of memory
size, I/0 availability, and available processing power usually limit the number of
LPARs to less than these maximums. Each LPAR is considered an isolated and
distinct server that supports an instance of an operating system (OS). The
operating system can be any version or release supported by the hardware. In
essence, a single mainframe can support the operation of several different OS
environments. See figure 2-7.

50 Introduction to the New Mainframe: z/OS Basics

Attention: A Type 1 (or native) hypervisor is software that runs directly on a
given hardware platform (as an operating system control program). A Type 2
(or hosted) hypervisor is software that runs within an operating system
environment such as VMware.

The interpretive-execution facility of the System z Hypervisor uses a special
instruction that provides for the machine's server virtualization. This
instruction, called START INTERPRETIVE EXECUTION (SIE), was initially
created for virtualizing System/370 or 370-XA architectures and was used
later for virtualizing ESA/370 and ESA/390 architectures. SIE has evolved with
the Processor Resource/Systems Manager (PR/SM) to provide capabilities for
a number of highly specialized performance environments.

CPUs
Storage
Channels
PAR PAR PAR;
O O inu
* % *\v1.99 fv1.7| | v4.
Upto
LPARs >

Figure 2-7 PR/SM architecture supports multiple operating systems

System administrators assign portions of memory to each LPAR; memory also
known as central storage (CSTOR) cannot be shared among LPARs. CSTOR in
past literature may also be referred to as main storage; it provides the system
with directly addressable, fast-access electronic storage of data. Both data and
programs must be loaded into central storage (from input devices) before they
can be processed by the CPU.

Chapter 2. Mainframe hardware systems and high availability =~ 51

52

Attention: Prior to the current storage addressing scheme (64-bit), z/OS used
another form of storage called Expanded Storage (ESTOR). This storage was
addressable in 4 KB blocks. Expanded storage was originally intended to
bridge the gap in cost and density between main storage and auxiliary storage
by serving as a high-speed backing media for paging and larger data buffers. It
is mentioned here for completeness since other operating systems on the
mainframe still use this form of storage.

The systems administrators can assign a number of dedicated or shared
processors to an LPAR. Each LPAR uses symmetric multi-processing (SMP) to
dispatch logical processors to physical processors.

Channels serve as a communication path from the mainframe to an external
device such as disk or tape. I/O devices are attached to the channel subsystem
through control units. The connection between the channel subsystem and a
control unit is called a channel path. Channels Path Identifiers (CHPIDs) are
assigned to specific LPARs or can be shared by multiple LPARs, depending on
the nature of the devices on each channel.

A mainframe with a single processor (CP processor) can serve multiple LPARs.
PR/SM has an internal dispatcher (hypervisor) that can allocate a portion of the
processor to each LPAR, much as an operating system dispatcher allocates a
portion of its processor time to each process, thread, or task. An LPAR can be
assigned one or more dedicated or shared processors. The latter is the usual
configuration.

Partitioning control specifications are in part contained in an input/output control
data set (IOCDS) and are partly contained in a system profile. The IOCDS and
profile both reside in the Support Element (SE), which is simply a notebook
computer inside the system. A support element (SE) is used for monitoring,
configuring hardware and operating a system. It is attached to the central
processor complex (CPC) of a system. A secondary SE is used for backup. See
Figure 2-8 on page 53.

Introduction to the New Mainframe: z/OS Basics

Figure 2-8 Primary and secondary Support Elements (SEs)
HMC

{\o ?rcl’gﬁict’('f} gf]%d The SE can be connected to one or more Hardware Management Consoles

control hardware (HMCs), which are desktop personal computers used to monitor and control
such as the hardware such as the mainframe microprocessors. See Figure 2-9. An HMC is

mainframe . ; :
MICrOprocessors. more convenient to use than an SE and can control several different mainframes.

Chapter 2. Mainframe hardware systems and high availability =~ 53

The A frame contains the CPC

The Z frame contains the SEs

Hardware
Management
Console

Network

v/

Figure 2-9 Hardware Management Console for a System z mainframe

The Hardware Management Console communicates with each Central
Processor Complex through the CPC’s Support Element. When tasks are
performed at the Hardware Management Console, the commands are sent to
one or more support elements, which then issue commands to their CPCs. An
HMC can support more than one CPC.

Working from an HMC, an operator prepares a mainframe for use by selecting
and loading a profile and an IOCDS. These create LPARs and configure the
channels with device numbers, LPAR assignments, multiple path information,
and so forth. This is known as a Power-on Reset (POR). By loading a different
profile and IOCDS, the operator can completely change the number and design
of LPARs and the appearance of the I/O configuration. In some circumstances
this can be non-disruptive to running operating systems and applications.

2.3.3 Characteristics of LPARs

Logical partitions are, in practice, equivalent to separate mainframes. Each
LPAR runs its own operating system. This can be any mainframe operating

54 Introduction to the New Mainframe: z/OS Basics

system; there is no need to run z/OS, for example, in each LPAR. The installation
planners may elect to share I/O devices across several LPARs, but this is a local
decision.

The system administrator can assign one or more system processors for the
exclusive use of an LPAR. Alternately, the administrator can allow all processors
to be used on some or all LPARs. Here, the system control functions (often
known as microcode or firmware) provide a dispatcher to share the processors
among the selected LPARs. The administrator can specify a maximum number of
concurrent processors executing in each LPAR. The administrator can also
provide weightings for different LPARSs; for example, specifying that LPAR1
should receive twice as much processor time as LPAR2.

The operating system in each LPAR is IPLed separately, has its own Copy3 of its
operating system, has its own operator console (if needed), and so forth. If the
system in one LPAR fails or is taken down for maintenance, it has no effect on the
other LPARs.

In Figure 2-7, for example, we might be running a production z/OS in LPART1, a
test version of z/VM in LPAR2, and Linux for System z in LPARS. If our total
system has 8 GB of memory, we might assign 4 GB to LPAR1, 1 GB to LPAR2,
1 GB to LPAR3, and keep 2 GB in reserve for future use. The operating system
consoles for the two z/OS LPARs might be in completely different locations.*

There is no practical difference between, for example, three separate
mainframes running z/OS (and sharing most of their I/O configuration) and three
LPARs on the same mainframe doing the same thing. Neither z/OS, nor the
operators, nor the applications can detect the difference, in general.

Minor differences include the ability of z/OS (if permitted when the LPARs were
defined) to obtain performance and utilization information across the complete
mainframe system and to dynamically shift resources (processors and channels)
among LPARs to improve performance.

Note: There is an implementation using a SYStem comPLEX (SYSPLEX)
where LPARs can communicate and collaborate sharing resources.

2.3.4 Consolidation of mainframes

There are fewer mainframes in use today than there were 20 years ago because
of corporate mergers and data center consolidations. In some cases,
applications were moved to other types of systems, since there is no such thing

3 Most, but not all, of the z/OS system libraries can be shared.
4 Linux does not have an operator console in the sense of the z/OS consoles.

Chapter 2. Mainframe hardware systems and high availability =~ 55

56

as a “one size fits all” solution. However, in most cases the reduced number is
due to consolidation. That is, several smaller mainframes have been replaced
with fewer but larger systems.

An additional reason for consolidation is that mainframe software (from many
vendors) can be expensive, often costing more than the mainframe hardware. It
is usually less expensive to replace multiple software licenses for smaller
machines with one or two licenses for larger machines. Software license costs
are often linked to the power of the system, yet the pricing curves favor a small
number of large machines.

Software license costs for mainframes have become a dominant factor in the
growth and direction of the mainframe industry. There are several factors that
make software pricing very difficult. We must remember that mainframe software
is not a mass market item like PC software. The growth of mainframe processing
power in recent years has been exponential rather than linear.

The relative power needed to run a traditional mainframe application (a batch job
written in COBOL, for example) is far less than the power needed for a new
application (with a GUI interface, written in C and Java). The consolidation effect
has produced very powerful mainframes. These might need only 1% of their
power to run an older application, but the application vendor often sets a price
based on the total power of the machine, even for older applications.

As an aid to consolidation, the mainframe offers software virtualization, through
z/VM. z/NM’s extreme virtualization capabilities, which have been perfected since
its introduction in 1967, make it possible to virtualize thousands of distributed
servers on a single server. IBM has conducted a very large consolidation project
named Project Big Green to consolidate approximately 3,900 distributed servers
into roughly 30 mainframes, using z/VM and Linux on System z. It achieved
reductions of over 80% in the use of space and energy. Similar results have been
described by clients, and these reductions directly translate into significant
monetary savings.

Mainframes require fewer staff when supporting hundreds of applications. Since
centralized computing is a major theme using the mainframe, many of the
configuration and support tasks are implemented by writing rules or creating a
policy that manages the infrastructure automatically. This is a tremendous
savings in time, resources, and cost.

Introduction to the New Mainframe: z/OS Basics

2.4 Processing units

z/Architecture
An IBM
architecture for
mainframe
computers and
peripherals. The
zSeries family
of servers uses
the
z/Architecture.

Figure 2-1 on page 42 lists several types of processors in a system. These are all
z/Architecture processors that can be used for different workload purposes®.
Several of which are related to software cost control, while others are more

fundamental.

All these start as equivalent processor units® (PUs) or engines. APU is a
processor that has not been characterized for use. Each of the processors
begins as a PU and is characterized by IBM during installation or at a later time.
The potential characterizations are:

» Central Processor (CP)

This is a processor available to the general operating system and application
software.

» System Assistance Processor (SAP)

Every modern mainframe has at least one SAP; larger systems may have
several. The SAPs execute internal code to drive the 1/O subsystem. An SAP,
for example, translates device numbers and real addresses of CHPIDs,
control unit addresses, and device numbers. It manages and schedules I/O
selecting an available path to control units. It also has a supplementary role
during error recovery. Operating systems and applications cannot detect
SAPs, and SAPs do not use any “normal” memory. SAPs are considered
co-processors or input /output processors (IOP) since you cannot IPL from
this engine type.

» Integrated Facility for Linux (IFL)

This is a processor used exclusively by a Linux LPAR or Linux running under
z/VM. The LPAR is IPLed only to run either operating environments. This
processor type is accompanied with special user licensing incentives. Since
these incentives reduce cost, they are not counted towards the overall
capacity of the machine.® This can make a substantial difference in software
costs.

Note: A Linux LPAR can use general central processors, but licensing
incentives do not apply.

5 Do not confuse these with the controller microprocessors. The processors discussed in this section
are full, standard mainframe processors.

6 This discussion applies to the current System z machines at the time of writing. Earlier systems had
fewer processor characterizations, and even earlier systems did not use these techniques.

7 IBM refers to this as Licensed Internal Code (LIC). It is often known as microcode (which is not
technically correct) or as firmware. It is not user code.

8 Some systems do not have different models; in this case a capacity model number is used.

Chapter 2. Mainframe hardware systems and high availability =~ 57

» z/OS Application Assist Processor (zAAP)

The z/OS Application Assist Processor (zAAP) is a special purpose processor
that costs less, allowing you to run Java applications at a reduced cost. You
can integrate and run e-business Java workloads on the same LPAR as your
database, helping to simplify and reduce the infrastructure required for Web
applications. zZAAP runs with general CPs in a z/OS LPAR. When Java code is
detected, z/OS switches that instruction set to the zAAP processor, freeing up
the general CP to perform other, non-Java, work. This potentially offers a
means to provide greater throughput. The zZAAP specialty engine is not
counted towards the capacity of the model machine.

With later versions of z/OS, all XML System Services validation and parsing
that execute in TCB mode (which is problem state mode as in most
application workloads), may be eligible for zAAP processing, meaning that
middleware and applications requesting z/OS XML System Services can
have z/OS XML System Services processing execute on the zAAP.

» 2/OS Integrated Information Processor (zIIP)

The z/OS Integrated Information Processor (zlIP) is a special purpose
processor that costs less, allowing you to optimize certain database workload
functions at a reduced cost, such as business intelligence (BI), enterprise
resource planning (ERP), and customer relationship management (CRM).
When certain database code is detected, z/OS switches that instruction set to
the zIIP processor, freeing up the general CP to perform other work. The zIIP
specialty engine runs with general CPs in a z/OS LPAR and is not counted
towards the capacity of a machine model.

z/OS Communications Server exploits the zIIP for eligible IPSec—see
http://www.ibm.com/developerworks/Tibrary/s-ipsec.html

network encryption workloads. Also, XML System Services are enabled to
take additional advantage of the zIIP for preemptable SRB®- eligible XML
workloads.

Attention: Specialty engines may be exploited further as new releases of
z/OS are announced.

» Integrated Coupling Facility (ICF)

The Integrated Coupling Facility processor is used exclusively the Coupling
Facility Control Code (CFCC) and is License Internal Code. A Coupling
Facility is, in effect, a large memory scratch pad used by multiple systems to
coordinate work by sharing resources between LPARs, or used for workload
balancing when configured for a Parallel Sysplex. ICFs must be assigned to

9 See 3.7.2, “Creating dispatchable units of work” on page 129 for a discussion of SRBs and TCBs.

58 Introduction to the New Mainframe: z/OS Basics

separate LPARs that then become Coupling Facilities. The ICFs are not
visible to normal operating systems or applications.

» Spare

An uncharacterized PU functions as a “spare.” If the system controllers detect
a failing CP or SAP, it can be replaced with a spare PU. In most cases this can
be done without any system interruption, even for the application running on
the failing processor.

» Various forms of Capacity on Demand (CoD) and similar arrangements exist

whereby a customer can enable additional CPs at certain times (for example,
unexpected peak loads or year-end processing requirements).

2.4.1 Subcapacity processors

Some mainframes have models that can be configured to operate slower than
the potential speed of their CPs. This is widely known as running subcapacity,
although IBM prefers the term capacity setting. Subcapacity processors allow
customers to choose a server sized to best meet business requirements. Smaller
incremental steps between capacity settings can allow customers to manage
their growth as well as their costs, in smaller increments. It is done by using
microcode to insert null cycles into the processor instruction stream. The
purpose, again, is to control software costs by having the minimum mainframe
model that meets the application requirements.

Specialty engines such as IFLs, SAPs, zAAPs, zIIPs and ICFs are not eligible for
this feature and always function at the full speed of the processor since these
processors “do not count” in software pricing calculations. 0

2.5 Multiprocessors

Multiprocessor
A CPC that can
be physically
partitioned to
form two
operating
processor
complexes.

All the earlier discussions and examples assume that more than one processor
(CP) is present in a system (and perhaps in an LPAR). It is possible to purchase
a current mainframe with a single processor (CP), but this is not a typical
system.11 The term multiprocessor means several processors (CP processors)
and implies that several processors are used by a copy of z/OS. The term also
refers to the ability of a system to support more than one processor and the
ability to allocate tasks between them.

10 This is true for IBM software but may not be true for all software vendors.

™ All current IBM mainframes also require at least one SAP, so the minimum system has two
processors: one CP and one SAP. However, the use of “processor” in the text usually means a CP
processor usable for applications. Whenever discussing a processor other than a CP, we always
make this clear.

Chapter 2. Mainframe hardware systems and high availability =~ 59

All operating systems today, from PCs to mainframes, can work in a
multiprocessor environment. However, the degree of integration of the multiple
processors varies considerably. For example, pending interrupts in a system (or
in an LPAR) can be accepted by any processor in the system (or working in the
LPAR). Any processor can initiate and manage I/O operations to any channel or
device available to the system or LPAR. Channels, I/O devices, interrupts, and
memory are owned by the system (or by the LPAR) and not by any specific
processor.

This multiprocessor integration appears simple on the surface, but its
implementation is complex. It is also important for maximum performance; the
ability of any processor to accept any interrupt sent to the system (or to the
LPAR) is especially important.

Each processor in a system (or in an LPAR) has a small private area of memory
(8 KB starting at real address 0 and always mapped to virtual address 0) that is
unique to that processor. This is the Prefix Storage Area (PSA) and is used for
instruction execution, interrupts, and error handling. A processor can access
another processor’s PSA through special programming, although this is normally
done only for error recovery purposes. A processor can interrupt other
processors by using a special instruction (SIGP, for Signal Processor).

2.6 Disk devices

IBM 3390 disk drives are commonly used on current mainframes. Conceptually,
this is a simple arrangement, as shown in Figure 2-10.

IBM 3390 Disk Uni

it
] owoso o000
Control Unit

channels

Figure 2-10 Initial IBM 3390 disk implementation

The associated control unit (3990) typically has up to four fibre channels
connected to one or more processors (probably with a switch), and the 3390 unit
typically has eight or more disk drives. Each disk drive has the characteristics
explained earlier. This illustration shows 3990 and 3390 units, and it also
represents the concept or architecture of current devices.

60 Introduction to the New Mainframe: z/OS Basics

The current equivalent device is an IBM 2105 Enterprise Storage Server,
simplistically illustrated in Figure 2-11.

IBM has a wide range of product offerings that are based on open standards and
that share a common set of tools, interfaces, and innovative features. The IBM
TotalStorage DS family and its member, the DS8000, gives customers the
freedom to choose the right combination of solutions for their current needs and
the flexibility to help infrastructure evolve as their needs change. The
TotalStorage DS family is designed to offer high availability and multi-platform
support all to help cost effectively adjust to an evolving business world.

Host Adapters (2 channel interfaces per adapter)

I o N S e
Lraf vl mallma] wafvaflma flma] [ra] naflea) e] v e en) e

| Common Interconnect (across clusters) |

Cluster Processor Complex Cluster Processor Complex
cache NVS cache NVS
DA DA DA DA DA DA DA DA
0 on nn N 0ol Llgn 0n
L T T 1T T 1T T T T 1T LI
RAID array —— M Device Adapters
RAID array

Figure 2-11 Current 3390 implementation

The 2105 unit is a very sophisticated device. It emulates a large number of
control units and 3390 disk drives. It contains up to 11 TB of disk space, has up
to 32 channel interfaces, 16 GB cache, and 284 MB of non-volatile memory
(used for write queueing). The Host Adapters appear as control unit interfaces
and can connect up to 32 channels (ESCON or FICON).

The physical disk drives are commodity SCSI-type units (although a serial
interface, known as SSA, is used to provide faster and redundant access to the
disks). A number of internal arrangements are possible, but the most common
involves many RAID 5 arrays with hot spares. Practically everything in the unit
has a spare or fallback unit. The internal processing (to emulate 3990 control
units and 3390 disks) is provided by four high-end RISC processors in two

Chapter 2. Mainframe hardware systems and high availability =~ 61

processor complexes; each complex can operate the total system. Internal
batteries preserve transient data during short power failures. A separate console
is used to configure and manage the unit.

The 2105 offers many functions not available in real 3390 units, including
FlashCopy, Extended Remote Copy, Concurrent Copy, Parallel Access Volumes,
Multiple Allegiance, a huge cache, and so forth.

A simple 3390 disk drive (with control unit) has different technology from the
2105 just described. However, the basic architectural appearance to software is
the same. This allows applications and system software written for 3390 disk
drives to use the newer technology with no revisions. '?

There have been several stages of new technology implementing 3390 disk
drives; the 2105 is the most recent of these. The process of implementing an
architectural standard (in this case the 3390 disk drive and associated control
unit) with newer and different technology while maintaining software compatibility
is characteristic of mainframe development. As we mentioned, maintaining
application compatibility over long periods of technology change is an important
characteristic of mainframes.

2.7 Clustering

62

Clustering has been done on mainframes since the early S/360 days, although
the term cluster is seldom used there. A clustering technique can be as simple as
a shared DASD configuration where manual control or planning is needed to
prevent unwanted data overlap.

Additional clustering techniques have been added over the years. In the following
paragraphs we discuss three levels of clustering: Basic Shared DASD, CTC
rings, and Parallel Sysplex. Most z/OS installations today use one or more of
these levels; a single z/OS installation is relatively rare.

In this discussion we use the term “image.” A z/OS server (with one or more
processors) is a z/OS image. A z/OS image might exist on a mainframe (with
other LPARS), or it might run under z/VM (a hypervisor operating system
mentioned in 1.10, “z/OS and other mainframe operating systems” on page 35).
A system with six LPARs—each a separate z/OS system—has six z/OS images.

2 5ome software enhancements are needed to use some of the new functions, but these are
compatible extensions at the operating system level and do not affect application programs.

Introduction to the New Mainframe: z/OS Basics

2.8 Basic shared DASD

A basic shared DASD environment is illustrated in Figure 2-12. The figure shows
z/OS images, but these could be any earlier version of the operating system. This
could be two LPARs in the same system or two separate systems; there is
absolutely no difference in the concept or operation.

Mainframe LPAR Mainframe LPAR
z/OS

Channels Channels

ol Unit Control Unit

Figure 2-12 Basic shared DASD

The capabilities of a basic shared DASD system are limited. The operating
systems automatically issue RESERVE and RELEASE commands to a DASD
before updating the volume table of contents (VTOC), or catalog. (As we discuss
in Chapter 5, “Working with data sets” on page 187, the VTOC and catalog are
structures that contain metadata for the DASD, indicating where various data
sets reside.) The RESERVE command limits access to the entire DASD to the
system issuing the command, and this lasts until a RELEASE command is
issued. These commands work well for limited periods (such as updating
metadata). Applications can also issue RESERVE/RELEASE commands to
protect their data sets for the duration of the application. This is not automatically
done in this environment and is seldom done in practice because it would lock
out other systems’ access to the DASD for too long.

A basic shared DASD system is typically used where the Operations staff
controls which jobs go to which system and ensures that there is no conflict such
as both systems trying to update the same data at the same time. Despite this
limitation, a basic shared DASD environment is very useful for testing, recovery,
and careful load balancing.

Chapter 2. Mainframe hardware systems and high availability =~ 63

Other types of devices or control units can be attached to both systems. For
example, a tape control unit, with multiple tape drives, can be attached to both
systems. In this configuration the operators can then allocate individual tape
drives to the systems as needed.

2.8.1 CTCrings

The channel-to-channel (CTC) function simulates an input/output (I/O) device
that can be used by one system control program (SCP) to communicate with
another system control program (SCP). It provides the data path and
synchronization for data transfer. When the CTC option is used to connect two
channels that are associated with different systems, a loosely coupled
multiprocessing system is established. The CTC connection, as viewed by either
of the channels it connects, has the appearance of an unshared input/output
(I/O) device.

Figure 2-13 shows the next level of clustering. This has the same shared DASD
as discussed previously, but also has two channel-to-channel (CTC) connections
between the systems. This is known as a CTC ring. (The ring aspect is more
obvious when more than two systems are involved.)

Mainframe LPAR Mainframe LPAR

z/OS

Channels Channels
L9 [@ []
Control Unit Control Unit
Can have

more Systems
? l in the CTC Ring

Figure 2-13 Basic sysplex

z/OS can use the CTC ring to pass control information among all systems in the
ring. The information that can be passed this way includes:

64 Introduction to the New Mainframe: z/OS Basics

CTC
connection

A connection
between two
CHPIDs on the
same or
different
processors,
either directly
or through a
switch.

» Usage and locking information for data sets on disks. This allows the system
to automatically prevent unwanted duplicate access to data sets. This locking
is based on JCL specifications provided for jobs sent to the system, as
explained in Chapter 6, “Using JCL and SDSF” on page 223.

» Job queue information such that all the systems in the ring can accept jobs
from a single input queue. Likewise, all systems can send printed output to a
single output queue.

» Security controls that allow uniform security decisions across all systems.

» Disk metadata controls so that RESERVE and RELEASE disk commands are
not necessary.

To a large extent, batch jobs and interactive users can run on any system in this
configuration because all disk data sets can be accessed from any z/OS image.
Jobs (and interactive users) can be assigned to whichever system is most lightly
loaded at the time.

When the CTC configurations were first used, the basic control information
shared was locking information. As we discussed in “Serializing the use of
resources” on page 133, the z/OS component doing this is called global resource
serialization function; this configuration is called a GRS ring. The primary
limitation of a GRS ring is the latency involved in sending messages around the
ring.

A different CTC configuration was used before the ring technique was developed.
This required two CTC connections from every system to every other system in
the configuration. When more than two or three systems were involved, this
became complex and required a considerable number of channels.

The earlier CTC configurations (every-system-to-every-system or a ring
configuration) were later developed into a basic sysplex configuration. This
includes control data sets on the shared DASD. These are used for consistent
operational specifications for all systems and to retain information over system
restarts.

Configurations with shared DASD, CTC connections, and shared job queues are
known as loosely coupled systems. (Multiprocessors, where several processors
are used by the operating system, are sometimes contrasted as tightly coupled
systems but this terminology is seldom used. These are also known as
Symmetrical MultiProcessors (SMPs); the SMP terminology is common with
RISC systems, but is not normally used for mainframes.)

Chapter 2. Mainframe hardware systems and high availability =~ 65

2.9 What is a sysplex?

A Systems Complex, commonly called a sysplex, is one or more (up to 32)
systems joined into a cooperative single unit using specialized hardware and
software. It uses unique messaging services to exchange status information and
can share special file structures contained within Coupling Facility (CF) data sets
(see 2.9.2, “What is a Coupling Facility?” on page 68).

A sysplex is an instance of a computer system running on one or more physical
partitions where each can run a different release of a z/OS operating system.
Sysplexes are often isolated to a single system, but Parallel Sysplex technology
allows multiple mainframes to act as one. It is a clustering technology that can
provide near-continuous availability.

A conventional large computer system also uses hardware and software
products that cooperate to process work. A major difference between a sysplex
and a conventional large computer system is the improved growth potential and
level of availability in a sysplex. A sysplex generally provides for resource sharing
between communicating systems (tape, consoles, catalogues, and so forth). The
sysplex increases the number of processing units and z/OS operating systems
that can cooperate, which in turn increases the amount of work that can be
processed. To facilitate this cooperation, new products were developed and past
products were enhanced.

2.9.1 Parallel Sysplex

Parallel
Sysplex

A sysplex that
uses one or
more Coupling
Facilities.

A Parallel Sysplex is a symmetric sysplex using multisystem data-sharing
technology. This is the mainframe’s clustering technology. It allows direct,
concurrent read/write access to shared data from all processing servers in the
configuration without impacting performance or data integrity. Each LPAR can
concurrently cache shared data in the CF processor memory through
hardware-assisted cluster-wide serialization and coherency controls.

As a result, when applications are “enabled” for this implementation, the
complete benefit of the Parallel Sysplex technology is made available. Work
requests that are associated with a single workload, such as business
transactions or database queries, can:

» Dynamically be balanced across systems with high performance
» Improve availability for both planned and unplanned outages

» Provide for system or application rolling-maintenance

» Offer scalable workload growth both vertically and horizontally

» View multiple-system environments as a single logical resource

66 Introduction to the New Mainframe: z/OS Basics

An important design aspect of a Parallel Sysplex is providing the synchronization
of the TOD clocks of multiple servers. This allows events occurring on different
servers to be properly sequenced in time. As an example, when multiple servers
update the same database and database reconstruction is necessary, all
updates are required to be time-stamped in proper sequence.

The Time-of-Day (TOD) clock was introduced as part of the System/370™
architecture to provide a high-resolution measure of real time, suitable for the
indication of date and time of day. The Sysplex Timer, also known as an external
time reference (ETR), was a separate piece of hardware that provides an
external master clock that can serve as the primary time reference with a link
connecting each server in the Parallel Sysplex to the Sysplex Timer.

In the past the Sysplex Timer was required to keep the TOD clocks of all
participating servers in synchronism with each other to within a small number of
microseconds. It was dictated by the fastest possible passing of data from one
server to another through the Coupling Facility (CF) structure.

Today's implementation uses a Server Time Protocol (STP), which is a
server-wide facility that is implemented in the Licensed Internal Code (LIC). STP
is a message-based protocol in which timekeeping information is passed over
externally defined coupling links between servers. STP presents a single view of
time to Processor Resource/Systems Manager (PR/SM), and is designed to
provide the capability for multiple mainframe servers to maintain time
synchronization with each other. It is the follow-on to the Sysplex Timer.

The Sysplex Timer distributed time to multiple servers in a star pattern. That is,
the Sysplex Timer was the star, and its time signals went out to all attached
servers. The signals from the Sysplex Timer are used to increment or step the
TOD clocks in the attached server. Unlike the Sysplex Timer, STP passes time
messages in layers, or strata. The top layer (stratum 1) distributes time
messages to the layer immediately below it (Stratum 2). Stratum 2 in turn
distributes time messages to Stratum 3 and so on.

In a timing network based on STP, a stratum is used as a means to define the
hierarchy of a server in the timing network. A Stratum 1 server is the highest level
in the hierarchy in the STP network.

Figure 2-14 on page 68 shows the hardware components of a Parallel Sysplex
that make up the key aspects in its architecture. It includes several system files or
data sets placed on direct access storage devices (DASD).

Chapter 2. Mainframe hardware systems and high availability =~ 67

{'ﬂ(
[| i

Mainframe Mainframe

Preferred Tin?:csk:fver
Time Server Stratum 2

Stratum 1

P1

Mainframe
(Business Class)

Coupling Mainframe Arbiter
Facility Stratum 2_ Stratur?l 2
A special

logical partition

that provides

high-speed

caching, list P3 P 4
processing,

faunn%{%cnkslr}ga A Represents Coupling Facility

sysplex. Figure 2-14 Sysplex hardware overview

2.9.2 What is a Coupling Facility?

A Parallel Sysplex relies on one or more Coupling Facilities (CFs). A Coupling
Facility enables high performance multisystem data sharing. The CF contains
one or more mainframe processors and a special license built-in operating
system.

A CF functions largely as a fast scratch pad. It is used for three purposes:

» Locking information that is shared among all attached systems

» Cache information (such as for a data base) that is shared among all attached
systems

» Data list information that is shared among all attached systems

2.9.3 Why use a Coupling Facility

z/0OS applications on different LPARs often need to access the same information,
sometimes to read it and other times to update it. Sometimes several copies of

68 Introduction to the New Mainframe: z/OS Basics

the data exist and with that comes the requirement of keeping all the copies
identical. If the system fails, customers need a way to preserve the data with the
most recent changes.

Linking a number of images together brings with it special importance, such as
how the servers communicate and how they cooperate to share resources.
These considerations affect the overall operation of z/OS systems.

Implementing a sysplex significantly changes the way z/OS systems will share
data. As the number of systems increases, it is essential to have an efficient
means to share data across systems. The Coupling Facility enables centrally
accessible, high performance data sharing for authorized applications, such as
subsystems and z/OS components, that are running in a sysplex. These
subsystems and components then transparently extend the benefits of data
sharing to their applications.

Use of the Coupling Facility (CF) significantly improves the viability of connecting
many z/OS systems in a sysplex to process work in parallel. Data validity is
controlled by a data management system such as IMS or DB2.

Within a single z/OS system, the data management system keeps track of which
piece of data is being accessed or changed by which application in the system. It
is the data management system’s responsibility to capture and preserve the most
recent changes to the data, in case of system failure. When two or more z/OS
systems share data, each system contains its own copy of a data management
system. Communication between the data management systems is essential.
Therefore, multi-system data sharing centers on high performance
communication to ensure data validity among multiple data management
systems requiring high-speed data accessing methods implemented through the
Coupling Facility feature.

The information in the CF resides in very large memory structures. A CF can be
standalone in a separate machine or contained in an LPAR using the special
engine type known as an Integrated Coupling Facility (ICF). Figure 2-15
illustrates a small Parallel Sysplex with two z/OS images. Again, this whole
configuration could be in three LPARs on a single system, in three separate
systems, or in a mixed combination.

Chapter 2. Mainframe hardware systems and high availability =~ 69

Separate
machine
or LPAR

Couplin
Facility

I I I
Control Unit

LA & T
Control Unit

88 ©

Figure 2-15 Parallel Sysplex

In many ways a Parallel Sysplex system appears as a single large system. It has
a single operator interface (that controls all systems). With proper planning and
operation, complex workloads can be shared by any or all systems in the Parallel
Sysplex, and recovery (by another system in the Parallel Sysplex) can be
automatic for many workloads.

Note: The Coupling Facility is usually illustrated as a triangle.

2.9.4 Clustering technologies for the mainframe

Parallel Sysplex technology helps to ensure continuous availability in today’s
large systems environments. A Parallel Sysplex allows the linking up to 32
servers with near linear scalability to create a powerful commercial processing
clustered system. Every server in a Parallel Sysplex cluster can be configured to
share access to data resources, and a “cloned” instance of an application might
run on every server.

70 Introduction to the New Mainframe: z/OS Basics

Parallel Sysplex design characteristics help businesses run continuously, even
during periods of dramatic change. Sysplex sites can dynamically add and
change systems in a sysplex, and configure the systems for no single points of
failure.

Through this state-of-the-art cluster technology, multiple z/OS systems can be
made to work in concert to more efficiently process the largest commercial
workloads.

Shared data clustering

Parallel Sysplex technology extends the strengths of IBM mainframe computers
by linking up to 32 servers with near linear scalability to create a powerful
commercial processing clustered system. Every server in a Parallel Sysplex
cluster has access to all data resources, and every “cloned” application can run
on every server. Using mainframe coupling technology, Parallel Sysplex
technology provides a “shared data” clustering technique that permits
multi-system data sharing with high performance read/write integrity.

This “shared data” (as opposed to “shared nothing”) approach enables
workloads to be dynamically balanced across servers in the Parallel Sysplex
cluster. It enables critical business applications to take advantage of the
aggregate capacity of multiple servers to help ensure maximum system
throughput and performance during peak processing periods. In the event of a
hardware or software outage, either planned or unplanned, workloads can be
dynamically redirected to available servers, thus providing near-continuous
application availability.

Nondisruptive maintenance

Another unique advantage of using Parallel Sysplex technology is the ability to
perform hardware and software maintenance and installation in a nondisruptive
manner.

Through data sharing and dynamic workload management, servers can be
dynamically removed from or added to the cluster, allowing installation and
maintenance activities to be performed while the remaining systems continue to
process work. Furthermore, by adhering to the IBM software and hardware
coexistence policy, software and/or hardware upgrades can be introduced one
system at a time. This capability allows customers to roll changes through
systems at a pace that makes sense for their business.

The ability to perform rolling hardware and software maintenance in a
nondisruptive manner allows business to implement critical business function
and react to rapid growth without affecting customer availability.

Chapter 2. Mainframe hardware systems and high availability =~ 71

2.10 Intelligent Resource Director

72

Intelligent Resource Director can be viewed as Stage 2 of Parallel Sysplex. Stage
1 provided facilities to let you share your data and workload across multiple
system images. As a result, applications that supported data sharing could
potentially run on any system in the sysplex, thus allowing you to move your
workload to where the processing resources were available.

However, not all applications support data sharing, and there are many
applications that have not been migrated to data sharing for various reasons. For
these applications, IBM has provided Intelligent Resource Director, which gives
you the ability to move the resource to where the workload is.

Intelligent Resource Director uses facilities in z7OS Workload Manager (WLM),
Parallel Sysplex, and PR/SM to help you derive greater value from your
mainframe investment. Compared to other platforms, z/OS with WLM already
provides benefits from the ability to drive a processor at 100% while still providing
acceptable response times for your critical applications. Intelligent Resource
Director amplifies this advantage by helping you make sure that all those
resources are being utilized by the right workloads, even if the workloads exist in
different logical partitions (LPARS).

Intelligent Resource Director is not actually a product or a system component;
rather, it consists of three separate but mutually supportive functions:

» WLM LPAR CPU Management

This provides a means to modify an LPAR weight13 to a higher value in order
to move logical CPUs to that LPAR that is missing its service level goal.

» Dynamic Channel-path Management (DCM)

Dynamic Channel-path Management is designed to dynamically adjust the
channel configuration in response to shifting workload patterns.

DCM is implemented by exploiting functions in software components, such as
WLM, I/O, and Hardware Configuration. This supports DASD controllers in
order to have the system automatically manage the number of I/O paths
available to Disk devices.

» Channel Subsystem I/O Priority Queueing (CSS I0PQ)

z/OS uses this function to dynamically manage the channel subsystem
priority of I/O operations for given workloads based on the performance goals
for these workloads as specified in the WLM policy.

3 LPAR weight is the amount of processor allocated to an image when there is competition for
resources.

Introduction to the New Mainframe: z/OS Basics

The Channel Subsystem 1/O Priority Queueing works at the channel
subsystem level, and affects every 1/O request (for every device, from every
LPAR) on the CPC.

Note: I/O prioritization occurs in a microcode queue within the System
Assist Processor (SAP).

2.11 Typical mainframe system growth

An integral characteristic of the mainframe is extensibility. This is a system
design principle where the implementation takes into consideration future ease of
growth to extend a system's infrastructure. Extensions can be through the
addition of new functionality or through modification of existing functionality. The
central objective is to provide for change while minimizing impact to existing
system functions. Throughout this publication you will see this design theme.

Today’s mainframe supports size and capacity in various ways. It is difficult to
provide a definitive set of guidelines to portray what are considered small,
medium, or large mainframe shops, since infrastructure upgrades can be readily
made.

IBM further enhances the capabilities of the mainframe by optimized capacity
settings with subcapacity central processors—great granularity with subcapacity
engines and high scalability with up to 64 engines on a single server. Here are a
few other examples:

» Customer Initiated Upgrade (CIU). The CIU feature enables a customer to
order permanent capacity upgrades rapidly and download them without
disrupting applications already running on the machine. When extra
processing power becomes necessary, an administrator simply uses a
two-step process:

a. Navigates to special Web-based link to order an upgrade

b. Uses the Remote Service Facility on the Hardware Management Console
to download and activate preinstalled inactive processors
(uncharacterized engines) or memory.

» On/Off Capacity on Demand (On/Off CoD). Available through CIU, On/Off
CoD is used for temporary increases in processor capacity. With temporary
processor capacity, customers manage both predictable and unpredictable
surges in capacity demands. They can activate and deactivate quickly and
efficiently as the demands on their organization dictate to obtain additional
capacity they need, when they need it, and the machine will keep track of its
usage. On/Off CoD provides a cost-effective strategy for handling seasonal or
period-end fluctuations in activity and may enable customers to deploy pilot

Chapter 2. Mainframe hardware systems and high availability =~ 73

applications without investing in new hardware. Free tests are available for
this feature.

Capacity Backup (CBU). Customers can use CBU to add temporary
processing capacity to a backup machine in the event of an unforeseen loss
of server capability because of an emergency. With CBU, customers can
divert entire workloads to backup servers for up to 90 days.

2.12 Continuous availability of mainframes

74

Parallel Sysplex technology is an enabling technology, allowing highly reliable,
redundant, and robust mainframe technologies to achieve near-continuous
availability. A properly configured Parallel Sysplex cluster is designed to remain
available to its users and applications with minimal downtime, for example:

>

Hardware and software components provide for concurrency to facilitate
non-disruptive maintenance, like Capacity Upgrade on Demand, which allows
processing or coupling capacity to be added one engine at a time without
disruption to running workloads. In addition, CP sparing is used if there is a
processor failure, where another processor is brought online transparently.

DASD subsystems employ disk mirroring or RAID technologies to help protect
against data loss, and exploit technologies to enable point-in-time backup,
without the need to shut down applications.

Networking technologies deliver functions such as VTAM Generic Resources,
Multi-Node Persistent Sessions, Virtual IP Addressing, and Sysplex
Distributor to provide fault-tolerant network connections.

I/O subsystems support multiple 1/0 paths and dynamic switching to prevent
loss of data access and improved throughput.

z/0OS software components allow new software releases to coexist with lower
levels of those software components to facilitate rolling maintenance.

Business applications are “data sharing-enabled” and cloned across servers
to allow workload balancing to prevent loss of application availability in the
event of an outage.

Operational and recovery processes are fully automated and transparent to
users, and reduce or eliminate the need for human intervention.

z/OS has a Health Checker to assist in avoiding outages. This uses “best
practices,” identifying potential problems before they impact availability. It
produces output in the form of detailed messages and offers suggested
actions.

Introduction to the New Mainframe: z/OS Basics

Parallel Sysplex is a way of managing this multi-system environment, providing
such benefits as:

“No single points of failure” on page 75

“Capacity and scaling” on page 76

“Dynamic workload balancing” on page 76

“Ease of use” on page 77

“Single system image” on page 79

“Compatible change and non-disruptive growth” on page 80
“Application compatibility” on page 80

“Disaster recovery” on page 81

vVVyVYyVYVYVYYVvYYyY

These benefits are described in the remaining sections of this chapter.

2.12.1 No single points of failure

In a Parallel Sysplex cluster, it is possible to construct a parallel processing
environment with no single points of failure. Because all of the systems in the
Parallel Sysplex can have concurrent access to all critical applications and data,
the loss of a system due to either hardware or software failure does not
necessitate loss of application availability.

Peer instances of a failing subsystem executing on remaining healthy system
nodes can take over recovery responsibility for resources held by the failing
instance. Alternatively, the failing subsystem can be automatically restarted on
still-healthy systems using automatic restart capabilities to perform recovery for
work in progress at the time of the failure. While the failing subsystem instance is
unavailable, new work requests can be redirected to other data-sharing
instances of the subsystem on other cluster nodes to provide continuous
application availability across the failure and subsequent recovery. This provides
the ability to mask planned as well as unplanned outages to the end user.

Because of the redundancy in the configuration, there is a significant reduction in
the number of single points of failure. Without a Parallel Sysplex, the loss of a
server could severely impact the performance of an application, as well as
introduce system management difficulties in redistributing the workload or
reallocating resources until the failure is repaired. In an Parallel Sysplex
environment, it is possible that the loss of a server may be transparent to the
application, and the server workload can be redistributed automatically within the
Parallel Sysplex with little performance degradation. Therefore, events that
otherwise would seriously impact application availability, such as failures in
central processor complex (CPC) hardware elements or critical operating system
components, would, in a Parallel Sysplex environment, have reduced impact.

Even though they work together and present a single image, the nodes in a
Parallel Sysplex cluster remain individual systems, making installation, operation,

Chapter 2. Mainframe hardware systems and high availability =~ 75

and maintenance non-disruptive. The system programmer can introduce
changes, such as software upgrades, one system at a time, while the remaining
systems continue to process work. This allows the mainframe IT staff to roll
changes through its systems on a schedule that is convenient to the business.

2.12.2 Capacity and scaling

The Parallel Sysplex environment can scale nearly linearly from 2 to 32 systems.
This can be a mix of any servers that support the Parallel Sysplex environment.
The aggregate capacity of this configuration meets every processing requirement
known today.

The mainframe offers subcapacity settings for general CPs. If you do not need
the full strength of a full cycle CP, you have the option for a smaller setting. There
are ranges of subcapacity settings, as defined by the model of the machine, and
they are priced accordingly.

2.12.3 Dynamic workload balancing

76

The entire Parallel Sysplex cluster can be viewed as a single logical resource to
end users and business applications. Just as work can be dynamically distributed
across the individual processors within a single SMP server, so too, can work be
directed to any node in a Parallel Sysplex cluster having available capacity. This
avoids the need to partition data or applications among individual nodes in the
cluster or to replicate databases across multiple servers.

Workload balancing also permits a business to run diverse applications across a
Parallel Sysplex cluster while maintaining the response levels critical to a
business. The mainframe IT director selects the service level agreements
required for each workload, and the workload management (WLM) component of
z/08S, along with subsystems such as CP/SM or IMS, automatically balances
tasks across all the resources of the Parallel Sysplex cluster to meet these
business goals. The work can come from a variety of sources, such as batch,
SNA, TCP/IP, DRDA, or WebSphere MQ.

There are several aspects to consider for recovery. First, when a failure occurs, it
is important to bypass it by automatically redistributing the workload to utilize the
remaining available resources. Secondly, it is necessary to recover the elements
of work that were in progress at the time of the failure. Finally, when the failed
element is repaired, it should be brought back into the configuration as quickly
and transparently as possible to again start processing the workload. Parallel
Sysplex technology enables all this to happen.

Introduction to the New Mainframe: z/OS Basics

Workload distribution

After the failing element has been isolated, it is necessary to non-disruptively
redirect the workload to the remaining available resources in the Parallel Sysplex.
In the event of failure in the Parallel Sysplex environment, the online transaction
workload is automatically redistributed without operator intervention.

Generic resource management

Generic resource management provides the ability to specify to VTAM a common
network interface. This can be used for CICS terminal owning regions (TORs),
IMS Transaction Manager, TSO, or DB2 DDF work. If one of the CICS TORs fails,
for example, only a subset of the network is affected. The affected terminals are
able to immediately log on again and continue processing after being connected
to a different TOR.

2.12.4 Ease of use

The Parallel Sysplex solution satisfies a major customer requirement for
continuous 24-hour-a-day, 7-day-a-week availability, while providing techniques
for achieving simplified Systems Management consistent with this requirement.
Some of the features of the Parallel Sysplex solution that contribute to increased
availability also help to eliminate some Systems Management tasks. Examples
include:

» “Workload management (WLM) component” on page 77
» “Sysplex Failure Manager (SFM)” on page 78

» “Automatic Restart Manager (ARM)” on page 78

» “Cloning and symbolics” on page 78

» “z/OS resource sharing” on page 79

Workload management (WLM) component

The idea of z/ OS Workload Manager is to make a contract between the
installation (end user) and the operating system. The installation classifies the
work running on the z/OS operating system in distinct service classes and
defines goals for them that express the expectation of how the work should
perform. WLM uses these goal definitions to manage the work across all
systems.

The workload management (WLM) component of z/OS provides sysplex-wide
throughput management capabilities based on installation-specified performance
policy goals written as rules. These rules define the business importance of the
workloads. WLM attains the performance goals through dynamic resource
distribution. This is one of the major strengths of z/OS.

Chapter 2. Mainframe hardware systems and high availability 77

ARM

A system
recovery
function that
improves the
availability of
batch jobs and
started tasks.

WLM provides the Parallel Sysplex cluster with the intelligence to determine
where work needs to be processed and in what priority. The priority is based on
the customer's business goals and is managed by sysplex technology.

Sysplex Failure Manager (SFM)

The Sysplex Failure Management policy allows the installation to specify failure
detection intervals and recovery actions to be initiated in the event of the failure
of a system in the sysplex.

Without SFM, when one of the systems in the Parallel Sysplex fails, the operator
is notified and prompted to take some recovery action. The operator may choose
to partition the non-responding system from the Parallel Sysplex, or to take some
action to try to recover the system. This period of operator intervention might tie
up critical system resources required by the remaining active systems. Sysplex
Failure Manager allows the installation to code a policy to define the recovery
actions to be initiated when specific types of problems are detected, such as
fencing off the failed image that prevents access to shared resources, logical
partition deactivation, or central storage and expanded storage acquisition, to be
automatically initiated following detection of a Parallel Sysplex failure.

Automatic Restart Manager (ARM)

Automatic Restart Manager enables fast recovery of subsystems that might hold
critical resources at the time of failure. If other instances of the subsystem in the
Parallel Sysplex need any of these critical resources, fast recovery will make
these resources available more quickly. Even though automation packages are
used today to restart the subsystem to resolve such deadlocks, ARM can be
activated closer to the time of failure.

ARM reduces operator intervention in the following areas:
» Detection of the failure of a critical job or started task

» Automatic restart after a started task or job failure

After an abend of a job or started task, the job or started task can be restarted
with specific conditions, such as overriding the original JCL or specifying job
dependencies, without relying on the operator.

» Automatic redistribution of work to an appropriate system following a system
failure

This removes the time-consuming step of human evaluation of the most
appropriate target system for restarting work

Cloning and symbolics

Cloning refers to replicating the hardware and software configurations across the
different physical servers in the Parallel Sysplex. That is, an application that is

78 Introduction to the New Mainframe: z/OS Basics

going to take advantage of parallel processing might have identical instances
running on all images in the Parallel Sysplex. The hardware and software
supporting these applications could also be configured identically on all systems
in the Parallel Sysplex to reduce the amount of work required to define and
support the environment.

The concept of symmetry allows new systems to be introduced and enables
automatic workload distribution in the event of failure or when an individual
system is scheduled for maintenance. It also reduces the amount of work
required by the system programmer in setting up the environment. Note that
symmetry does not preclude the need for systems to have unique configuration
requirements, such as the asymmetric attachment of printers and
communications controllers, or asymmetric workloads that do not lend
themselves to the parallel environment.

System symbolics are used to help manage cloning. z/OS provides support for
the substitution values in startup parameters, JCL, system commands, and
started tasks. These values can be used in parameter and procedure
specifications to allow unique substitution when dynamically forming a resource
name.

z/OS resource sharing

A number of base z/OS components have discovered that the IBM Coupling
Facility shared storage provides a medium for sharing component information for
the purpose of multi-system resource management. This exploitation, called IBM
z/OS Resource Sharing, enables sharing of physical resources such as files,
tape drives, consoles, and catalogs with improvements in cost, performance, and
simplified systems management. This is not to be confused with Parallel Sysplex
data sharing by the database subsystems. Resource Sharing delivers immediate
value even for customers who are not leveraging data sharing, through native
system exploitation delivered with the base z/OS software stack.

One of the goals of the Parallel Sysplex solution is to provide simplified systems
management by reducing complexity in managing, operating, and servicing a
Parallel Sysplex, without requiring an increase in the number of support staff and
without reducing availability.

2.12.5 Single system image

Even though there could be multiple servers and z/OS images in the Parallel
Sysplex and a mix of different technologies, the collection of systems in the
Parallel Sysplex should appear as a single entity to the operator, the end user,
the database administrator, and so on. A single system image brings reduced
complexity from both operational and definition perspectives.

Chapter 2. Mainframe hardware systems and high availability ~ 79

Single point of
control

A sysplex
characteristic;
when you can
accomplish a
given set of
tasks from a
single
workstation.

Regardless of the number of system images and the complexity of the underlying
hardware, the Parallel Sysplex solution provides for a single system image from
several perspectives:

» Data access, allowing dynamic workload balancing and improved availability

» Dynamic Transaction Routing, providing dynamic workload balancing and
improved availability

» End-user interface, allowing logon to a logical network entity

» Operational interfaces, allowing easier Systems Management

Single point of control

It is a requirement that the collection of systems in the Parallel Sysplex can be
managed from a logical single point of control. The term “single point of control”
means the ability to access whatever interfaces are required for the task in
question, without reliance on a physical piece of hardware. For example, in a
Parallel Sysplex of many systems, it is necessary to be able to direct commands
or operations to any system in the Parallel Sysplex, without the necessity for a
console or control point to be physically attached to every system in the Parallel
Sysplex.

Persistent single system image across failures

Even though individual hardware elements or entire systems in the Parallel
Sysplex fail, a single system image must be maintained. This means that, as with
the concept of single point of control, the presentation of the single system image
is not dependent on a specific physical element in the configuration. From the
end-user point of view, the parallel nature of applications in the Parallel Sysplex
environment must be transparent. An application should be accessible
regardless of which physical z/OS image supports it.

2.12.6 Compatible change and non-disruptive growth

A primary goal of Parallel Sysplex is continuous availability. Therefore, it is a
requirement that changes such as new applications, software, or hardware can
be introduced non-disruptively, and that they be able to coexist with current
levels. In support of compatible change, the hardware and software components
of the Parallel Sysplex solution will allow the coexistence of two levels, that is,
level N and level N+1. This means, for example, that no IBM software product will
make a change that cannot be tolerated by the previous release.

2.12.7 Application compatibility

A design goal of Parallel Sysplex clustering is that no application changes be
required to take advantage of the technology. For the most part, this has held

80 Introduction to the New Mainframe: z/OS Basics

true, although some affinities need to be investigated to get the maximum
advantage from the configuration.

From the application architects’ point of view, three major points might lead to the
decision to run an application in a Parallel Sysplex:

» Technology benefits

Scalability (even with non-disruptive upgrades), availability, and dynamic
workload management are tools that enable an architect to meet customer
needs in cases where the application plays a key role in the customer’s
business process. With the multisystem data sharing technology, all
processing nodes in a Parallel Sysplex have full concurrent read/write access
to shared data without affecting integrity and performance.

» Integration benefits

Since many applications are historically S/390- and z/OS-based, new
applications on z/OS get performance and maintenance benefits, especially if
they are connected to existing applications.

» Infrastructure benefits

If there is already an existing Parallel Sysplex, it needs very little infrastructure
work to integrate a new application. In many cases the installation does not
need to integrate new servers. Instead it can leverage the existing
infrastructure and make use of the strengths of the existing sysplex. With
Geographically Dispersed Parallel Sysplex (GDPS)—connecting multiple
sysplexes in different locations—the mainframe IT staff can create a
configuration that is enabled for disaster recovery.

2.12.8 Disaster recovery

GDPS

An application
that improves
application
availability and
disaster
recovery in a
Parallel
Sysplex.

Geographically Dispersed Parallel Sysplex (GDPS) is the primary disaster
recovery and continuous availability solution for a mainframe-based multi-site
enterprise. GDPS automatically mirrors critical data and efficiently balances
workload between the sites.

GDPS also uses automation and Parallel Sysplex technology to help manage
multi-site databases, processors, network resources and storage subsystem
mirroring. This technology offers continuous availability, efficient movement of
workload between sites, resource management, and prompt data recovery for
business-critical mainframe applications and data. With GDPS, the current
maximum distance between the two sites is 100km (about 62 miles) of fiber,
although there are some other restrictions. This provides a synchronous solution
that helps to ensure no loss of data.

Chapter 2. Mainframe hardware systems and high availability =~ 81

There is also GDPS/XRC, which can be used over extended distances and
should provide a recovery point objective of less than two minutes (that is, a
maximum of two minutes of data would need to be recovered or is lost). This
disaster recovery (DR) solution across two sites can be separated by virtually
unlimited distance.

Today’s DR implementations provide several types of offerings, including two and
three site solutions. The code has been developed and enhanced over a number
of years, to exploit new hardware and software capabilities, to reflect best
practices based on IBM’s experience with GDPS customers since its inception,
and to address the constantly changing requirements of clients.

2.13 Summary

zAAP/zIIP
Specialized
processing
assist units
configured for
running
selective
programming
on the
mainframe

Being aware of various meanings of the terms systems, processors, CPs, and so
forth is important for your understanding of mainframe computers. The original
S/360 architecture, based on CPUs, memory, channels, control units, and
devices, and the way these are addressed, is fundamental to understanding
mainframe hardware—even though almost every detail of the original design has
been changed in various ways. The concepts and terminology of the original
design still permeate mainframe descriptions and designs.

The ability to partition a large system into multiple smaller systems (LPARs) is
now a core requirement in practically all mainframe installations. The flexibility of
the hardware design, allowing any processor (CP) to access and accept
interrupts for any channel, control unit, and device connected to a given LPAR,
contributes to the flexibility, reliability, and performance of the complete system.
The availability of a pool of processors (PUs) that can be configured (by IBM) as
customer processors (CPs), I/0 processors (SAPs), dedicated Linux processors
(IFLs), dedicated Java-type processors (zZAAPs), specialized services for
DB2/XML (zlIPs) and spare processors is unique to mainframes and, again,
provides great flexibility in meeting customer requirements. Some of these
requirements are based on the cost structures of some mainframe software.

In addition to the primary processors just mentioned (the PUs, and all their
characterizations), mainframes have a network of controllers (special
microprocessors) that control the system as a whole. These controllers are not
visible to the operating system or application programs.

Since the early 1970s mainframes have been designed as multiprocessor
systems, even when only a single processor is installed. All operating system
software is designed for multiple processors; a system with a single processor is
considered a special case of a general multiprocessor design. All but the

82 Introduction to the New Mainframe: z/OS Basics

smallest mainframe installations typically use clustering techniques, although
they do not normally use the terms cluster or clustering.

As stated previously, a clustering technique can be as simple as a shared DASD
configuration where manual control or planning is needed to prevent unwanted
data overlap. More common today are configurations that allow sharing of locking
and enqueueing controls among all systems. Among other benefits, this
automatically manages access to data sets so that unwanted concurrent usage
does not occur.

The most sophisticated of the clustering techniques is a Parallel Sysplex. This
technology allows the linking up to 32 servers with near linear scalability to create
a powerful commercial processing clustered system. Every server in a Parallel
Sysplex cluster has access to all data resources, and every “cloned” application
can run on every server. When used with coupling technology, Parallel Sysplex
provides a “shared data” clustering technique that permits multi-system data
sharing with high performance read/write integrity. Sysplex design characteristics
help businesses to run continuously, even during periods of dramatic change.
Sysplex sites can dynamically add and change systems in a sysplex, and
configure the systems for no single points of failure.

Through this state-of-the-art cluster technology, multiple z/OS systems can be
made to work in concert to more efficiently process the largest commercial
workloads.

Key terms in this chapter

Automatic Restart
Manager (ARM)

central processing
complex (CPC)

central processing unit
(CPU)

channel path identifier
(CHPID)

channel-to-channel (CTC)
connection

Coupling Facility

ESCON channel

Geographically Dispersed
Parallel Sysplex (GDPS)

hardware management
console (HMC)

logical partition (LPAR)

multiprocessor

Parallel Sysplex

single point of control

z/Architecture

System z Specialty
Processors.

Chapter 2. Mainframe hardware systems and high availability =~ 83

2.14 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:
1. Why does software pricing for mainframes seem so complex?

2. Why does IBM have so many models (or “capacity settings”) in recent
mainframe machines?

3. Why doesn’t the power needed for a traditional COBOL application have a
linear relationship with the power needed for a new Java application?

4. Multiprocessor means several processors (and that these processors are
used by the operating system and applications). What does
multiprogramming mean?

5. What are the differences between loosely coupled systems and tightly
coupled systems?

6. What z/OS application changes are needed to work in a Parallel Sysplex?
7. How do specialty processors help applications?
8. How do disaster recovery solutions benefit a global business?

2.15 Topics for further discussion

Visit a mainframe installation if this can be arranged. The range of new, older,
and much older systems and devices found in a typical installation is usually
interesting and helps to illustrate the sense of continuity that is so important to
mainframe customers.

1. What are the advantages of a Parallel Sysplex presenting a single image
externally? Are there any disadvantages?

2. Why is continuous availability required in today’s marketplace?

3. How might someone justify the cost of the “redundant” hardware and the cost
of the software licences required to build a Parallel Sysplex?

2.16 EXxercises

1. To display the CPU configuration:

a. Access SDSF from the ISPF primary option menu.
b. In the command input field, enter /D M=CPU and press Enter.
c. Use the ULOG option in SDSF to view the command display result.

84 Introduction to the New Mainframe: z/OS Basics

2. To display the page data set usage:

a. Inthe command input field, enter /D ASM and press Enter.
b. Press PF3 to return to the previous screens.

3. To display information about the current Initial Program Load (IPL)
a. Use ULOG option in SDSF to view the command display result.
b. In the command input field, enter /D IPLINFO and press Enter.

Attention: The forward slash is the required prefix for entering operator
commands in SDSF.

Chapter 2. Mainframe hardware systems and high availability =~ 85

86 Introduction to the New Mainframe: z/OS Basics

z/OS overview

2

>

>

>

>

Objective: As the newest member of your company’s mainframe IT group,
you will need to know the basic functional characteristics of the mainframe
operating system. The operating system taught in this course is z/OS, a widely
used mainframe operating system. z/OS is known for its ability to serve
thousands of users concurrently and for processing very large workloads in a
secure, reliable, and expedient manner.

After completing this chapter, you will be able to:

List several defining characteristics of the z/OS operating system.

Give examples of how z/OS differs from a single-user operating system.
List the major types of storage used by z/OS.

Explain the concept of virtual storage and its use in z/OS.

State the relationship between pages, frames, and slots.

List several software products used with z/OS to provide a complete
system.

Describe several differences and similarities between the z/OS and UNIX
operating systems.

© Copyright IBM Corp. 2006, 2009. All rights reserved. 87

3.1 What is an operating system?

In simplest terms, an operating system is a collection of programs that manage
the internal workings of a computer system. Operating systems are designed to
make the best use of the computer’s various resources, and ensure that the
maximum amount of work is processed as efficiently as possible. Although an
operating system cannot increase the speed of a computer, it can maximize its
use, thereby making the computer seem faster by allowing it to do more work in a
given period of time.

A computer’s architecture consists of the functions the computer system
provides. The architecture is distinct from the physical design, and, in fact,
different machine designs might conform to the same computer architecture. In a
sense, the architecture is the computer as seen by the user, such as a system
programmer. For example, part of the architecture is the set of machine
instructions that the computer can recognize and execute. In the mainframe
environment, the system software and hardware comprise a highly advanced
computer architecture, the result of decades of technological innovation.

3.2 What is z/0S?

88

The operating system we discuss in this course is z/0S', a widely used
mainframe operating system. z/OS is designed to offer a stable, secure,
continuously available, and scalable environment for applications running on the
mainframe.

z/OS today is the result of decades of technological advancement. It evolved
from an operating system that could process only a single program at a time to
an operating system that can handle many thousands of programs and
interactive users concurrently. To understand how and why z/OS functions as it
does, it is important to understand some basic concepts about z/OS and the
environment in which it functions. This chapter introduces some of the concepts
that you will need to understand the z/OS operating system.

In most early operating systems, requests for work entered the system one at a
time. The operating system processed each request or job as a unit, and did not
start the next job until the one being processed had completed. This
arrangement worked well when a job could execute continuously from start to
completion. But often a job had to wait for information to be read in from, or
written out to, a device such as a tape drive or printer. Input and output (I/O) take

1 z/0S is designed to take advantage of the IBM System z architecture, or z/Architecture, which was
introduced in the year 2000. The z in the name was selected because these systems often have zero
downtime.

Introduction to the New Mainframe: z/OS Basics

a long time compared to the electronic speed of the processor. When a job
waited for 1/O, the processor was idle.

Finding a way to keep the processor working while a job is waiting would
increase the total amount of work the processor could do without requiring
additional hardware. z/OS gets work done by dividing it into pieces and giving
portions of the job to various system components and subsystems that function
interdependently. At any point in time, one component or another gets control of
the processor, makes its contribution, and then passes control along to a user
program or another component.

The z/OS operating system is a share-everything runtime environment that
provides for resource sharing through its heritage of virtualization technology. It
uses special hardware and software to access and control the use of those
resources, ensuring that there is very little underutilization of components.

3.2.1 Hardware resources used by z/0S

The z/OS operating system executes in a processor and resides in processor
storage during execution. z/OS is commonly referred to as the system software
or base control program (BCP).

Mainframe hardware consists of processors and a multitude of peripheral
devices such as disk drives (called direct access storage devices or DASD),
magnetic tape drives, and various types of user consoles; see Figure 3-1. Tape
and DASD are used for system functions and by user programs executed by
z/OS.

Today’s z/OS provides a new disk device geometry called Extended Address
Volume (EAV) that enables support for over 223 gigabytes (262,668 cylinders)
per disk volume in its initial offering. This helps many larger customer’s having
the 4-digit device number limitation to begin consolidation of disk farms.

The mainframe offers several types of /0 adapter cards that include open
standards, allowing flexibility for configuring high bandwidth for any device type.

All hardware components offer built-in redundancy, ensuring reliability and
availability, from memory sparing to cooling units. Today’s mainframe also has
capacity provisoning capability to monitor z/OS utilization of system workloads.
This feature allows CPUs to be turned on and off dynamically.

Chapter 3. z/OS overview 89

z/OS

S
Hardware Master Console
(controls mainframe hardware)

Mainframe computer

(CPU, processor
storage)

operator console
(controls z/OS)

DASD controller

disk storage
(DASD volumes)

tape drive

tape cartridges

Figure 3-1 Hardware resources used by z/0S

90

To fulfill a new order for a z/OS system, IBM ships the system code to the
customer through the Internet or (depending on customer preference) on

physical tape cartridges. At the customer site, a person such as the z/OS system

programmer receives the order and copies the new system to DASD volumes.
After the system is customized and ready for operation, system consoles are

required to start and operate the z/OS system.

The z/OS operating system is designed to make full use of the latest IBM
mainframe hardware and its many sophisticated peripheral devices. Figure 3-1

presents a simplified view of mainframe concepts that we build upon throughout

this course:

» Software - The z/OS operating system consists of load modules or executable

code. During the install process, the system programmer copies these load
modules to load libraries (files) residing on DASD volumes.

» Hardware - The system hardware consists of all the channels?, control units®,

devices, and processors that constitute a mainframe environment.

2 A channel is the communication path from the channel subsystem to the connected control unit and

1/0O devices.

3 A control unit provides the logical capabilities necessary to operate and control an 1/O device.

Introduction to the New Mainframe: z/OS Basics

» Peripheral devices - These include tape drives, DASD, and consoles. There
are many other types of devices, some of which were discussed in Chapter 2,
“Mainframe hardware systems and high availability” on page 41.

» Processor storage - Often called real or central storage (or memory), this is
where the z/OS operating system executes. Also, all user programs share the
use of processor storage with the operating system.

Figure 3-1 is not a detailed picture. Not shown, for example, are the hardware
control units that connect the mainframe to the other tape drives, and consoles.

Related reading: The standard reference for descriptions of the major facilities
of z/Architecture is the IBM publication z/Architecture Principles of Operation.
You can find this and related publications at the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

3.2.2 Multiprogramming and multiprocessing

Multi-
programming
Executing
many
programs
concurrently.

The earliest operating systems were used to control single-user computer
systems. In those days, the operating system would read in one job, find the data
and devices the job needed, let the job run to completion, and then read in
another job. In contrast, the computer systems that z/OS manages are capable
of multiprogramming, or executing many programs concurrently. With
multiprogramming, when a job cannot use the processor, the system can
suspend, or interrupt4, the job, freeing the processor to work on another job.

z/OS makes multiprogramming possible by capturing and saving all the relevant
information about the interrupted program before allowing another program to
execute. When the interrupted program is ready to begin executing again, it can
resume execution just where it left off. Multiprogramming allows z/OS to run
thousands of programs simultaneously for users who might be working on
different projects at different physical locations around the world.

z/OS can also perform multiprocessing, which is the simultaneous operation of
two or more processors that share the various hardware resources, such as
memory and external disk storage devices. The techniques of multiprogramming
and multiprocessing make z/OS ideally suited for processing workloads that
require many input/output (I/O) operations. Typical mainframe workloads include
long-running applications that write updates to millions of records in a database,
and online applications for thousands of interactive users at any given time. By
way of contrast, consider the operating system that might be used for a
single-user computer system. Such an operating system would need to execute
programs on behalf of one user only. In the case of a personal computer (PC),

4 Interrupt capability permits the CP to switch rapidly to another program in response to exception
conditions and external stimuli.

Chapter 3. z/OS overview 91

Multi-
processing
The
simultaneous
operation of two
or more
processors that
share the
various
hardware
resources.

for example, the entire resources of the machine are often at the disposal of one
user.

Many users running many separate programs means that, along with large
amounts of complex hardware, z/OS needs large amounts of memory to ensure
suitable system performance. Large companies run sophisticated business
applications that access large databases and industry-strength middleware
products. Such applications require the operating system to protect privacy
among users, as well as enable the sharing of databases and software services.

Thus, multiprogramming, multiprocessing, and the need for a large amount of
memory mean that z/OS must provide function beyond simple, single-user
applications. The sections that follow explain, in a general way, the attributes that
enable z/OS to manage complex computer configurations. Subsequent portions
of this text explore these features in more detail.

3.2.3 Modules and macros

z/0OS is made up of programming instructions that control the operation of the
computer system. These instructions ensure that the computer hardware is being
used efficiently and is allowing application programs to run. z/OS includes sets of
instructions that, for example, accept work, convert work to a form that the
computer can recognize, keep track of work, allocate resources for work,
execute work, monitor work, and handle output. A group of related instructions is
called a routine or module. A set of related modules that make a particular
system function possible is called a system component. The workload
management (WLM) component of z/OS, for instance, controls system
resources, while the recovery termination manager (RTM) handles system
recovery.

Grouping of sequences of instructions that perform frequently-used system or
application functions can be invoked with executable macro® instructions, or
macros. zZ/OS has macros for functions such as opening and closing data files,
loading and deleting programs, and sending messages to the computer operator.

3.2.4 Control blocks

As programs execute work on a z/OS system, they keep track of this work in
storage areas called control blocks. Controls blocks contain status data, tables,
or queues. In general, there are four types of z/OS control blocks:

» System-related control blocks
» Resource-related control blocks
» Job-related control blocks

5 Macros provide predefined code used as a callable service within z/OS or application programs.

92 Introduction to the New Mainframe: z/OS Basics

Control block
A data
structure that
serves as a
vehicle for
communication
in z/OS.

» Task-related control blocks

Each system-related control block represents one z/OS system and contains
system-wide information, such as how many processors are in use. Each
resource-related control block represents one resource, such as a processor or
storage device. Each job-related control block represents one job executing on
the system. Each task-related control block represents one unit of work.

Control blocks serve as vehicles for communication throughout z/OS. Such
communication is possible because the structure of a control block is known to
the programs that use it, and thus these programs can find needed information
about the unit of work or resource. Control blocks representing many units of the
same type may be chained together on queues, with each control block pointing
to the next one in the chain. The operating system can search the queue to find
information about a particular unit of work or resource, which might be:

» An address of a control block or a required routine

» Actual data, such as a value, a quantity, a parameter, or a name

» Status flags (usually single bits in a byte, where each bit has a specific
meaning)

z/OS uses a huge variety of control blocks, many with very specialized purposes.

This chapter discusses three of the most commonly used control blocks:

» Task control block (TCB) - Represents a unit of work or task.

It serves as a repository for information and pointers associated with a task.
Various components of the z/OS place information in the TCB and obtain
information from the TCB.

» Service request block (SRB) - Represents a request for a system service.

It is used as input to the SCHEDULE macro when scheduling a routine for
asynchronous execution.

» Address space control block (ASCB) - Represents an address space.
It contains information and pointers needed for Address Space Control.

3.2.5 Physical storage used by z/OS

Central
storage

Physical
storage on the
processor.

Conceptually, mainframes and all other computers have two types of physical
storage®:

» Physical storage located on the mainframe processor itself. This is memory,
often called processor storage, real storage, or central storage (CSTOR).

6 Many computers also have a fast memory, local to the processor, called the processor cache. The
cache is not visible to the programmer or application programs or even the operating system directly.

Chapter 3. z/OS overview 93

Auxiliary
storage
Physical
storage
external to the
mainframe,
including
storage on
direct access
devices, such
as disk drives
and tape
drives.

» Physical storage external to the mainframe, including storage on direct
access devices, such as disk drives, and tape drives. For z/OS usage, this
storage is called page storage or auxiliary storage.

One difference between the two kinds of storage relates to the way in which they
are accessed, as follows:

» Central storage is accessed synchronously with the processor. That is, the
processor must wait while data is retrieved from central storage’.

» Auxiliary storage is accessed asynchronously. The processor accesses
auxiliary storage through an input/output (I/O) request, which is scheduled to
run amid other work requests in the system. During an 1/O request, the
processor is free to execute other, unrelated work.

As with memory for a personal computer, mainframe central storage is tightly
coupled with the processor itself, whereas mainframe auxiliary storage is located
on (comparatively) slower, external disk and tape drives. Because central
storage is more closely integrated with the processor, it takes the processor
much less time to access data from central storage than from auxiliary storage.
Auxiliary storage, however, is less expensive than central storage. Most z/OS
installations use large amounts of both.

Note: There is another form of storage called expanded storage (ESTOR).
Expanded storage was offered as a relatively inexpensive way of using high
speed processor storage to minimize 1/0 operations. Since the introduction of
z/OS with 64-bit addressing, this form of storage was not required anymore,
but other operating systems, such as z/VM, still use it.

3.3 Overview of z/OS facilities

An extensive set of system facilities and unique attributes makes z/OS well
suited for processing large, complex workloads, such as those that require many
I/O operations, access to large amounts of data, or comprehensive security.
Typical mainframe workloads include long-running applications that update
millions of records in a database and online applications that can serve many
thousands of users concurrently.

Figure 3-2 provides a “snapshot” view of the z/OS operating environment.

7 Some processor implementations use techniques such as instruction or data prefetching or
“pipelining” to enhance performance. These techniques are not visible to the application program or
even the operating system, but a sophisticated compiler can organize the code it produces to take
advantage of these techniques.

94 Introduction to the New Mainframe: z/OS Basics

Operator communication
Address spaces

Reliability, availability, and

REAL Physical storage serviceability

EAuxw

Paging Data integrity

EAux | REAL

Figure 3-2 z/OS operating environment

These facilities are explored in greater depth in the remaining portions of this
text, but are summarized here as follows:

» An address space describes the virtual storage addressing range available to

a user or program.

The address space is an area of contiguous virtual addresses available to a
program (or set of programs) and its data requirements. The range of virtual
addresses available to a program starts at 0 and can go to the highest
address permitted by the operating system architecture. This virtual storage is
available for user code and data.

Because it maps all of the available addresses, an address space includes
system code and data as well as user code and data.

Thus, not all of the mapped addresses are available for user code and data.

Two types of physical storage are available: central storage and auxiliary
storage (AUX). Central storage is also referred to as real storage or real
memory.

— The Real Storage Manager (RSM™) controls the allocation of central
storage during system initialization, and pages8 in user or system
functions during execution.

— The auxiliary storage manager controls the use of page and swap data
sets. z/OS moves programs and data between central storage and
auxiliary storage through processes called paging and swapping.

8 See Virtual Storage and other mainframe concepts

Chapter 3. z/OS overview 95

» z/OS dispatches work for execution (not shown in the figure). That is, it
selects programs to be run based on priority and ability to execute and then
loads the program and data into central storage. All program instructions and
data must be in central storage when executing.

» An extensive set of facilities manages files stored on direct access storage
devices (DASDs) or tape cartridges.

» Operators use consoles to start and stop z/OS, enter commands, and
manage the operating system.

z/OS is further defined by many other operational characteristics, such as
security, recovery, data integrity and workload management.

3.4 Virtual storage and other mainframe concepts

z/OS uses both types of physical storage (central and auxiliary) to enable
another kind of storage called virtual storage. In z/OS, each user has access to
virtual storage, rather than physical storage. This use of virtual storage is central
to the unique ability of z/OS to interact with large numbers of users concurrently,
while processing the largest workloads.

3.4.1 What is virtual storage?

96

Virtual storage means that each running program can assume it has access to all
of the storage defined by the architecture’s addressing scheme. The only limit is
the number of bits in a storage address. This ability to use a large number of
storage locations is important because a program may be long and complex, and
both the program’s code and the data it requires must be in central storage for
the processor to access them.

z/OS supports a 64-bit addressing scheme, which allows an address space (see
3.4.2, “What is an address space?” on page 97) to address, theoretically, up to
16 exabytes® of storage locations. In reality, the mainframe will have much less
central storage installed. How much less depends on the model of the computer
and the system configuration.

To allow each user to act as though this much storage really exists in the
computer system, z/OS keeps only the active portions of each program in central
storage. It keeps the rest of the code and data in files called page data sets on
auxiliary storage, which usually consists of a number of high-speed direct access
storage devices (DASDs).

° An exabyte is slightly more than one billion gigabytes.

Introduction to the New Mainframe: z/OS Basics

Virtual storage, then, is this combination of real and auxiliary storage. z/OS uses
a series of tables and indexes to relate locations on auxiliary storage to locations
in central storage. It uses special settings (bit settings) to keep track of the
identity and authority of each user or program. z/OS uses a variety of storage
manager components to manage virtual storage. This chapter briefly covers the
key points in the process.

This process is shown in more detail in 3.4.4, “Virtual storage overview” on
page 102.

Terms: Mainframe workers use the terms central storage, real memory, real storage,
and main storage interchangeably. Likewise, they use the terms virtual memory and
virtual storage synonymously.

3.4.2 What is an address space?

Address
space

The range of
virtual
addresses that
the operating
systemassigns
to a user or
program.

The range of virtual addresses that the operating system assigns to a user or
separately running program is called an address space. This is the area of
contiguous virtual addresses available for executing instructions and storing
data. The range of virtual addresses in an address space starts at zero and can
extend to the highest address permitted by the operating system architecture.

For a user, the address space can be considered as the runtime container where
programs and their data are accessed.

z/OS provides each user with a unique address space and maintains the
distinction between the programs and data belonging to each address space.
Within each address space, the user can start multiple tasks, using task control
blocks or TCBs that allow multiprogramming.

In other ways a z/OS address space is like a UNIX process, and the address
space identifier (ASID)' is like a process ID (PID). Further, TCBs are like UNIX
threads in that each operating system supports processing multiple instances of
work concurrently.

However, the use of multiple virtual address spaces in z/OS holds some special
advantages. Virtual addressing permits an addressing range that is greater than
the central storage capabilities of the system. The use of multiple virtual address
spaces provides this virtual addressing capability to each job in the system by
assigning each job its own separate virtual address space. The potentially large
number of address spaces provides the system with a large virtual addressing
capacity.

10 An ASID is a 2-byte numeric identifier assigned to the Address Space Control Block.

Chapter 3. z/OS overview 97

98

With an address space, errors are confined to that address space, except for
errors in commonly addressable storage, thus improving system reliability and
making error recovery easier. Programs in separate address spaces are
protected from each other. Isolating data in its own address space also protects
the data.

z/OS uses address spaces for its own services working on behalf of executing
applications. There is at least one address space for each job in progress and
one address space for each user logged on through TSO, telnet, rlogin or FTP
(users logged on z/OS through a major subsystem, such as CICS or IMS, are
using an address space belonging to the subsystem, not their own address
spaces). There are many address spaces for operating system functions, such
as operator communication, automation, networking, security, and so on.

Address space isolation

The use of address spaces allows z/OS to maintain the distinction between the
programs and data belonging to each address space. The private areas'! in one
user’s address space are isolated from the private areas in other address
spaces, and this provides much of the operating system’s security. There are two
private areas. One below the 16 megabyte line (for 24-bit addressing) and one
above the 16 megabyte line (for 31-bit addressing), as Figure 3-10 shows.

Yet, each address space also contains a common area that is accessible to
every other address space. Because it maps all of the available addresses, an
address space includes system code and data as well as user code and data.
Thus, not all of the mapped addresses are available for user code and data.

The ability of many users to share the same resources implies the need to
protect users from one another and to protect the operating system itself. Along
with such methods as storage keys'? for protecting central storage, data files,
and programs, separate address spaces ensure that users’ programs and data
do not overlap.

™ Private Area of an address space is where user application programs execute, as opposed to the
Common Area, which is shared across all address spaces.

12 Keys are bit settings within the program status word (currently executing instruction) used by z/0S
to compare storage being accessed by the program.

Introduction to the New Mainframe: z/OS Basics

Important: Storage protection is one of the mechanisms implemented by
z/Architecture to protect central storage. With multiprocessing, hundreds of
tasks can run programs accessing physically any piece of central storage.
Storage protection imposes limits on what a task can access (for read or write)
within central storage locations with its own data and programs, or, if
specifically allowed, to read areas from other tasks. Any violation of this rule
causes the CP to generate a program interrupt or storage exception. All real
addresses manipulated by CPs must go through the storage protection
verification before being used as an argument to access the contents of
central storage. For each 4 KB block of central storage there is a 7-bit control
field called a storage key.

Address space communication

In a multiple virtual address space environment, applications need ways to
communicate between address spaces. z/OS provides two methods of
inter-address space communication:

» Scheduling a service request block (SRB), an asynchronous process
» Using cross-memory services and access registers, a synchronous process

A program uses an SRB to initiate a process in another address space or in the
same address space. The SRB is asynchronous in nature and runs
independently of the program that issues it, thereby improving the availability of
resources in a multiprocessing environment. We discuss SRBs further in “What
is a service request block (SRB)?” on page 129.

A program uses cross-memory services to access another user’s address
spaces directly (see 3.12, “Cross-memory services” on page 142 for more
information). You might compare z/OS cross-memory services to the UNIX
Shared Memory functions, which can be used on UNIX without special authority.
Unlike UNIX, however, z/OS cross-memory (XM) services require the issuing
program to have special authority, controlled by the authorized program facility
(APF). This method allows efficient and secure access to data owned by others,
data owned by the user but stored in another address space for convenience,
and for rapid and secure communication with services such as transaction
managers and database managers. Cross-memory is also implemented by many
z/OS subsystems'® and products.

Cross memory can also be synchronous, enabling one program to provide
services coordinated with other programs. In Figure 3-3, synchronous
cross-memory communication takes place between Address Space 2, which

13 A subsystem is middleware used by applications to perform certain system services. Subsystem
examples are DB2, IMS, and CICS.

Chapter 3. z/OS overview 99

100

gets control from Address Space 1 when the program call (PC) is issued.
Address Space 1 had previously established the necessary environment, before
the PC instruction transfers control to an Address Space 2 called a PC routine.
The PC routine provides the requested service and returns control to Address
Space 1.

|Service
I'fU Ser) _M}"E‘f Ly Provider)
Diata — e, SO Data
Pl -
/

Move Data

&
y

ey MVCS o
Address Space 1 Address Space 2
PC e Pass Control

—— PR

Address Space 1 Address Space 2
1 operi
==
— ot Intructions here,

r
opes (__J Operands there

Figure 3-3 Synchronous cross memory

The user program in Address Space 1 and the PC routine can execute in the
same address space, as shown above, or in different address spaces. In either
case, the PC routine executes under the same TCB as the user program that
issued the PC. Thus, the PC routine provides the service synchronously.

Cross memory is an evolution of virtual storage and has three objectives:

» Move data synchronously between virtual addresses located in distinct
address spaces.

» Pass control synchronously between instructions located in distinct address
spaces.

» Execute one instruction located in one address space while its operands are
located in another address space.

Important: Address spaces are distinct runtime containers that are isolated
from one another through z/OS architecture. Cross-memory services, used to
access another address space, are performed under special authorized
instructions and access privileges used only by certain system functions.

Introduction to the New Mainframe: z/OS Basics

Related reading: Using cross-memory services is described in the IBM
publication zZOS MVS Programming: Extended Addressability Guide. You can
find this and related publications at the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

3.4.3 What is dynamic address translation?

Dynamic address translation, or DAT, is the process of translating a virtual
address during a storage reference into the corresponding real address. If the
virtual address is already in central storage, the DAT process may be
accelerated through the use of translation lookaside buffers. If the virtual address
is not in central storage, a page fault interrupt occurs, z/OS is notified and brings
the page in from auxiliary storage.

Looking at this process more closely reveals that the machine can present any
one of a number of different types of storage faults'#. A type, region, segment, or
page fault will be presented depending on at which point in the DAT structure
invalid entries are found. The faults repeat down the DAT structure until
ultimately a page fault is presented and the virtual page is brought into central
storage either for the first time (there is no copy on auxiliary storage) or by
bringing the page in from auxiliary storage.

DAT is implemented by both hardware and software through the use of page
tables, segment tables, region tables and translation lookaside buffers. DAT
allows different address spaces to share the same program or other data that is
for read only. This is because virtual addresses in different address spaces can
be made to translate to the same frame of central storage. Otherwise, there
would have to be many copies of the program or data, one for each address
space.

4 An address not in real storage

Chapter 3. z/OS overview 101

* Receive an address from the CP.

Address Space Central Storage =
+ Divide the address by 1MB. The
Fo F0 quotient is the number of the
Fi a0 F1 segment (S) and the remainder is the
2 displacement within the segment (D1).
S F1 * Find the correspondent entry in the
segment table to obtain the pointer
Fo R of the corresponding page table.
F1 o . « Divide the D1 by 4K. The quotient is
' the number of the page (P) and the
I:IPZS-& (Mumber of pages equal rest is the displacement within page

(D2). Find the corresponding entry
for P2 in the page table, getting the
Fage Tallz location of the corresponding frame.

to the number of frames)
Segment Table

20 A + Add D2 with the frame location and pass
\-— 21 = 358 back this result to the CP to allow access
(| Enfries to the memory contents i.e. X4A6C8A28'.
1
\ Fage Tahle
8428 A Eﬁﬁ .
ntries
—> wpcaase|maem I"-,I \ Page Table
Gﬂn.::hm | BEOM '||" .

CAAZE 100D -
A28 0 |% Papa) \ L See)
/ - ——— ee ‘Format of a Virtual
ation = 0+ ATE = i = e T
Location = _E-IZIEIH + 426 = BA26 (the location 8000 o PG Ca Address’ in next section
was taken from the page table eniry)

Figure 3-4 Dynamic Address Translation (DAT)

3.4.4 Virtual storage overview

Recall that for the processor to execute a program instruction, both the
instruction and the data it references must be in central storage. The convention
of early operating systems was to have the entire program reside in central
storage when its instructions were executing. However, the entire program does
not really need to be in central storage when an instruction executes. Instead, by
bringing pieces of the program into central storage only when the processor is
ready to execute them, and moving them out to auxiliary storage when it does
not need them, an operating system can execute more and larger programs
concurrently.

How does the operating system keep track of each program piece? How does it
know whether it is in central storage or auxiliary storage, and where? It is
important for z/OS professionals to understand how the operating system makes
this happen.

Physical storage is divided into areas, each the same size and accessible by a
unique address. In central storage, these areas are called frames; in auxiliary
storage, they are called slots. Similarly, the operating system can divide a
program into pieces the size of frames or slots and assign each piece a unique

102 Introduction to the New Mainframe: z/OS Basics

address. This arrangement allows the operating system to keep track of these
pieces. In z/OS, the program pieces are called pages. These areas are
discussed further in “Frames, pages, and slots” on page 106.

Pages are referenced by their virtual addresses and not by their real addresses.
From the time a program enters the system until it completes, the virtual address
of the page remains the same, regardless of whether the page is in central
storage or auxiliary storage. Each page consists of individual locations called
bytes, each of which has a unique virtual address.

Format of a virtual address

As mentioned, virtual storage is an illusion created by the architecture, in that the
system seems to have more memory than it really has. Each user or program
gets an address space, and each address space contains the same range of
storage addresses. Only those portions of the address space that are needed at
any point in time are actually loaded into central storage. z/OS keeps the inactive
pieces of address spaces in auxiliary storage. z/ OS manages address spaces in
units of various sizes. DAT may use from two to five levels of tables and is
broken down as follows:

Page Address spaces are divided into 4-kilobyte units of virtual storage
called pages.
Segment Address spaces are divided into 1-megabyte units called

segments. A segment is a block of sequential virtual addresses
spanning megabytes, beginning at a 1-megabyte boundary. A
2-gigabyte address space, for example, consists of 2048
segments.

Region Address spaces are divided into 2-8 gigabyte units called
regions. A region is a block of sequential virtual addresses
spanning 2-8 gigabytes, beginning at a 2-gigabyte boundary. A
2-terabyte address space, for example, consists of 2048 regions.

A virtual address, accordingly, is divided into four principal fields: bits 0-32 are

called the region index (RX), bits 33-43 are called the segment index (SX), bits
44-51 are called the page index (PX), and bits 52-63 are called the byte index

(BX).

Chapter 3. z/OS overview 103

104

A virtual address has the following format:

/
[RI{ SX PX BX

0 33 44 52 63

As determined by its address-space-control element, a virtual address space can
be a 2-gigabyte space consisting of one region, or as large as a 16-exabyte
space. The RX part of a virtual address for a 2-gigabyte address space must be
all zeros; otherwise, an exception is recognized.

The RX part of a virtual address is itself divided into three fields. Bits 0-10 are
called the region first index (RFX), bits 11-21 are called the region second index
(RSX), and bits 22-32 are called the region third index (RTX). Bits 0-32 of the
virtual address have the following format:

RFX RSX RTX

0 11 22 33

A virtual address in which the RTX is the left most significant part (a 42-bit
address) is capable of addressing 4 terabytes (4096 regions), one in which the
RSX is the left most significant part (a 53-bit address) is capable of addressing 8
petabytes (four million regions), and one in which the RFX is the left most
significant part (a 64-bit address) is capable of addressing 16 exabytes (8 billion
regions).

How virtual storage addressing works in z/OS

As stated previously, the use of virtual storage in z/OS means that only the
pieces of a program that are currently active need to be in central storage at
processing time. The inactive pieces are held in auxiliary storage. Figure 3-5
shows the virtual storage concept at work in z/OS.

Introduction to the New Mainframe: z/OS Basics

hXY
14

Virtual Storage

User A address space

Real Storage
xyx| 9 00971000 10254000

Real address

Virtual address
\ /I

0014A000 Ao
|_wr Real address i
e

bXY
{4

L — 4k

abcl—
.

10254000
Virtual address

Auxiliary Storage ’

Figure 3-5 Real and auxiliary storage combine to create the illusion of virtual storage

In Figure 3-5, observe the following:

»

An address is an identifier of a required piece of information, but not a
description of where in central storage that piece of information is. This allows
the size of an address space (that is, all addresses available to a program) to
exceed the amount of central storage available.

For most user programs, all central storage references are made in terms of
virtual storage addresses. 15

Dynamic address translation (DAT) is used to translate a virtual address
during a storage reference into a physical location in central storage. As
shown in Figure 3-5, the virtual address 10254000 can exist more than once,
because each virtual address maps to a different address in central storage.

When a requested address is not in central storage, a hardware interruption is
signaled to z/OS and the operating system pages in the required instructions
and data to central storage.

-

5

Some instructions, primarily those used by operating system programs, require real addresses.

Chapter 3. z/OS overview 105

Frame

In central
storage, areas
of equal size
and accessible
by a unique
address

Slot

In auxiliary
storage, areas
of equal size
and accessible
by a unique
address.

Frames, pages, and slots

When a program is selected for execution, the system brings it into virtual
storage, divides it into pages of four kilobytes, transfers the pages into central
storage for execution. To the programmer, the entire program appears to occupy
contiguous space in storage at all times. Actually, not all pages of a program are
necessarily in central storage, and the pages that are in central storage do not
necessarily occupy contiguous space.

The pieces of a program executing in virtual storage must be moved between
real and auxiliary storage. To allow this, z/OS manages storage in units, or
blocks, of four kilobytes. The following blocks are defined:

» A block of central storage is a frame.
» A block of virtual storage is a page.
» A block of auxiliary storage is a slot.

A page, a frame, and a slot are all the same size: four kilobytes. An active virtual
storage page resides in a central storage frame. A virtual storage page that
becomes inactive resides in an auxiliary storage slot (in a paging data set).
Figure 3-6 shows the relationship of pages, frames, and slots.

In Figure 3-6, z/OS is performing paging for a program running in virtual storage.
The lettered boxes represent parts of the program. In this simplified view,
program parts A, E, F, and H are active and running in central storage frames,
while parts B, C, D, and G are inactive and have been moved to auxiliary storage
slots. All of the program parts, however, reside in virtual storage and have virtual
storage addresses.

106 Introduction to the New Mainframe: z/OS Basics

' . VIRTUAL '

REAL
: . AUXILIARY
F .
A "I A:l B C D | |
H E el Fle|H].
. ' sLoTS
FRAMES .

PAGES

Figure 3-6 Frames, pages, and slots

3.4.5 What is paging?

As stated previously, z/OS uses a series of tables to determine whether a page is
in real or auxiliary storage, and where. To find a page of a program, z/OS checks
the table for the virtual address of the page, rather than searching through all of
physical storage for it. z/OS then transfers the page into central storage or out to
auxiliary storage as needed. This movement of pages between auxiliary storage
slots and central storage frames is called paging. Paging is key to understanding
the use of virtual storage in z/OS.

z/OS paging is transparent to the user. During job execution, only those pieces of
the application that are required are brought in, or paged in, to central storage.
The pages remain in central storage until no longer needed, or until another page
is required by the same application or a higher-priority application and no empty
central storage is available. To select pages for paging out to auxiliary storage,
z/OS follows a “Least Used” algorithm. That is, z/OS assumes that a page that
has not been used for some time will probably not be used in the near future.

How paging works in z/0S

In addition to the DAT hardware and the segment and page tables required for
address translation, paging activity involves a number of system components to
handle the movement of pages and several additional tables to keep track of the
most current version of each page.

Chapter 3. z/OS overview 107

108

To understand how paging works, assume that DAT encounters an invalid page
table entry during address translation, indicating that a page is required that is
not in a central storage frame. To resolve this page fault, the system must bring
the page in from auxiliary storage. First, however, it must locate an available
central storage frame. If none is available, the request must be saved and an
assigned frame freed. To free a frame, the system copies its contents to auxiliary
storage and marks its corresponding page table entry as invalid. This operation
is called a page-out.

After a frame is located for the required page, the contents of the page are
copied from auxiliary storage to central storage and the page table invalid bit is
set off. This operation is called a page-in.

Paging can also take place when z/OS loads an entire program into virtual
storage. z/OS obtains virtual storage for the user program and allocates a central
storage frame to each page. Each page is then active and subject to the normal
paging activity; that is, the most active pages are retained in central storage
while the pages not currently active might be paged out to auxiliary storage.

Page stealing

z/OS tries to keep an adequate supply of available central storage frames on
hand. When a program refers to a page that is not in central storage, z/OS uses
a central storage page frame from a supply of available frames.

When this supply becomes low, z/OS uses page stealing to replenish it, that is, it
takes a frame assigned to an active user and makes it available for other work.
The decision to steal a particular page is based on the activity history of each
page currently residing in a central storage frame. Pages that have not been
active for a relatively long time are good candidates for page stealing.

Unreferenced interval count

z/OS uses a sophisticated paging algorithm to efficiently manage virtual storage
based on which pages were most recently used. An unreferenced interval count
indicates how long it has been since a program referenced the page. At regular
intervals, the system checks the reference bit for each page frame. If the
reference bit is off—that is, the frame has not been referenced—the system adds
to the frame’s unreferenced interval count. It adds the number of seconds since
this address space last had the reference count checked. If the reference bit is
on, the frame has been referenced and the system turns it off and sets the
unreferenced interval count for the frame to zero. Frames with the highest
unreferenced interval counts are the ones most likely to be stolen.

z/0OS also uses various storage managers to keep track of all pages, frames, and
slots in the system. These are described in 3.4.8, “Role of storage managers” on
page 110.

Introduction to the New Mainframe: z/OS Basics

3.4.6 Swapping and the working set

Swapping
The process of
transferring an
entire address
space between
central storage
and auxiliary
storage.

Swapping is the process of transferring all of the pages of an address space
between central storage and auxiliary storage. A swapped-in address space is
active, having pages in central storage frames and pages in auxiliary storage
slots. A swapped-out address space is inactive; the address space resides on
auxiliary storage and cannot execute until it is swapped in.

While only a subset of the address space’s pages (known as its working sef)
would likely be in central storage at any time, swapping effectively moves the
entire address space. It is one of several methods that z/OS uses to balance the
system workload and ensure that an adequate supply of available central
storage frames is maintained.

Swapping is performed by the System Resource Manager (SRM) component, in
response to recommendations from the Workload Manager (WLM) component.
WLM is described in 3.5, “What is workload management?” on page 120.

3.4.7 What is storage protection?

Up to now, we’ve discussed virtual storage mostly in the context of a single user
or program. In reality, of course, many programs and users are competing for the
use of the system. z/OS uses the following techniques to preserve the integrity of
each user’s work:

A private address space for each user

Page protection

Low-address protection

Multiple storage protect keys, as described in this section

vyvyyvyy

How storage protect keys are used

Under z/OS, the information in central storage is protected from unauthorized
use by means of multiple storage protect keys. A control field in storage called a
key is associated with each 4K frame of central storage.

When a request is made to modify the contents of a central storage location, the
key associated with the request is compared to the storage protect key. If the
keys match or the program is executing in key 0, the request is satisfied. If the
key associated with the request does not match the storage key, the system
rejects the request and issues a program exception interruption.

When a request is made to read (or fetch) the contents of a central storage
location, the request is automatically satisfied unless the fetch protect bit is on,
indicating that the frame is fetch-protected. When a request is made to access
the contents of a fetch-protected central storage location, the key in storage is
compared to the key associated with the request. If the keys match, or the

Chapter 3. z/OS overview 109

requestor is in key 0, the request is satisfied. If the keys do not match, and the
requestor is not in key 0, the system rejects the request and issues a program
exception interruption.

How storage protect keys are assigned

z/OS uses 16 storage protect keys. A specific key is assigned according to the
type of work being performed. As Figure 3-7 shows, the key is stored in bits 8
through 11 of the program status word (PSW). A PSW is assigned to each job in
the system.

Control information Instruction address
bits 0 to 32

Ky P

Problem state
bhit15="1'h

PSW key - 0 to 15
hits 8 to 11

Figure 3-7 Location of storage protect key

Storage protect keys 0 through 7 are used by the z/OS base control program
(BCP) and various subsystems and middleware products. Storage protect key 0
is the master key. Its use is restricted to those parts of the BCP that require
almost unlimited store and fetch capabilities. In almost any situation, a storage
protect key of 0 associated with a request to access or modify the contents of a
central storage location means that the request will be satisfied.

Storage protect keys 8 through 15 are assigned to users. Because all users are
isolated in private address spaces, most users—those whose programs run in a
virtual region—can use the same storage protect key. These users are called
V=V (virtual = virtual) users and are assigned a key of 8. Some users, however,
must run in a central storage region. These users are known as V=R (virtual =
real) users and require individual storage protect keys because their addresses
are not protected by the DAT process that keeps each address space distinct.
Without separate keys, V=R users might reference each other’s code and data.
These keys are in the range of 9 through 15.

3.4.8 Role of storage managers

Central storage frames and auxiliary storage slots, and the virtual storage pages
that they support, are managed by separate components of z/OS. These

110 Introduction to the New Mainframe: z/OS Basics

components are known as the real storage manager (sorry, not central storage
manager), the auxiliary storage manager, and the virtual storage manager. Here,
we describe the role of each briefly.

Real storage manager

The real storage manager or RSM keeps track of the contents of central storage.
It manages the paging activities described earlier, such as page-in, page-out,
and page stealing, and helps with swapping an address space in or out. RSM
also performs page fixing (marking pages as unavailable for stealing).

Auxiliary storage manager

The auxiliary storage manager or ASM uses the system’s page data sets, to
keep track of auxiliary storage slots. Specifically:

» Slots for virtual storage pages that are not in central storage frames

» Slots for pages that do not occupy frames, but, because the frame’s contents
have not been changed, the slots are still valid.

When a page-in or page-out is required, ASM works with RSM to locate the
proper central storage frames and auxiliary storage slots.

Virtual storage manager

The virtual storage manager or VSM responds to requests to obtain and free
virtual storage. VSM also manages storage allocation for any program that must
run in real, rather than virtual storage. Real storage is allocated to code and data
when they are loaded in virtual storage. As they run, programs can request more
storage by means of a system service, such as the GETMAIN macro. Programs
can release storage with the FREEMAIN macro.

VSM keeps track of the map of virtual storage for each address space. In so
doing, it sees an address space as a collection of 256 subpools, which are
logically related areas of virtual storage identified by the numbers 0 to 255. Being
logically related means the storage areas within a subpool share characteristics
such as:

» Storage protect key

» Whether they are fetch protected, pageable, or swappable

» Where they must reside in virtual storage (above or below 16 megabytes)
» Whether they can be shared by more than one task

Some subpools (humbers 128 to 255) are predefined by use by system

programs. Subpool 252, for example, is for programs from authorized libraries.
Others (numbered 0 to 127) are defined by user programs.

Chapter 3. z/OS overview 111

Attention: Every address space has the same virtual storage mapping. z/OS
creates a segment table for each address space.

3.4.9 A brief history of virtual storage and 64-bit addressability

Addressability
A program's
ability to
reference all of
the storage
associated with
an address
space.

In 1970, IBM introduced System/370, the first of its architectures to use virtual
storage and address spaces. Since that time, the operating system has changed
in many ways. One key area of growth and change is addressability.

A program running in an address space can reference all of the storage
associated with that address space. In this text, a program's ability to reference
all of the storage associated with an address space is called addressability.

System/370 defined storage addresses as 24 bits in length, which meant that the
highest accessible address was 16,777,215 bytes (or 2241 bytes)'®. The use of
24-bit addressability allowed MVS/370, the operating system at that time, to allot
to each user an address space of 16 megabytes. Over the years, as MVS/370
gained more functions and was asked to handle more complex applications,
even access to 16 megabytes of virtual storage fell short of user needs.

With the release of the System/370-XA architecture in 1983, IBM extended the
addressability of the architecture to 31 bits. With 31-bit addressing, the operating
system (now called MVS Extended Architecture or MVS/XA) increased the
addressability of virtual storage from 16 MB to 2 gigabytes (2 GB). In other
words, MVS/XA provided an address space for users that was 128 times larger
than the address space provided by MVS/370. The 16 MB address became the
dividing point between the two architectures and is commonly called the line (see
Figure 3-8).

16 Addressing starts with 0, so the last address is always one less than the total number of
addressable bytes.

112 Introduction to the New Mainframe: z/OS Basics

2GB
The “Bar”

31-bit

addressing

(MVS/XA)

16 MB
24-bit The “Line”

addressing
(MVS)

Figure 3-8 31-bit addressability allows for 2-gigabyte address spaces in MVS/XA

The new architecture did not require customers to change existing application
programs. To maintain compatibility for existing programs, MVS/XA remained
compatible for programs originally designed to run with 24-bit addressing on
MVS/370, while allowing application developers to write new programs to exploit
the 31-bit technology.

To preserve compatibility between the different addressing schemes, MVS/XA
did not use the high-order bit of the address (Bit 0) for addressing. Instead,
MVS/XA reserved this bit to indicate how many bits would be used to resolve an
address: 31-bit addressing (Bit 0 on) or 24-bit addressing (Bit 0 off).

With the release of zSeries mainframes in 2000, IBM further extended the
addressability of the architecture to 64 bits. With 64-bit addressing, the potential
size of a z/OS address space expands to a size so vast we need new terms to
describe it. Each address space, called a 64-bit address space, is 16 exabytes
(EB) in size; an exabyte is slightly more than one billion gigabytes. The new
address space has logically 264 addresses. It is 8 billion times the size of the
former 2-gigabyte address space, or 18,446,744,073,709,600,000 bytes

(Figure 3-9).

Chapter 3. z/OS overview 113

16 EB

64-bit
addressing
(z/08)
2GB
The “Bar”
31-bit
addressing
(MVS/XA)
16 MB
24-bit The “Line”
addressing
(MVS)

Figure 3-9 64-bit addressability allows for 16 exabytes of addressable storage

We say that the potential size is 16 exabytes because z/OS, by default,
continues to create address spaces with a size of 2 gigabytes. The address
space exceeds this limit only if a program running in it allocates virtual storage
above the 2-gigabyte address. If so, z/OS increases the storage available to the
user from two gigabytes to 16 exabytes.

A program running on z/OS and the zSeries mainframe can run with 24-, 31-, or
64-bit addressing (and can switch among these if needed). To address the high
virtual storage available with the 64-bit architecture, the program uses
64-bit-specific instructions. Although the architecture introduces unique 64-bit

114 Introduction to the New Mainframe: z/OS Basics

exploitation instructions, the program can use both 31-bit and 64-bit instructions,
as needed.

For compatibility, the layout of the storage areas for an address space is the
same below 2 gigabytes, providing an environment that can support both 24-bit
and 31-bit addressing. The area that separates the virtual storage area below the
2-gigabyte address from the user private area is called the bar, as shown in
Figure 3-10. The user private area is allocated for application code rather than
operating system code.

16 exabytes
User Extended
Private Area
e N
La 4 ~Nv
512 terabytes
Shared Area
2 terabytes
User Extended
Private Area
2 gigabytes The “Bar”
16 megabyte The “Line”
Common Area
User Private Area
0

Figure 3-10 Storage map for a 64-bit address space

0 to 23! The layout is the same; see Figure 3-10.

281t0 232 From 2 GB to 4 GB is considered the bar. Below the bar can be
addressed with a 31-bit address. Above the bar requires a 64-bit
address.

282 _ 241 The low non-shared area (user private area) starts at 4 GB and

extends to 241.

Chapter 3. z/OS overview 115

241.250 Shared area (for storage sharing) starts at 2*' and extends to
250 or higher, if requested.

250 . 264 High non-shared area (user private area) starts at 2°° or
wherever the shared area ends, and goes to 264.

In a 16-exabyte address space with 64-bit virtual storage addressing, there are

three additional levels of translation tables, called region tables: region third table
(R3T), region second table (R2T), and region first table (R1T). The region tables
are 16 KB in length, and there are 2048 entries per table. Each region has 2 GB.

Segment tables and page table formats remain the same as for virtual addresses
below the bar. When translating a 64-bit virtual address, once the system has
identified the corresponding 2-GB region entry that points to the Segment table,
the process is the same as that described previously.

3.4.10 What is meant by “below-the-line storage”?

z/OS programs and data reside in virtual storage that, when necessary, is
backed by central storage. Most programs and data do not depend on their real
addresses. Some z/OS programs, however, do depend on real addresses and
some require these real addresses to be less than 16 megabytes. z/OS
programmers refer to this storage as being “below the 16-megabyte line”

In z/OS, a program’s attributes include one called residence mode or RMODE,
which specifies whether the program must reside (be loaded) in storage below
16 megabytes. A program with RMODE(24) must reside below 16 megabytes,
while a program with RMODE(31) can reside anywhere in virtual storage.

Examples of programs that require below-the-line storage include any program
that allocates a data control block (DCB). Those programs, however, often can
be 31-bit residency mode or RMODE(31) as they can run in 31-bit addressing
mode or AMODE(31). z/OS reserves as much central storage below 16
megabytes as it can for such programs and, for the most part, handles their
central storage dependencies without requiring them to make any changes.

Thousands of programs in use today are AMODE(24) and therefore
RMODE(24). Every program written before MVS/XA was available, and not
subsequently changed, has that characteristic. There are relatively few reasons
these days why a new program might need to be AMODE(24), so a new
application likely has next to nothing that is RMODE(24).

3.4.11 What’s in an address space?

Another way of thinking of an address space is as a programmer’s map of the
virtual storage available for code and data. An address space provides each

116 Introduction to the New Mainframe: z/OS Basics

programmer with access to all of the addresses available through the computer
architecture (earlier, we defined this as addressability).

z/OS provides each user with a unique address space and maintains the
distinction between the programs and data belonging to each address space.
Because it maps all of the available addresses, however, an address space
includes system code and data as well as user code and data. Thus, not all of the
mapped addresses are available for user code and data.

Understanding the division of storage areas in an address space is made easier
with a diagram. The diagram shown in Figure 3-11 is more detailed than needed
for this part of the course, but is included here to show that an address space
maintains the distinction between programs and data belonging to the user, and
those belonging to the operating system.

16 EB
Private { High User Region
512 TB
Shared { Default Shared Memory Addressing
Area 2TB
Low User Low User Region
Private 4G
Reserved 26
Extended LSQA/SWA/229/230
Extended -
Private Extended User Region
Extended CSA
Extended Extended PLPA/FLPA/MLPA
Common <
Extended SQA
Extended Nucleus
16 MB
Nucleus
SQA
PLPA/FLPA/MLPA
Common {
CSA
LSQA/SWA/228/230
User Region
Private { 9 24K
System Region
Y 9 8K
Common { PSA
0

Figure 3-11 Storage areas in an address space

Chapter 3. z/OS overview 117

118

Figure 3-11 shows the major storage areas in each address space. These are
described briefly as follows:

» All storage above 2 GB

This area is called high virtual storage and is addressable only by programs
running in 64-bit mode. It is divided by the high virtual shared area, which is
an area of installation-defined size that can be used to establish

cross-address space viewable connections to obtained areas within this area.

» Extended areas above 16 MB

This range of areas, which lies above The Line (16 MB) but below The Bar (2
GB), is a kind of “mirror image” of the common area below 16 MB. They have
the same attributes as their equivalent areas below The Line, but because of
the additional storage above The Line, their sizes are much larger.

» Nucleus

This is a key 0, read-only area of common storage that contains operating
system control programs.

» SQA

This area contains system level (key 0) data accessed by multiple address
spaces. The SQA area is not pageable (fixed), which means that it resides in
central storage until it is freed by the requesting program. The size of the SQA
area is predefined by the installation and cannot change while the operating
system is active. Yet it has the unique ability to “overflow” into the CSA area
as long as there is unused CSA storage that can be converted to SQA.

» PLPA/FLPA/MLPA

This area contains the link pack areas (the pageable link pack area, fixed link

pack area, and modified link pack area), which contain system level programs
that are often run by multiple address spaces. For this reason, the link pack
areas reside in the common area which is addressable by every address
space, therefore eliminating the need for each address space to have its own
copy of the program. This storage area is below The Line and is therefore
addressable by programs running in 24-bit mode.

» CSA

This portion of common area storage (addressable by all address spaces) is
available to all applications. The CSA is often used to contain data frequently
accessed by multiple address spaces. The size of the CSA area is
established at system initialization time (IPL) and cannot change while the
operating system is active.

» LSQA/SWA/subpool 228/subpool 230

This assortment of subpools, each with specific attributes, is used primarily by

system functions when the functions require address space level storage

Introduction to the New Mainframe: z/OS Basics

isolation. Being below The Line, these areas are addressable by programs
running in 24-bit mode.

» User Region

This area is obtainable by any program running in the user’s address space,
including user key programs. It resides below The Line and is therefore
addressable by programs running in 24-bit mode.

» System Region

This small area (usually only four pages) is reserved for use by the region
control task of each address space.

» Prefixed Save Area (PSA)

This area is often referred to as “Low Core.” The PSA is a common area of
virtual storage from address zero through 8191 in every address space.
There is one unique PSA for every processor installed in a system. The PSA
maps architecturally fixed hardware and software storage locations for the
processor. Because there is a unique PSA for each processor, from the view
of a program running on z/OS, the contents of the PSA can change any time
the program is dispatched on a different processor. This feature is unique to
the PSA area and is accomplished through a unique DAT manipulation
technique called prefixing.

Given the vast range of addressable storage in an address space, the drawing in
Figure 3-11 on page 117 is not to scale.

Each address space in the system is represented by an address space control
block or ASCB. To represent an address space, the system creates an ASCB in
common storage (system queue area or SQA), which makes it accessible to
other address spaces.

3.4.12 System address spaces and the master scheduler

Many z/OS system functions run in their own address spaces. The master
scheduler subsystem, for example, runs in the address space called “MASTER*
and is used to establish communication between z/OS and its own address
spaces.

When you start z/OS, master initialization routines initialize system services,
such as the system log and communication task, and start the master scheduler
address space. Then, the master scheduler may start the job entry subsystem
(JES2 or JESS). JES is the primary job entry subsystem. On many production
systems JES is not started immediately; instead, the automation package starts
all tasks in a controlled sequence. Then other subsystems are started.

Chapter 3. z/OS overview 119

Subsystems are defined in a special file of system settings called a parameter
library or PARMLIB. These subsystems are secondary subsystems.

Each address space created has a number associated with it, called the address
space ID (or ASID). Because the master scheduler is the first address space
created in the system, it becomes address space number 1 (ASID=1). Other
system address spaces are then started during the initialization process of z/OS.

At this point, you need only understand that z/OS and its related subsystems
require address spaces of their own to provide a functioning operating system. A
short description of each type of address space follows:

» System

z/OS system address spaces are started after initialization of the master
scheduler. These address spaces perform functions for all the other types of
address spaces that start in z/OS.

» Subsystem

z/OS requires the use of various subsystems, such as a primary job entry
subsystem or JES (described in Chapter 7, “Batch processing and JES” on
page 253). Also, there are address spaces for middleware products such as
DB2, CICS, and IMS.

Besides system address spaces, there are, of course, typically many address
spaces for users and separately running programs, for example:

» TSO/E address spaces are created for every user who logs on to z/OS
(described in Chapter 4, “TSO/E, ISPF, and UNIX: Interactive facilities of
z/OS” on page 149).

» An address space is created for every batch job that runs on z/OS. Batch job
address spaces are started by JES.

3.5 What is workload management?

For z/OS, the management of system resources is the responsibility of the
workload management (WLM) component. WLM manages the processing of
workloads in the system according to the company’s business goals, such as
response time. WLM also manages the use of system resources, such as
processors and storage, to accomplish these goals.

120 Introduction to the New Mainframe: z/OS Basics

3.5.1 What does WLM do?

Workload
management
A z/OS

component that >

manages
system
resources
according to
stated business
goals.

In simple terms, WLM has three objectives:

» To achieve the business goals that are defined by the installation, by
automatically assigning sysplex resources to workloads based on their
importance and goals. This objective is known as goal achievement.

» To achieve optimal use of the system resources from the system point of view.
This objective is known as throughput.

» To achieve optimal use of system resources from the point of view of the
individual address space. This objective is known as response and turnaround
time.

Goal achievement is the first and most important task of WLM. Optimizing
throughput and minimizing turnaround times of address spaces come after that.
Often, these latter two objectives are contradictory. Optimizing throughput means
keeping resources busy. Optimizing response and turnaround time, however,
requires resources to be available when they are needed. Achieving the goal of
an important address space might result in worsening the turnaround time of a
less important address space. Thus, WLM must make decisions that represent
trade-offs between conflicting objectives.

To balance throughput with response and turnaround time, WLM does the
following:
Monitors the use of resources by the various address spaces.

» Monitors the system-wide use of resources to determine whether they are
fully utilized.

Determines which address spaces to swap out (and when).

» Inhibits the creation of new address spaces or steals pages when certain
shortages of central storage exist.

» Changes the dispatching priority of address spaces, which controls the rate at
which the address spaces are allowed to consume system resources.

» Selects the devices to be allocated, if a choice of devices exists, in order to
balance the use of I/0O devices.

Other z/OS components, transaction managers, and database managers can
communicate to WLM a change in status for a particular address space (or for
the system as a whole), or to invoke WLM'’s decision-making power.

For example, WLM is notified when:

» Central storage is configured into or out of the system.
» An address space is to be created.

Chapter 3. z/OS overview 121

» An address space is deleted.
» A swap-out starts or completes.
» Allocation routines can choose the devices to be allocated to a request.

Up to this point, we have discussed WLM only in the context of a single z/OS
system. In real life, customer installations often use clusters of multiple z/OS
systems in concert to process complex workloads. Remember our earlier
discussion of clustered z/OS systems (a sysplex).

WLM is particularly well-suited to a sysplex environment. It keeps track of system
utilization and workload goal achievement across all the systems in the Parallel
Sysplex and data sharing environments. For example, WLM can decide the z/OS
system on which a batch job should run, based on the availability of resources to
process the job quickly.

3.5.2 How is WLM used?

Service level
agreement
(SLA)

A written
agreement of
the service to
be provided to
the users of a
computing
installation.

A mainframe installation can influence almost all decisions made by WLM by
establishing a set of policies that allow an installation to closely link system
performance to its business needs. Workloads are assigned goals (for example,
a target average response time) and an importance (that is, how important it is to
the business that a workload meet its goals).

Before the introduction of WLM, the only way to inform z/OS about the
company’s business goals was for the system programmer to translate from
high-level objectives into the detailed technical terms using various parameter
settings that the system could understand. This provided a pre-established
runtime environment where if the workload changed during the life of the IPL, the
parameter values remained unchanged, creating artificial constraints and
thresholds that did not match the true capacity of the machine’s resources. This
static form of a configuration required highly skilled staff, and could be
protracted, error-prone, and eventually in conflict with the original business
goals.

Further, it was often difficult to predict the effects of changing a system setting,
which might be required, for example, following a system capacity increase. This
could result in unbalanced resource allocation, in which work is deprived of a
critical system resource. This way of operating, called compatibility mode, was
becoming unmanageable as new workloads were introduced, and as multiple
systems were being managed together.

Using goal mode system operation, WLM provides fewer, simpler, and more
consistent system externals that reflect goals for work expressed in terms
commonly used in business objectives, and WLM and System Resource
Manager (SRM) match resources to meet those goals by constantly monitoring

122 Introduction to the New Mainframe: z/OS Basics

and adapting the system. Workload Manager provides a solution for managing
workload distribution, workload balancing, and distributing resources to
competing workloads.

WLM policies are often based on a service level agreement (SLA), which is a
written agreement of the information systems (I/S) service to be provided to the
users of a computing installation. WLM tries to achieve the needs of workloads
(response time) as described in an SLA by attempting the appropriate
distribution of resources without overcommitting them through firmware
algorithms. In this situation, resources are matched to workload transparently
without administrator intervention. Equally important, WLM maximizes system
use (throughput) to deliver maximum benefit from the installed hardware and
software platform.

3.6 I/0 and data management

Nearly all work in the system involves data input or data output. In a mainframe,
the channel subsystem (CSS) manages the use of I/O devices, such as disks,
tapes, and printers. The operating system must associate the data for a given
task with a device, and manage file allocation, placement, monitoring, migration,
backup, recall, recovery, and deletion.

The channel subsystem directs the flow of information between the devices and
main storage. A logical device is represented as a subchannel to a program and
contains the information required for sustaining an 1/0. The CSS uses one or
more channel path identifiers (known as CHPIDs) as communication links. The
CHPID is assigned a value between 0 -255 in each CSS. There can be one or
more CSSs defined within a mainframe. Control units provide the logical
capabilities to operate and control an I/O device.

The input/output architecture (Figure 3-12 on page 124) is a major strength of
the mainframe. It uses a special processor to schedule and prioritize 1/0: the
System Assist Processor (SAP). This processor is dedicated to drive the
mainframe’s channel subsystem, up to 100,000 I/O operations per second and
beyond. Each model mainframe comes with a default number of SAPs, ranging
from one to eleven, although more SAPs can be added as required. The channel
subsystem can provide over 1000 high-speed buses, one per single server. The
SAP runs special Licensed Internal Code (LIC)17 and takes responsibility during
the execution of an I/O operation. The SAP relieves the OS (and consequently,
general CP involvement) during the setup of an 1/O operation. It does the
scheduling of an 1/O; that is, it finds an available channel path to the device and
guarantees that the I/O operation starts. SAP, however, is not in charge of the
movement between central storage (CS) and the channel. The SAP, which is

17 LIC is IBM microcode or software programs that the customer is not able to read or alter.

Chapter 3. z/OS overview 123

inherent in this platform’s design, is architected into the 1/0 subsystem providing
a rich quality of service.

PR/SM < Hypervisor > <Used to assign channel subsystem resources>
Controls ing, d ing, priority and
Channel SUbSVStem /0 identification of all I/O operations performed by LPARs
‘ ‘ ‘ ‘ ‘ ?a‘rtitibds ‘ ‘ ‘ ‘ ‘ Supports the running of an OS and allows CPs, memory
and Subchannels access to channels
This represents an I/O device to the hardware and is used
S u bCha nne IS by the OS to pass an I/O request to the channel subsystem
The communication path from the channel subsystem to the
C ha nne I S /0 network and connected Control Units
L | || |

Control Units

Devices
(disk,tape, printers)

Figure 3-12 Input/output architecture

3.6.1 Data management

124

Data management activities can be done either manually or through the use of
automated processes. When data management is automated, the system uses a
policy or set of rules known as Automatic Class Selection (ACS™) to determine
object placement, manage object backup, movement, space, and security.
Storage management policies reduce the need for users to make many detailed
decisions that are not related to their business objectives.

A typical z/OS production system includes both manual and automated
processes for managing data. ACS applies to all data set types including
database and Unix file structures.

Depending on how a z/OS system and its storage devices are configured, a user
or program can directly control many aspects of data management, and in the
early days of the operating system, users were required to do so. Increasingly,
however, z/OS installations rely on installation-specific settings for data and
resource management, and add-on storage management products to automate
the use of storage. The primary means of managing storage in z/OS is with the

Introduction to the New Mainframe: z/OS Basics

DFSMS component, which is discussed in Chapter 5, “Working with data sets”
on page 187.

3.7 Supervising the execution of work in the system

To enable multiprogramming, z/OS requires the use of a number of supervisor
controls, as follows:

>

Interrupt processing

Multiprogramming requires that there be some technique for switching control
from one routine to another so that, for example, when routine A must wait for
an /0O request to be satisfied, routine B can execute. In z/OS, this switch is
achieved by interrupts, which are events that alter the sequence in which the
processor executes instructions. When an interrupt occurs, the system saves
the execution status of the interrupted routine and analyzes and processes
the interrupt.

Creating dispatchable units of work

To identify and keep track of its work, the z/OS operating system represents
each unit of work with a control block. Two types of control blocks represent
dispatchable units of work: task control blocks or TCBs represent tasks
executing within an address space; service request blocks or SRBs represent
higher priority system services.

Dispatching work

After interrupts are processed, the operating system determines which unit of
work (of all the units of work in the system) is ready to run and has the highest
priority, and passes control to that unit of work.

Serializing the use of resources

In a multiprogramming system, almost any sequence of instructions can be
interrupted, to be resumed later. If that set of instructions manipulates or
modifies a resource (for example, a control block or a data file), the operating
system must prevent other programs from using the resource until the
interrupted program has completed its processing of the resource.

Several techniques exist for serializing the use of resources; enqueuing and
locking are the most common (a third technique is called latching). All users
can use enqueuing, but only authorized routines can use locking to serialize
the use of resources.

Chapter 3. z/OS overview 125

3.7.1 What is interrupt processing?

126

An interrupt is an event that alters the sequence in which the processor executes
instructions. An interrupt might be planned (specifically requested by the
currently running program) or unplanned (caused by an event that might or might
not be related to the currently running program). z/OS uses six types of
interrupts, as follows:

>

Supervisor calls or SVC interrupts

These occur when the program issues an SVC to request a particular system
service. An SVC interrupts the program being executed and passes control to
the supervisor so that it can perform the service. Programs request these
services through macros such as OPEN (open a file), GETMAIN (obtain
storage), or WTO (write a message to the system operator).

I/O interrupts

These occur when the channel subsystem signals a change of status, such
as an I/O operation completing, an error occurring, or an I/O device such as a
printer has become ready for work.

External interrupts

These can indicate any of several events, such as a time interval expiring, the
operator pressing the interrupt key on the console, or the processor receiving
a signal from another processor.

Restart interrupts

These occur when the operator selects the restart function at the console or
when a restart SIGP (signal processor) instruction is received from another
processor.

Program interrupts

These are caused by program errors (for example, the program attempts to
perform an invalid operation), page faults (the program references a page that
is not in central storage), or requests to monitor an event.

Machine check interrupts
These are caused by machine malfunctions.

When an interrupt occurs, the hardware saves pertinent information about the
program that was interrupted and, if possible, disables the processor for further
interrupts of the same type. The hardware then routes control to the appropriate
interrupt handler routine. The program status word or PSW is a key resource in
this process.

Introduction to the New Mainframe: z/OS Basics

How is the program status word used?

The program status word (PSW) is a 128-bit data area in the processor that,
along with a variety of other types of registers (control registers, timing registers,
and prefix registers) provides details crucial to both the hardware and the
software. The current PSW includes the address of the next program instruction
and control information about the program that is running. Each processor has
only one current PSW. Thus, only one task can execute on a processor at a time.

The PSW controls the order in which instructions are fed to the processor, and
indicates the status of the system in relation to the currently running program.
Although each processor has only one PSW, it is useful to think of three types of
PSWs to understand interrupt processing:

» Current PSW
» New PSW
» OIld PSW

The current PSW indicates the next instruction to be executed. It also indicates
whether the processor is enabled or disabled for I/O interrupts, external
interrupts, machine check interrupts, and certain program interrupts. When the
processor is enabled, these interrupts can occur. When the processor is
disabled, these interrupts are ignored or remain pending.

There is a new PSW and an old PSW associated with each of the six types of
interrupts. The new PSW contains the address of the routine that can process its
associated interrupt. If the processor is enabled for interrupts when an interrupt
occurs, PSWs are switched using the following technique:

1. Storing the current PSW in the old PSW associated with the type of interrupt
that occurred

2. Loading the contents of the new PSW for the type of interrupt that occurred
into the current PSW

The current PSW, which indicates the next instruction to be executed, now
contains the address of the appropriate routine to handle the interrupt. This
switch has the effect of transferring control to the appropriate interrupt handling
routine.

Registers and the PSW

Mainframe architecture provides registers to keep track of things. The PSW, for
example, is a register used to contain information that is required for the
execution of the currently active program. Mainframes provide other registers, as
follows:

» Access registers are used to specify the address space in which data is found.

Chapter 3. z/OS overview 127

» General registers are used to address data in storage, and also for holding
user data.

» Floating point registers are used to hold numeric data in floating point form.
» Control registers are used by the operating system itself, for example, as
references to translation tables.

Related reading: The IBM publication z/Architecture Principles of Operation
describes the hardware facilities for the switching of system status, including
CPU states, control modes, the PSW, and control registers. You can find this and
other related publications at the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

16 General
16 Access Purpose 16 Floating Point
Registers (32 bits) Registers (64 bits) Registers (64 bits)

which address D address of data D numeric data
space?

Program Status Word (PSW)

Virt. Instruction
address (64-bit) 16 Control
Registers (64 bits)

Y which tables? D

Virtual Storage
Address Space

Real Storage

:

o Up to 5 levels of
MvC ’ translation tables

Move (MVC) instruction - moves the contents of the second operand into the first operand location

Figure 3-13 Registers and the PSW

128 Introduction to the New Mainframe: z/OS Basics

3.7.2 Creating dispatchable units of work

In z/OS, dispatchable units of work are represented by two kinds of control
blocks:

» Task control blocks (TCBs)

These represent tasks executing within an address space, such as user
programs and system programs that support the user programs.

» Service request blocks (SRBs)

These represent requests to execute a system service routine. SRBs are
typically created when one address space detects an event that affects a
different address space; they provide one mechanism for communication
between address spaces.

What is a task control block TCB)?

A TCB is a control block that represents a task, such as your program, as it runs
in an address space. A TCB contains information about the running task, such as
the address of any storage areas it has created. Do not confuse the z/OS term
TCB with the UNIX data structure called a process control block or PCB.

TCBs are created in response to an ATTACH macro. By issuing the ATTACH
macro, a user program or system routine begins the execution of the program
specified on the ATTACH macro, as a subtask of the attacher’s task. As a
subtask, the specified program can compete for processor time and can use
certain resources already allocated to the attacher’s task.

The region control task (RCT), which is responsible for preparing an address
space for swap-in and swap-out, is the highest priority task in an address space.
All tasks within an address space are subtasks of the RCT.

What is a service request block (SRB)?

An SRB is a control block that represents a routine that performs a particular
function or service in a specified address space. Typically, an SRB is created
when one address space is executing and an event occurs that affects another
address space.

The routine that performs the function or service is called the SRB routine;
initiating the process is called scheduling an SRB; the SRB routine runs in the
operating mode known as SRB mode.

An SRB is similar to a TCB in that it identifies a unit of work to the system. Unlike
a TCB, an SRB cannot “own” storage areas. SRB routines can obtain, reference,
use, and free storage areas, but the areas must be owned by a TCB. In a
multi-processor environment, the SRB routine, after being scheduled, can be

Chapter 3. z/OS overview 129

dispatched on another processor and can run concurrently with the scheduling
program. The scheduling program can continue to do other processing in parallel
with the SRB routine. As mentioned earlier, an SRB provides a means of
asynchronous inter-address space communication for programs running on
z/OS.

Only programs running in a mode of higher authority called supervisor state can
create an SRB. These authorized programs obtain storage and initialize the
control block with things such as the identity of the target address space and
pointers to the code that will process the request. The program creating the SRB
then issues the SCHEDULE macro and indicates whether the SRB has global
(system-wide) or local (address space-wide) priority. The system places the SRB
on the appropriate dispatching queue where it will remain until it becomes the
highest priority work on the queue.

SRBs with a global priority have a higher priority than that of any address space,
regardless of the actual address space in which they will be executed. SRBs with
a local priority have a priority equal to that of the address space in which they will
be executed, but higher than any TCB within that address space. The
assignment of global or local priority depends on the “importance” of the request;
for example, SRBs for I/O interrupts are scheduled at a global priority, to
minimize /O delays.

Related reading: Using an SRB is described in the IBM publication zZ0S MVS
Authorized Assembler Services Guide. You can find this and related publications
at the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

3.7.3 Preemptable versus non-preemptable

130

Which routine receives control after an interrupt is processed depends on
whether the interrupted unit of work was preemptable. If so, the operating system
determines which unit of work should be performed next. That is, the system
determines which unit or work, of all the work in the system, has the highest
priority, and passes control to that unit of work.

A non-preemptable unit of work can be interrupted, but must receive control after
the interrupt is processed. For example, SRBs are often non-preemptable18.
Thus, if a routine represented by a non-preemptable SRB is interrupted, it will
receive control after the interrupt has been processed. In contrast, a routine
represented by a TCB, such as a user program, is usually preemptable19. Ifitis

8 SRBs can be made preemptable by the issuing program, to allow work at an equal or higher
priority to have access to the processor. Also, client SRBs and enclave SRBs are preemptable. These
topics are beyond the scope of this book.

19 A TCB is non-preemptable when it is executing an SVC.

Introduction to the New Mainframe: z/OS Basics

interrupted, control returns to the operating system when the interrupt handling
completes. z/OS then determines which task, of all the ready tasks, will execute
next.

3.7.4 What does the dispatcher do?

New work is selected, for example, when a task is interrupted or becomes
non-dispatchable, or after an SRB completes or is suspended (that is, an SRB is
delayed because a required resource is not available).

In z/OS, the dispatcher component is responsible for routing control to the
highest priority unit of work that is ready to execute. The dispatcher processes
work in the following order:

1. Special exits

These are exits to routines that have a high priority because of specific
conditions in the system. For example, if one processor in a multi-processing
system fails, alternate CPU recovery is invoked by means of a special exit to
recover work that was being executed on the failing processor.

2. SRBs that have a global priority
3. Ready address spaces in order of priority

An address space is ready to execute if it is swapped in and not waiting for
some event to complete. An address spaces’s priority is determined by the
dispatching priority specified by the user or the installation.

After selecting the highest priority address space, z/OS (through the
dispatcher) first dispatches SRBs with a local priority that are scheduled for
that address space and then TCBs in that address space.

If there is no ready work in the system, z/OS assumes a state called an enabled
wait until fresh work enters the system.

Models of the System z hardware can have from one to 64 central processors
(CPs)ZO. Each and every CP can be executing instructions at the same time.
Dispatching priorities determine when ready-to-execute address spaces get
dispatched.

Attention: At the time of publication, due to the current PR/SM architecture,
the maximum number of customizable CPs is 64 on the EC model, although
when fully loaded the MCMs can physically contain up to 77, including SAPs
and spares.

20 The IBM z10 Enterprise Class machine can be ordered with up to 64 CPs (the model numbers
correspond to the maximum number of processors that can be ordered in the server).

Chapter 3. z/OS overview 131

132

z/0S and dispatching modes

The mainframe was originally designed as a Symmetric Multi Processor (SMP)
involving a multiprocessor computer architecture where two or more identical
general purpose processors can connect to a single shared main memory. SMP
architecture is the most common multiprocessor system used today.

When System z acquired special purpose processors, its computing paradigm
was supplemented by adding Asymmetric Multi Processing (ASMP), which uses
separate specialty processors such as zAAP and zIIP engines for executing
specific software stacks. ASMP allowed the z/OS dispatcher to offload eligible
workloads to non-general purpose CPs. This increases overall throughput and
helps scalability. See 2.4, “Processing units” on page 57.

One of the engineering challenges with SMP using large server designs was to
maintain near-linear scalability as the number of CPUs increases. Performance
and throughput do not double when doubling the number of processors. There
are many overhead factors, including contention for cache and main memory
access. These overhead factors become increasingly difficult to mitigate as the
number of CPUs increases. The design goal for delivering maximum
performance is to minimize those overhead factors. Each new mainframe model
supports a higher maximum number of CPUs, so this engineering challenge
becomes ever more important.

HiperDispatch helps to address the problem through a combination of hardware
features, z/OS dispatching, and the z/OS Workload Manager. In z/OS there may
be tasks waiting for processing attention, such as transaction programs. The
z/0OS runtime augments the other dispatching modes by debuting non-uniform
memory access (NUMA) functionality using HiperDispatch, which dedicates
different memory cache to different processors. In a NUMA architecture,
processors access local memory (level 2 cache) more quickly than remote cache
memory neighboring on another book where access is slower. This can improve
throughput for certain types of workloads when data cache is localized to specific
processors. This is also known as an affinity node.

Introduction to the New Mainframe: z/OS Basics

6-Way Processor

CPO CP1 C

T

2 CP3 CP 4 CP 5

Address
Space

Job A

Job B

JobD | [[JobF | [Joby]
I I I

Job © | [JobG | [JobL |

| [JobH | [JobN]
I I

|
|
|

Job K | || || |
| || || |
| |
| |

Job E

Job M

DDHFDII

In Ready In Wait Out Out
Ready Wait

Figure 3-14 How SMP dispatching works

An address space can be in any one of four queues:

» IN-READY - In central storage and waiting to be dispatched

» IN-WAIT - In central storage but waiting for some event to complete
» OUT-READY - Ready to execute but swapped out

» OUT-WAIT - Swapped out and waiting for some event to complete

Only IN-READY work can be selected for dispatching.

3.7.5 Serializing the use of resources

In a multitasking, multiprocessing environment, resource serialization is the
technique used to coordinate access to resources that are used by more than
one application. Programs that change data need exclusive access to the data.
Otherwise, if several programs were to update the same data at the same time,
the data could be corrupted (also referred to as a loss of data integrity). On the
other hand, programs that need only to read data can safely share access to the
same data at the same time.

The most common techniques for serializing the use of resources are enqueuing
and locking. These techniques allow for orderly access to system resources

Chapter 3. z/OS overview 133

134

needed by more than one user in a multiprogramming or multiprocessing
environment. In z/OS, enqueuing is managed by the global resource serialization
component and locking is managed by various lock manager programs in the
supervisor component.

What is global resource serialization?

The global resource serialization (GRS) component processes requests for
resources from programs running on z/OS. Global resource serialization
serializes access to resources to protect their integrity. An installation can
connect two or more z/OS systems with channel-to-channel (CTC) adapters to
form a GRS complex to serialize access to resources shared among the
systems.

When a program requests access to a reusable resource, the access can be
requested as exclusive or shared. When global resource serialization grants
shared access to a resource, exclusive users cannot obtain access to the
resource. Likewise, when global resource serialization grants exclusive access
to a resource, all other requestors for the resource wait until the exclusive
requestor frees the resource.

What is enqueuing?

Enqueuing is the means by which a program running on z/OS requests control of
a serially reusable resource. Enqueuing is accomplished by means of the ENQ
(enqueue) and DEQ (dequeue) macros, which are available to all programs
running on the system. For devices that are shared between multiple z/OS
systems, enqueuing is accomplished through the RESERVE and DEQ macros.

On ENQ and RESERVE, a program specifies the names of one or more
resources and requests shared or exclusive control of those resources. If the
resources are to be modified, the program must request exclusive control; if the
resources are not to be modified, the program should request shared control,
which allows the resource to be shared by other programs that do not require
exclusive control. If the resource is not available, the system suspends the
requesting program until the resource becomes available. When the program no
longer requires control of a resource, it uses the DEQ macro to release it.

What is locking?

Through locking, the system serializes the use of system resources by
authorized routines and, in a Parallel Sysplex, by processors. A lock is simply a
named field in storage that indicates whether a resource is being used and who
is using it. In z/OS, there are two kinds of locks: global locks, for resources
related to more than one address space, and local locks, for resources assigned
to a particular address space. Global locks are provided for nonreusable or
nonsharable routines and various resources.

Introduction to the New Mainframe: z/OS Basics

To use a resource protected by a lock, a routine must first request the lock for
that resource. If the lock is unavailable (that is, it is already held by another
program or processor), the action taken by the program or processor that
requested the lock depends on whether the lock is a spin lock or a suspend lock:

» If a spin lock is unavailable, the requesting processor continues testing the
lock until the other processor releases it. As soon as the lock is released, the
requesting processor can obtain the lock and, thus, control of the protected
resource. Most global locks are spin locks. The holder of a spin lock should
be disabled for most interrupts (if the holder were to be interrupted, it might
never be able to gain control to give up the lock).

» If a suspend lock is unavailable, the unit of work requesting the lock is
delayed until the lock is available. Other work is dispatched on the requesting
processor. All local locks are suspend locks.

You might wonder what would happen if two users each request a lock that is
held by the other? Would they both wait forever for the other to release the lock
first, in a kind of stalemate? In z/OS, such an occurrence would be known as a
deadlock. Fortunately, the z/OS locking methodology prevents deadlocks.

To avoid deadlocks, locks are arranged in a hierarchy, and a processor or
routine can unconditionally request only locks higher in the hierarchy than locks it
currently holds. For example, a deadlock could occur if processor 1 held lock A
and required lock B; and processor 2 held lock B and required lock A. This
situation cannot occur because locks must be acquired in hierarchical sequence.
Assume, in this example, that lock A precedes lock B is the hierarchy. Processor
2, then, cannot unconditionally request lock A while holding lock B. It must,
instead, release lock B, request lock A, and then request lock B. Because of this
hierarchy, a deadlock cannot occur.

Related reading: The IBM publication z/OS Diagnosis Reference includes a
table that lists the hierarchy of z/OS locks, along with their descriptions and
characteristics.

3.8 Defining characteristics of zZ/OS

The defining characteristics of z/OS are summarized as follows:

» The use of address spaces in z/OS holds many advantages: Isolation of
private areas in different address spaces provides for system security, yet
each address space also provides a common area that is accessible to every
address space.

» The system is designed to preserve data integrity, regardless of how large
the user population might be. z/OS prevents users from accessing or

Chapter 3. z/OS overview 135

changing any objects on the system, including user data, except by the
system-provided interfaces that enforce authority rules.

» The system is designed to manage a large number of concurrent batch jobs,
with no need for the customer to externally manage workload balancing or
integrity problems that might otherwise occur due to simultaneous and
conflicting use of a given set of data.

» The security design extends to system functions as well as simple files.
Security can be incorporated into applications, resources, and user profiles.

» This operating environment provides various dispatching modes to address
different types of workload behavior and throughput requirements.

» The system allows multiple communications subsystems at the same time,
permitting unusual flexibility in running disparate communications-oriented
applications (with mixtures of test, production, and fall-back versions of each)
at the same time. For example, multiple TCP/IP stacks can be operational at
the same time, each with different IP addresses and serving different
applications.

» The system provides extensive software recovery levels, making unplanned
system restarts very rare in a production environment. System interfaces
allow application programs to provide their own layers of recovery. These
interfaces are seldom used by simple applications—they are normally used
by sophisticated applications.

» The system is designed to routinely manage very disparate workloads, with
automatic balancing of resources to meet production requirements
established by the system administrator.

» The system is designed to routinely manage large I/O configurations that
might extend to thousands of disk drives, multiple automated tape libraries,
many large printers, large networks of terminals, and so forth.

» The system is controlled from one or more operator terminals, or from
application programming interfaces (APIs) that allow automation of routine
operator functions.

» The operator interface is a critical function of z/OS. It provides status
information, messages for exception situations, control of job flow, hardware
device control, and allows the operator to manage unusual recovery
situations.

3.9 Additional software products for z/OS

A z/OS system usually contains additional, priced products that are needed to
create a practical working system. For example, a production z/OS system
usually includes a security manager product and a database manager product.

136 Introduction to the New Mainframe: z/OS Basics

Licensed
program

An additional,
priced software
product, not
part of the base
z/OS.

When talking about z/OS, people often assume the inclusion of these additional
products. This is normally apparent from the context of a discussion, but it might
sometimes be necessary to ask whether a particular function is part of “the base
z/OS” or whether it is an add-on product. IBM refers to its own add-on products

as IBM licensed programs.

With a multitude of independent software vendors (ISVs) offering a large number
of products with varying but similar functionality, such as security managers and
database managers, the ability to choose from a variety of licensed programs to
accomplish a task considerably increases the flexibility of the z/OS operating
system and allows the mainframe IT group to tailor the products it runs to meet
their company’s specific needs.

We will not attempt to list all of the z/OS licensed programs in this text (hundreds
exist); some common choices include:
» Security system

z/OS provides a framework for customers to add security through the addition
of a security management product (IBM’s licensed program is Resource
Access Control Facility or RACF). Non-IBM security system licensed
programs are also available.

» Compilers

z/0OS includes an assembler and a C compiler. Other compilers, such as the
COBOL compiler, and the PL/1 compiler are offered as separate products.

» Relational database

One example is DB2. Other types of database products, such as hierarchical
databases, are also available.

» Transaction processing facility
IBM offers several, including:

— Customer Information Control System (CICS)
— Information Management System (IMS)
— WebSphere Application Server for z/OS

» Sort program

Fast, efficient sorting of large amounts of data is highly desirable in batch
processing. IBM and other vendors offer sophisticated sorting products.

» A large variety of utility programs

Although not covered in detail in this publication, z/OS provides many system
and programmer productivity utilities with samples to enhance and customize
your installation’s requirements.

Chapter 3. z/OS overview 137

For example, the System Display and Search Facility (SDSF) program that
we use extensively in this course to view output from batch jobs is a licensed
program. Not every installation purchases SDSF; alternative products are
available.

A large number of other products are available from various independent
software vendors or ISVs, as they are commonly called in the industry.

3.10 Middleware for z/OS

Middleware

Software that
supplies major
functions not
provided by the
operating
system.

Middleware is typically something between the operating system and an end
user or end-user applications. It supplies major functions not provided by the
operating system. As commonly used, the term usually applies to major software
products such as database managers, transaction monitors, Web servers, and
so forth. Subsystem is another term often used for this type of software. These
are usually licensed programs, although there are notable exceptions, such as
the HTTP Server.

z/OS is a base for using many middleware products and functions. It is
commonplace to run a variety of diverse middleware functions, with multiple
instances of some. The routine use of wide-ranging workloads (mixtures of
batch, transactions, Web serving, database queries and updates, and so on) is
characteristic of z/OS.

Typical z/OS middleware includes:

Database systems

Web servers

Message queueing and brokering functions
Transaction managers

Java virtual machines

Portal services

XML processing functions

vVvVvyVvYyVvYyYvYYyvyYYyYyY

A middleware product often includes an application programming interface (API).
In some cases, applications are written to run completely under the control of this
middleware API, while in other cases it is used only for unique purposes. Some
examples of mainframe middleware APls include:

» The WebSphere suite of products, which provides a complete API that is
portable across multiple operating systems. Among these, WebSphere MQ
provides cross-platform APIs and inter-platform messaging.

» The DB2 database management product, which provides an API (expressed
in the SQL language) that is used with many different languages and
applications.

138 Introduction to the New Mainframe: z/OS Basics

A Web server is considered to be middleware and Web programming (Web
pages, CGils, and so forth) is largely coded to the interfaces and standards
presented by the Web server instead of the interfaces presented by the operating
system. Java is another example in which applications are written to run under a
Java Virtual Machine (JVM™)?! and are largely independent of the operating
system being used.

3.11 A brief comparison of zZ/OS and UNIX

What would we find if we compared z/OS and UNIX? In many cases, we would
find that quite a few concepts are mutually understandable to users of either
operating system, despite the differences in terminology.

For experienced UNIX users, Table 3-1 on page 140 provides a small sampling
of familiar computing terms and concepts. As a new user of z/OS, many of the
z/OS terms will sound unfamiliar to you. As you work through this course,
however, the z/OS meanings will be explained and you will find that many
elements of UNIX have analogs in z/OS.

A major difference for UNIX users moving to z/OS is the idea that the user is just
one of many other users. In moving from a UNIX system to the z/OS
environment, users typically ask questions such as “Can | have the root
password because | need to do..” or “Would you change this or that and restart
the system?” It is important for new z/OS users to understand that potentially
thousands of other users are active on the same system, and so the scope of
user actions and system restarts in z/OS and z/OS UNIX are carefully controlled
to avoid negatively affecting other users and applications.

Under z/OS, there does not exist a single root password or root user. User IDs
are external to z/OS UNIX System Services. User IDs are maintained in a
security database that is shared with both UNIX and non-UNIX functions in the
z/0OS system, and possibly even shared with other z/OS systems. Typically,
some user IDs have root authority, but these remain individual user IDs with
individual passwords. Also, some user IDs do not normally have root authority,
but can switch to “root” when circumstances require it.

Both z/OS and UNIX provide APIs to allow in-memory data to be shared between
processes. In zZ/OS, a user can access another user’s address spaces directly
through cross-memory services. Similarly, UNIX has the concept of Shared
Memory functions, and these can be used on UNIX without special authority.

z/OS cross-memory services, however, require the issuing program to have
special authority, controlled by the authorized program facility (APF). This

21 A JVM is not related to the virtual machines created by z/VM.

Chapter 3. z/OS overview 139

method allows efficient and secure access to data owned by others, data owned
by the user but stored in another address space for convenience, and for rapid
and secure communication with services like transaction managers and
database managers.

The z/OS environment is XPG4 branded. XPG4 branding means that products
use a common set of UNIX APls. X/Open branding is the procedure by which a
vendor certifies that its product complies with one or more of X/Open's
vendor-independent product standards; OpenEdition in MVS 4.2.2 received base
branding. In 1996, OpenEdition in MVS/ESA SP Version 5 Release 2 received a
full XPG4.2 branding. Branding allows applications that are developed on one
branded flavor of UNIX to run unchanged on other branded UNIX systems. It is
called branding because it allows the right to use the X/Open Trade Mark.

The z/OS environment is POSIX compliant. The work on Portability Operating
Systems Interface (POSIX) started as an effort to standardize UNIX and was
performed by a workgroup under the Institute of Electrical and Electronics
Engineers (IEEE). What they defined was an application programming interface
that could be applied not only to UNIX systems but to other operating systems
such as z/OS.

UNIX is not new to the mainframe environment. z/OS UNIX was originally
implemented in MVS/ESA 4.3 as OpenEdition and supports the POSIX
standards (1003.1, 1003.1a, 1003.1¢, and 1003.2) with approximately 300
functions. When OS/390 was renamed to z/OS, the new abbreviation for UNIX
System Services (USS) became z/OS UNIX.

Important: z/OS UNIX inherits the qualities of service features that are native
on the mainframe. This is inclusive of the sophisticated Workload Manager,
instrumentation functionality of SMF and dfStorage Management (dfSMS).

Table 3-1 Mapping UNIX to z/OS terms and concepts

Term or concept UNIX 2/0S

Start the operating system Boot the system. IPL (initial program load) the system.
Virtual storage given to Users get whatever virtual Users each get an address space, arange
each user of the system storage they need to of addresses extending to 2 GB (or even

reference, within the limits of | 16 EB) of virtual storage, though some of
the hardware and operating | this storage contains system code that is
system. common for all users.

Data storage Files Data sets (sometimes called files)

140 Introduction to the New Mainframe: z/OS Basics

Term or concept

UNIX

z/0S

Data format

Byte orientation;
organization of the data is
provided by the application.

Record orientation; often an 80-byte
record, reflecting the traditional punched
card image.

System configuration data

The /etc file system controls
characteristics.

Parameters in PARMLIB control how the
system IPLs and how address spaces
behave.

Scripting languages

Shell scripts, Perl, awk, and
other languages

CLISTS (command lists) and REXX execs

Smallest element that
performs work

A thread. The kernel
supports multiple threads.

A task or a service request block (SRB).
The z/OS base control program (BCP)
supports multiple tasks and SRBs.

A long-running unit of work

A daemon

A started task or a long-running job; often
this is a subsystem of z/OS.

Order in which the system
searches for programs to
run

Programs are loaded from
the file system according to
the user’s PATH environment
variable (a list of directories
to be searched).

The system searches the following
libraries for the program to be loaded:
TASKLIB, STEPLIB, JOBLIB, LPALST,
and the linklist.

Interactive tools provided by
the operating system

(not counting the interactive
applications that can be
added later.)

Users log in to systems and
execute shell sessions in the
shell environment. They can
issue the rlogin or telnet
commands to connect to the
system. Each user can have
many login sessions open at
once.

Users log onto the system through TSO/E
and its panel-driven interface, ISPF. A
user ID is limited to having only one
TSO/E logon session active at a time.

Users can also log in to a z/OS UNIX shell
environment using telnet, rlogin, or ssh.

Editing data or code

Many editors exist, such as
vi, ed, sed, and emacs.

ISPF editor?

Source and destination for
input and output data

stdin and stdout

SYSIN and SYSOUT

SYSUT1 and SYSUT2 are used for
utilities.

SYSTSIN and SYSTSPRT are used for
TSO/E users.

Managing programs

The ps shell command
allows users to view
processes and threads, and
kill jobs with the kill
command.

SDSF allows users to view and terminate
their jobs.

Chapter 3. z/OS overview 141

a. There is also a TSO editor, though it is rarely used. For example, when sending e-mail through
TSO, the SENDNOTE exec opens a TSO EDIT session to allow the user to compose the e-mail.

3.12 Cross-memory services

142

In the early days of computing, applications and system requirements outgrew
the available address space memory. An address space using 24-bit addressing
theoretically had access to 16 MB of virtual memory, but only 128 K of real
memory. Address spaces at this time replicated functions, which incurred
overhead and wasted resources when not used. As demands for this runtime
container reached its threshold, IBM added (in MVS/SP 1.3) a feature called
cross-memory to the System/370 architecture. Cross-memory introduced a
dual-address space (DUAS) architecture, which provided direct access to
programs and data in separate address spaces under the control of a new
cross-memory authorizing mechanism. This feature contributed to the
share-everything design we know today, since address spaces can now share
instruction code and data under a controlled environment.

Cross-memory allowed subsystems and server-like functions to manage data
and control blocks efficiently in private storage. Moving code from common
virtual storage to private virtual storage provided virtual storage constraint
(VSCR) for the overall system, as well as additional isolation and protection for
subsystem control blocks and data. Most of today's operating system functions,
subsystems and products use this architecture, such as IMS, DB2, CICS, and
WebSphere for z/OS.

In Figure 3-15, Program A (Pgm A) in the Primary Address Space can execute
instructions in Program B (Pgm B) contained in a separate or secondary address
space. There is no need to duplicate the module and its instructions in the Home
Address space; therefore, the Primary Address Space is authorized to execute
code residing in another address space.

Also in Figure 3-15, Program C (Pgm C) executing in an address space can
access data that resides in memory in a secondary address space. Although not
illustrated, data-only address spaces are also called dataspaces. They contain
byte string structures, but no code.

There are special privileged Assembler instructions and macros to implement
cross-memory functionality that are inherent in subsystems and products,
although available to system programmers to customize their system’s
environment.

Introduction to the New Mainframe: z/OS Basics

Cross Memory Services

Primary Address Space ﬂ—']P

Secondary Address Space

Program Call (PC)

Temp
Work Are’.s

Figure 3-15 Cross-memory functionality

3.13 Predictive analysis

Soft failures are abnormal yet allowable behaviors that can slowly lead to the
degradation of the operating system. To help eliminate soft failures, z/OS has
developed Predictive Failure Analysis (PFA). PFA is designed to predict whether
a soft failure will occur sometime in the future and to identify the cause while
keeping the base operating system components stateless. PFA is intended to
detect abnormal behavior early enough to allow you to correct the problem
before it affects your business. PFA uses remote checks from IBM Health
Checker for z/OS to collect data about your installation. Next, PFA uses machine
learning to analyze this historical data to identify abnormal behavior. It warns you
by issuing an exception message when a system trend might cause a problem.
To help customers correct the problem, it identifies a list of potential issues.

PFA is designed to predict potential problems with z/OS systems. PFA extends
availability by going beyond failure detection to predict problems before they
occur. PFA provides this support using remote checks from IBM Health Checker
for z/OS to collect data about your installation. It uses the data to compare and
model system behavior in the future and identifies when a system trend might

Chapter 3. z/OS overview 143

cause a problem. PFA uses a z/OS UNIX System Services (z/OS UNIX) file
system to manage the historical and problem data that it collects.

PFA creates report output in the following ways:
» In a z/OS UNIX file that stores the list of suspect tasks.

» In an IBM Health Checker for z/OS report that is displayed by z/OS System
Display and Search Facility (SDSF) and the message buffer.

» A customer's installation can also set up IBM Health Checker for z/OS to send
output to a log.

Attention: The objective of IBM Health Checker for z/OS is to identify
potential problems before they impact z/OS’ availability or, in worst cases,
cause outages. It checks the current active z/OS and sysplex settings and
definitions for a system and compares the values to those suggested by IBM
or defined by customers. It is not meant to be a diagnostic or monitoring tool,
but rather a continuously running preventive that finds potential problems.

3.14 Summary

144

An operating system is a collection of programs that manage the internal
workings of a computer system. The operating system taught in this course is
z/0OS, a widely used mainframe operating system. The z/OS operating system’s
use of multiprogramming and multiprocessing, and its ability to access and
manage enormous amounts of storage and /O operations, makes it ideally
suited for running mainframe workloads.

The concept of virtual storage is central to z/OS. Virtual storage is an illusion
created by the architecture, in that the system seems to have more storage than
it really has. Virtual storage is created through the use of tables to map virtual
storage pages to frames in central storage or slots in auxiliary storage. Only
those portions of a program that are needed are actually loaded into central
storage. z/OS keeps the inactive pieces of address spaces in auxiliary storage.

z/OS is structured around address spaces, which are ranges of addresses in
virtual storage. Each user of z/OS gets an address space containing the same
range of storage addresses. The use of address spaces in z/OS allows for
isolation of private areas in different address spaces for system security, yet also
allows for inter-address space sharing of programs and data through a common
area accessible to every address space.

In common usage, the terms central storage, real storage, real memory, and
main storage are used interchangeably. Likewise, virtual memory and virtual
storage are synonymous.

Introduction to the New Mainframe: z/OS Basics

The amount of central storage needed to support the virtual storage in an
address space depends on the working set of the application being used, and
this varies over time. A user does not automatically have access to all the virtual
storage in the address space. Requests to use a range of virtual storage are
checked for size limitations and then the necessary paging table entries are
constructed to create the requested virtual storage.

Programs running on z/OS and zSeries mainframes can run with 24-, 31-, or
64-bit addressing (and can switch between these modes if needed). Programs
can use a mixture of instructions with 16-bit, 32-bit, or 64-bit operands, and can
switch between these if needed.

Mainframe operating systems seldom provide complete operational
environments. They depend on licensed programs for middleware and other
functions. Many vendors, including IBM, provide middleware and various utility

products.

Middleware is a relatively recent term that can embody several concepts at the
same time. A common characteristic of middleware is that it provides a
programming interface, and applications are written (or partially written) to this

interface.

Key terms in this chapter

address space

addressability

auxiliary storage

central storage

control block

dynamic address
translation (DAT)

frame

input/output (1/0)

licensed program middleware multiprogramming multiprocessing
page/paging page stealing service level slot
agreement (SLA)
swapping virtual storage workload z/OS
management
(WLM)

3.15 Questions for review

To help test your understanding of the material in this chapter, complete the

following questions:

1. How does z/OS differ from a single-user operating system? Give two

examples.

Chapter 3. z/OS overview 145

2. z/OS is designed to take advantage of what mainframe architecture? In what
year was it introduced?

3. List the three major types of storage used by z/OS.
4. What is “virtual” about virtual storage?
5. Match the following terms:

a. Page ___auxiliary storage
b. Frame ___virtual storage
c. Slot ___central storage

What role does WLM play in a z/OS system?
List several defining characteristics of the z/OS operating system.
Why are policies a good form of administration in z/OS?

© © N o

List three types of software products that might be added to z/OS to provide a
complete system.

10.List several differences and similarities between z/OS and UNIX operating
systems.

11.Which of the following is/are not considered to be middleware in a z/OS
system?

a. Web servers

b. Transaction managers

c. Database managers

d. Auxiliary storage manager

3.16 Topics for further discussion

146

Further exploration of z/OS concepts could include the following areas of
discussion:

1. z/OS offers 64-bit addressing. Suppose you want to use this capability to
work with a large virtual storage area. You would use the proper programming
interface to obtain, say, a 30 GB area of virtual storage and you might write a
loop to initialize this area for your application. What are some of the probable
side effects of these actions? When is this design practical? What external
circumstances need to be considered? What would be different on another
platform, such as UNIX?

2. Why might moving programs and data blocks from below the line to above the
line be complicated for application owners? How might this be done without
breaking compatibility with existing applications?

3. An application program can be written to run in 24-, 31-, or 64-bit addressing
mode. How does the programmer select this? In a high-level language? In

Introduction to the New Mainframe: z/OS Basics

assembler language? You have started using ISPF. What addressing mode is
it using?

. Will more central storage allow a system to run faster? What measurements
indicate that more central storage is needed? When is no more central
storage needed? What might change this situation?

. If the current z/OS runs only in z/Architecture mode, why do we mention 24-,
31-, and 64-bit operation? Why mention 32-bit operands?

. Why bother with allocation for virtual storage? Why not build all the necessary
paging tables for all of virtual storage when an address space is first created?

. Why are licensed programs needed? Why not simply include all of the
software with the operating system?

Chapter 3. z/OS overview 147

148 Introduction to the New Mainframe: z/OS Basics

TSO/E, ISPF, and UNIX:
Interactive facilities of z/OS

Objective: In working with the z/OS operating system, you will need to know
its end-user interfaces. Chief among these is TSO and its menu-driven
interface, ISPF. These programs allow you to log on to the system, run
programs, and manipulate data files. Also, you will need to know the
interactive facilities of the z/OS implementation of UNIX interfaces, known
collectively as z/OS UNIX System Services, or z/OS UNIX for short.

After completing this chapter, you will be able to:

» Log onto z/OS.

» Run programs from the TSO READY prompt.

» Navigate through the menu options of ISPF.

» Use the ISPF editor to make changes to a data set.

» Use the UNIX interfaces on z/OS, including the z/OS UNIX command shell.

© Copyright IBM Corp. 2006, 2009. All rights reserved. 149

4.1 How do we interact with z/0S?

We’ve mentioned that z/OS is ideal for processing batch jobs—workloads that
run in the background with little or no human interaction. However, z/OS is just as
much an interactive operating system as it is a batch processing system. By
interactive we mean that end users (sometimes tens of thousands of them
concurrently in the case of z/OS) can use the system through direct interaction,
such as commands and menu style user interfaces.

z/OS provides a number of facilities to allow users to interact directly with the
operating system. This chapter provides an overview of each facility, as follows:

» “TSO overview” on page 150 shows how to log on to z/OS and describes the
use of a limited set of basic TSO commands available as part of the core
operating system. Interacting with z/OS in this way is called using TSO in its
native mode.

» “ISPF overview” on page 155 introduces the ISPF menu system, which is
what many people use exclusively to perform work on z/OS. ISPF menus list
the functions that are most frequently needed by online users.

» “z/OS UNIX interactive interfaces” on page 173 explores the z/OS UNIX shell
and utilities. This facility allows users to write and invoke shell scripts and
utilities, and use the shell programming language.

Hands-on exercises are provided at the end of the chapter to help students
develop their understanding of these important facilities.

4.2 TSO overview

Logon.

The procedure
by which a user
begins a
terminal
session.

Time Sharing Option/Extensions (TSO/E) allows users to create an interactive
session with the z/OS system. TSO' provides a single-user logon capability and
a basic command prompt interface to z/OS.

Most users work with TSO through its menu-driven interface, Interactive System
Productivity Facility (ISPF). This collection of menus and panels offers a wide
range of functions to assist users in working with data files on the system. ISPF
users include system programmers, application programmers, administrators,
and others who access z/OS. In general, TSO and ISPF make it easier for people
with varying levels of experience to interact with the z/OS system.

1 Most z/OS users refer to TSO/E as simply “TSO;” and that is how it is called in this textbook. Also,
the word “user” is synonymous with “end user.”

150 Introduction to the New Mainframe: z/OS Basics

In a z/OS system, each user is granted a user ID and a password authorized for
3270 TSO logon. Logging on to TSO requires a 3270 display device or, more

A commonly, a TN3270 emulator running on a PC.
The use of

SOﬁ‘é"lare th?t . During TSO logon, the system displays the TSO logon screen on the user’s 3270
enabiesaciien display device or TN3270 emulator. The logon screen serves the same purpose

to emulate an Wind | |
IBM 3270 as a Windows logon panel.

display station
or printer, and z/OS system programmers often modify the particular text layout and information

to use the of the TSO logon panel to better suit the needs of the system’s users. Therefore,
functions ofa the screen captures shown in this book will likely differ from what you might see
host system. On an actual production system.

Figure 4-1 shows a typical example of a TSO logon screen.

Enter LOGON parameters below: RACF LOGON parameters:
Userid ===> ZPROF

Password ===> New Password ===>
Procedure ===> IKJACCNT Group Ident ===>

Acct Nmbr ===> ACCNT#

Size ===> 860000
Perform ===>
Command ===>

Enter an 'S' before each option desired below:
-Nomail -Nonotice -Reconnect -0IDcard

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific help information by entering a '?' in any entry field

Figure 4-1 Typical TSO/E logon screen

Many of the screen capture examples used in this textbook show program
function (PF) key settings. Because it is common practice for z/OS sites to
customize the PF key assignments to suit their needs, the key assignments
shown in this textbook might not match the PF key settings in use at your site.

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zOS 151

A list of the PF key assignments used in this textbook is provided in 4.3.1,
“Keyboard mapping used in this course” on page 161.

4.2.1 Data file terms

Record

A group of
related data,
words, or fields
treated as a
unit.

z/OS files are called data sets. Before you can write data into them, space for
data sets must be reserved on disk. The user is involved in specifying the amount
of space as well as the formatting of it.

The act of creating a file on a mainframe is a somewhat more complicated
process than it is on a personal computer (PC). It's not an old technology; there
are several good reasons for the differences. One difference is that z/OS
traditionally uses what is called a record-oriented file system. In contrast, the PC
operating system (Microsoft® Windows, Linux, Mac OS, and so on) uses a byte
stream file system.

What's the difference? In a byte stream file system, files are just a collection of
sequential streams of bits, and there is a special character to tell the computer
where a line (or record) ends and the next one begins. In a record-oriented file
system, files are organized on the disk into separate records. With
record-oriented files, you explicitly define the sizes and attributes of your records,
so there is no need for a special end line character, which helps to conserve
system resources. By the way, z/OS also supports special byte stream file
systems called HFS and zFS; we discuss them in 5.13, “z/OS UNIX file systems”
on page 211.

Here are some of the terms used when allocating a data set.

Volume serial A six character name of a disk or tape volume, such as
TESTO1

Device type A model or type of disk device, such as 3390

Organization The method of processing a data set, such as sequential

Record format The data is stored in chunks called records, of either fixed
or variable length

Record length The length (number of characters) in each record

Block size If records are joined together to save space, this specifies

the length of the block in characters

Extent An allocation of space to hold the data. When the primary
extent is filled, the operating system will automatically
allocate more extents, called secondaries

Space Disk space is allocated in units called blocks, tracks, or
cylinders

152 Introduction to the New Mainframe: z/OS Basics

4.2.2 Using TSO commands in native mode

Most z/OS sites prefer to have the TSO user session automatically switch to the
ISPF interface after TSO logon. This section, however, briefly discusses the
limited set of basic TSO commands available independent of other
complementary programs, such as ISPF. Using TSO in this way is called using
TSO in its native mode.

When a user logs on to TSO, the z/OS system responds by displaying the
READY prompt, and waits for input, such as in Figure 4-2.

ICH70001I ZPROF LAST ACCESS AT 17:12:12 ON THURSDAY, OCTOBER 7, 2004
ZPROF LOGON IN PROGRESS AT 17:12:45 ON OCTOBER 7, 2004

Native Mode You have no messages or data sets to receive.
Using TSO READY
without its

complementary ro e 4.2 TSO logon READY prompt
programs, such

as ISPF.
The READY prompt accepts simple line commands such as HELP, RENAME,

ALLOCATE, and CALL. Figure 4-3 shows an example of an ALLOCATE
command that creates a data set (a file) on disk.

READY

alloc dataset(zschol.test.cntl) volume(test0l) unit(3390) tracks space(2,1)
recfm(f) 1rec1(80) dsorg(ps)
READY
listds

ENTER DATA SET NAME -
zschol.test.cntl
ZSCHOL.TEST.CNTL

--RECFM-LRECL-BLKSIZE-DSORG

F 80 80 PS
--VOLUMES--
TESTO1
READY

Figure 4-3 Allocating a data set from the TSO command line

Native TSO is similar to the interface offered by the native DOS prompt. TSO
also includes a very basic line mode editor, in contrast to the full screen editor
offered by ISPF.

Figure 4-4 on page 154 is another example of the line commands a user might
enter at the READY prompt. Here, the user is entering commands to sort data.

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zZOS 153

154

READY

ALLOCATE DATASET(AREA.CODES) FILE(SORTIN) SHR
READY

ALLOCATE DATASET (*) FILE(SORTOUT) SHR
READY

ALLOCATE DATASET (*) FILE(SYSOUT) SHR
READY

ALLOCATE DATASET (*) FILE(SYSPRINT) SHR
READY

ALLOCATE DATASET(SORT.CNTL) FILE(SYSIN) SHR
READY

CALL ‘SYS1.SICELINK(SORT)’

ICE143I 0 BLOCKSET SORT TECHNIQUE SELECTED

ICEO00I 1 - CONTROL STATEMENTS FOR Z/0S DFSORT V1R5
SORT FIELDS=(1,3,CH,A)

201 NJ

202 DC

203 CT

204 Manitoba

205 AL

206 WA

207 ME

208 1D

*k%

Figure 4-4 Using native TSO commands to sort data

In this example, the user entered several TSO ALLOCATE commands to assign
inputs and outputs to the workstation for the sort program. The user then entered
a single CALL command to run the sort program, DFSORT, an optional software
product from IBM.

Each ALLOCATE command requires content (specified with the DATASET
operand) associated with the following:

» SORTIN - in this case AREA.CODES
» SORTOUT - in this case *, which means the terminal screen

» SYSOUT

» SYSPRINT

» SYSIN

Following the input and output allocations and the user-entered CALL command,
the sort program displays the results on the user’s screen. As shown in

Figure 4-4, the SORT FIELDS control statement causes the results to be sorted
by area code. For example, NJ (New Jersey) has the lowest number telephone
area code, 201.

Introduction to the New Mainframe: z/OS Basics

Native TSO screen control is very basic. For example, when a screen fills up with
data, three asterisks (***) are displayed to indicate a full screen. Here, you must
press the Enter key to clear the screen of data and allow the screen to display the
remainder of the data.

4.2.3 Using CLISTs and REXX under TSO

CLIST

A list of
commandsthat
is executed as
if it were one
command.

REXX
An interpretive
command

language used
with TSO.

With native TSO, it is possible to place a list of commands, called a command list
or CLIST (pronounced “see list”) in a file, and execute the list as if it were one
command. When you invoke a CLIST, it issues the TSO/E commands in
sequence. CLISTs are used for performing routine tasks; they enable users to
work more efficiently with TSO.

For example, suppose that the commands shown in Example 4-4 on page 154
were grouped in a file called AREA.COMMND. The user could then achieve the
same results by using just a single command to execute the CLIST, as follows:

EXEC “CLIST AREA.COMMND’

TSO users create CLISTs with the CLIST command language. Another
command language used with TSO is called Restructured Extended Executor or
REXX. Both CLIST and REXX offer shell script-type processing. These are
interpretive languages, as opposed to compiled languages (although REXX can
be compiled as well). This textbook discusses CLIST and REXX in more detail in
Chapter 9, “Using programming languages on z/OS” on page 299.

Some TSO users write functions directly as CLISTs or REXX programs, but
these are more commonly implemented as ISPF functions, or by various
software products. CLIST programming is unique to z/OS, while the REXX
language is used on many platforms.

4.3 ISPF overview

ISPF

A facility of
z/OS that
provides
accesstomany
of the functions
mostfrequently
needed by
users.

After logging on to TSO, users typically access the ISPF menu. In fact, many use
ISPF exclusively for performing work on z/OS. ISPF is a full panel application
navigated by keyboard. ISPF includes a text editor and browser, and functions for
locating and listing files and performing other utility functions. ISPF menus list the
functions that are most frequently needed by online users.

Figure 4-5 shows the allocate procedure to create a data set using ISPF.

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zZOS 155

Menu ReflList Utilities Help

Allocate New Data Set
Command ===>

Data Set Name . . . : ZCHOL.TEST.CNTL
Management class . . . (Blank for default management class)
Storage class (Blank for default storage class)
Volume serial TESTO1 (Blank for system default volume) **
Device type (Generic unit or device address) **
Data class (Blank for default data class)
Space units TRACK (BLKS, TRKS, CYLS, KB, MB, BYTES
or RECORDS)

Average record unit (M, K, or U)

Primary quantity 2 (In above units)

Secondary quantity 1 (In above units)

Directory blocks . . 0 (Zero for sequential data set) *
Record format F

Record length 80

Block size

Data set name type : (LIBRARY, HFS, PDS, or blank) *

(YY/MM/DD, YYYY/MM/DD
Expiration date . . . YY.DDD, YYYY.DDD in Julian form
Enter "/" to select option DDDD for retention period in days
Allocate Multiple Volumes or blank)

(* Specifying LIBRARY may override zero directory block)

(** Only one of these fields may be specified)
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap F10=Actions F12=Cancel

Figure 4-5 Allocating a data set using ISPF panels

156 Introduction to the New Mainframe: z/OS Basics

Figure 4-6 shows the results of allocating a data set using ISPF panels.

Data Set Information
Command ===>

Data Set Name

General Data

Volume serial . . .
Device type :
Organization

Record format . . .
Record length . . .
Block size :
1st extent tracks .
Secondary tracks

Creation date . . .
Referenced date . .
Expiration date . .

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward

: ZCHOL.TEST.CNTL

Current Allocation

. F

: TESTO1 Allocated tracks
3390 Allocated extents . :
: PS
: 80
80 Current Utilization
: 2 Used tracks :
01 Used extents
: 2005/01/31
: 2005/01/31
B ***None***

F9=Swap F12=Cancel

Figure 4-6 Result of data set allocation using ISPF

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS

157

Figure 4-7 shows the ISPF menu structure.

Primary
option menu

0 Settings
1 Browse
2 Edit

3 Utilities
4 DS List
5.

| [

Settings

/ Cursor at ..

View

Proj
Group
Type

Other Dsn___

Edit Utilities
Proj 1 Dataset
Group 2 Library
Type 3 Copy/Move

4 DS List
Other Dsn___

1 ihrn'y

Edit Dataset

ek ek kR b Display
0//JOB1 JOB D Delete
0//S1 EXEC Proj

0//DD1 DD Group

v Type ___

n

PrST—

M Mo

IRE

|

Dialog Test

Figure 4-7 ISPF menu structure

To access ISPF under TSO, the user enters a command such as ISPPDF from
the READY prompt to display the ISPF Primary Option Menu.

158 Introduction to the New Mainframe: z/OS Basics

Figure 4-8 shows an example of the ISPF Primary Menu.

Menu Utilities Compilers Options Status Help

ISPF Primary Option Menu

Option ===>

0 Settings Terminal and user parameters User ID .

1 View Display source data or listings Time. . .

2 Edit Create or change source data Terminal.

3 Utilities Perform utility functions Screen. .

4 Foreground Interactive language processing Language.

5 Batch Submit job for Tanguage processing App1 ID .

6 Command Enter TSO or Workstation commands TSO Togon :
7 Dialog Test Perform dialog testing TSO prefix:
8 LM Facility Library administrator functions System ID :
9 IBM Products IBM program development products MVS acct.
10 SCLM SW Configuration Library Manager Release .
11 Workplace ISPF Object/Action Workplace

M More Additional IBM Products

Enter X to Terminate using log/list defaults

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap F10=Actions

: ZPROF

: 17:29

: 3278
01

: ENGLISH
: PDF

IKJACCT
ZPROF
SC04

: ACCNT#
: ISPF 5.2

F12=Cancel

Figure 4-8 ISPF Primary Option Menu

The ISPF panel can be customized with additional options by the local system

programmer. Therefore, it can vary in features and content from site to site.

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS

159

160

To reach the ISPF menu selections shown in Figure 4-9, you enter M on the

option line.
Menu Help
IEM Products Panel
Mare +
1 SMPSE System Modification Program/Extended
2 ISMF Integrated Storage Management Facility
3 RACF Resource Access Control Facility
4 HCD Hardware Configuration Dialogs
5 5DSF Spool Search and Display Facility
E IPCS Interactive Problem Control System
¥ DITTO DITTOSESA for MYS VWersion 1
g RMF Resource Measurement Faclility
9 DFS0RT Data Facility Sort
10 OMYS MYS OpenEdition
11 DBEZ2 Lata Base Products
12 RRS Resource Recowvery Services
13 DBEZADM Data Base Admin Tool
14 QMF Query Management Facility
15 MQ WMG Series Operations and Control
16 FMH File Manager 3.1.8perations and Control
17 WLM Workload Manager
18 PE Ferformance Expert
Option === 9
Fi=Help FZz=5plit F3=Exit F7=Backward F&=Forward Fa=Swap

Fi@=Actions Fi1Z=Cancel

Figure 4-9 More ISPF options displayed

In Figure 4-9, SORT is offered as option 9 on this panel. We will select it now as
a useful example of the ISPF panel-driven applications.

Introduction to the New Mainframe: z/OS Basics

Figure 4-10 shows the panel that would be displayed for option 9 of ISPF.

DFSORT PRIMARY OPTION MENU
ENTER SELECTION OR COMMAND ===>

SELECT ONE OF THE FOLLOWING:

0 DFSORT PROFILE - Change DFSORT user profile
1 SORT - Perform Sort Application
2 COPY - Perform Copy Application
3 MERGE - Perform Merge Application
X EXIT - Terminate DFSORT
N oo /
S S /

Licensed Materials - Property of IBM

| | 5740-SM1 (C) Copyright IBM Corp. 1988, 1992. | |

| | A1l rights reserved. US Government Users | |

Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

USE HELP COMMAND FOR HELP; USE END COMMAND TO EXIT.

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=CURSOR

Figure 4-10 SORT panel

Recall that 4.2.2, “Using TSO commands in native mode” on page 153 showed
an example of how a TSO user might perform a simple sort operation by entering
TSO commands in TSO native mode. Here, the same sort function is available
through ISPF as a menu-selectable option. Through the SORT option, the user
can allow ISPF to handle the TSO allocations, create the SORT control
statement, and call the SORT program to produce the results of the sort.

Notice the keyboard program function key (PF key) selections at the bottom of

each panel; using PF3 (END) returns the user to the previous panel.

4.3.1 Keyboard mapping used in this course

Many of the screen capture examples used in this textbook show ISPF program
function (PF) key settings at the bottom of the panel. As previously mentioned,

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zOS 161

because it is common for z/OS users to customize the PF key assignments to
suit their needs, the key assignments shown in this textbook might not match the
PF key settings in use on your system. Actual function key settings vary from
customer to customer.

Table 4-1 lists some of the most frequently used PF keys and other keyboard
functions and their corresponding keys.

Table 4-1 Keyboard mapping

Function Key

Enter Ctrl (right side)
Exit, end, or return PF3

Help PFA1

PA1 or Attention Alt-Ins or Esc
PA2 Alt-Home
Cursor movement Tab or Enter
Clear Pause

Page up PF7

Page down PF8

Scroll left PF10

Scroll right PF11

Reset locked keyboard Ctrl (left side)

The examples in this textbook use these keyboard settings. For example,
directions to press Enter mean that you should press the keyboard’s control key
(Ctrl) at the lower right. If the keyboard locks up, press the control key at the
lower left.

4.3.2 Using PF1-HELP and the ISPF tutorial

From the ISPF Primary Menu, press the PF1 HELP key to display the ISPF
tutorial. New users of ISPF should acquaint themselves with the tutorial
(Figure 4-11) and with the extensive online help facilities of ISPF.

162 Introduction to the New Mainframe: z/OS Basics

Tutorial --------emmmmmm - Table of Contents -----------—cccuuo- Tutorial
ISPF Program Development Facility Tutorial

The following topics are presented in sequence, or may be selected by entering
a selection code in the option field:

G General - General information about ISPF
0 Settings - Specify terminal and user parameters
1 View - Display source data or output listings
2 Edit - Create or change source data
3 Utilities - Perform utility functions
4 Foreground - Invoke language processors in foreground
5 Batch - Submit job for language processing
6 Command - Enter TSO command, CLIST, or REXX exec
7 Dialog Test - Perform dialog testing
9 IBM Products - Use additional IBM program development products
10 SCLM - Software Configuration and Library Manager
11 Workplace - ISPF Object/Action Workplace
X Exit - Terminate ISPF using log and list defaults
The following topics will be presented only if selected by number:
A Appendices - Dynamic allocation errors and ISPF Tisting formats
I Index - Alphabetical index of tutorial topics
Fl=Help F2=Split F3=Exit F4=Resize F5=Exhelp F6=Keyshelp

F7=PrvTopic F8=NxtTopic F9=Swap F10=PrvPage F11=NxtPage F12=Cancel

Figure 4-11 ISPF Tutorial main menu

You will most likely only use a fraction of the content found in the entire ISPF
tutorial.

Besides the tutorial, you can access online help from any of the ISPF panels.
When you invoke help, you can scroll through information. Press the PF1-Help
key for explanations of common ISPF entry mistakes, and examples of valid
entries. ISPF Help also contains help for the various functions found in the
primary option menu.

4.3.3 Using the PA1 key

We interrupt your textbook-reading enjoyment with a brief commercial for the PA1
key. This is a very important key for TSO users and every user should know how
to find it on the keyboard.

Back in the early days, the “real” 3270 terminals had keys labeled PA1, PA2, and
PA3. These were called Program Action keys or PA keys. In practice, only PA1 is

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zZOS 163

still widely used and it functions as a break key for TSO. In TSO terminology, this
is an attention interrupt. That is, pressing the PA1 key will end the current task.

Finding the PA1 key on the keyboard of a 3270 terminal emulator such as
TN3270 emulator can be a challenge. A 3270 emulator can be customized to
many different key combinations. On an unmodified x3270 session, the PA1 key
is Left Alt-1.

Let’'s give PA1 a try (you'll find it useful in the future). If you've got a TSO session
open now, try this:

1. Go to ISPF option 6. This panel accepts TSO commands.

2. Enter LISTC LEVEL(SYS1) ALL on the command line and press Enter. This
should produce a screen of output with three asterisks (***) in the last line on
the screen. In TSO, the *** indicates that there is more output waiting and you
must press Enter to see it (this meaning is consistent in almost all TSO
usage).

3. Press Enter for the next screen, and press Enter for the next screen, and so
forth.

4. Press the PA1 key, using whatever key combination is appropriate for your
TN3270 emulator. This should terminate the output.

4.3.4 Navigating through ISPF menus

164

ISPF includes a text editor and a browser, and functions for locating and listing
data sets and performing other utility functions. This textbook has not yet
discussed data sets, but you will need at least a working understanding of data
sets to begin the lab exercises in this chapter.

For now, think of a data set as a file used on z/OS to store data or executable
code. A data set can have a name up to 44 characters in length, such as
ZSCHOLAR.TEST.DATA. Data sets are described in more detail in Chapter 5,
“Working with data sets” on page 187.

A data set name is usually segmented, with one or more periods used to create
the separate data set qualifiers of 1 to 8 characters. The first data set qualifier is
the high level qualifier or HLQ. In this example, the HLQ is the ZSCHOLAR portion
of the data set name.

z/OS users typically use the ISPF Data Set List utility to work with data sets. To
access this utility from the ISPF Primary Option Menu, select Utilities, then
select Dslist to display the Utility Selection Panel, which is shown in Figure 4-12.

Introduction to the New Mainframe: z/OS Basics

Menu ReflList RefMode Utilities Help

Data Set List Utility

Option ===>
blank Display data set 1ist P Print data set Tist
V Display VTOC information PV Print VTOC information

Enter one or both of the parameters below:
Dsname Level . . . ZPROF
Volume serial

Data set 1ist options

Initial View . . . 1 1. Volume Enter "/" to select option
2. Space [Confirm Data Set Delete
3. Attrib [Confirm Member Delete
4, Total / Include Additional Qualifiers

When the data set list is displayed, enter either:
"/" on the data set Tist command field for the command prompt pop-up,
an ISPF line command, the name of a TSO command, CLIST, or REXX exec, or
"=" to execute the previous command.

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap F10=Actions F12=Cancel

Figure 4-12 Using the Data Set List utility

In the panel, you can use the Dsname Level data entry field to locate and list data
sets. To search for one data set in particular, enter the complete (or fully
qualified) data set name. To search for a range of data sets, such as all data sets
sharing a common HLQ, enter only the HLQ in the Dsname Level field.

Qualifiers can be specified fully, partially, or defaulted. At least one qualifier must
be partially specified. To search for a portion of a name, specify an asterisk (*)
before or after part of a data set name. Doing so will cause the utility to return all
data sets that match the search criteria. Avoid searching on * alone, because
TSO has many places to search in z/OS so this could take quite awhile.

In the majority of ISPF panels, a fully qualified data set name needs to be
enclosed in single quotes. Data set names not enclosed in single quotes will, by
default, be prefixed with a high level qualifier specified in the TSO PROFILE. This
default can be changed using the PROFILE PREFIX command. In addition, an
exception is ISPF option 3.4 DSLIST; do not enclose Dsname Level in quotes on
this panel.

For example, if you enter ZPROF in the Dsname field, the utility lists all data sets
with ZPROF as a high-level qualifier. The resulting list of data set names (see

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zZOS 165

Figure 4-13) allows the user to edit or browse the contents of any data set in the
list.

Menu Options View Utilities Compilers Help

DSLIST - Data Sets Matching ZPROF Row 1 of 4

Command ===> Scroll ===> PAGE

Command - Enter "/" to select action Message Volume
ZPROF *ALIAS
ZPROF .JCL.CNTL EBBER1
ZPROF . L1B.SOURCE EBBER1
ZPROF .PROGRAM. CNTL EBBER1
ZPROF .PROGRAM. LOAD EBBER1
ZPROF .PROGRAM. SRC EBBER1

B R e S S End Of Data Set '|-|St E R S

Fl=Help F2=Split F3=Exit F5=Rfind F7=Up F8=Down F9=Swap F10=Left F11=Right F12=Cancel

Figure 4-13 Data Set List results for dsname ZPROF
To see all of the possible actions you might take for a given data set, specify a

forward slash (/) in the command column to the left of the data set name. ISPF
will display a list of possible actions, as shown in Figure 4-14.

166 Introduction to the New Mainframe: z/OS Basics

Menu Options View Utilities Compilers Help

e o o o e ————————— B
D! Data Set List Actions ! Row 1 of 4
c! I ===> PAGE

! Data Set: ZPROF.PROGRAM.CNTL !
c! ! Volume
- 1 DSLIST Action e e tatatatatate

' 1. Hdit 12. Compress ! *ALIAS
/! 2. View 13. Free ! EBBER1

! 3. Browse 14. Print Index ! EBBER1

! 4. Member List 15. Reset ! EBBER1
* 1 5. Delete 16. Move kR Rk kR

! 6. Rename 17. Copy !

! 7. Info 18. Refadd !

! 8. Short Info 19. Exclude !

! 9. Print 20. Unexclude 'NX' !

! 10. Catalog 21. Unexclude first 'NXF' !

! 11. Uncatalog 22. Unexclude Tast 'NXL' !

| |

I Select a choice and press ENTER to process data set action. !

I Fl=Help F2=Split F3=Exit F7=Backward !

I F8=Forward F9=Swap F12=Cancel !

ettt +

Fl=Help F2=Split F3=Exit F5=Rfind F7=Up F8=Down F9=Swap F10=Left F11=Right F12=Cancel

Figure 4-14 Displaying the Data Set List actions

4.3.5 Using the ISPF editor

To edit a data set’s contents, enter an e (edit) to the left of the data set name. Ina
data set, each line of text is known as a record.

You can perform the following tasks:

» To view a data set’s contents, enter a v (view) as a line command in the
column.

» To edit a data set’s contents, enter an e (edit) as a line command in the
column.

» To edit the contents of a data set, move the cursor to the area of the record to
be changed and type over the existing text.

» To find and change text, you can enter commands on the editor command
line.

» To insert, copy, delete, or move text, place these commands directly on the
line numbers where the action should occur.

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zZOS 167

To commit your changes, use PF3 or save. To exit the data set without saving
your changes, enter Cancel on the edit command line.

Figure 4-15 shows the contents of data set
ZPROF.PROGRAM.CNTL(SORTCNTL) opened in edit mode.

File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT ZPROF.PROGRAM.CNTL(SORTCNTL) - 01.00 Columns 00001 00072

Command ===> Scroll ===> CSR

R eRRRRRRnnnnneeeeeest Top of Datg *rermneeeeeanse

000010 SORT FIELDS=(1,3,CH,A)

dhkkkkk khkkhkhhhhhhhhhhhhkhhhhkhhhhhhx BOttom Of Data Khkkkhkkhkkkhkhhhkhhhhhhhhkkkhhk

Figure 4-15 Edit a data set

Take a look at the line numbers, the text area, and the editor command line.
Primary command line, line commands placed on the line numbers, and text
overtype are three different ways in which you can modify the contents of the
data set. Line numbers increment by 10 with the TSO editor so that the
programmer can insert nine additional lines between each current line without
having to renumber the program.

4.3.6 Using the online help

Remember your private tutor, F1=Help, when editing data sets. PF1 in edit mode
displays the entire editor tutorial (Figure 4-16).

168 Introduction to the New Mainframe: z/OS Basics

TUTORIAL === ==mmmmmmmmmmmmmmme EDIT ==-mmmmmmmmmmmmmmmmmeeeo e TUTORIAL
OPTION ===>

Edit allows you to create or change source data.

The following topics are presented in sequence, or may be selected by number:

0 - General introduction 8 - Display modes (CAPS/HEX/NULLS)

1 - Types of data sets 9 - Tabbing (hardware/software/logical)
2 - Edit entry panel 10 - Automatic recovery

3 - SCLM edit entry panel 11 - Edit profiles

4 - Member selection list 12 - Edit 1ine commands

5 - Display screen format 13 - Edit primary commands

6 - Scrolling data 14 - Labels and Tine ranges

7 - Sequence numbering 15 - Ending an edit session

The following topics will be presented only if selected by number:
16 - Edit models
17 - Miscellaneous notes about edit

Fl=Help F2=Split F3=Exit F4=Resize F5=Exhelp F6=Keyshelp
F7=PrvTopic F8=NxtTopic F9=Swap F10=PrvPage F11=NxtPage F12=Cancel

Figure 4-16 Edit Help panel and tutorial

During the lab, you will edit a data set and use F1=Help to explore the Edit Line
Commands and Edit Primary Commands functions. Within the help function,
select and review the FIND, CHANGE, and EXCLUDE commands. This lab is
important for developing further skills in this course.

A subset of the line commands includes:

i Insert a line

Enter key Press Enter without entering anything to escape insert mode
i5 Obtain five input lines

d Delete a line

d5 Delete five lines

dd/dd Delete a block of lines

r Repeat a line

rr/rr Repeat a block of lines

c,thenaorb Copy a line after or before

c5,thenaorb Copy five lines after or before

cc/cc,thenaorb Copy a block of lines after or before

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zZOS 169

m, m5, mm/mm Move lines
X Exclude a line

4.3.7 Customizing your ISPF settings

The command line for your ISPF session might appear at the bottom of the
display, while your instructor’s ISPF command line might appear at the top. This
is a personal preference, but traditional usage places it at the top of the panel.

If you want your command line to appear at the top of the panel, do the following:
1. Go to the ISPF primary option menu.

2. Select option 0 to display the Settings menu, as shown in Figure 4-17 on
page 171.

3. In the list of Options, remove the “/” on the line that says “Command line at
bottom.” Use the Tab or New line key to move the cursor.

170 Introduction to the New Mainframe: z/OS Basics

Log/List Function keys

ISPF Settings

Command ===>

Options
Enter "/" to select option
Command 1ine at bottom
Panel display CUA mode
Long message in pop-up
Tab to action bar choices
Tab to point-and-shoot fields
Restore TEST/TRACE options

~! ~I ~I | ~=1

Session Manager mode
Jump from Teader dots
Edit PRINTDS Command

Colors

Always show split line
Enable EURO sign

Terminal Characteristics
Screen format

Terminal Type

2 1.

3 1.
. 3290A
. 3278KN
13.
17.
21.
25.

Data

3277

3278H0
BE190
DEU78A
SW500

Environ

2. Std

2.
6.
10.
14.
18.
22.

Workstation

Print Graphics
Family printer type 2

Device name
.0

Aspect ratio

General

Input field pad . .
Command delimiter .

3. Max

3277A
3278T
3278AR
3278IS
3278TH
DEU90A

3.
7.
11.
15.
19.
23.

4. Part

3278
3278CF
3278CY
3278L2
3278CU
SW116

. 3278A
. 3277KN
12.
16.
20.
24.

3278HN
BE163
DEU78
SW131

Figure 4-17 ISPF settings

While in this menu, you can change some other parameters that you will need
later:

>

>

Remove the “/” from Panel display CUA mode.

Change the Terminal Type to 4. This provides 3270 support for symbols used
by the C language.

Move the cursor to the Log/List option in the top line and press Enter.

— Select 1 (Log Data set defaults).
— Enter Process Option 2 (to delete the data set without printing).
— Press PF3 to exit.

Move the cursor to the Log/List option again.

— Select 2 (List Data set defaults).
— Enter Process Option 2 to delete the data set without printing.

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zOS 171

— PF3 to exit.
» Press PF3 again to exit to the primary menu.

The actions in the bar across the top usually vary from site to site.

Another way to customize ISPF panels is with the hilite command, as shown in
Figure 4-18. This command allows you to tailor various ISPF options to suit the
needs of your environment.

Eile Langusges CLolors Help

Edit Color Settings
ommand ===: {this menu shows up when you type "kilite)

I
_anguage: 1 1. Automatic Coloring: 1 1. Do not colar pr
2. Assembler 2, Color pragram
3. BookMaster 3. Both IF and DO
4. C 4. DO logic only
5. COBOL 5. IF logic only
6. IDL
. ISPF DTL Enter "+ to select option
G. ISFF FPanel _ Parentheses matching
9. ISPF Skeleton + Highlight FINMD strings
ia. JCL # Highlight cursor phrase
11. Pascal
12. PLAI Hote: Information from this par
13. RE®H sawed 1In the edit profile.
Fl=Help FZ=split FIF=Exit FFf=Backward Fa:-
FO=Swap Fig=Actions Fiz=Canrcel
15 HIREDATE DATE,
16 JOB CHAR (&),
w1y EDLEVEL SMALLIMT.
mis SEX CHAR(1},
1mm19 BEIRTHDARTE DATE.
.=Help F2=5plit F3=Exit FE=Rfind FeE=Rchange
i=Down F8=Swap Fid=Left F11=Right FlZz=Cancel

Figure 4-18 Using the HILITE command

4.3.8 Adding a GUI to ISPF

ISPF is a full panel application navigated by keyboard. You can, however,
download and install a variety of ISPF graphical user interface (GUI) clients to
include with a z/OS system. After installing the ISPF GUI client, it is possible to
use the mouse.

Figure 4-19 shows an example of an ISPF GUI.

172 Introduction to the New Mainframe: z/OS Basics

ISPEF Primary Option Menu

a Setting= Terminal and user paramseters U=z=xr ID . : FPHEWTON
1 View Display source data or listings Time. . . : 13:0&6
2 Edit Create or change s=ource data Terminal . : 3278
3 Ttilitie= Perform utility functions Scresn. . 1
4 Foreground Interactive language processing Language. : ENGLISH
5 Batch Submit job for language processing Appl IDIr . : PDF
& Command Enter TSO or Workstation commands TSO logon @ IEJACCT
7 Dialog Te=t |Perform dialog testing TSSO prefixz: PHEWTOHN
g IM Facility |Librarv administrator functions Sy=tem ID : SC04
9 IEM Product= |IBMH program development products HVS acct. : ACCHTH
10 SCLH SW Configuration Library Hanager Felea=e . : ISFF & 2
11 Workplace ISFF Object~Action Workplace
Enter Eﬂto Terminate using logslist defaults
Option ===3 | |
Enter | Fl=Help | FZz=Split |
F3i=E=it ‘ F7=Baclkward | F8=Forward ‘ F9=Swap | FlO=Action= ‘ Fl2=Cancel ||

Figure 4-19 ISPF GUI

The drop-down entries at the top of the ISPF panels require you to place the
cursor on the selection and press Enter. Move the ISPF GUI client mouse pointer
across the drop-down selections to display the respective sub-selections. Also
available in the GUI are Enter and PF key boxes.

4.4 z/OS UNIX interactive interfaces

Shell The z/OS UNIX shell and utilities provide an interactive interface to z/OS. The

A command shell and utilities can be compared to the TSO function in z/OS.

interpreter for

UNIX To perform some command requests, the shell calls other programs, known as

commandsand e, .

shell language utilities. The shell can be used to:

statements. . |hyoke shell scripts and utilities.

» Write shell scripts (a named list of shell commands, using the shell
programming language).

» Run shell scripts and C language programs interactively, in the TSO
background or in batch.

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zZOS 173

ISHELL

A TSO
command that
invokes an
ISPF panel
interface to
perform many
actions for
z/OS UNIX
operations.

z/0S

z/OS UNIX
Commands and
TSO/E Utilities
awk
OMVS) Shel| ee———> grep
| |
VTAM TCP/IP
|G

TCP/IP

Network

TSO Logon

ISHELL OMVS TELNET

Figure 4-20 Shell and utilities

A user can invoke the z/OS UNIX shell in the following ways:

» From a 3270 display or a workstation running a 3270 emulator

» From a TCP/IP-attached terminal, using the rlogin and telnet commands
» From a TSO session, using the OMVS command.

As an alternative to invoking the shell directly, a user can use ISHELL by entering

the command ISHELL from TSO. ISHELL provides an ISPF panel interface to
perform many actions for z/OS UNIX operations.

Figure 4-21 shows an overview of these interactive interfaces, the zZOS UNIX
shell and ISHELL. Also, there are some TSO/E commands that support z/OS
UNIX, but they are limited to functions such as copying files and creating
directories.

174 Introduction to the New Mainframe: z/OS Basics

z/OS UNIX ISPF Shell
(z/OS Shell) (ISHELL)
OMVS command ishell command

type filename
o dir bin

dir etc

"':‘f‘“'*“"",.‘!‘,'.',., T e
=] 'T‘__."r,_r r:__! % E

e UNIX interface o ISPF based
¢ POSIX 1003.2 e Menu interface
e Command interface

UNIX experienced user TSO experienced user

Figure 4-21 z/OS UNIX interactive interfaces

The z/OS UNIX shell is based on the UNIX System V shell and has some of the
features from the UNIX Korn shell. The POSIX standard distinguishes between a
command, which is a directive to the shell to perform a specific task, and a utility,
which is the name of a program callable by name from the shell. To the user,
there is no difference between a command and a utility.

The z/OS UNIX shell provides the environment that has the most functions and
capabilities. It supports many of the features of a regular programming language.

You can store a sequence of shell commands in a text file that can be executed.
This is called a shell script.

The TSO commands used with z/OS UNIX are:

ISHELL The ISHELL command invokes the ISPF panel interface to z/OS
UNIX System Services. ISHELL is a good starting point for users
familiar with TSO and ISPF who want to use z/OS UNIX. These
users can do much of their work with ISHELL, which provides
panels for working with the z/OS UNIX file system, including panels
for mounting and unmounting file systems and for doing some
z/OS UNIX administration.

ISHELL is often good for system programmers, familiar with z/OS,
who need to set up UNIX resources for the users.

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zZOS 175

omMVvs The OMVS command is used to invoke the z/OS UNIX shell.

Users whose primary interactive computing environment is a UNIX
system should find the z/OS UNIX shell environment familiar.

4.4.1 ISHELL command (ish)

Figure 4-22 shows the ISHELL or ISPF Shell panel displayed as a result of the
ISHELL or ISH command being entered from ISPF Option 6.

File Directory Special file Tools File systems Options Setup Help

UNIX System Services ISPF Shell
Enter a pathname and do one of these:

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on the command line.

Return to this panel to work with a different pathname.
More: +
/u/rogers

Figure 4-22 Panel displayed after issuing the ISH command

4.4.2 ISHELL - user files and directories

To search a user's files and directories, type the following and then press Enter:

/u/userid

For example, Figure 4-23 shows the files and directories of user rogers.

176 Introduction to the New Mainframe: z/OS Basics

Directory List

Select one or more files with / or action codes. If / is used also select an
action from the action bar otherwise your default action will be used. Select
with S to use your default action. Cursor select can also be used for quick
navigation. See help for details.

EUID=0 /u/rogers/

Type Perm Changed-ESTS5EDT Owner = —-——--- Size Filename Row 1 of 9
_ Dir 700 2002-08-01 10:51 ADMIN 8192
_ Dir 555 2003-02-13 11:14 AAAAAAA o ..
_ File 755 1996-02-29 18:02 ADMIN 979 .profile
_ File 600 1996-03-01 10:29 ADMIN 29 .sh history
_ Dir 755 2001-06-25 17:43 AAAAAAA 8192 data
_ File 644 2001-06-26 11:27 AAAAAAA 47848 inventory.export
_ File 700 2002-08-01 10:51 AAAAAAA 16 myfile
_ File 644 2001-06-22 17:53 AAAAAAA 43387 print.export
_ File 644 2001-02-22 18:03 AAAAAAA 84543 Sc.pdf

Figure 4-23 Display of a user’s files and directories

From here, you use action codes to do any of the following:

Browse a file or directory

Edit a file or directory

Delete a file or directory

Rename a file or directory

Show the attributes of a file or directory
Copy a file or directory

O =0 0T

4.4.3 OMVS command shell session
You use the OMVS command to invoke the z/OS UNIX shell.

The shell is a command processor that you use to:

» Invoke shell commands or utilities that request services from the system.

» Write shell scripts using the shell programming language.

» Run shell scripts and C-language programs interactively (in the foreground),
in the background, or in batch.

Shell commands often have options (also known as flags) that you can specify,
and they usually take an argument, such as the name of a file or directory. The
format for specifying the command begins with the command name, then the
option or options, and finally the argument, if any.

For example, in Figure 4-24 on page 178 the following command is shown:

1s -al /u/rogers

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zOS 177

Path /
Pathname
The route
through a file
system to a
specific file.

where 1s is the command name, and -al are the options.

ROGERS @ SC43:/>1s -al /u/rogers

total 408

drwx------ 3 ADMIN Sys1 8192 Aug 1 2005 .

dr-xr-xr-x 93 AAAAAAA TTY 0 Feb 13 11:14 ..
-rwxr-xr-x 1 ADMIN SYsl 979 Feb 29 1996 .profile
—rW——————= 1 ADMIN SYsl 29 Mar 1 1996 .sh history
-rw-r--r-- 1 AAAAAAA SYS1 84543 Feb 22 2001 Sc.pdf
drwxr-xr-x 2 ARAAAAA SYS1 8192 Jun 25 2001 data
-rw-r--r-— 1 AAAAAAA SYS1 47848 Jun 26 2001 inventory.export
—YWX-————- 1 ARAAAAA SYS1 16 Aug 1 2005 myfile
-rw-r--r-- 1 AAAAAAA SYS1 43387 Jun 22 2001 print.export

Figure 4-24 OMVS shell session display after issuing the OMVS command

This command lists the files and directories of the user. If the pathname is a file,
1s displays information on the file according to the requested options. If it is a
directory, 1s displays information on the files and subdirectories therein. You can
get information on a directory itself by using the -d option.

If you do not specify any options, 1s displays only the file names. When 1s sends
output to a pipe or file, it writes one name per line; when it sends output to the
terminal, it uses the -C (multi-column) format.

Terminology note: z/OS users tend to use the terms data set and file
synonymously, but not when it comes to z/OS UNIX System Services. With the
UNIX support in z/OS, the file system is a data set that contains directories and
files. So file has a very specific definition. z/OS UNIX files are different from other
z/OS data sets because they are byte-oriented rather than record-oriented.

4.4.4 Direct login to the shell

You can log in directly to the z/OS UNIX shell from a system that is connected to
z/OS through TCP/IP. Use one of the following methods:

rlogin You can rlogin (remote log in) to the shell from a system that has
rlogin client support. To log in, use the rlogin command syntax
supported at your site.

telnet You can telnet into the shell. To log in, use the telnet command from

your workstation or from another system with telnet client support.

As shown in Figure 4-25 on page 179, each of these methods requires the inetd
daemon to be set up and active on the z/OS system.

178 Introduction to the New Mainframe: z/OS Basics

shell

shell

rlogind

telnetd

¥

Ed

inetd

2/0S UNIX kernel

TCP/IP

/

telnet-C

\

rlogin-C

WS

WS

Figure 4-25 Diagram of a login to the shell from a terminal

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS

179

Figure 4-26 shows the z/OS shell after login through telnet.

% Telnet - wisc47oe M= B3
Connect Edit Terminal Help

(C) Copyright Software Development Group, University of Waterloo, 198%9.
All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

- Improve performance by preventing the propagation -
- of TSO/E or ISPF STEPLIBs -

CLASSPATH reset to .:/usr/lpp/Java/J1.1/lib/classes.zip:/usr/lpp/internet/server
_root/cgi-bin/iesclass.zip:/usr/lpp/internet/server_root/servlets/public:/u/suf/
classes

ROGERS @ scut: />

Figure 4-26 Telnet login to the shell screen
There are some differences between the asynchronous terminal support (direct
shell login) and the 3270 terminal support (OMVS command):

» You cannot switch to TSO/E. However, you can use the TSO SHELL
command to run a TSO/E command from your shell session.

» You cannot use the ISPF editor (this includes the oedit command, which
invokes ISPF edit).

» You can use the UNIX vi editor, and other interactive utilities that depend on
receiving each keystroke, without hitting the Enter key.

» You can use UNIX-style command-line editing.

4.5 Summary

180

TSO allows users to log on to z/OS and use a limited set of basic commands.
This is sometimes called using TSO in its native mode.

ISPF is a menu-driven interface for user interaction with a z/OS system. The
ISPF environment is executed from native TSO.

Introduction to the New Mainframe: z/OS Basics

ISPF provides utilities, an editor and ISPF applications to the user. To the extent
permitted by various security controls, an ISPF user has full access to most z/OS
system functions.

TSO/ISPF should be viewed as a system management interface and a
development interface for traditional z/OS programming.

The z/OS UNIX shell and utilities provide a command interface to the z/OS UNIX
environment. You can access the shell either by logging on to TSO/E or by using
the remote login facilities of TCP/IP (rlogin).

If you use TSO/E, a command called OMVS creates a shell for you. You can work
in the shell environment until exiting or temporarily switching back to the TSO/E
environment.

Key terms in this chapter

3270 emulation CLIST ISHELL

ISPF logon native mode

OMVS command path / pathname record

Restructured Extended shell Time Sharing Option/
Executor (REXX) Extensions (TSO/E)

4.6 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. If you want more information about a specific ISPF panel or help with a user
error, what should be your first action?

2. What makes the ISPF command PFSHOW OFF useful?

3. ISPF is a full-screen interface with a full-screen editor; TSO is a command
line interface with only a line editor. The TSO line editor is rarely used. Can
you think of a situation that would require the use of the TSO line editor?

4. Can the IBM-provided panels of ISPF be customized?

5. Name the two z/OS UNIX interactive interfaces and explain some of the
differences between the two.

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zOS 181

4.7 Exercises

The lab exercises in this chapter will help you develop skills in using TSO, ISPF
and the z/OS UNIX command shell. These skills are required for performing lab
exercises in the remainder of this text. To perform the lab exercises, each student
or team needs a TSO user ID and password (for assistance, see the instructor).

The exercises teach the following skills:

»

»

>

>

>

>

“Logging on to z/OS and entering TSO commands” on page 182
“Navigating through the ISPF menu options” on page 183

“Using the ISPF editor” on page 184

“Using SDSF” on page 185

“Opening the z/OS UNIX shell and entering commands” on page 186
“Using the OEDIT and OBROWSE commands” on page 186

The most commonly used functions, mapped to the keys used, are shown in
Table 4-1 on page 162.

4.7.1 Logging on to z/0OS and entering TSO commands

Establish a 3270 connection with z/OS using a workstation 3270 emulator and
log on with your user ID (we will call this yourid). From the TSO READY prompt
(after you have keyed in =x to exit out of ISPF into native TSO), enter the
following commands:

182

1.

PROFILE
What is the prefix value? Make a note of this; it is your user ID on the system.
PROFILE NOPREFIX

This changes your profile so TSO will not place a prefix at the beginning of
your commands. Specifying PROFILE PREFIX (with a value) or NOPREFIX
(by itself) tells the system whether to use a value (such as your user ID) to
find files in the system. NOPREFIX tells the system not to bother limiting the
results to files beginning with your user ID (for example) as it would otherwise
do by default.

LISTC

The LISTCAT command (or LISTC, for short) lists the data sets in a particular
catalog (we discuss catalogs in the next chapter). Your 3270 emulator has a
PA1 (attention) key. You can use the PA1 key to end the command output.

Note: When you see the three asterisks (***), it indicates that your screen is
filled. Press Enter or PA to continue.

Introduction to the New Mainframe: z/OS Basics

4. PROFILE PREFIX(userid)

This command specifies that your user ID is to be prefixed to all
non-fully-qualified data set names. This will filter the results of the next
command:

LISTC

What is displayed?

ISPF (or ISPPDF)

Enter into the ISPF menu-driven interface of TSO.

Note: On some systems, you will also need to select option P to access the
main ISPF screen.

4.7.2 Navigating through the ISPF menu options
From the ISPF Primary Option Menu, do the following:

1.
2.

9.

Select Utilities, then select Dslist from the Utility Selection Panel.

Enter SYS1 on the Dsname Level input field and press Enter. What is
displayed?

Use F8 to page down or forward, F7 to page up or backward, F10 to shift left
and F11 to shift right. Exit with F3.

Enter SYS1.PROCLIB on the Dsname Level input field and press Enter. What is
displayed?

Enter v in the command column to the left of SYS1.PROCLIB. This is a
partitioned data set with numerous members. Place an s to the left of any
member to select the member for viewing. Press F1. What specific help is
provided?

Enter =0 on the ISPF command or option line. What is the first option listed in
this ISPF Settings panel? Change your settings to place the command line at
the bottom of the panel. It is effective on exit from the Settings panel.

Enter PFSHOW OFF and then PFSHOW ON. What is the difference? How is this
useful?

Exit back to the ISPF Primary Option Menu. What value is used to select
Utilities?

Select Utilities.

10.In the Utilities Selection Panel, what value is used to select Dslist? Exit back

to the ISPF Primary Option Menu. On the option line, enter the Ultilities
selection value followed by a period, then enter the Dslist selection value.
What panel is displayed?

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zZOS 183

11.Exit back to the ISPF Primary Option Menu. Place the cursor on the Status
entry at the very top of the panel and press Enter. Select the Calendar value
and press Enter, then select the Session value. What changed?

12.Now set your screen to the original configuration, using the Status pull-down
and selecting Session.

4.7.3 Using the ISPF editor

184

From the ISPF Primary Option Menu, do the following:

1. Go to the DSLIST utility Panel and enter yourid.JCL in the Dsname Level
field. Press Enter.

2. Place e (edit) to the left of yourid.JCL. Place s (select) to the left of member
EDITTEST. Enter PROFILE on the edit command line, observe the data is
preceded by profile and message lines. Read the profile settings and
messages, then enter RESET on the command line. What is the result?

3. Enter any string of characters at the end of the first data line, then press
Enter. On the command line, enter CAN (cancel). Press Enter to confirm the
cancel request. Again, edit EDITTEST in the data set. Were your changes
saved?

Tip: As you become more familiar with ISPF, you will learn the letters and
numbers for some of the commonly used options. Preceding an option with
the = key takes you directly to that option, bypassing the menus in
between.

You can also go directly to nested options with the = sign. For example,
=3.4 takes you directly to a commonly used data set utility menu.

4. Move the cursor to one of the top lines on your display. Press F2. The result is
a second ISPF panel. What occurs when F9 is entered repeatedly?

5. Using F9, switch to the ISPF Primary Option Menu, then press F1 to display
the ISPF Tutorial panel.

6. From the ISPF Tutorial panel, select Edit, then Edit Line Commands, then
Basic Commands. Press Enter to scroll through the basic commands
tutorial. As you do so, frequently switch (F9) to the edit session and exercise
the commands in EDITTEST. Repeat this same scenario for Move/Copy
commands and shifting commands.

7. From the ISPF Tutorial panel, select Edit, then Edit Primary Commands,
then FIND/CHANGE/EXCLUDE commands. Press Enter to scroll through
the FIND/CHANGE/EXCLUDE commands tutorial. As you do so, frequently
switch (F9) to the edit session and exercise the commands in EDITTEST.

Introduction to the New Mainframe: z/OS Basics

8. Enter =X on the ISPF help panel to end the second ISPF panel session. Save

and exit the Edit Panel (F3) to return to the ISPF Primary Option Menu.

4.7.4 Using SDSF

From the ISPF Primary Option Menu, locate and select System Display and
Search Facility (SDSF), which is a utility that lets you look at output data sets.
Select More to find the SDSF option (5), or simply enter =M.5. The ISPF Primary
Option Menu typically includes more selections than those listed on the first
panel, with instructions on how to display the additional selections.

1.

Enter LOG, then shift left (F10), shift right (F11), page up (F7) and page down
(F8). Enter TOP, then BOTTOM on the command input line. Enter DOWN 500 and
UP 500 on the command input line. You will learn how to read this system log
later.

. Observe the SCROLL value to the far left on the command input line.

Scroll ===> PAGE

Tab to the SCROLL value. The values for SCROLL can be:

Cor CSR Scroll to where you placed the cursor
P or PAGE Full page or screen
H or HALF Half page or half screen

You will find the SCROLL value on many ISPF panels, including the editor.
You can change this value by entering the first letter of the scroll mode over
the first letter of the current value. Change the value to CSR, place the cursor
on another line in the body of the system log, and press F7. Did it place the
line with the cursor at the top?

Enter ST (status) on the SDSF command input line, then SET DISPLAY ON.
Observe the values for Prefix, Best, Owner, and Susanne. To display all of the
current values for each, enter * as a filter, for example:

PREFIX *
OWNER *
DEST

The result should be:
PREFIX=* DEST=(ALL) OWNER=*

Enter DA, to display all active jobs. Enter ST to retrieve the status of all jobs in
the input, active, and output queues. Once again, press F7 (page up), F8
(page down), F10 (shift left), and F11 (shift right).

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of zZOS 185

4.7.5 Opening the z/0S UNIX shell and entering commands

From the ISPF Primary Option Menu, select Option 6, then enter the OMVS
command. From your home directory, enter the following shell commands:

id
date
man date

man man
env
type read

Is

Is -l

Is -1 /etc.
cal

cal 2005
cal 1752

exit

Shows your current id.
Shows time and date.

Manual of the date command. You can scroll through the
panels by pressing Enter. Enter quit to exit the panels.

Help for the manual.
Environment variables for this session.

Identifies whether read is a command, a utility, an alias, and so
forth.

List a directory.

List the current directory.

List the directory /etc.

Display a calender of the current month.
Display a calender of the year 2005.

Display the calender for the year 1752. Is September missing
13 days? [Answer: Yes, all UNIX calendars have 13 days
missing from September 1752.] Optional: To find out why, ask a
History major!

End the OMVS session.

4.7.6 Using the OEDIT and OBROWSE commands

Another way to start the OMVS shell is by entering the TSO OMVS command on
any ISPF panel. From your home directory, enter the following shell commands:

186

cd /tmp
oedit myfile

Is

Is -l

myfile

obrowse myfile
exit

This is a directory that you have authority to update.

This opens the ISPF edit panel and creates a new text file in
the current path. Write some text into the editor. Save and
exit (F3).

Display the current directory listing in terse mode.

Display the current directory listing in verbose mode.

myfile can be any file you choose to create.

Browse the file you just created.

End the OMVS session.

Introduction to the New Mainframe: z/OS Basics

Working with data sets

Objective: In working with the z/OS operating system, you must understand
data sets, the files that contain programs and data. The characteristics of
traditional z/OS data sets differ considerably from the file systems used in
UNIX and PC systems. To make matters even more interesting, you can also
create UNIX file systems on z/OS, with the common characteristics of UNIX
systems.

After completing this chapter, you will be able to:

» Explain what a data set is.

» Describe data set naming conventions and record formats.

» List some access methods for managing data and programs.

» Explain what catalogs and VTOCs are used for.

» Create, delete and modify data sets.

» Explain the differences between UNIX file systems and z/OS data sets.

» Describe the z/OS UNIX file systems' use of data sets.

© Copyright IBM Corp. 2006, 2009. All rights reserved. 187

5.1 What is a data set?

Data Set

A collection of
logically
related data
records, such
as a library of
macros or a
source
program.

Nearly all work in the system involves data input or data output. In a mainframe
system, the channel subsystem manages the use of 1/O devices, such as disks,
tapes, and printers, while z/OS associates the data for a given task with a device.

z/OS manages data by means of data sets. The term data set refers to a file that
contains one or more records. Any named group of records is called a data set.
Data sets can hold information such as medical records or insurance records, to
be used by a program running on the system. Data sets are also used to store
information needed by applications or the operating system itself, such as source
programs, macro libraries, or system variables or parameters. For data sets that
contain readable text, you can print them or display them on a console (many
data sets contain load modules or other binary data that is not really printable).
Data sets can be cataloged, which permits the data set to be referred to by name
without specifying where it is stored.

In simplest terms, a record is a fixed number of bytes containing data. Often, a
record collects related information that we treat as a unit, such as one item in a
database or personnel data about one member of a department. The term field
refers to a specific portion of a record used for a particular category of data, such
as an employee's name or department.

The record is the basic unit of information used by a program running on z/OS".
The records in a data set can be organized in various ways, depending on how
we plan to access the information. If you write an application program that
processes things like personnel data, for example, your program can define a
record format for each person’s data.

There are many different types of data sets in z/OS, and different methods for
accessing them. This chapter discusses three types of data sets: sequential,
partitioned, and VSAM data sets.

In a sequential data set, records are data items that are stored consecutively. To
retrieve the tenth item in the data set, for example, the system must first pass the
preceding nine items. Data items that must all be used in sequence, like the
alphabetical list of names in a classroom roster, are best stored in a sequential
data set.

A partitioned data set or PDS consists of a directory and members. The directory
holds the address of each member and thus makes it possible for programs or
the operating system to access each member directly. Each member, however,
consists of sequentially stored records. Partitioned data sets are often called

1 z/0S UNIX files are different from the typical z/OS data sets because they are byte-oriented rather
than record-oriented.

188 Introduction to the New Mainframe: z/OS Basics

libraries. Programs are stored as members of partitioned data sets. Generally,
the operating system loads the members of a PDS into storage sequentially, but
it can access members directly when selecting a program for execution.

In a Virtual Storage Access Method (VSAM) key sequenced data set (KSDS),
records are data items that are stored with control information (keys) so that the
system can retrieve an item without searching all preceding items in the data set.
VSAM KSDS data sets are ideal for data items that are used frequently and in an
unpredictable order. We discuss the different types of data sets and the use of
catalogs later in this chapter.

Related reading: A standard reference for information about data sets is the IBM
publication, zZOS DFSMS Using Data Sets. You can find this and related
publications at the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

5.2 Where are data sets stored?

z/OS supports many different devices for data storage. Disks or tape are most
frequently used for storing data sets on a long-term basis. Disk drives are known
as direct access storage devices (DASDs) because, although some data sets on
them might be stored sequentially, these devices can handle direct access. Tape
drives are known as sequential access devices because data sets on tape must
be accessed sequentially.

The term DASD applies to disks or simulated equivalents of disks. All types of
data sets can be stored on DASD (only sequential data sets can be stored on
magnetic tape). You use DASD volumes for storing data and executable
programs, including the operating system itself, and for temporary working
storage. You can use one DASD volume for many different data sets, and
reallocate or reuse space on the volume.

To enable the system to locate a specific data set quickly, z/OS includes a data
set known as the master catalog that permits access to any of the data sets in
the computer system or to other catalogs of data sets. z/OS requires that the
master catalog reside on a DASD that is always mounted on a drive that is online
to the system. We discuss catalogs further in 5.11, “Catalogs and VTOCs” on
page 205.

Chapter 5. Working with data sets 189

5.3 What are access methods?

An access method defines the technique that is used to store and retrieve data.
Access methods have their own data set structures to organize data,
system-provided programs (or macros) to define data sets, and utility programs
to process data sets.

Access methods are identified primarily by the data set organization. z/OS users,
for example, use the basic sequential access method (BSAM) or queued
sequential access method (QSAM) with sequential data sets.

There are times when an access method identified with one organization can be
used to process a data set organized in a different manner. For example, a
sequential data set (not extended-format data set) created using BSAM can be
processed by the basic direct access method (BDAM), and vice versa. Another
example is UNIX files, which you can process using BSAM, QSAM, basic
partitioned access method (BPAM), or virtual storage access method (VSAM).

This text does not describe all of the access methods available on z/OS.
Commonly used access methods include the following:

QSAM Queued Sequential Access Method (heavily used)

BSAM Basic Sequential Access Method (for special cases)
BDAM Basic Direct Access Method (becoming obsolete)

BPAM Basic Partitioned Access Method (for libraries)

VSAM Virtual Sequential Access Method (used for more complex

applications)

5.4 How are DASD volumes used?

190

DASD volumes are used for storing data and executable programs (including the
operating system itself), and for temporary working storage. One DASD volume

can be used for many different data sets, and space on it can be reallocated and
reused.

On a volume, the name of a data set must be unique. A data set can be located
by device type, volume serial number, and data set name. This is unlike the file
tree of a UNIX system. The basic z/OS file structure is not hierarchical. z/OS data
sets have no equivalent to a path name.

Although DASD volumes differ in physical appearance, capacity, and speed, they
are similar in data recording, data checking, data format, and programming. The
recording surface of each volume is divided into many concentric tracks. The
number of tracks and their capacity vary with the device. Each device has an

Introduction to the New Mainframe: z/OS Basics

access mechanism that contains read/write heads to transfer data as the
recording surface rotates past them.

5.4.1 DASD terminology for UNIX and PC users

The disk and data set characteristics of mainframe hardware and software differ
considerably from UNIX and PC systems, and carry their own specialized
terminology. Throughout this text, the following terms are used to describe
various aspects of storage management on z/OS:

» Direct Access Storage Device (DASD) is another name for a disk drive.

» A disk drive is also known as a disk volume, a disk pack, or a Head Disk
Assembly (HDA). We use the term volume in this text except when discussing
physical characteristics of devices.

» A disk drive contains cylinders.
» Cylinders contain tracks.
» Tracks contain data records and are in Count Key Data (CKD) format.2

» Data blocks are the units of recording on disk.

5.4.2 What are DASD labels?

The operating system uses groups of labels to identify DASD volumes and the
data sets they contain. Customer application programs generally do not use
these labels directly. DASD volumes must use standard labels. Standard labels
include a volume label, a data set label for each data set, and optional user
labels. A volume label, stored at track 0 of cylinder 0, identifies each DASD
volume.

The z/OS system programmer or storage administrator uses the ICKDSF utility
program to initialize each DASD volume before it is used on the system. ICKDSF
generates the volume label and builds the volume table of contents (VTOC), a
structure that contains the data set labels (we discuss VTOCs in “What is a
VTOC?” on page 205). The system programmer can also use ICKDSF to scan a
volume to ensure that it is usable and to reformat all the tracks.

5.5 Allocating a data set

To use a data set, you first allocate it (establish a link to it), then access the data
using macros for the access method that you have chosen.

2 Current devices actually use Extended Count Key Data (ECKD™) protocols, but we use CKD as a
collective name in the text.

Chapter 5. Working with data sets 191

The allocation of a data set means either or both of two things:

» To set aside (create) space for a new data set on a disk.
» To establish a logical link between a job step and any data set.

At the end of this chapter, we allocate a data set using ISPF panel option 3.2.
Other ways to allocate a data set include the following methods:

Access method services
You can allocate data sets through a multifunction
services program called access method services. Access
method services include commonly used commands for
working with data sets, as ALLOCATE, ALTER, DELETE,
and PRINT.

ALLOCATE You can use the TSO ALLOCATE command to create
data sets. The command actually guides you through the
allocation values that you must specify.

ISPF menus You can use a set of TSO menus called Interactive
System Productivity Facility. One menu guides the user
through allocation of a data set.

Using JCL You can use a set of commands called job control
language to allocate data sets.

5.6 How data sets are named

HLQ

First segment
of a
multi-segment
name.

When you allocate a new data set, you must give the data set a unique name.

A data set name can be one name segment, or a series of joined name
segments. Each name segment represents a level of qualification. For example,
the data set name VERA.LUZ.DATA is composed of three name segments. The
first name on the left is called the high-level qualifier (HLQ), the last name on the
right is the lowest-level qualifier (LLQ).

Segments or qualifiers are limited to eight characters, the first of which must be
alphabetic (A to Z) or special (# @ $). The remaining seven characters are either
alphabetic, numeric (0 - 9), special, a hyphen (-). Name segments are separated
by a period (.).

Including all name segments and periods, the length of the data set name must
not exceed 44 characters. Thus, a maximum of 22 name segments can make up
a data set name.

192 Introduction to the New Mainframe: z/OS Basics

For example, the following names are not valid data set names:

» Name with a qualifier that is longer than eight characters
(HLQ.ABCDEFGHI.XYZ)

» Name containing two successive periods (HLQ..ABC)
» Name that ends with a period (HLQ.ABC.)

» Name that contains a qualifier that does not start with an alphabetic or special
character (HLQ.123.XYZ2)

The HLQ for a user’s data sets is typically controlled by the security system.
There are a number of conventions for the remainder of the name. These are
conventions, not rules, but are widely used. They include the following:

» The letters LIB somewhere in the name indicate that the data set is a library.
The letters PDS are a lesser-used alternative for this.

» The letters CNTL, JCL, or JOB somewhere in the name typically indicate the
data set contains JCL (but might not be exclusively devoted to JCL).

» The letters LOAD, LOADLIB, or LINKLIB in the name indicate that the data set
contains executables. (A library with z/OS executable modules must be
devoted solely to executable modules.)

» The letters PROC, PRC, or PROCLIB indicate a library of JCL procedures.

» Various combinations are used to indicate source code for a specific
language, for example COBOL, Assembler, FORTRAN, PL/I, JAVA, C, or
C++.

» A portion of a data set name may indicate a specific project, such as
PAYROLL.

» Using too many qualifiers is considered poor practice. For example,
P390A.A.B.C.D.E.F.G.H.I.J.K.L.M.N.0.P.Q.R.S

is a valid data set name (upper case, does not exceed 44 bytes, no special
characters) but it is not very meaningful. A good practice is for a data set
name to contain three or four qualifiers.

» Again, the periods count toward the 44-character limit.

5.7 Allocating space on DASD volumes through JCL

This section describes allocating a data set as you would using job control
language (JCL). We discuss the use of JCL later in this book; this section
previews some of the data set space allocation settings you will use later in this
text. Besides JCL, other common methods for allocating data sets include the
IDCAMS utility program, or using DFSMS to automate the allocation of data sets.

Chapter 5. Working with data sets 193

In JCL, you can specify the amount of space required in blocks, records, tracks,
or cylinders. When creating a DASD data set, you specify the amount of space
needed explicitly through the SPACE parameter, or implicitly by using the
information available in a data class.® If you begin your data set name with &&,
the JCL processor will allocate it as a temporary data set and delete it when the
job has completed.

The system can use a data class if SMS is active even if the data set is not
SMS-managed. For system-managed data sets, the system selects the volumes,
saving you from having to specify a volume when you allocate a data set.

If you specify your space request by average record length, space allocation is
independent of device type. Device independence is especially important to
system-managed storage.

5.7.1 Logical records and blocks

LRECL

The maximum
logical record
length - a DCB
attribute of a
data set.

A logical record length (LRECL) is a unit of information about a unit of processing
(for example, a customer, an account, a payroll employee, and so on). It is the
smallest amount of data to be processed, and it is comprised of fields that
contain information recognized by the processing application.

Logical records, when located on DASD, tape, or optical devices, are grouped
within physical records named blocks. BLKSIZE indicates the length of those
blocks. Each block of data on a DASD volume has a distinct location and a
unique address, thus making it possible to find any block without extensive
searching. Logical records can be stored and retrieved either directly or
sequentially.

The maximum length of a logical record (LRECL) is limited by the physical size of
the used media.

When the amount of space required is expressed in blocks, you must specify the
number and average length of the blocks within the data set.

Let us take an example of a request for disk storage as follows:

» Average block length in bytes = 300

» Primary quantity (humber) of blocks = 5000

» Secondary quantity of blocks, to be allocated if the primary quantity gets filled
with data = 100

3 When allocating a data set through DFSMS or the IDCAMS utility program, you can specify space
allocations in kilobytes or megabytes, rather than blocks, records, tracks, or cylinders.

194 Introduction to the New Mainframe: z/OS Basics

From this information, the operating system estimates and allocates the amount
of disk space required.

5.7.2 Data set extents

Space for a disk data set is assigned in extents. An extent is a contiguous
number of disk drive tracks, cylinders, or blocks. Data sets can increase in
extents as they grow. Older types of data sets can have up to 16 extents per
volume. Newer types of data sets can have up to 128 extents per volume or 255
extents total on multiple volumes.

Extents are relevant when you are not using PDSEs and have to manage the
space yourself, rather than through DFSMS. Here, you want the data set to fit
into a single extent to maximize disk performance. Reading or writing contiguous
tracks is faster than reading or writing tracks scattered over the disk, as might be
the case if tracks were allocated dynamically. But if there is not sufficient
contiguous space, a data set goes into extents.

5.8 Data set record formats

Traditional z/OS data sets are record oriented. In normal usage, there are no
byte stream files such as are found in PC and UNIX systems. (z/OS UNIX has
byte stream files, and byte stream functions exist in other specialized areas.
These are not considered to be traditional data sets.)

In z/OS, there are no new line (NL) or carriage return and line feed (CR+LF)
characters to denote the end of a record. Records are either fixed length or
variable length in a given data set. When editing a data set with ISPF, for
example, each line is a record.

Traditional z/OS data sets have one of five record formats, as follows:

F - Fixed This means that one physical block on disk is one
logical record and all the blocks/records are the same
size. This format is seldom used.

FB - Fixed Blocked This means that several logical records are combined
into one physical block. This can provide efficient
space utilization and operation. This format is
commonly used for fixed-length records.

V - Variable This format has one logical record as one physical
block. A variable-length logical record consists of a
record descriptor word (RDW) followed by the data.
The record descriptor word is a 4-byte field describing

Chapter 5. Working with data sets 195

Block Size
The physical
block size
written on a
disk for F and
FB records.

RECFM

Record format;
one of the
characteristics
of a data
control block.

the record. The first 2 bytes contain the length of the
logical record (including the 4-byte RDW). The length
can be from 4 to 32,760 bytes. All bits of the third and
fourth bytes must be 0, because other values are used
for spanned records. This format is seldom used.

VB - Variable Blocked This format places several variable-length logical
records (each with an RDW) in one physical block. The
software must place an additional Block Descriptor
Word (BDW) at the beginning of the block, containing
the total length of the block.

U - Undefined This format consists of variable-length physical
records/blocks with no predefined structure. Although
this format may appear attractive for many unusual
applications, it is normally used only for executable
modules.

We must stress the difference between a block and a record. A block is what is
written on disk, while a record is a logical entity.

The terminology here is pervasive throughout z/OS literature. The key terms are:

» Block Size (BLKSIZE) is the physical block size written on the disk for F and
FB records. For V, VB, and U records it