

ROS By Example

A Do-It-Yourself Guide to the

Robot Operating System

VOLUME 1

A PI ROBOT PRODUCTION

R. PATRICK GOEBEL

Version 1.1.0

For ROS Indigo

ROS BY EXAMPLE. Copyright © 2012 by R. Patrick Goebel

All Rights Reserved. No part of this work may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN: 5-800085-311092

Version 1.1.0 for ROS Indigo: January 2015

LEGO® is a trademark of the LEGO group which does not sponsor, authorize, or
endorse this book.

Other products and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a
trademark name, we are using the names only in an editorial fashion and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Information contained in this work (Paperback or eBook) has been obtained from
sources believed to be reliable. However, the author does not guarantee the accuracy or
completeness of any information contained in it, and the author shall not be responsible
for any errors, omissions, losses, or damages caused or alleged to be caused directly or
indirectly by the information published herein. This work is published with the
understanding that the author is supplying information but is not attempting to render
professional services. This product almost certainly contains errors. It is your
responsibility to examine, verify, test, and determine the appropriateness of use, or
request the assistance of an appropriate professional to do so.

 PREFACE

This book is about programming your robot to do amazing things, whether it be
detecting people's faces and other visual objects, navigating autonomously around your
house, or responding to spoken commands. We will be using some of the most
advanced robotics software available today thanks to ROS, the Robot Operating System
created by California-based Willow Garage and now maintained by the Open Source
Robotics Foundation (OSRF).

The primary goal of ROS (pronounced "Ross") is to provide a unified and open source
programming framework for controlling robots in a variety of real world and simulated
environments. ROS is certainly not the first such effort; in fact, doing a Wikipedia
search for "robot software" turns up 15 such projects. But Willow Garage is no ordinary
group of programmers banging out free software. Propelled by some serious funding,
strong technical expertise, and a well planned series of developmental milestones,
Willow Garage has ignited a kind of programming fever among roboticists with
hundreds of user-contributed ROS packages already created in just a few short years.
ROS now includes software for tasks ranging from navigation and localization (SLAM),
3D object recognition, action planning, motion control for multi-jointed arms, machine
learning and even playing billiards.

In the meantime, Willow Garage has also designed and manufactured a $400,000 robot
called the PR2 to help showcase its operating system. Using the latest in robot
hardware, including two stereo cameras, a pair of laser scanners, arms with 7 degrees of
freedom, and an omni-directional drive system, only a lucky few will be able to run
ROS directly on the PR2, including 11 research institutions that were awarded free PR2s
as part of a beta-test contest. However, you do not need a PR2 to leverage the power of
ROS; packages have already been created to support lower-cost platforms and
components including the iRobot Create, TurtleBot, Arduino, WowWee Rovio, LEGO®
NXT, Phidgets, ArbotiX, Serializer, Element and Robotis Dynamixels.

The guiding principle underlying ROS is "don't reinvent the wheel". Many thousands of
very smart people have been programming robots for over fifty years—why not bring all
that brain power together in one place? Fortunately, the Web is the perfect medium for
sharing code. Many universities, companies and individuals now openly share their
ROS code repositories, and with free cloud space available through services such as
Google Code or GitHub, anyone can share their own ROS creations easily and at no
cost.

Perhaps the best part of jumping on the ROS train is the excitement that comes from
working with thousands of like-minded roboticists from around the world. Not only will
you save many days of frustration by not duplicating someone else's work, you can also
feel the satisfaction that comes from contributing back to this rapidly developing field.

http://www.youtube.com/watch?v=HMx1xW2E4Gg
http://www.osrfoundation.org/
http://www.willowgarage.com/

 PRINTED VS PDF VERSIONS OF THE BOOK

The printed and PDF versions of this book are nearly the same with a few important
differences. The page formatting is identical but most PDF readers start page numbering
from the first page and ignore what is set by the document itself. Images and code
syntax are in color in the PDF version but grayscale in the printed version to keep the
cost reasonable. The PDF version is full of clickable links to other resources on the
Web. In the printed version, these links appear as underlined text with a numbered
superscript. The expanded URLs are then listed as endnotes at the end of the book.

Staying Up-To-Date: If you'd like to receive notifications of updates to both the book
and the accompanying code, please join the ros-by-example Google Group.

https://groups.google.com/forum/#!forum/ros-by-example

 CHANGES SINCE HYDRO

If Indigo is your first experience with ROS and this book, then you can safely skip this
chapter. However, if you have already been using previous versions of this book with
ROS Hydro or earlier ROS versions, there are a few changes to be noted. You can read
the official list of differences between ROS Hydro and Indigo on the Hydro → Indigo
migration page. Here are some of the items that affect the code used with this book.

Changes to ROS

• Creating a publisher without an explicit queue_size parameter will now
generate a warning and force the publisher to behave synchronously. It is
preferable to specify an explicit queue_size parameter which will also place
the publisher in asynchronous mode. For more information please see the
Publisher and Subscriber Overview on the ROS Wiki. The Indigo ros-by-
example code has been updated to include a queue_size parameter for all
publishers. NOTE: Not all Indigo ROS packages have been updated to include
a queue_size parameter when defining a publisher. You will therefore
occasionally see a warning about a missing queue_size parameter when
running various packages. These warnings should be harmless.

• The OpenCV cv_to_imgmsg function in the cv_bridge package has been
replaced with the OpenCV2 version cv2_to_imgmsg that uses image arrays
instead of the older OpenCV image matrix format. This update has been done
for the rbx1 code. At the same time, the older cv.fromarray() function is
no longer necessary to convert image arrays to the older OpenCV matrix format.

• Likewise, the OpenCV imgmsg_to_cv function in the cv_bridge package has
been replaced with the OpenCV2 version imgmsg_to_cv2 that uses image
arrays instead of the older OpenCV image matrix format. This update has been
done for the rbx1 code. At the same time, the older cv.toarray() function is
no longer necessary to convert image arrays to the older OpenCV matrix format.

• The original openni.org website was shut down on April 23, 2014. However,
OpenNI 2 binaries are being preserved on the Structure website. OpenNI 2
binaries will work with the Asus Xtion, Xtion Pro and Primesense 1.08/1.09
depth cameras. However, they do not work with the Microsoft Kinect. For the
Microsoft Kinect, we will use the freenect drivers available through the
OpenKinect project.

• The previous openni meta-package and has been superseded by two new
packages: openni2_launch for use with Asus Xtion, Xtion Pro and
Primesense 1.08/1.09 cameras and freenect_launch for the Microsoft
Kinect.

http://wiki.ros.org/freenect_launch
http://wiki.ros.org/openni2_launch
http://openkinect.org/wiki/Main_Page
http://structure.io/openni
http://wiki.ros.org/rospy/Overview/Publishers%20and%20Subscribers#queue_size:_publish.28.29_behavior_and_queuing
http://wiki.ros.org/indigo/Migration
http://wiki.ros.org/indigo/Migration
http://wiki.ros.org/indigo/Migration

• The default RGB image topic when using either the openni or freenect launch
has been changed from /camera/rgb/image_color to
/camera/rgb/image_raw.

• Similarly, the default depth image topic name has been changed from
/camera/depth/image_raw to /camera/depth/image_rect. (For
registered depth images, the topic is
/camera/depth_registered/image_rect.)

• The openni2 and freenect drivers no longer appear to generate disparity
data for the Kinect or Asus Xtion cameras. Consequently, the
disparity_view node that we used in previous book revisions can no longer
be used to view colored depth images from these cameras.

• The earlier openni drivers supported resolutions down to 160x120 pixels for
both the Kinect and Xtion Pro cameras. Unfortunately, the lowest resolution
supported by the freenect driver for the Kinect is 640x480 pixels while the
lowest resolution supported on the Xtion Pro using the openni2 driver is
320x240. While these resolutions will generally work OK when using a laptop
or PC, be aware that smaller single-board computers may struggle to process
video streams at resolutions above 320x240.

• The openni_tracker package is no longer available as a Debian package
since the required NITE package must now be manually installed. This means
that the openni_tracker package must be compiled from source after the
NITE package is installed. Instructions are provided in Chapter 8.

Changes to the Sample Code

• In previous revisions of this book, we used the excellent uvc_cam driver by
Eric Perko for connecting to web cams. Eric is no longer maintaining that
driver package and although it still works under ROS Indigo, we will switch to a
new driver for this book revision. The driver we will use is the Bosch usb_cam
driver which appears to work well with a number of different internal and
external web cameras.

• The fake_laser.launch file that used to be found in the
rbx1_bringup/launch directory has been replaced by a pair of launch files
as described in Section 8.4.1. This was necessary due to the fact that we can no
longer use a single openni node with both Kinect and Asus cameras as noted
above.

• The default camera topics have been changed everywhere in the sample code
to match the new defaults described above. In other words,
/camera/rgb/image_color has been replaced with
/camera/rgb/image_raw and /camera/depth/image_raw has been
replaced with /camera/depth_registered/image_rect.

http://wiki.ros.org/usb_cam
http://wiki.ros.org/openni_tracker

• The default camera resolution in all sample code has been changed from
320x240 to 640x480 to match the default resolution used by the camera launch
files distributed with ROS. If you are running vision processing on a low-
powered CPU, you will probably get significantly better frame rates if you
reduce the resolution to 320x240 using rqt_reconfigure or adjusting the
settings in the camera's launch file. As noted above, the lowest resolution
available on the Kinect when using the freenect driver is 640x480, so using
smaller resolutions is only possible when using an Xtion camera or webcam.

• Since catkin has been the default ROS build system since Groovy, we drop
support for rosbuild starting with this revision of the book.

Main Chapter Headings
 Preface..vii

 Printed vs PDF Versions of the Book..ix

 Changes Since Hydro...xi

 1. Purpose of this Book..1

 2. Real and Simulated Robots...3

 3. Operating Systems and ROS Versions...5

 4. Reviewing the ROS Basics..7

 5. Installing the ros-by-example Code...27

 6. Installing the Arbotix Simulator..31

 7. Controlling a Mobile Base..35

 8. Navigation, Path Planning and SLAM..75

 9. Speech Recognition and Synthesis...125

 10. Robot Vision...141

 11. Combining Vision and Base Control..199

 12. Dynamixel Servos and ROS..223

 13. Where to Go Next?..253

Contents
 Preface vii

 Printed vs PDF Versions of the Book ix

 Changes Since Hydro xi

 1. Purpose of this Book 1

 2. Real and Simulated Robots 3

 2.1 Gazebo, Stage, and the ArbotiX Simulator 3
 2.2 Introducing the TurtleBot, Maxwell and Pi Robot 4

 3. Operating Systems and ROS Versions 5

 3.1 Installing Ubuntu Linux 5
 3.2 Getting Started with Linux 6
 3.3 A Note about Updates and Upgrades 6

 4. Reviewing the ROS Basics 7

 4.1 Installing ROS 7
 4.2 Installing rosinstall 7
 4.3 Building ROS Packages with Catkin 8
 4.4 Creating a catkin Workspace 8
 4.5 Doing a "make clean" with catkin 9
 4.6 Rebuilding a Single catkin Package 9
 4.7 Mixing catkin and rosbuild Workspaces 9
 4.8 Working through the Official ROS Tutorials 11
 4.9 RViz: The ROS Visualization Tool 11
 4.10 Using ROS Parameters in your Programs 12
 4.11 Using rqt_reconfigure (formerly dynamic_reconfigure) to set ROS Parameters

12
 4.12 Networking Between a Robot and a Desktop Computer 14

 4.12.1 Time Synchronization 14
 4.12.2 ROS Networking using Zeroconf 14
 4.12.3 Testing Connectivity 15
 4.12.4 Setting the ROS_MASTER_URI and ROS_HOSTNAME Variables 15
 4.12.5 Opening New Terminals 16
 4.12.6 Running Nodes on both Machines 17
 4.12.7 ROS Networking across the Internet 18

 4.13 ROS Recap 19
 4.14 What is a ROS Application? 19
 4.15 Installing Packages with SVN, Git, and Mercurial 20

 4.15.1 SVN 21
 4.15.2 Git 21
 4.15.3 Mercurial 22

 4.16 Removing Packages from your Personal catkin Directory 22
 4.17 How to Find Third-Party ROS Packages 23

 4.17.1 Searching the ROS Wiki 23
 4.17.2 Using the roslocate Command 23
 4.17.3 Browsing the ROS Software Index 24
 4.17.4 Doing a Google Search 24

 4.18 Getting Further Help with ROS 24

 5. Installing the ros-by-example Code 27

 5.1 Installing the Prerequisites 27
 5.2 Cloning the Indigo ros-by-example Repository 27

 5.2.1 Upgrading from Electric or Fuerte 28
 5.2.2 Upgrading from Groovy 28
 5.2.3 Upgrading from Hydro 28
 5.2.4 Cloning the rbx1 repository for Indigo for the first time 28

 5.3 About the Code Listings in this Book 30

 6. Installing the Arbotix Simulator 31

 6.1 Installing the Simulator 31
 6.2 Testing the Simulator 31
 6.3 Running the Simulator with Your Own Robot 32

 7. Controlling a Mobile Base 35

 7.1 Units and Coordinate Systems 35
 7.2 Levels of Motion Control 35

 7.2.1 Motors, Wheels, and Encoders 36
 7.2.2 Motor Controllers and Drivers 36
 7.2.3 The ROS Base Controller 36
 7.2.4 Frame-Base Motion using the move_base ROS Package 37
 7.2.5 SLAM using the gmapping and amcl ROS Packages 37
 7.2.6 Semantic Goals 38
 7.2.7 Summary 38

 7.3 Twisting and Turning with ROS 39
 7.3.1 Example Twist Messages 39
 7.3.2 Monitoring Robot Motion using RViz 40

 7.4 Calibrating Your Robot's Odometry 42
 7.4.1 Linear Calibration 43
 7.4.2 Angular Calibration 44

 7.5 Sending Twist Messages to a Real Robot 45
 7.6 Publishing Twist Messages from a ROS Node 46

 7.6.1 Estimating Distance and Rotation Using Time and Speed 47
 7.6.2 Timed Out-and-Back in the ArbotiX Simulator 47
 7.6.3 The Timed Out-and-Back Script 48
 7.6.4 Timed Out and Back using a Real Robot 53

 7.7 Are We There Yet? Going the Distance with Odometry 55
 7.8 Out and Back Using Odometry 57

 7.8.1 Odometry-Based Out and Back in the ArbotiX Simulator 58
 7.8.2 Odometry-Based Out and Back Using a Real Robot 59

 7.8.3 The Odometry-Based Out-and-Back Script 60
 7.8.4 The /odom Topic versus the /odom Frame 66

 7.9 Navigating a Square using Odometry 66
 7.9.1 Navigating a Square in the ArbotiX Simulator 67
 7.9.2 Navigating a Square using a Real Robot 68
 7.9.3 The nav_square.py Script 69
 7.9.4 The Trouble with Dead Reckoning 69

 7.10 Teleoperating your Robot 70
 7.10.1 Using the Keyboard 70
 7.10.2 Using a Logitech Game Pad 71
 7.10.3 Using the ArbotiX Controller GUI 72
 7.10.4 TurtleBot Teleoperation Using Interactive Markers 73

 8. Navigation, Path Planning and SLAM 75

 8.1 Path Planning and Obstacle Avoidance using move_base 75
 8.1.1 Specifying Navigation Goals Using move_base 76
 8.1.2 Configuration Parameters for Path Planning 77

 8.1.2.1 base_local_planner_params.yaml 78
 8.1.2.2 costmap_common_params.yaml 79
 8.1.2.3 global_costmap_params.yaml 80
 8.1.2.4 local_costmap_params.yaml 80

 8.2 Testing move_base in the ArbotiX Simulator 81
 8.2.1 Point and Click Navigation in RViz 86
 8.2.2 Navigation Display Types for RViz 87
 8.2.3 Navigating a Square using move_base 87
 8.2.4 Avoiding Simulated Obstacles 94
 8.2.5 Setting Manual Goals with Obstacles Present 96

 8.3 Running move_base on a Real Robot 97
 8.3.1 Testing move_base without Obstacles 97
 8.3.2 Avoiding Obstacles using a Depth Camera as a Fake Laser 98

 8.4 Map Building using the gmapping Package 101
 8.4.1 Laser Scanner or Depth Camera? 101
 8.4.2 Collecting and Recording Scan Data 103
 8.4.3 Creating the Map 105
 8.4.4 Creating a Map from Bag Data 106
 8.4.5 Can I Extend or Modify an Existing Map? 107

 8.5 Navigation and Localization using a Map and amcl 108
 8.5.1 Testing amcl with Fake Localization 108
 8.5.2 Using amcl with a Real Robot 110
 8.5.3 Fully Autonomous Navigation 113
 8.5.4 Running the Navigation Test in Simulation 114
 8.5.5 Understanding the Navigation Test Script 116
 8.5.6 Running the Navigation Test on a Real Robot 121
 8.5.7 What's Next? 123

 9. Speech Recognition and Synthesis 125

 9.1 Installing PocketSphinx for Speech Recognition 125
 9.2 Testing the PocketSphinx Recognizer 125
 9.3 Creating a Vocabulary 127

 9.4 A Voice-Control Navigation Script 129
 9.4.1 Testing Voice-Control in the ArbotiX Simulator 134
 9.4.2 Using Voice-Control with a Real Robot 135

 9.5 Installing and Testing Festival Text-to-Speech 136
 9.5.1 Using Text-to-Speech within a ROS Node 138
 9.5.2 Testing the talkback.py script 140

 10. Robot Vision 141

 10.1 OpenCV, OpenNI and PCL 141
 10.2 A Note about Camera Resolutions 142
 10.3 Installing and Testing the ROS Camera Drivers 142

 10.3.1 Installing the ROS OpenNI and OpenKinect (freenect) Drivers 142
 10.3.2 Installing a Webcam Driver 142
 10.3.3 Testing your Kinect or Xtion Camera 143
 10.3.4 Testing your USB Webcam 144

 10.4 Installing OpenCV on Ubuntu Linux 145
 10.5 ROS to OpenCV: The cv_bridge Package 146
 10.6 The ros2opencv2.py Utility 152
 10.7 Processing Recorded Video 154
 10.8 OpenCV: The Open Source Computer Vision Library 154

 10.8.1 Face Detection 155
 10.8.2 Keypoint Detection using GoodFeaturesToTrack 161
 10.8.3 Tracking Keypoints using Optical Flow 166
 10.8.4 Building a Better Face Tracker 172
 10.8.5 Dynamically Adding and Dropping Keypoints 176
 10.8.6 Color Blob Tracking (CamShift) 177

 10.9 OpenNI and Skeleton Tracking 184
 10.9.1 Installing NITE and openni_tracker for ROS Indigo 184
 10.9.2 Viewing Skeletons in RViz 185
 10.9.3 Accessing Skeleton Frames in your Programs 186

 10.10 PCL Nodelets and 3D Point Clouds 194
 10.10.1 The PassThrough Filter 194
 10.10.2 Combining More than One PassThrough Filter 196
 10.10.3 The VoxelGrid Filter 197

 11. Combining Vision and Base Control 199

 11.1 A Note about Camera Coordinate Axes 199
 11.2 Object Tracker 199

 11.2.1 Testing the Object Tracker with rqt_plot 199
 11.2.2 Testing the Object Tracker with a Simulated Robot 201
 11.2.3 Understanding the Object Tracker Code 202
 11.2.4 Object Tracking on a Real Robot 208

 11.3 Object Follower 209
 11.3.1 Adding Depth to the Object Tracker 209
 11.3.2 Testing the Object Follower with a Simulated Robot 213
 11.3.3 Object Following on a Real Robot 214

 11.4 Person Follower 215
 11.4.1 Testing the Follower Application in Simulation 216
 11.4.2 Understanding the Follower Script 216

 11.4.3 Running the Follower Application on a TurtleBot 221
 11.4.4 Running the Follower Node on a Filtered Point Cloud 221

 12. Dynamixel Servos and ROS 223

 12.1 A TurtleBot with a Pan-and-Tilt Head 224
 12.2 Choosing a Dynamixel Hardware Controller 224
 12.3 A Note Regarding Dynamixel Hardware 225
 12.4 Choosing a ROS Dynamixel Package 225
 12.5 Understanding the ROS JointState Message Type 225
 12.6 Controlling Joint Position, Speed and Torque 226

 12.6.1 Setting Servo Position 227
 12.6.2 Setting Servo Speed 228
 12.6.3 Controlling Servo Torque 228

 12.7 Checking the USB2Dynamixel Connection 229
 12.8 Setting the Servo Hardware IDs 229
 12.9 Configuring and Launching dynamixel_controllers 231

 12.9.1 The dynamixel_controllers Configuration File 231
 12.9.2 The dynamixel_controllers Launch File 232

 12.10 Testing the Servos 234
 12.10.1 Starting the Controllers 234
 12.10.2 Monitoring the Robot in RViz 235
 12.10.3 Listing the Controller Topics and Monitoring Joint States 235
 12.10.4 Listing the Controller Services 237
 12.10.5 Setting Servo Position, Speed and Torque 237
 12.10.6 Using the relax_all_servos.py Script 239

 12.11 Tracking a Visual Target 239
 12.11.1 Tracking a Face 239
 12.11.2 The Head Tracker Script 241
 12.11.3 Tracking Colored Objects 248
 12.11.4 Tracking Manually Selected Targets 249

 12.12 A Complete Head Tracking ROS Application 250

 13. Where to Go Next? 253

 1. PURPOSE OF THIS BOOK

ROS is extremely powerful and continues to expand and improve at a rapidly
accelerating pace. Yet one of the challenges facing many new ROS users is knowing
where to begin. There are really two phases to getting started with ROS: Phase 1
involves learning the basic concepts and programming techniques while Phase 2 is about
using ROS to control your own robot.

Phase 1 is best tackled by referring to the ROS Wiki where you will find a set of
installation instructions and a collection of superbly written Beginner Tutorials. These
tutorials have been battle-tested by hundreds if not thousands of users so there is no
sense in duplicating them here. These tutorials are considered a prerequisite for
using this book. We will therefore assume that the reader has worked through all the
tutorials at least once. It is also essential to read the tf overview and do the tf Tutorials
which will help you understand how ROS handles different frames of reference. If you
run into trouble, check out the ROS Answers (http://answers.ros.org) forum where many
of your questions may already have been answered. If not, you can post your new
question there. (Please do not use the ros-users mailing list for such questions which
is reserved for ROS news and announcements.)

Phase 2 is what this book is all about: using ROS to make your robot do some fairly
impressive tasks. Each chapter will present tutorials and code samples related to
different aspects of ROS. We will then apply the code to either a real-world robot, a
pan-and-tilt head, or even just a camera (e.g. face detection). For the most part, you can
do these tutorials in any order you like. At the same time, the tutorials will build on one
another so that by the end of the book, your robot will be able to autonomously navigate
your home or office, respond to spoken commands, and combine vision and motion
control to track faces or follow a person around the house.

In this volume we will cover the following topics:

• Installing and configuring ROS (review).

• Controlling a mobile base at different levels of abstraction, beginning with
motor drivers and wheel encoders, and proceeding upward to path planning and
map building.

• Navigation and SLAM (Simultaneous Localization And Mapping) using either a
laser scanner or a depth camera like the Microsoft Kinect or Asus Xtion.

• Speech recognition and synthesis, as well as an application for controlling your
robot using voice commands.

 Purpose of this Book - 1

http://answers.ros.org/
http://answers.ros.org/
http://wiki.ros.org/tf/Tutorials
http://wiki.ros.org/tf
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/indigo/Installation
http://wiki.ros.org/

• Robot vision, including face detection and color tracking using OpenCV,
skeleton tracking using OpenNI, and a brief introduction to PCL for 3D vision
processing.

• Combining robot vision with a mobile base to create two applications, one for
tracking faces and colored objects, and another for following a person as they
move about the room.

• Controlling a pan-and-tilt camera using Dynamixel servos to track a moving
object.

Given the breadth and depth of the ROS framework, we must necessarily leave out a few
topics in this introductory volume. In particular, the following topics are not covered
until Volume 2: the Gazebo simulator, creating your own URDF robot model, controlling
a multi-jointed arm and gripper using MoveIt! (formerly arm navigation), robot
diagnostics, the use of task managers such as SMACH, and rosbridge for creating web
based ROS applications. Nonetheless, as you can see from the list above, we still have
much to do!

 Purpose of this Book - 2

http://wiki.ros.org/rosbridge_suite
http://wiki.ros.org/executive_smach
http://wiki.ros.org/diagnostics
http://wiki.ros.org/arm_navigation
http://moveit.ros.org/
http://wiki.ros.org/urdf/Tutorials
http://gazebosim.org/
http://www.pirobot.org/wordpress/

 2. REAL AND SIMULATED ROBOTS

While ROS can be used with a large variety of hardware, you don't need an actual robot
to get started. ROS includes packages to run a number of robots in simulation so that
you can test your programs before venturing into the real world.

 2.1 Gazebo, Stage, and the ArbotiX Simulator
There are a number of ways to simulate a robot in ROS. The most sophisticated uses
Gazebo, a full-featured 3-D physics simulator that pre-dates ROS but now integrates
nicely with it. The second uses Stage, a simpler 2-D simulator that can manage multiple
robots and various sensors such as laser scanners. The third uses Michael Ferguson's
arbotix_python package that can run a fake simulation of a differential drive robot but
without sensor feedback or any physics. We will use this last method as it is the
simplest to set up and we don't need physics for our purposes. Of course, feel free to
explore Gazebo and Stage but be prepared to spend a little time working on the details.
Also, Gazebo in particular demands a fair bit of CPU power.

Even if you do have your own robot, it is a good idea to run some of the examples in this
book in the simulator first. Once you are happy with the results, you can try it on your
robot.

 Real and Simulated Robots - 3

http://ros.org/wiki/arbotix_python
http://wiki.ros.org/stage
http://gazebosim.org/

 2.2 Introducing the TurtleBot, Maxwell and Pi Robot
For the purposes of this book, we need a robot that we can at least run in simulation to
test our code. The ros-by-example repository includes support for two test robots,

the Willow Garage TurtleBot created by Melonee Wise and
Tully Foote, and the author's own home-built robot called
Pi Robot.

Pi was inspired by Michael Ferguson's Maxwell which in
turn was modeled after Georgia Tech's EL-E robot. If you
have a URDF model of your own robot, you can use it
instead of one of these. In any event, most of the code we
develop will run on almost any robot that supports the
basic ROS message interfaces.

 Real and Simulated Robots - 4

Maxwell

Pi Robot

http://www.ros.org/news/2010/03/robots-using-ros-georgia-techs-assistive-robots.html
http://wiki.ros.org/maxwell
http://www.showusyoursensors.com/
http://www.pirobot.org/
http://www.osrfoundation.org/team/tully-foote/
http://www.meloneewise.com/?page_id=31
http://wiki.ros.org/TurtleBot
http://www.turtlebot.com/

 3. OPERATING SYSTEMS AND ROS VERSIONS

ROS can run on various flavors of Linux, MacOS X and partially on Microsoft
Windows. However, the easiest way to get started is to use Ubuntu Linux as this is the
OS officially supported by OSRF. Furthermore, Ubuntu is free and easy to install
alongside other operating systems. In case you are not already using Ubuntu, we will
list a few pointers on installing it in the next section.

ROS can be run on anything from a supercomputer to a Beagleboard. But much of the
code we will develop will require some CPU-intensive processing. You will therefore
save yourself some time and potential frustration if you use a laptop or other full-size
PC to run the sample applications in this book. The Turtlebot, Maxwell, and Pi Robot
are designed so that you can easily place a laptop on the robot. This means that you can
develop your code directly on the laptop, then simply slide it onto the robot for testing
autonomous behavior. You can even go half-way during development and tether the
robot to your laptop or PC using some long USB cables.

This version of the book was tested against ROS Indigo and Ubuntu 14.04 (Trusty)
which is the current Long Term Support (LTS) version of Ubuntu.

NOTE: It is generally required that you run the same version of ROS on all machines
connected on the same ROS network. This includes the computer on your robot and
your desktop workstation. The reason is that ROS message signatures have been known
to change from one release to another (e.g. the diagnostics message MD5 changed
between Hydro and Indigo) so that different releases are generally unable to utilize each
other's topics and services.

 3.1 Installing Ubuntu Linux
If you already have Ubuntu Linux up and running on your machine, great. But if you're
starting from scratch, installing Ubuntu is not difficult.

This version of the book was tested against ROS Indigo and Ubuntu 14.04 (Trusty)
which is the current Long Term Support (LTS) version of Ubuntu. For a list of Ubuntu
versions that are officially compatible with ROS Indigo, see the ROS Installation Guide.

Ubuntu can be installed on an existing Windows machine or an Intel-based Mac and
you'll probably want to leave those installations intact while installing Ubuntu alongside
them. You'll then have a choice of operating systems to use at boot time. On the other
hand, if you have a spare laptop lying around that you can dedicate to your robot, then
you can install Ubuntu over the entire disk. (It will also tend to run faster this way.) In
general, it is not a good idea to install Ubuntu inside a virtual machine like VMware.
While this is a great way to run through the ROS tutorials, the virtual machine will

 Operating Systems and ROS Versions - 5

http://wiki.ros.org/indigo/Installation/Ubuntu

likely get bogged down when trying to run graphics intensive programs like RViz. (In
fact, such programs might not run at all.)

The Ubuntu download page provides links for installing Ubuntu from a USB drive or
DVD for either Windows or MacOS X.

To keep this book focused on ROS itself, please use Google or the Ubuntu support
forums if you have any trouble with the installation.

 3.2 Getting Started with Linux
If you are already a veteran Linux user, you are well ahead of the game. If not, you
might want to run through a tutorial or two before proceeding. Since web tutorials come
and go every day, you can simply Google something like "Ubuntu tutorial" to find
something you like. However, bear in mind that most of your work with ROS will take
place at the command line or in some form of text editor. A good place to start on
command line basics is Using the Ubuntu Terminal. The text editor you choose for
programming is up to you. Choices include gedit, nano, pico, emacs, vim, Eclipse and
many others. (See for example https://help.ubuntu.com/community/Programming.)
Programs like Eclipse are actually full featured IDEs and can be used to organize
projects, test code, manage SVN and Git repositories and so on. For more information
on using different IDEs with ROS, see http://wiki.ros.org/IDEs.

 3.3 A Note about Updates and Upgrades
There is a growing tendency by major software developers to shorten their release cycle.
Some packages like Firefox are now on a 6-week cycle.

There also seems to be a growing tendency for these rapid upgrade cycles to break code
that worked just fine the day before. A lot of time can be wasted chasing the latest
release and then fixing all your code to make it work again. It is generally a good idea
to check the Change List for a given product before you upgrade and make sure there
really is something you need. Otherwise, if it ain't broke...

A recent poll of ROS developers and users found that a longer support cycle was desired
and the core ROS developers at OSRF thankfully created ROS Indigo as their first LTS
release to match the Ubuntu LTS release schedule. You can find the details on the
Distributions page of the ROS Wiki and the Ubuntu Release Schedule. In particular, the
use of ROS Indigo on Ubuntu Trusty (14.04) will be supported through April, 2019.

 Operating Systems and ROS Versions - 6

https://wiki.ubuntu.com/Releases
http://wiki.ros.org/Distributions
http://wiki.ros.org/IDEs
https://help.ubuntu.com/community/Programming
https://help.ubuntu.com/community/UsingTheTerminal
http://www.ubuntu.com/download/desktop

 4. REVIEWING THE ROS BASICS

 4.1 Installing ROS
The easiest and quickest way to install ROS on your Ubuntu Linux machine is to use the
Debian packages rather than compiling from source. Well-tested instructions can be
found at Ubuntu Install of Indigo. Be sure to choose the correct instructions for the
version of the OS you are using. (Ubuntu 14.04 is recommended.) It is also
recommended that you do the Desktop-Full Install.

PLEASE NOTE: This version of the book is written for and tested against ROS Indigo
and Ubuntu 14.04.

One advantage of using the Debian package install (rather than compiling from source)
is that you'll get updates automatically through the Ubuntu Update Manager. You can
also pick and choose additional ROS packages using the Synaptics Package Manager or
the Ubuntu Software Center. If you need to compile the bleeding edge version of some
package or stack from source, you can install it in your own personal ROS directory as
explained below.

 4.2 Installing rosinstall
The rosinstall utility is not part of the ROS desktop installation and so we need to get it
separately. If you follow the full set of instructions on the Indigo installation page, you
will have already completed these steps. However, many users tend to miss these final
steps:

$ sudo apt-get install python-rosinstall
$ sudo rosdep init
$ rosdep update

The last command is run as a normal user—i.e., without sudo.

NOTE: If you have used earlier versions of ROS on the same machine on which you
have installed Indigo, there can be problems running the newer python-rosinstall
package alongside older versions of rosinstall that may have been installed using
pip or easy_install. For details on how to remove these older versions, see this
answer on answers.ros.org.

 Reviewing the ROS Basics - 7

http://answers.ros.org/question/44186/how-do-i-solve-fuerte-overlay-creation-problem/
http://answers.ros.org/question/44186/how-do-i-solve-fuerte-overlay-creation-problem/
http://wiki.ros.org/indigo/Installation/Ubuntu#Getting_rosinstall
http://wiki.ros.org/indigo/Installation/Ubuntu

 4.3 Building ROS Packages with Catkin
A number of step-by-step catkin tutorials exist on the ROS wiki and the reader is
encouraged to work through at least the first four. In this chapter, we only provide a
brief summary of the highlights.

If you followed the Ubuntu ROS installation instructions, all ROS packages and meta-
packages will be found under /opt/ros/release, where release is the name of the
release of ROS you are using; e.g. /opt/ros/indigo. This is a read-only part of the
file system and should not be changed except through the package manager, so you'll
want to create a personal ROS directory in your home directory so you can (1) install
third-party ROS packages that don't have Debian versions and (2) create your own ROS
packages.

 4.4 Creating a catkin Workspace
If you haven't already done so, create a directory to hold your catkin workspace. By
convention, we will assume you have created a subdirectory called catkin_ws in your
home directory. Below that directory we create a subdirectory called src to hold the
package source files. If you're starting from scratch, execute the following commands to
create an empty catkin workspace in the directory ~/catkin_ws:

$ mkdir -p ~/catkin_ws/src
$ cd ~/catkin_ws/src
$ catkin_init_workspace

The first command above creates both the top level ~/catkin_ws directory and the
src subdirectory. Note also that we run the catkin_init_workspace command in
the src directory.

Next, even though the current workspace is empty, we run catkin_make to create some
initial directories and setup files. catkin_make is always run in the top-level
catkin_ws workspace folder (not in the src folder):

$ cd ~/catkin_ws
$ catkin_make

NOTE 1: After building any new catkin package(s), be sure to source the
~/catkin_ws/devel/setup.bash file and rebuild the ROS package path as follows:

$ source ~/catkin_ws/devel/setup.bash
$ rospack profile

This will ensure that ROS can find any new packages, message types and Python
modules belonging to the newly built package(s).

 Reviewing the ROS Basics - 8

http://wiki.ros.org/catkin/Tutorials
http://wiki.ros.org/catkin/Tutorials

NOTE 2: Add the source command above to the end of your ~/.bashrc file so that
new terminals will automatically pick up your catkin packages. Either edit your
~/.bashrc file manually or run the command:

$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

 4.5 Doing a "make clean" with catkin
When using the older rosmake build system, you could use the command:

$ rosmake --target=clean

in a top level stack or package directory to remove all build objects. Unfortunately, this
feature does not exist when using catkin. The only way to start with a clean slate, is to
remove all build objects from all your catkin packages using the following commands:

CAUTION! Do not include the src directory in the rm command below or you will
lose all your personal catkin source files!

$ cd ~/catkin_ws
$ \rm -rf devel build install

You would then remake any packages as usual:

$ cd ~/catkin_ws
$ catkin_make
$ source devel/setup.bash

 4.6 Rebuilding a Single catkin Package
If you update a single package in your catkin workspace and want to re-build just that
package, use the following variation of catkin_make:

$ cd ~/catkin_ws
$ catkin_make --pkg package_name

 4.7 Mixing catkin and rosbuild Workspaces
NOTE: It is no longer recommended that you mix rosbuild and catkin packages. If you
still have older rosbuild packages that have no catkin equivalent, consider migrating

 Reviewing the ROS Basics - 9

http://wiki.ros.org/catkin/Tutorials/convert_rosbuild_to_catkin

those packages to catkin. The rest of this section is left here from the Hydro revision of
the book for legacy reasons. It will be removed in the next book revision.

If you have been using ROS for awhile, you probably already have a ROS workspace
and packages that use the earlier rosbuild make system rather than catkin. You can
continue to use these packages and rosmake while still using catkin for new
packages.

Assuming you have followed the steps in the previous section, and that your rosbuild
workspace directory is ~/ros_workspace, run the following command to allow the
two systems to work together:

$ rosws init ~/ros_workspace ~/catkin_ws/devel

Of course, change the directory names in the command above if you created your
rosbuild and/or catkin workspaces in other locations.

NOTE: If you receive the following error when running the above command:

rosws: command not found

it means you have not installed the rosinstall files during your initial ROS installation.
(It is the final step in the installation guide.) If that is the case, install rosinstall
now:

$ sudo apt-get install python-rosinstall

And try the previous rosws command again.

With this step complete, edit your ~/.bashrc file and change the line that looks like
this:

source /opt/ros/indigo/setup.bash

to this:

source ~/ros_workspace/setup.bash

Again, change the directory name for your rosbuild workspace if necessary.

Save the changes to ~/.bashrc and exit your editor.

To make the new combined workspace active immediately, run the command:

$ source ~/ros_workspace/setup.bash

 Reviewing the ROS Basics - 10

http://wiki.ros.org/indigo/Installation/Ubuntu#Getting_rosinstall

New terminal windows will execute this command automatically from your ~/.bashrc
file.

 4.8 Working through the Official ROS Tutorials
Before diving into the Beginner Tutorials on the ROS Wiki, it is highly recommended
that you look first at the ROS Start Guide. Here you will find an overall introduction as
well as an explanation of the key concepts, libraries and technical design.

The official ROS Beginner Tutorials are superbly written and have been tested by many
new ROS users. It is therefore essential to begin your introduction to ROS by running
through these tutorials in sequence. Be sure to actually run the code samples—don't just
read through them. ROS itself is not difficult: while it might seem unfamiliar at first, the
more practice you have with the code, the easier it becomes. Expect to spend at least a
few days or weeks going through the tutorials.

Once you have completed the beginner tutorials, it is essential to also read the tf
overview and do the tf Tutorials which will help you understand how ROS handles
different frames of reference. For example, the location of an object within a camera
image is usually given relative to a frame attached to the camera, but what if you need to
know the location of the object relative to the base of the robot? The ROS tf library
does most of the hard work for us and such frame transformations become relatively
painless to carry out.

Finally, we will need to understand the basics of ROS actions when we get to the
Navigation Stack. You can find an introduction to ROS actions in the actionlib
tutorials.

You will notice that most of the tutorials provide examples in both Python and C++. All
of the code in this book is written in Python, but if you are a C++ programmer, feel free
to do the tutorials in C++ as the concepts are the same.

Many individual ROS packages have their own tutorials on the ROS Wiki pages. We
will refer to them as needed throughout the book, but for now, the Beginner, tf, and
actionlib tutorials will suffice.

 4.9 RViz: The ROS Visualization Tool
If you have already been working with ROS for awhile, you are probably familiar with
RViz, the all-seeing ROS visualization utility. However, since RViz is not covered in
the standard ROS beginners tutorials, you might not have been formally introduced.
Fortunately, there is already an RViz User's Guide that will take you step-by-step
through its features. Please be sure to read through the guide before going further as we
will make heavy use of RViz in several parts of the book.

 Reviewing the ROS Basics - 11

http://ros.org/doc/indigo/api/rviz/html/user_guide/
http://wiki.ros.org/rviz
http://wiki.ros.org/actionlib/Tutorials
http://wiki.ros.org/tf/Tutorials
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/actionlib/Tutorials
http://wiki.ros.org/actionlib/Tutorials
http://wiki.ros.org/actionlib
http://wiki.ros.org/tf/Tutorials
http://wiki.ros.org/tf
http://wiki.ros.org/tf
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/ROS/StartGuide

RViz can sometimes be a little finicky about running on different graphics cards. If you
find that RViz aborts during start up, first just try launching it again. Keep trying a few
times if necessary. (On one of my computers, it is usually the third attempt that works.)
If that fails, check out the RViz Troubleshooting Guide for possible solutions. In
particular, the section on Segfaults during startup tends to solve the most common
problems. If your graphics card does not support OpenGL hardware acceleration, turn it
off using the instructions provided here.

 4.10 Using ROS Parameters in your Programs
As you know from completing the Beginner Tutorials, ROS nodes store their
configuration parameters on the ROS Parameter Server where they can be read and
modified by other active nodes. You will often want to use ROS parameters in your own
scripts so that you can set them in your launch files, override them on the command line,
or modify them through rqt_reconfigure (formerly dynamic_reconfigure) if
you add dynamic support. We will assume you already know how to use ROS
parameters through the rospy.get_param() function which is explained fully in this
tutorial on Using Parameters in rospy.

 4.11 Using rqt_reconfigure (formerly dynamic_reconfigure)
to set ROS Parameters

Being able to tweak ROS parameters on the fly is often useful for tuning or debugging a
running application. As you will recall from the Services and Parameters Tutorial, ROS
provides the command line tool rosparam for getting and setting parameters. However,
parameter changes made this way will not be read by a node until the node is restarted.

The ROS rqt_reconfigure package (formerly called dynamic_reconfigure)
provides an easy-to-use GUI interface to a subset of the parameters on the Parameter
Server. It can be launched any time using the command:

$ rosrun rqt_reconfigure rqt_reconfigure

The image below shows how the GUI would look when configuring an openni2
camera node when connected to an Xtion Pro camera:

 Reviewing the ROS Basics - 12

http://wiki.ros.org/rqt_reconfigure
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams#Using_rosparam
http://wiki.ros.org/rospy_tutorials/Tutorials/Parameters
http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/rviz/Troubleshooting#Turning_off_hardware_acceleration
http://ros.org/wiki/rviz/Troubleshooting#Segfault_during_startup
http://ros.org/wiki/rviz/Troubleshooting

The rqt_reconfigure GUI allows you to change parameters for nodes dynamically—
i.e., without having restart a node. However, there is one catch: only nodes that have
been programmed using the rqt_reconfigure API will be visible in the
rqt_reconfigure GUI. This includes most nodes in the key ROS stacks and
packages such as Navigation, but many third-party nodes do not use the API and
therefore can only be tweaked using the rosparam command line tool followed by a
node restart.

NOTE: Unlike the dynamic_reconfigure package in previous ROS versions,
rqt_reconfigure does not appear to dynamically detect new nodes if they are
launched after you bring up the GUI. To see a freshly launched node in the
rqt_reconfigure GUI, close the GUI then bring it back up again.

Adding rqt_reconfigure support to your own nodes is not difficult and if you would
like to learn how, refer to the step-by-step Dynamic Reconfigure Tutorials on the ROS
Wiki. (Yes, the tutorials still use the old name.) The topic is also covered in detailed in
Volume 2 of the ROS By Example series. We will have the occasion to use the
reconfigure GUI in several sections of the book. It would therefore be a good idea to
familiarize yourself with its behavior by going through the rqt_reconfigure
introduction on the ROS Wiki.

 Reviewing the ROS Basics - 13

http://www.pirobot.org/wordpress/
http://wiki.ros.org/rqt_reconfigure
http://ros.org/wiki/dynamic_reconfigure/Tutorials

 4.12 Networking Between a Robot and a Desktop Computer
A fairly typical setup when using ROS is to mount a laptop or single board computer on
the robot while monitoring its actions on a desktop machine. ROS makes it relatively
easy for multiple machines to view the same set of topics, services and parameters. This
is particularly useful when your robot's onboard computer is not very powerful since it
allows you to run the more demanding processes such as RViz on your desktop.
(Programs like RViz can also run down a laptop battery very quickly.)

 4.12.1 Time Synchronization

Time synchronization between machines is often critical in a ROS network since frame
transformations and many message types are timestamped. An easy way to keep your
computers synchronized is to install the Ubuntu chrony package on both your desktop
and your robot. This package will keep your computer clocks synchronized with
Internet servers and thus with each other.

To install chrony, run the command:

$ sudo apt-get install chrony

After installation, the chrony daemon will automatically start and begin synchronizing
your computer's clock with a number of Internet servers.

 4.12.2 ROS Networking using Zeroconf

Later versions of Ubuntu include support for Zeroconf, a technique that allows machines
on the same subnet to reference each other using local hostnames instead of IP
addresses. So you can use this method if your desktop computer and robot are
connected to the same router on a home or office network—a common scenario for both
hobby and research robots.

Use the hostname command to determine the short name of your machine. The output
will be the name you chose during the original Ubuntu setup on that computer. For
example, if you named your desktop computer "my_desktop", the output would look
like this:

$ hostname
my_desktop

To get the Zeroconf hostname, simply add ".local" after the hostname so in this case, the
Zeroconf hostname would be:

my_desktop.local

Next, run the hostname command on your robot's computer to get its hostname and add
".local" to get its Zeroconf name. Let's assume your robot's Zeroconf name is:

 Reviewing the ROS Basics - 14

http://en.wikipedia.org/wiki/Zero_configuration_networking

my_robot.local

Now we need to test to see if the machines can see each other on the network.

 4.12.3 Testing Connectivity

Use the ping command to make sure you have basic connectivity between your two
computers. From your desktop computer run the command:

$ ping my_robot.local

which should produce a result like the following:

PING my_robot.local (192.168.0.197) 56(84) bytes of data.
64 bytes from my_robot.local (192.168.0.197): icmp_req=1 ttl=64
time=1.65 ms
64 bytes from my_robot.local (192.168.0.197): icmp_req=2 ttl=64
time=0.752 ms
64 bytes from my_robot.local (192.168.0.197): icmp_req=3 ttl=64
time=1.69 ms

Type Ctrl-C to stop the test. The icmp_req variable counts the pings while the time
variable indicates the round trip time in milliseconds. After stopping the test, you will a
summary that looks like this:

--- my_robot.local ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 0.752/1.367/1.696/0.436 ms

In general, you should see 0% packet loss and average delay times under about 5ms.

Now do the test in the other direction. Bring up a terminal on your robot (or use ssh if
you know it already works) and ping your desktop:

$ ping my_desktop.local

Once again you should see 0% packet loss and short round trip times.

NOTE: If the ping test fails with an "unknown host" error, try restarting the avahi-
daemon process on the machine that is not responding back:

$ sudo service avahi-daemon restart

 4.12.4 Setting the ROS_MASTER_URI and ROS_HOSTNAME Variables

In any ROS network, one machine is designated as the ROS master and it alone runs the
roscore process. Other machines must then set the ROS_MASTER_URI environment

 Reviewing the ROS Basics - 15

variable to point to the master host. Each computer must also set its ROS hostname
appropriately as we will show.

In general, it does not matter which machine you choose to be the master. However, for
a completely autonomous robot, you'll probably want to make the robot computer the
master so that it does not depend in any way on the desktop.

If we want the robot to be the ROS master, we set its ROS_HOSTNAME to its Zeroconf
name and run the roscore process:

On the robot:

$ export ROS_HOSTNAME=my_robot.local
$ roscore

Next, move to your desktop, set the ROS_HOSTNAME to its Zeroconf name and then set
the ROS_MASTER_URI variable to point to your robot's Zeroconf URI.

On the desktop:

$ export ROS_HOSTNAME=my_desktop.local
$ export ROS_MASTER_URI=http://my_robot.local:11311

For an added check on time synchronization, we can run the ntpdate command to
synchronize the desktop with the robot.

On the desktop:

$ sudo ntpdate -b my_robot.local

If all goes well, you should be able to see the /rosout and /rosout_agg topics on
your desktop as follows:

$ rostopic list

/rosout
/rosout_agg

 4.12.5 Opening New Terminals

In any new terminal window you open on your desktop or robot, you need to set the
ROS_HOSTNAME variable to that machine's Zeroconf name. And for new desktop
terminals, you also have to set the ROS_MASTER_URI to point to the robot. (Or more
generally, on any non-master computer, new terminals must set the ROS_MASTER_URI
to point to the master computer.)

 Reviewing the ROS Basics - 16

If you will use the same robot and desktop for a while, you can save yourself some time
by adding the appropriate export lines to the end of the ~/.bashrc file on each
computer. If the robot will always be the master, add the following line to the end of its
~/.bashrc file:

export ROS_HOSTNAME=my_robot.local

And on the desktop, add the following two lines to the end of its ~/.bashrc file:

export ROS_HOSTNAME=my_desktop.local
export ROS_MASTER_URI=http://my_robot.local:11311

(Of course, replace the Zeroconf names with those that match your setup.)

You can also set your desktop up as the ROS master instead of the robot. In this case,
simply reverse the roles and Zeroconf hostnames in the examples above.

 4.12.6 Running Nodes on both Machines

Now that you have your ROS network set up between your robot and desktop computer,
you can run ROS nodes on either machine and both will have access to all topics and
services.

While many nodes and launch files can be run on either computer, the robot's startup
files must always be run on robot since these nodes provide drivers to the robot's
hardware. This includes the drivers for the robot base and any cameras, laser scanners
or other sensors you want to use. On the other hand, the desktop is a good place to run
RViz since it is very CPU-intensive and besides, you'll generally want to monitor your
robot from your desktop anyway.

Since the robot's computer may not always have a keyboard and monitor, you can use
ssh to log into your robot and launch driver nodes from your desktop. Here's an
example of how you might do this.

From your desktop computer, use ssh to log in to your robot.

On the desktop:

$ ssh my_robot.local

Once logged in to the robot, fire up roscore and your robot's startup launch file(s).

 Reviewing the ROS Basics - 17

On the robot (via ssh):

$ export ROS_HOSTNAME=my_robot.local
$ roscore &
$ roslaunch my_robot startup.launch

(You can omit the first export line above if you have already included it in the robot's
~/.bashrc file.)

Notice how we send the roscore process into the background using the & symbol after
the command. This brings back the command prompt so we can launch our robot's
startup file without having to open another ssh session. If possible, launch all your
robot's hardware drivers in one startup.launch file (it can be named anything you
like). This way you will not have to open additional terminals to launch other drivers.

Back on your desktop, open another terminal window, set the ROS_MASTER_URI to
point to your robot, then fire up RViz:

On the desktop:

$ export ROS_HOSTNAME=my_desktop.local
$ export ROS_MASTER_URI=http://my_robot.local:11311
$ rosrun rviz rviz -d `rospack find rbx1_nav`/nav.rviz

(You can omit the two export lines if you have already included them in the desktop's
~/.bashrc file.)

Here we are running RViz with one of the configuration files included in the ros-by-
example navigation package but you can also simply launch RViz without any
configuration file.

 4.12.7 ROS Networking across the Internet

While outside the scope of this book, setting up ROS nodes to communicate over the
Internet is similar to the instructions given above using Zeroconf. The main difference
is that now you need to use fully qualified hostnames or IP addresses instead of local
Zeroconf names. Furthermore, it is likely that one or more of the machines will be
behind a firewall so that some form of VPN (e.g. OpenVPN) will have to be set up.
Finally, since most machines on the ROS network will be connected to a local router
(e.g. wifi access point), you will need to set up port forwarding on that router or use
dynamic DNS. While all this is possible, it is definitely not trivial to set up.

 Reviewing the ROS Basics - 18

https://help.ubuntu.com/14.04/serverguide/openvpn.html

 4.13 ROS Recap
Since it might have been awhile since you did the Beginner and tf Tutorials, here is a
brief recap of the primary ROS concepts. The core entity in ROS is called a node. A
node is generally a small program written in Python or C++ that executes some
relatively simple task or process. Nodes can be started and stopped independently of
one another and they communicate by passing messages. A node can publish messages
on certain topics or provide services to other nodes.

For example, a publisher node might report data from sensors attached to your robot's
microcontroller. A message on the /head_sonar topic with a value of 0.5 would mean
that the sensor is currently detecting an object 0.5 meters away. (Remember that ROS
uses meters for distance and radians for angular measurements.) Any node that wants to
know the reading from this sensor need only subscribe to the /head_sonar topic. To
make use of these values, the subscriber node defines a callback function that gets
executed whenever a new message arrives on the subscribed topic. How often this
happens depends on the rate at which the publisher node updates its messages.

A node can also define one or more services. A ROS service produces some behavior or
sends back a reply when sent a request from another node. A simple example would be
a service that turns an LED on or off. A more complex example would be a service that
returns a navigation plan for a mobile robot when given a goal location and the starting
pose of the robot.

Higher level ROS nodes will subscribe to a number of topics and services, combine the
results in a useful way, and perhaps publish messages or provide services of their own.
For example, the object tracker node we will develop later in the book subscribes to
camera messages on a set of video topics and publishes movement commands on
another topic that are read by the robot's base controller to move the robot in the
appropriate direction.

 4.14 What is a ROS Application?
If you are not already familiar with a publish/subscribe architecture like ROS,
programming your robot to do something useful might seem a little mysterious at first.
For instance, when programming an Arduino-based robot using C, one usually creates a
single large program that controls the robot's behavior. Moreover, the program will
usually talk directly to the hardware, or at least, to a library specifically designed for the
hardware you are using.

When using ROS, the first step is to divide up the desired behavior into independent
functions that can be handled by separate nodes. For example, if your robot uses a
webcam or a depth camera like a Kinect or Xtion Pro, one node will connect to the
camera and simply publish the image and/or depth data so that other nodes can use it. If
your robot uses a mobile base, a base controller node will listen for motion commands
on some topic and control the robot's motors to move the robot accordingly. These

 Reviewing the ROS Basics - 19

http://wiki.ros.org/tf/Tutorials
http://wiki.ros.org/ROS/Tutorials

nodes can be used without modification in many different applications whenever the
desired behavior requires vision and/or motion control.

An example of a complete application is the "follower" application we will develop later
in the book. (The original C++ version by Tony Pratkanis can be found in the
turtlebot_follower package.) The goal of the follower app is to program a Kinect-
equipped robot like the TurtleBot to follow the nearest person. In addition to the camera
and base controller nodes, we need a third node that subscribes to the camera topic and
publishes on the motion control topic. This "follower" node must process the image data
(using OpenCV or PCL for example) to find the nearest person-like object, then
command the base to steer in the appropriate direction. One might say that the follower
node is our ROS application; however, to be more precise, the application really consists
of all three nodes running together. To run the application, we use a ROS launch file to
fire up the whole collection of nodes as a group. Remember that launch files can also
include other launch files allowing for even easier reuse of existing code in new
applications.

Once you get used to this style of programming, there are some significant advantages.
As we have already mentioned, many nodes can be reused without modification in other
applications. Indeed, some ROS applications are little more than launch files combining
existing nodes in new ways or using different values for the parameters. Furthermore,
many of the nodes in a ROS application can run on different robots without
modification. For example, the TurtleBot follower application can run on any robot that
uses a depth camera and a mobile base. This is because ROS allows us to abstract away
the underlying hardware and work with more generic messages instead.

Finally, ROS is a network-centric framework. This means that you can distribute the
nodes of your application across multiple machines as long as they can all see each other
on the network. For example, while the camera and motor control nodes have to run on
the robot's computer, the follower node and RViz could run on any machine on the
Internet. This allows the computational load to be distributed across multiple computers
if necessary.

 4.15 Installing Packages with SVN, Git, and Mercurial
Once in awhile the ROS package you need won't be available as a Debian package and
you will need to install it from source. There are three major source control systems
popular with code developers: SVN, Git and Mecurial. The type of system used by the
developer determines how you install the source. To make sure you are ready for all
three systems, run the following install command on your Ubuntu machine:

$ sudo apt-get install git subversion mercurial

For all three systems, there are two operations you will use most of the time. The first
operation allows you to check out the software for the first time, while the second is

 Reviewing the ROS Basics - 20

http://wiki.ros.org/roslaunch/XML/include
http://wiki.ros.org/roslaunch/XML
http://www.formicite.com/

used for getting updates that might be available later on. Since these commands are
different for all three systems, let's look at each in turn.

 4.15.1 SVN

Let's assume that the SVN source you would like to check out is located at
http://repository/svn/package_name. To do the initial checkout and build the package
in your personal catkin directory, run the following commands. (If necessary, change
the first command to reflect the actual location of your catkin source directory.)

$ cd ~/catkin_ws/src
$ svn checkout http://repository/svn/package_name
$ cd ~/catkin_ws
$ catkin_make
$ source devel/setup.bash
$ rospack profile

To update the package later on, run the commands:

$ cd ~/catkin_ws/src/package_name
$ svn update
$ cd ~/catkin_ws
$ catkin_make
$ source devel/setup.bash

 4.15.2 Git

Let's assume that the Git source you would like to check out is located at
git://repository/package_name. To do the initial checkout and build the package in
your personal catkin directory, run the following commands. (If necessary, change the
first command to reflect the actual location of your personal catkin source directory.)

$ cd ~/catkin_ws/src
$ git clone git://repository/package_name
$ cd ~/catkin_ws
$ catkin_make
$ source devel/setup.bash
$ rospack profile

To update the package later on, run the commands:

 Reviewing the ROS Basics - 21

$ cd ~/catkin_ws/src/package_name
$ git pull
$ cd ~/catkin_ws
$ catkin_make
$ source devel/setup.bash

 4.15.3 Mercurial

Let's assume that the Mercurial source you'd like to check out is located at
http://repository/package_name. To do the initial checkout and build the package in
your personal catkin directory, run the following commands. (If necessary, change the
first command to reflect the actual location of your personal catkin source directory.)

$ cd ~/catkin_ws/src
$ hg clone http://repository/package_name
$ cd ~/catkin_ws
$ catkin_make
$ source devel/setup.bash
$ rospack profile

(In case you are wondering why Mercurial uses hg for its main command name, Hg is
the symbol for the element Mercury on the Periodic Table in chemistry.) To update the
package later on, run the commands:

$ cd ~/catkin_ws/src/package_name
$ hg update
$ cd ~/catkin_ws
$ catkin_make
$ source devel/setup.bash

 4.16 Removing Packages from your Personal catkin Directory
To remove a package installed in your personal catkin directory, first remove the entire
package source directory or move it to a different location outside of your
ROS_PACKAGE_PATH. For example, to remove a package called my_catkin_package
from your ~/catkin_ws/src directory, run the commands:

$ cd ~/catkin_ws/src
$ \rm -rf my_catkin_package

You also have to remove all catkin build objects. Unfortunately, there is no (easy) way
to do this for just the package you removed—you have to remove all build objects for all
packages and then rerun catkin_make:

CAUTION! Do not include the src directory in the rm command below or you will
lose all your personal catkin source files!

 Reviewing the ROS Basics - 22

$ cd ~/catkin_ws
$ \rm -rf devel build install
$ catkin_make
$ source devel/setup.bash

You can test that the package has been removed using the roscd command:

$ roscd my_ros_package

which should produce the output:

roscd: No such package 'my_ros_package'

 4.17 How to Find Third-Party ROS Packages
Sometimes the hardest thing to know about ROS is what's available from other
developers. For example, suppose you are interested in running ROS with an Arduino
and want to know if someone else has already created a ROS package to do the job.
There are a few ways to do the search.

 4.17.1 Searching the ROS Wiki

The ROS Wiki at wiki.ros.org includes a searchable index to many ROS packages and
stacks. If a developer has created some ROS software they'd like to share with others,
they tend to post an announcement to the ros-users mailing list together with the link
to their repository. If they have also created documentation on the ROS Wiki, the
package should show up in a search of the index shortly after the announcement.

The end result is that you can often find what you are looking for by simply doing a
keyword search on the ROS Wiki. Coming back to our Arduino example, if we type
"Arduino" (without the quotes) into the Search box, we find links referring to two
packages: rosserial_arduino and ros_arduino_bridge.

 4.17.2 Using the roslocate Command

If you know the exact package name you are looking for and you want to find the URL
to the package repository, use the roslocate command. (This command is only
available if you installed rosinstall as described earlier.) For example, to find the
location of the ros_arduino_bridge package for ROS Groovy, run the command:

$ roslocate uri ros_arduino_bridge

which should yield the result:

 Reviewing the ROS Basics - 23

http://wiki.ros.org/ros_arduino_bridge
http://wiki.ros.org/rosserial_arduino
http://wiki.ros.org/

Using ROS_DISTRO: indigo
Not found via rosdistro - falling back to information provided by rosdoc
https://github.com/hbrobotics/ros_arduino_bridge.git

This means that we can install the package into our personal catkin directory using the
git command:

$ cd ~/catkin_ws/src
$ git clone git://github.com/hbrobotics/ros_arduino_bridge.git
$ cd ~/catkin_ws
$ catkin_make
$ source devel/setup.bash
$ rospack profile

NOTE: Starting with ROS Groovy, the roslocate command will only return a result
if the package or stack has be submitted to the indexer by the package maintainer for the
ROS distribution you are currently using.

 4.17.3 Browsing the ROS Software Index

To browse through the complete list of ROS packages, stacks and repositories as
indexed on the ROS Wiki, click on the Browse Software link found in the banner at the
top of every Wiki page.

 4.17.4 Doing a Google Search

If all else fails, you can always try a regular Google search. For example, searching for
"ROS face recognition package" returns a link to a face recognition package at
http://wiki.ros.org/face_recognition.

 4.18 Getting Further Help with ROS
There are several sources for additional help with ROS. Probably the best place to start
is at the main ROS wiki at http://wiki.ros.org. As described in the previous section, be
sure to use the Search box at the top right of the page.

If you can't find what you are looking for on the Wiki, try the ROS Questions and
Answers forum at http://answers.ros.org. The answers site is a great place to get help.
You can browse through the list of questions, do keyword searches, look up topics based
on tags, and even get email notifications when a topic is updated. But be sure to do
some kind of search before posting a new question to avoid duplication.

Next, you can search one of the ROS mailing list archives:

• ros-users: for general ROS news and announcements

• ros-kinect: for Kinect related issues

 Reviewing the ROS Basics - 24

http://kinect-with-ros.976505.n3.nabble.com/
http://code.ros.org/lurker/list/ros-users.html
http://answers.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/face_recognition
http://www.ros.org/browse/list.php

• pcl-users: for PCL related issues

NOTE: Please do not use the ros-users mailing list to post questions about using
ROS or debugging packages. Use http://answers.ros.org instead.

If you want to subscribe to one or more of these lists, use the appropriate link listed
below:

• ros-users: Subscription page

• ros-kinect – It appears that this list may no longer be active.

• pcl_users - Subscription page

 Reviewing the ROS Basics - 25

http://pointclouds.org/mailman/listinfo/pcl-users
http://lists.ros.org/mailman/listinfo/ros-users
http://answers.ros.org/
http://www.pcl-users.org/

 Reviewing the ROS Basics - 26

 5. INSTALLING THE ROS-BY-EXAMPLE CODE

 5.1 Installing the Prerequisites
Before installing the ROS By Example code itself, it will save some time if we install
most of the additional ROS packages we will need later. (Instructions will also be
provided for installing individual packages as needed throughout the book.) Simply
copy and paste the following command (without the $ sign) into a terminal window to
install the Debian packages we will need. The \ character at the end of each line makes
the entire block appear like a single line to Linux when doing a copy-and-paste:

$ sudo apt-get install ros-indigo-turtlebot-bringup \
ros-indigo-turtlebot-create-desktop ros-indigo-openni-* \
ros-indigo-openni2-* ros-indigo-freenect-* ros-indigo-usb-cam \
ros-indigo-laser-* ros-indigo-hokuyo-node \
ros-indigo-audio-common gstreamer0.10-pocketsphinx \
ros-indigo-pocketsphinx ros-indigo-slam-gmapping \
ros-indigo-joystick-drivers python-rosinstall \
ros-indigo-orocos-kdl ros-indigo-python-orocos-kdl \
python-setuptools ros-indigo-dynamixel-motor-* \
libopencv-dev python-opencv ros-indigo-vision-opencv \
ros-indigo-depthimage-to-laserscan ros-indigo-arbotix-* \
ros-indigo-turtlebot-teleop ros-indigo-move-base \
ros-indigo-map-server ros-indigo-fake-localization \
ros-indigo-amcl git subversion mercurial

If you are reading the printed version of the book, then copy and paste is probably not an
option. Instead, you can use the following commands to download a small shell script
called rbx1-prereq.sh that will run the apt-get command above:

$ cd ~
$ wget https://raw.githubusercontent.com/pirobot/rbx1/indigo-devel/\

rbx1-prereq.sh
$ sh rbx1-prereq.sh

 5.2 Cloning the Indigo ros-by-example Repository
IMPORTANT: If you have installed previous versions of the ros-by-example
repository for ROS Electric, Fuerte, Groovy or Hydro, follow the appropriate
instructions below to replace or override your installation with the Indigo version. Note
that the first three versions of the ros-by-example code (Electric, Fuerte and Groovy)
used the rosbuild system whereas the Hydro and Indigo versions use catkin. If this
is your first time installing the ros-by-example code, you can skip the first two
sections and go straight to section 5.2.3.

 Installing the ros-by-example Code - 27

 5.2.1 Upgrading from Electric or Fuerte

The ros-by-example stack for ROS Electric and Fuerte is distributed as an SVN
repository called rbx_vol_1 on Google Code. Either remove the this old stack from
your ~/ros_workspace directory or, if you've made modifications you don't want to
lose, move the old rbx_vol_1 directory out of your ROS_PACKAGE_PATH before
installing the new repository.

 5.2.2 Upgrading from Groovy

The ros-by-example packages for ROS Groovy and Indigo are distributed as a Git
repository called rbx1 on GitHub. The default branch is called groovy-devel and it
is a rosbuild version of the repository used with the Groovy version of the book. For
ROS Indigo, you need to use the indigo-devel branch of the repository which as been
converted to the newer catkin build system. This means you also need to install the
code in your personal ~/catkin_ws/src directory rather than ~/ros_workspace.

If you have been using the Groovy version of the rbx1 code, either delete the old
repository from your ~/ros_workspace directory or, if you've made modifications you
don't want to lose, move the old rbx1 directory out of your ROS_PACKAGE_PATH
before installing the new repository.

 5.2.3 Upgrading from Hydro

The ros-by-example packages for ROS Hydro and Indigo are distributed in the same
Github repository called rbx1. Assuming you have already checked out the hydro-
devel branch into you catkin workspace, you can upgrade to the indigo-devel
branch as follows.

If you have been using the Hydro version of the rbx1 code and you have made changes
to your local copy, you can stash the changes using the git stash command before
checking out the indigo-devel branch:

$ roscd rbx1
$ cd ..
$ git stash
$ git pull
$ git checkout indigo-devel
$ cd ~/catkin_ws
$ catkin_make

 5.2.4 Cloning the rbx1 repository for Indigo for the first time

To clone and build the rbx1 repository for Indigo for the first time, follow these steps:

 Installing the ros-by-example Code - 28

$ cd ~/catkin_ws/src
$ git clone https://github.com/pirobot/rbx1.git
$ cd rbx1
$ git checkout indigo-devel
$ cd ~/catkin_ws
$ catkin_make
$ source ~/catkin_ws/devel/setup.bash
$ rospack profile

NOTE 1: The fourth command above (git checkout indigo-devel) is critical—
this is where you select the Indigo branch of the repository. (By default, the clone
operation checks out the Groovy branch for the benefit of those still using Groovy.)

NOTE 2: The source command above should be added to the end of your ~/.bashrc
file if you haven't done so already. This will ensure that your catkin packages are
added to your ROS_PACKAGE_PATH whenever you open a new terminal.

If the ROS By Example code is updated at a later time, you can merge the updates with
your local copy of the repository by using the following commands:

$ cd ~/catkin_ws/src/rbx1
$ git pull
$ cd ~/catkin_ws
$ catkin_make
$ source ~/catkin_ws/devel/setup.bash

Staying Up-To-Date: If you'd like to receive notifications of updates to both the book
and the accompanying code, please join the ros-by-example Google Group.

All of the ROS By Example packages begin with the letters rbx1. To list the packages,
move into the parent of the rbx1 meta-package and use the Linux ls command:

$ roscd rbx1
$ cd ..
$ ls -F

which should result in the following listing:

rbx1/ rbx1_bringup/ rbx1_dynamixels/ rbx1_nav/ rbx1_vision/
rbx1_apps/ rbx1_description/ rbx1_experimental/ rbx1_speech/ README.md

Throughout the book we will be using the roscd command to move from one package
to another. For example, to move into the rbx1_speech package, you would use the
command:

$ roscd rbx1_speech

Note that you can run this command from any directory and ROS will find the package.

 Installing the ros-by-example Code - 29

https://groups.google.com/forum/#!forum/ros-by-example

IMPORTANT: If you are using two computers to control or monitor your robot, such as
a laptop on the robot together with a second computer on your desktop, be sure to clone
and build the Indigo branch of the rbx1 repository on both machines.

 5.3 About the Code Listings in this Book
For the benefit of those who would like to work from a printed version of the book
instead of or in addition to the PDF version, most of the sample programs are displayed
in their entirety as well as broken down line-by-line for analysis. At the top of each
sample script is a link to the online version of the file as found in the ROS By Example
repository. If you are reading the PDF version of the book, clicking on the link will
bring you to a nicely formatted and color coded version of the program. Be aware
though that the line numbers in the online version will not match those in the book since
the printed version leaves out some extraneous comments to save space and make things
easier to read. Of course, once you have downloaded the code from the ROS By
Example repository, you can also bring up your local copy of the same files in your
favorite editor.

As with most programming code, there is usually more than one way to solve a problem.
The sample programs described here are no exception and if you can think of a better
way to accomplish the same goal, great. The code included in the ROS By Example
repository is meant only as a guide and certainly does not represent the best or only way
to accomplish a given task using ROS.

 Installing the ros-by-example Code - 30

 6. INSTALLING THE ARBOTIX SIMULATOR

To test our code on a simulated robot, we will use the arbotix_python simulator
found in the ArbotiX stack by Michael Ferguson.

 6.1 Installing the Simulator
To install the simulator in your personal ROS directory, run the following commands:

$ sudo apt-get install ros-indigo-arbotix-*

NOTE: Be sure to remove any earlier versions of the arbotix stack that you might have
installed using SVN as was done in the Electric and Fuerte versions of this book.

Finally, run the command:

$ rospack profile

 6.2 Testing the Simulator
To make sure everything is working, make sure roscore is running, then launch the
simulated TurtleBot as follows:

$ roslaunch rbx1_bringup fake_turtlebot.launch

which should result in the following startup messages:

process[arbotix-1]: started with pid [4896]
process[robot_state_publisher-2]: started with pid [4897]
[INFO] [WallTime: 1338681385.068539] ArbotiX being simulated.
[INFO] [WallTime: 1338681385.111492] Started DiffController
(base_controller). Geometry: 0.26m wide, 4100.0 ticks/m.

To use a model of Pi Robot instead, run the command:

$ roslaunch rbx1_bringup fake_pi_robot.launch

Next, bring up RViz so we can observe the simulated robot in action:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz

(Note how we use the Linux backtick operator together with the rospack find
command to locate the rbx1_nav package without having to type the entire path.)

 Installing the Arbotix Simulator - 31

If everything went right, you should see the TurtleBot (or Pi Robot) in RViz. (The
default view is top down. To change views, click on the Panels menu in RViz and
select the Views menu item.)

To test the simulation, open another terminal window or tab and run the following
command which should cause the simulated robot to move in a counter-clockwise circle:

$ rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.2, y:
0, z: 0}, angular: {x: 0, y: 0, z: 0.5}}'

The view in RViz should look something like this. (The image below was zoomed
using the mouse scroll wheel.)

To stop the rotation, type Ctrl-C in the same terminal window, then publish the empty
Twist message:

$ rostopic pub -1 /cmd_vel geometry_msgs/Twist '{}'

 6.3 Running the Simulator with Your Own Robot
If you have a URDF model of your own robot, you can run it in the ArbotiX simulator
instead of the TurtleBot or Pi Robot. First, make a copy of the fake TurtleBot launch
file:

 Installing the Arbotix Simulator - 32

http://wiki.ros.org/urdf/Tutorials

$ roscd rbx1_bringup/launch
$ cp fake_turtlebot.launch fake_my_robot.launch

Then bring up your launch file in your favorite editor. At first it will look like this:

<launch>
 <param name="/use_sim_time" value="false" />

 <!-- Load the URDF/Xacro model of our robot -->
 <arg name="urdf_file" default="$(find xacro)/xacro.py '$(find
rbx1_description)/urdf/turtlebot.urdf.xacro'" />

 <param name="robot_description" command="$(arg urdf_file)" />

 <node name="arbotix" pkg="arbotix_python" type="arbotix_driver"
output="screen">
 <rosparam file="$(find rbx1_bringup)/config/fake_turtlebot_arbotix.yaml"
command="load" />
 <param name="sim" value="true"/>
 </node>

 <node name="robot_state_publisher" pkg="robot_state_publisher"
type="state_publisher">
 <param name="publish_frequency" type="double" value="20.0" />
 </node>

</launch>

As you can see, the URDF model is loaded near the top of the file. Simply replace the
package and path names to point to your own URDF/Xacro file. You can leave most of
the rest of the launch file the same. The result would look something like this:

<launch>
 <!-- Load the URDF/Xacro model of our robot -->
 <arg name="urdf_file" default="$(find xacro)/xacro.py '$(find
YOUR_PACKAGE_NAME)/YOUR_URDF_PATH'" />

 <param name="robot_description" command="$(arg urdf_file)" />

 <node name="arbotix" pkg="arbotix_python" type="arbotix_driver"
output="screen">
 <rosparam file="$(find rbx1_bringup)/config/fake_turtlebot_arbotix.yaml"
command="load" />
 <param name="sim" value="true"/>
 </node>

 <node name="robot_state_publisher" pkg="robot_state_publisher"
type="state_publisher">
 <param name="publish_frequency" type="double" value="20.0" />
 </node>
</launch>

If your robot has an arm or a pan-and-tilt head, you can start with the
fake_pi_robot.launch file as a template.

 Installing the Arbotix Simulator - 33

 Installing the Arbotix Simulator - 34

 7. CONTROLLING A MOBILE BASE

In this chapter we will learn how to control a mobile base that uses
a pair of differential drive wheels and a passive caster wheel for
balance. ROS can also be used to control an omni-directional base
as well as flying robots or underwater vehicles but a land-based
differential drive robot is a good place to start.

 7.1 Units and Coordinate Systems
Before we can send movement commands to our robot, we need to
review the measurement units and coordinate system conventions used in ROS.

When working with reference frames, keep in mind that ROS
uses a right-hand convention for orienting the coordinate axes
as shown on left. The index and middle
fingers point along the positive x and y axes
and the thumb points in the direction of the
positive z axis. The direction of a rotation
about an axis is defined by the right-hand
rule shown on the right: if you point your
thumb in the positive direction of any axis,

your fingers curl in the direction of a positive rotation. For a mobile robot using ROS,
the x-axis points forward, the y-axis points to the left and the z-axis points upward.
Under the right-hand rule, a positive rotation of the robot about the z-axis is
counterclockwise while a negative rotation is clockwise.

Remember also that ROS uses the metric system so that linear velocities are always
specified in meters per second (m/s) and angular velocities are given in radians per
second (rad/s). A linear velocity of 0.5 m/s is actually quite fast for an indoor robot
(about 1.1 mph) while an angular speed of 1.0 rad/s is equivalent to about one rotation in
6 seconds or 10 RPM. When in doubt, start slowly and gradually increase speed. For an
indoor robot, I tend to keep the maximum linear speed at or below 0.2 m/s.

 7.2 Levels of Motion Control
Controlling a mobile robot can be done at a number of levels and ROS provides methods
for most of them. These levels represent different degrees of abstraction, beginning with
direct control of the motors and proceeding upward to path planning and SLAM
(Simultaneous Localization and Mapping).

 Controlling a Mobile Base - 35

 7.2.1 Motors, Wheels, and Encoders

Most differential drive robots running ROS use encoders on the drive motors or wheels.
An encoder registers a certain number of ticks (usually hundreds or even thousands) per
revolution of the corresponding wheel. Knowing the diameter of the wheels and the
distance between them, encoder ticks can be converted to the distance traveled in meters
or the angle rotated in radians. To compute speed, these values are simply divided by
the time interval between measurements.

This internal motion data is collectively known as odometry and ROS makes heavy use
of it as we shall see. It helps if your robot has accurate and reliable encoders but wheel
data can be augmented using other sources. For example, the original TurtleBot uses a
single-axis gyro to provide an additional measure of the robot's rotational motion since
the iRobot Create's encoders are notably inaccurate during rotations.

It is important to keep in mind that no matter how many sources of odometry data are
used, the actual position and speed of the robot in the world can (and probably will)
differ from the values reported by the odometry. The degree of discrepancy will vary
depending on the environmental conditions and the reliability of the odometry sources.

 7.2.2 Motor Controllers and Drivers

At the lowest level of motion control we need a driver for the robot's motor controller
that can turn the drive wheels at a desired speed, usually using internal units such as
encoder ticks per second or a percentage of max speed. With the exception of the
Willow Garage PR2 and TurtleBot, the core ROS packages do not include drivers for
specific motor controllers. However, a number of third-party ROS developers have
published drivers for some of the more popular controllers and/or robots such as the
Arduino, ArbotiX, Serializer, Element, LEGO® NXT and Rovio. (For a more complete
list of supported platforms, see Robots Using ROS.)

 7.2.3 The ROS Base Controller

At the next level of abstraction, the desired speed of the robot is specified in real-world
units such as meters and radians per second. It is also common to employ some form of
PID control. PID stands for "Proportional Integral Derivative" and is so-named because
the control algorithm corrects the wheel velocities based not only on the difference
(proportional) error between the actual and desired velocity, but also on the derivative
and integral over time. You can learn more about PID control on Wikipedia. For our
purposes, we simply need to know that the controller will do its best to move the robot
in the way we have requested.

The driver and PID controller are usually combined inside a single ROS node called the
base controller. The base controller must always run on a computer attached directly to
the motor controller and is typically one of the first nodes launched when bringing up
the robot. A number of base controllers can also be simulated in Gazebo including the
TurtleBot, PR2 and Erratic.

 Controlling a Mobile Base - 36

http://wiki.ros.org/erratic_robot
http://wiki.ros.org/pr2_simulator/Tutorials
http://wiki.ros.org/turtlebot_simulator
http://en.wikipedia.org/wiki/PID_controller
http://wiki.ros.org/Robots
http://wiki.ros.org/rovio
http://wiki.ros.org/Robots/NXT
http://wiki.ros.org/element
http://wiki.ros.org/serializer
http://wiki.ros.org/arbotix
http://wiki.ros.org/ros_arduino_bridge

The base controller node typically publishes odometry data on the /odom topic and
listens for motion commands on the /cmd_vel topic. At the same time, the controller
node typically (but not always) publishes a transform from the /odom frame to the base
frame—either /base_link or /base_footprint. We say "not always" because some
robots like the TurtleBot, uses the robot_pose_ekf package to combine wheel
odometry and gyro data to get a more accurate estimate of the robot's position and
orientation. In this case, it is the robot_pose_ekf node that publishes the transform
from /odom to /base_footprint. (The robot_pose_ekf package implements an
Extended Kalman Filter as you can read about on the Wiki page linked to above.)

Once we have a base controller for our robot, ROS provides the tools we need to issue
motion commands either from the command line or by using other ROS nodes to
publish these commands based on a higher level plan. At this level, it does not matter
what hardware we are using for our base controller: our programming can focus purely
on the desired linear and angular velocities in real-world units and any code we write
should work on any base controller with a ROS interface.

 7.2.4 Frame-Base Motion using the move_base ROS Package

At the next level of abstraction, ROS provides the move_base package that allows us to
specify a target position and orientation of the robot with respect to some frame of
reference; move_base will then attempt to move the robot to the goal while avoiding
obstacles. The move_base package is a very sophisticated path planner and combines
odometry data with both local and global cost maps when selecting a path for the robot
to follow. It also controls the linear and angular velocities and accelerations
automatically based on the minimum and maximum values we set in the configuration
files.

 7.2.5 SLAM using the gmapping and amcl ROS Packages

At an even higher level, ROS enables our robot to create a map of its environment using
the SLAM gmapping package. The mapping process works best using a laser scanner
but can also be done using a Kinect or Asus Xtion depth camera to provide a simulated
laser scan. If you own a TurtleBot, the TurtleBot meta-package includes all the tools
you need to do SLAM.

Once a map of the environment is available, ROS provides the amcl package (adaptive
Monte Carlo localization) for automatically localizing the robot based on its current scan
and odometry data. This allows the operator to point and click on any location on a map
and the robot will find its way there while avoiding obstacles. (For a superb
introduction to the mathematics underlying SLAM, check out Sebastian Thrun's online
Artificial Intelligence course on Udacity.)

 Controlling a Mobile Base - 37

http://www.udacity.com/overview/Course/cs373/CourseRev/apr2012
http://wiki.ros.org/amcl
http://ros.org/wiki/Robots/TurtleBot
http://ros.org/wiki/Robots/TurtleBot
http://wiki.ros.org/gmapping
http://wiki.ros.org/move_base
http://ros.org/wiki/robot_pose_ekf

 7.2.6 Semantic Goals

Finally, at the highest level of abstraction, motion goals are specified semantically such
as "go to the kitchen and bring me a beer", or simply, "bring me a beer". In this case, the
semantic goal must be parsed and translated into a series of actions. For actions
requiring the robot to move to a particular location, each location can be passed to the
localization and path planning levels for implementation. While beyond the scope of
this volume, a number of ROS packages are available to help with this task including
smach, behavior trees, executive_teer, and knowrob. (Both smach and
behavior trees are covered in Volume 2 of the ROS By Example series.)

 7.2.7 Summary

In summary, our motion control hierarchy looks something like this:

In this chapter and the next, we will learn how to use these levels of motion control. But
before we can understand the more powerful features provided by move_base,
gmapping and amcl, we need to start with the basics.

 Controlling a Mobile Base - 38

Goal

AMCL

Path
Planner

move_base

/cmd_vel
+

/odom

Base
Controller

Motor
Speeds

http://www.pirobot.org/wordpress/
http://wiki.ros.org/knowrob
http://wiki.ros.org/executive_teer
http://wiki.ros.org/pi_trees
http://wiki.ros.org/executive_smach

 7.3 Twisting and Turning with ROS
ROS uses the Twist message type (see details below) for publishing motion commands
to be used by the base controller. While we could use almost any name for a topic, it is
usually called /cmd_vel which is short for "command velocities". The base controller
node subscribes to the /cmd_vel topic and translates Twist messages into motor
signals that actually turn the wheels.

To see the components of a Twist message, run the command:

$ rosmsg show geometry_msgs/Twist

which will produce the following output:

geometry_msgs/Vector3 linear
 float64 x
 float64 y
 float64 z
geometry_msgs/Vector3 angular
 float64 x
 float64 y
 float64 z

As you can see, the Twist message is composed of two sub-messages with type
Vector3, one for the x, y and z linear velocity components and another for the x, y and
z angular velocity components. Linear velocities are specified in meters per second and
angular velocities are given in radians per second. (1 radian equals approximately 57
degrees.)

For a differential drive robot operating in a two-dimensional plane (such as the floor),
we only need the linear x component and the angular z component. This is because this
type of robot can only move forward/backward along its longitudinal axis and rotate
only around its vertical axis. In other words, the linear y and z components are always
zero (the robot cannot move sideways or vertically) and the angular x and y components
are always zero since the robot cannot rotate about these axes. An omni-directional
robot would also use the linear y component while a flying or underwater robot would
use all six components.

 7.3.1 Example Twist Messages

Suppose we want the robot to move straight ahead with a speed of 0.1 meters per
second. This would require a Twist message with linear values x=0.1, y=0 and z=0,
and angular values x=0, y=0 and z=0. If you were to specify this Twist message on
the command line, the message part would take the form:

'{linear: {x: 0.1, y: 0, z: 0}, angular: {x: 0, y: 0, z: 0}}'

 Controlling a Mobile Base - 39

http://www.ros.org/doc/api/geometry_msgs/html/msg/Twist.html

Notice how we delineate the sub-messages using braces and separate the component
names from their values with a colon and a space (the space is required!) While this
might seem like a lot of typing, we will rarely control the robot this way. As we shall
see later on, Twist messages will be sent to the robot using other ROS nodes.

To rotate counterclockwise with an angular velocity of 1.0 radians per second, the
required Twist message would be:

'{linear: {x: 0, y: 0, z: 0}, angular: {x: 0, y: 0, z: 1.0}}'

If we were to combine these two messages, the robot would move forward while turning
toward the left. The resulting Twist message would be:

'{linear: {x: 0.1, y: 0, z: 0}, angular: {x: 0, y: 0, z: 1.0}}'

The larger the angular z value compared to the linear x value, the tighter the turn.

 7.3.2 Monitoring Robot Motion using RViz

We will use RViz to visualize the robot's motion as we try out various Twist commands
and motion control scripts. Recall from the RViz User's Guide that we can use the
Odometry Display type to track the pose (position and orientation) of the robot at
various points along its path. Each pose of the robot is indicated by a large arrow
pointing in the direction that the robot was facing at that point. Note that these poses
reflect what is reported by the robot's odometry which could differ—sometimes
substantially—from how the robot is positioned in the real world. However, if the robot
is well-calibrated and operating on a relatively hard surface, the odometry data is usually
good enough to get a rough idea of how the robot is doing. Furthermore, when running
a fake robot in the ArbotiX simulator where there is no physics, the correspondence will
be exact.

Let's try a couple of examples using the ArbotiX simulator. First, fire up the fake
TurtleBot using the command:

$ roslaunch rbx1_bringup fake_turtlebot.launch

In another terminal, bring up RViz with the included configuration file that is already set
up with the Odometry display:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz

Finally, bring up yet another terminal window and set the robot moving in a clockwise
circle by publishing the following Twist message:

 Controlling a Mobile Base - 40

http://wiki.ros.org/rviz/DisplayTypes/Odometry
http://docs.ros.org/indigo/api/rviz/html/user_guide/

$ rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.1, y:
0, z: 0}, angular: {x: 0, y: 0, z: -0.5}}'

We use the -r parameter to publish the Twist message continually at 10Hz. Some
robots like the TurtleBot require the movement command to be continually published or
the robot will stop: a nice safety feature. While this parameter is not necessary when
running the ArbotiX simulator, it doesn't hurt either.

If everything is working OK, the result in RViz should look something like this:

Note that we have set the Keep field to 100 for the Odometry Display which indicates
that we want to display up to the last 100 arrows before the oldest one drops off. The
Position Tolerance (in meters) and Angle Tolerance (in radians) allow you to control
how often a new arrow will be displayed.

To clear the arrows at any point, either click the Reset button or un-check the checkbox
beside the Odometry display, then check it again. To turn off the arrows altogether,
leave the checkbox un-checked.

To stop the robot from rotating, type Ctrl-C in the same terminal window, then publish
the empty Twist message:

 Controlling a Mobile Base - 41

$ rostopic pub -1 /cmd_vel geometry_msgs/Twist '{}'

Now let's try a second example. First clear the odometry arrows by clicking the Reset
button in RViz. The following pair of commands (separated by a semi-colon) will first
move the robot straight for about 3 seconds (the "-1" option means "publish once"),
then continue indefinitely in a counter-clockwise circle:

$ rostopic pub -1 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.2, y: 0,
z: 0}, angular: {x: 0, y: 0, z: 0}}'; rostopic pub -r 10 /cmd_vel
geometry_msgs/Twist '{linear: {x: 0.2, y: 0, z: 0}, angular: {x: 0,
y: 0, z: 0.5}}'

To stop the robot, type Ctrl-C in the same terminal window and publish the empty
Twist message:

$ rostopic pub -1 /cmd_vel geometry_msgs/Twist '{}'

Before we try out some Twist messages on a real robot, we have to spend a few
moments talking about calibration.

 7.4 Calibrating Your Robot's Odometry
If you don't have a robot, you can skip this section altogether. If you have an original
TurtleBot (using the iRobot Create as a base), be sure use to use the automated
calibration routine to set the angular correction factors for your robot. You can still use
the first part of this section to set the linear correction factor. Note that in all cases you
might have to use different calibration parameters for different types of floor surfaces;
e.g. carpet versus hardwood. The easiest way to manage the different parameters is to
use different launch files for each surface.

If you are using your own custom built robot, you might already have your own
calibration method. If so, you can safely skip this section. Otherwise, read on.

Before running the calibration routines, be sure to get the Orocos kinematics packages
using the command:

$ sudo apt-get install ros-indigo-orocos-kdl \
ros-indigo-python-orocos-kdl

The rbx1_nav package includes two calibration scripts: calibrate_linear.py and
calibrate_angular.py. The first attempts to move the robot 1 meter forward by
monitoring the /odom topic and stopping when the reported distance is within 1 cm of
the target. You can adjust the target distance and movement speed by editing the script
or by using rqt_reconfigure. The second script rotates the robot 360 degrees, again

 Controlling a Mobile Base - 42

http://wiki.ros.org/turtlebot_calibration/Tutorials/Calibrate%20Odometry%20and%20Gyro

by monitoring the /odom topic. We'll describe how to adjust your PID parameters based
on the results in the next two sections.

 7.4.1 Linear Calibration

First make sure you have plenty of room in front of your robot—at least 2 meters for the
default test distance of 1.0 meters. Using a tape measure, lay out at least 1 meter of tape
on the floor and align the starting end of the tape with some identifiable mark on your
robot. Rotate the robot so that it is aimed parallel to the tape.

Next, bring up your robot's base controller with the appropriate launch file. For an
iRobot Create based TurtleBot, ssh into the robot's laptop and run:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

Next, run the linear calibration node:

$ rosrun rbx1_nav calibrate_linear.py

Finally, run rqt_reconfigure:

$ rosrun rqt_reconfigure rqt_reconfigure

Select the calibrate_linear node in the rqt_reconfigure window. To start the
test, check the checkbox beside start_test. (If the robot does not start moving, un-
check the checkbox then check it again.) Your robot should move forward
approximately 1.0 meters. To get the correction factor, follow these steps:

• Measure the actual distance with the tape and make a note of it.

• Divide the actual distance by the target distance and make a note of the ratio.

• Return to the rqt_reconfigure GUI and multiply the
odom_linear_scale_correction value by the ratio you just computed. Set
the parameter to the new value.

• Repeat the test by moving the robot back to the start of the tape, then checking
the start_test checkbox in the rqt_reconfigure window.

• Continue repeating the test until you are satisfied with the result. An accuracy
of 1 cm in 1 meter is probably good enough.

With your final correction factor in hand, you need to apply it to the parameters of your
robot's base controller using the appropriate launch file. For a TurtleBot, add the
following line to your turtlebot.launch file:

 Controlling a Mobile Base - 43

<param name="turtlebot_node/odom_linear_scale_correction" value="X"/>

where X is your correction factor.

If your robot uses the ArbotiX base controller, edit your YAML configuration file and
change the ticks_meter parameter by dividing it by your correction factor.

As a final check, launch your robot's startup file with the new correction factor. Then
run the calibration_linear.py script but with the
odom_linear_scale_correction parameter set to 1.0. Your robot should now go
1.0 meters without further correction.

 7.4.2 Angular Calibration

If you have an iRobot Create-based TurtleBot, do not use this method. Instead, run the
TurtleBot's automated calibration procedure.

In this test, your robot will only rotate in place so space is not so much an issue. Place a
marker (e.g. a piece of tape) on the floor and align it with the front center of the robot.
We will rotate the robot 360 degrees and see how close it comes back to the mark.

Bring up up your robot's base controller with the appropriate launch file. For an
original TurtleBot (iRobot Create base), ssh into the robot's laptop and run:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

Next, run the angular calibration node:

$ rosrun rbx1_nav calibrate_angular.py

Finally, run rqt_reconfigure:

$ rosrun rqt_reconfigure rqt_reconfigure

Return to the rqt_reconfigure window and select the calibrate_angular node.
(If you do not see the calibrate_angular node listed, click the blue refresh icon in
the upper right corner of the GUI.) To start the test, check the checkbox beside
start_test. (If the robot does not start moving, un-check the checkbox then check it
again.) Your robot should rotate approximately 360 degrees. Don't worry if it seems to
rotate significantly more or less than a full rotation. That's what we're about to fix. To
get the correction factor, follow these steps:

• If the actual rotation falls short of a full 360 degrees, eyeball the fraction it did
rotate and enter the estimated fraction in the
odom_angular_scale_correction field in the rqt_reconfigure
window. So if it looks like the robot rotated about 85% of the way, enter
something like 0.85. If it rotated about 5% too far, enter something like 1.05.

 Controlling a Mobile Base - 44

http://wiki.ros.org/turtlebot_calibration/Tutorials/Calibrate%20Odometry%20and%20Gyro

• Repeat the test by realigning the marker with the front center of the robot, then
check the start_test checkbox in the rqt_reconfigure window.

• Hopefully the rotation will be closer to 360 degrees. If it is still short, decrease
the odom_angular_scale_correction parameter a little and try again. If it
rotates too far, increase it a little and try again.

• Continue the procedure until you are happy with the result.

What you do with your final correction factor depends on your base controller's PID
parameters. For a robot controlled by the ArbotiX base controller, edit your YAML
configuration file and change the base_width parameter by dividing it by your
correction factor.

As a final check, launch your robot's startup file with the new correction factor. Then
run the calibration_angular.py script but with the
odom_angular_scale_correction parameter set to 1.0. Your robot should now
rotate 360 degrees without further correction.

 7.5 Sending Twist Messages to a Real Robot

If you have a TurtleBot or any other robot that listens on the /cmd_vel topic for motion
commands, you can try some Twist messages in the real world. Always be sure to start
with small values for the linear and angular speeds. Try a pure rotation first so that your
robot will not suddenly fly across the room and ruin the furniture.

First power on your robot and launch the appropriate startup files. If you have an
original TurtleBot (iRobot Create base), ssh into the robot's laptop and run:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

If you already have your own launch file that includes your calibration parameters, run
that file instead. The launch file used above includes calibration parameters that work
well on a low ply carpet for my own TurtleBot. You will likely have to adjust them for
your own robot and the type of floor surface it will run on. Use the calibration
procedure described earlier to find the parameters that work best for you.

To rotate the robot counterclockwise in place at 1.0 radians per second (about 6 seconds
per revolution), run the command:

$ rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0, y: 0,
z: 0}, angular: {x: 0, y: 0, z: 1.0}}'

You can run this command either on the TurtleBot (after using ssh in another terminal)
or you can run it on your workstation assuming you have already set up ROS
networking.

 Controlling a Mobile Base - 45

To stop the robot, type Ctrl-C and, if necessary, publish the empty Twist message:

$ rostopic pub -1 /cmd_vel geometry_msgs/Twist '{}'

(A TurtleBot should stop on its own after typing Ctrl-C the first time.)

Next, to move the robot forward at a speed of 0.1 meters per second (about 4 inches per
second or 3 seconds per foot), make sure you have lots of space in front of the robot,
then run the command:

$ rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.1, y:
0, z: 0}, angular: {x: 0, y: 0, z: 0}}'

To stop the movement, type Ctrl-C, and, if necessary, publish the empty Twist
message:

$ rostopic pub -1 /cmd_vel geometry_msgs/Twist '{}'

If you feel satisfied with the result, try other combinations of linear x and angular z
values. For example, the following command should send the robot turning in a
clockwise circle:

$ rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.15, y:
0, z: 0}, angular: {x: 0, y: 0, z: -0.4}}'

To stop the movement, type Ctrl-C, and, if necessary, publish the empty Twist
message:

$ rostopic pub -1 /cmd_vel geometry_msgs/Twist '{}'

As we mentioned earlier, we don't often publish Twist messages to the robot directly
from the command line although it can be useful for debugging and testing purposes.
More often, we will send such messages programmatically from a ROS node that
controls the robot's behavior in some interesting way. Let's look at that next.

 7.6 Publishing Twist Messages from a ROS Node

So far we have been moving our robot from the command line, but most of the time you
will rely on a ROS node to publish the appropriate Twist messages. As a simple
example, suppose you want to program your robot to move one 1.0 meters forward, turn
around 180 degrees, then come back to the starting point. We will attempt to accomplish
this task a number of different ways which will nicely illustrate the different levels of
motion control in ROS.

 Controlling a Mobile Base - 46

 7.6.1 Estimating Distance and Rotation Using Time and Speed

Our first attempt will be to use timed Twist commands to move the robot forward a
certain distance, rotate 180 degrees, then move forward again for the same time and at
the same speed where it will hopefully end up where it started. Finally, we will rotate
the robot 180 degrees one more time to match the original orientation.

The script can be found in the file timed_out_and_back.py in the
rbx1_nav/nodes subdirectory. Before looking at the code, let's try it in the ArbotiX
simulator.

 7.6.2 Timed Out-and-Back in the ArbotiX Simulator

To make sure the fake Turtlebot is repositioned at the start location, use Ctrl-C to
terminate the fake Turtlebot launch file it you already have it running, then bring it up
again with the command:

$ roslaunch rbx1_bringup fake_turtlebot.launch

(If desired, replace the fake_turtlebot.launch file with the one for Pi Robot or
your own robot. It won't make a difference to the results.)

If RViz is not already running, fire it up now:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz

or click the Reset button to clear any Odometry arrows from the previous section.

Finally, run the timed_out_and_back.py node:

$ rosrun rbx1_nav timed_out_and_back.py

Hopefully RViz will show your robot executing an out-and-back maneuver and the end
result will look something like the following:

 Controlling a Mobile Base - 47

The large arrows represent the position and orientation of the robot at various points
along its trajectory as reported by the robot's (fake) internal odometry. We will learn
how to make use of this odometry information in the next few sections.

So far, things look pretty good in the ideal simulator. But before trying it out on a real
robot, let's look at the code.

 7.6.3 The Timed Out-and-Back Script

Here is the full script for the timed out and back node. After the listing, we will break it
down into smaller pieces.

Link to source: timed_out_and_back.py

1 #!/usr/bin/env python
2
3 import rospy
4 from geometry_msgs.msg import Twist
5 from math import pi
6
7 class OutAndBack():
8 def __init__(self):
9 # Give the node a name
10 rospy.init_node('out_and_back', anonymous=False)

 Controlling a Mobile Base - 48

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_nav/nodes/timed_out_and_back.py

11
12 # Set rospy to execute a shutdown function when exiting
13 rospy.on_shutdown(self.shutdown)
14
15 # Publisher to control the robot's speed
16 self.cmd_vel = rospy.Publisher('/cmd_vel', Twist, queue_size=5)
17
18 # How fast will we update the robot's movement?
19 rate = 50
20
21 # Set the equivalent ROS rate variable
22 r = rospy.Rate(rate)
23
24 # Set the forward linear speed to 0.2 meters per second
25 linear_speed = 0.2
26
27 # Set the travel distance to 1.0 meters
28 goal_distance = 1.0
29
30 # How long should it take us to get there?
31 linear_duration = goal_distance / linear_speed
32
33 # Set the rotation speed to 1.0 radians per second
34 angular_speed = 1.0
35
36 # Set the rotation angle to Pi radians (180 degrees)
37 goal_angle = pi
38
39 # How long should it take to rotate?
40 angular_duration = goal_angle / angular_speed
41
42 # Loop through the two legs of the trip
43 for i in range(2):
44 # Initialize the movement command
45 move_cmd = Twist()
46
47 # Set the forward speed
48 move_cmd.linear.x = linear_speed
49
50 # Move forward for a time to go 1 meter
51 ticks = int(linear_duration * rate)
52
53 for t in range(ticks):
54 self.cmd_vel.publish(move_cmd)
55 r.sleep()
56
57 # Stop the robot before the rotation
58 move_cmd = Twist()
59 self.cmd_vel.publish(move_cmd)
60 rospy.sleep(1)
61
62 # Now rotate left roughly 180 degrees
63
64 # Set the angular speed
65 move_cmd.angular.z = angular_speed
66
67 # Rotate for a time to go 180 degrees

 Controlling a Mobile Base - 49

68 ticks = int(goal_angle * rate)
69
70 for t in range(ticks):
71 self.cmd_vel.publish(move_cmd)
72 r.sleep()
73
74 # Stop the robot before the next leg
75 move_cmd = Twist()
76 self.cmd_vel.publish(move_cmd)
77 rospy.sleep(1)
78
79 # Stop the robot
80 self.cmd_vel.publish(Twist())
81
82 def shutdown(self):
83 # Always stop the robot when shutting down the node.
84 rospy.loginfo("Stopping the robot...")
85 self.cmd_vel.publish(Twist())
86 rospy.sleep(1)
87
88 if __name__ == '__main__':
89 try:
90 OutAndBack()
91 except:
92 rospy.loginfo("Out-and-Back node terminated.")

Since this is our first script, let's take it line-by-line starting from the top:

1 #!/usr/bin/env python
2
3 import rospy

If you did the ROS Beginner Tutorials in Python, you'll already know that all of our
ROS nodes begin with these two lines. The first line ensures that the program will run
as a Python script while the second imports the main ROS library for Python.

4 from geometry_msgs.msg import Twist
5 from math import pi

Here we take care of any other imports we need for the script. In this case, we will need
the Twist message type from the ROS geometry_msgs package and the constant pi
from the Python math module. Note that a common source of import errors is to forget
to include the necessary ROS <run_depend> line in your package's package.xml
file. In this case, our package.xml file has to include the line:

<run_depend>geometry_msgs</run_depend>

so that we can import Twist from geometry_msgs.msg.

7 class OutAndBack():

 Controlling a Mobile Base - 50

8 def __init__(self):

Here we begin the main body of our ROS node by defining it as a Python class along
with the standard class initialization line.

9 # Give the node a name
10 rospy.init_node('out_and_back', anonymous=False)
11
12 # Set rospy to execute a shutdown function when exiting
13 rospy.on_shutdown(self.shutdown)

Every ROS node requires a call to rospy.init_node() and we also set a callback for
the on_shutdown() function so that we can perform any necessary cleanup when the
script is terminated—e.g. when the user hits Ctrl-C. In the case of a mobile robot, the
most important cleanup task is to stop the robot! We'll see how to do this later in the
script.

15 # Publisher to control the robot's speed
16 self.cmd_vel = rospy.Publisher('/cmd_vel', Twist, queue_size=5)
17
18 # How fast will we update the robot's movement?
19 rate = 50
20
21 # Set the equivalent ROS rate variable
22 r = rospy.Rate(rate)

Here we define our ROS publisher for sending Twist commands to the /cmd_vel
topic. We also set the rate at which we want to update the robot's movement, 50 times
per second in this case, and the queue_size parameter to 5.

The queue_size parameter was introduced in ROS Hydro and will be mandatory in
ROS Jade. In ROS Indigo, your code will issue a warning if a publisher is initialized
without this parameter. You can learn more about the queue_size parameter on the
ROS Wiki. The most important fact to keep in mind is that if this parameter is omitted
or set to None, the publisher will behave synchronously. This means that if there are
multiple subscribers to the publisher's topic and one of the subscribers gets hung up—for
example, it sits at the other end of a flaky wireless connection—then publishing will
block on all subscribers to that topic until the hung subscriber comes back to life. This
is generally not a desirable outcome. Setting the queue_size parameter to a numeric
value causes the publisher to behave asynchronously so that each subscriber receives
messages on a separate thread an no one subscriber and lock up the whole system.

24 # Set the forward linear speed to 0.2 meters per second
25 linear_speed = 0.2
26
27 # Set the travel distance to 1.0 meters
28 goal_distance = 1.0

 Controlling a Mobile Base - 51

http://wiki.ros.org/rospy/Overview/Publishers%20and%20Subscribers#queue_size:_publish.28.29_behavior_and_queuing

29
30 # How long should it take us to get there?
31 linear_duration = linear_distance / linear_speed

We initialize the forward speed to a relatively safe 0.2 meters per second and the target
distance to 1.0 meters. We then compute how long this should take.

33 # Set the rotation speed to 1.0 radians per second
34 angular_speed = 1.0
35
36 # Set the rotation angle to Pi radians (180 degrees)
37 goal_angle = pi
38
39 # How long should it take to rotate?
40 angular_duration = angular_distance / angular_speed

Similarly, we set the rotation speed to 1.0 radians per second and the target angle to 180
degrees or Pi radians.

42 # Loop through the two legs of the trip
43 for i in range(2):
44 # Initialize the movement command
45 move_cmd = Twist()
46
47 # Set the forward speed
48 move_cmd.linear.x = linear_speed
49
50 # Move forward for a time to go the desired distance
51 ticks = int(linear_duration * rate)
52
53 for t in range(ticks):
54 self.cmd_vel.publish(move_cmd)
55 r.sleep()

This is the loop that actually moves the robot—one cycle for each of the two legs.
Recall that some robots require a Twist message to be continually published to keep it
moving. So to move the robot forward linear_distance meters at a speed of
linear_speed meters per second, we publish the move_cmd message every 1/rate
seconds for the appropriate duration. The expression r.sleep() is a shorthand for
rospy.sleep(1/rate) since we defined the variable r = rospy.Rate(rate).

62 # Now rotate left roughly 180 degrees
63
64 # Set the angular speed
65 move_cmd.angular.z = angular_speed
66
67 # Rotate for a time to go 180 degrees
68 ticks = int(goal_angle * rate)
69
70 for t in range(ticks):
71 self.cmd_vel.publish(move_cmd)
72 r.sleep()

 Controlling a Mobile Base - 52

In the second part of the loop, we rotate the robot at a rate of angular_speed radians
per second for the appropriate duration (Pi seconds in this case) which should yield 180
degrees.

79 # Stop the robot.
80 self.cmd_vel.publish(Twist())

When the robot has completed the out-and-back journey, we stop it by publishing an
empty Twist message (all fields are 0).

82 def shutdown(self):
83 # Always stop the robot when shutting down the node.
84 rospy.loginfo("Stopping the robot...")
85 self.cmd_vel.publish(Twist())
86 rospy.sleep(1)

This is our shutdown callback function. If the script is terminated for any reason, we
stop the robot by publishing an empty Twist message.

88 if __name__ == '__main__':
89 try:
90 OutAndBack()
91 except rospy.ROSInterruptException:
92 rospy.loginfo("Out-and-Back node terminated.")

Finally, this is the standard Python block for running the script. We simply instantiate
the OutAndBack class which sets the script (and robot) in motion.

 7.6.4 Timed Out and Back using a Real Robot

If you have a robot like the TurtleBot, you can try the timed_out_and_back.py script
in the real world. Remember that we are only using time and speed to estimate distance
and rotation angles. So we expect that the robot's inertia will throw things off compared
to the ideal ArbotiX simulation (which, as you will recall, does not model any physics.)

First, terminate any running simulations. Next, make sure your robot has plenty of room
to work in—at least 1.5 meters ahead of it and a meter on either side. Then bring up
your robot's startup launch file(s). If you have an original TurtleBot (iRobot Create
base), ssh into the robot's laptop and run:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

Or use your own launch file if you have created one to store your calibration parameters.

We will also use an auxiliary script so that we can see the TurtleBot's combined
odometry frame in RViz. (This will become clearer in the next section.) You can skip

 Controlling a Mobile Base - 53

this if you are not using a TurtleBot. This launch file should be run on the TurtleBot's
laptop using another ssh terminal:

$ roslaunch rbx1_bringup odom_ekf.launch

Next we're going to configure RViz to display the combined odometry data (encoders +
gyro) rather than /odom which only shows the encoder data. If you already have RViz
running from the previous test, you can simply un-check the Odometry display and
check the Odometry EKF display, then skip the following step.

If RViz is not already up, run it now on your workstation with the nav_ekf config file.
This file simply pre-selects the /odom_ekf topic for displaying the combined odometry
data:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/nav_ekf.rviz

The only difference between this configuration and the previous one is that we are now
displaying the combined odometry data on the /odom_ekf topic rather than just the
wheel encoder data published on the /odom topic. You can check both displays if you
want to compare the two.

Finally, we run the out and back script just like we did before. Note that the script itself
does not care if we are running a simulation or controlling a real robot. It is simply
publishing Twist messages on the /cmd_vel topic for anyone who cares to listen. This
is one example of how ROS allows us to abstract away the lower levels of the motion
control hierarchy. You can run the following command either on your workstation or on
the robot's laptop after logging in with ssh:

$ rosrun rbx1_nav timed_out_and_back.py

Here is the result for my own TurtleBot when operating on a low-ply carpet:

 Controlling a Mobile Base - 54

As you can tell from the picture, the robot did not end up very close to the starting
position. First of all, it did not go far enough before turning around (the grid squares are
0.5 meters apart). Then it did not rotate a full 180 degrees before heading back. The
result is that the robot is about 0.5m to the left of the starting point, and it is oriented in
the wrong direction.

Fortunately, the data we need to correct the problem is staring us right in the face. The
large odometry arrows in the image above indicate the robot's position and orientation as
reported by its internal odometry. In other words, the robot "knows" it messed up but
we have unfairly handicapped it by not using the odometry data in our script. While the
odometry data will not match the real motion exactly, it should give us a better result if
we use it.

 7.7 Are We There Yet? Going the Distance with Odometry
When we ask our robot to move or rotate at a certain speed, how do we know that it is
actually doing what we asked? For example, if we publish a Twist message to move
the robot forward at 0.2 m/s, how do we know that the robot isn't really going 0.18 m/s?
In fact, how do we know that both wheels are even traveling at the same speed?

 Controlling a Mobile Base - 55

As we explained earlier in this chapter, the robot's base controller node uses odometry
and PID control to turn motion requests into real-world velocities. The accuracy and
reliability of this process depends on the robot's internal sensors, the accuracy of the
calibration procedure, and environmental conditions. (For example, some surfaces may
allow the wheels to slip slightly which will mess up the mapping between encoder
counts and distance traveled.)

The robot's internal odometry can be supplemented with external measures of the robot's
position and/or orientation. For example, one can use wall-mounted visual markers such
as fiducials together with the ROS packages ar_pose, ar_kinect or
ar_track_alvar to provide a fairly accurate localization of the robot within a room.
A similar technique uses visual feature matching without the need for artificial markers
(ccny_rgbd_tools, rgbdslam, RTABMap), and yet another package
(laser_scan_matcher) uses laser scan matching. Outdoor robots often use GPS to
estimate position in addition to other forms of odometry.

For the purposes of this book, we will use the term "odometry" to mean internal position
data. However, regardless of how one measures odometry, ROS provides a message
type to store the information; namely nav_msgs/Odometry. The abbreviated
definition of the Odometry message type is shown below:

Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose
geometry_msgs/TwistWithCovariance twist

Here we see that the Odometry message is composed of a Header, a string
identifying the child_frame_id, and two sub-messages, one for
PoseWithCovariance and one for TwistWithCovariance.

To see the expanded version of the definition, run the command:

$ rosmsg show nav_msgs/Odometry

which should yield the following output:

 Controlling a Mobile Base - 56

http://www.ros.org/doc/api/nav_msgs/html/msg/Odometry.html
http://wiki.ros.org/robot_pose_ekf/Tutorials/AddingGpsSensor
http://wiki.ros.org/laser_scan_matcher
http://introlab.github.io/rtabmap/
http://wiki.ros.org/rgbdslam
http://wiki.ros.org/ccny_rgbd_tools
http://wiki.ros.org/ar_track_alvar
http://wiki.ros.org/ar_kinect
http://wiki.ros.org/ar_pose

Header header
 uint32 seq
 time stamp
 string frame_id
string child_frame_id
geometry_msgs/PoseWithCovariance pose
 geometry_msgs/Pose pose
 geometry_msgs/Point position
 float64 x
 float64 y
 float64 z
 geometry_msgs/Quaternion orientation
 float64 x
 float64 y
 float64 z
 float64 w
 float64[36] covariance
geometry_msgs/TwistWithCovariance twist
 geometry_msgs/Twist twist
 geometry_msgs/Vector3 linear
 float64 x
 float64 y
 float64 z
 geometry_msgs/Vector3 angular
 float64 x
 float64 y
 float64 z
 float64[36] covariance

The PoseWithCovariance sub-message records the position and orientation of the
robot while the TwistWithCovariance component gives us the linear and angular
speeds as we have already seen. Both the pose and twist can be supplemented with a
covariance matrix which measures the uncertainty in the various measurements.

The Header and child_frame_id define the reference frames we are using to
measure distances and angles. It also provides a timestamp for each message so we
know not only where we are but when. By convention, odometry measurements in ROS
use /odom as the parent frame id and /base_link (or /base_footprint) as the
child frame id. While the /base_link frame corresponds to a real physical part of the
robot, the /odom frame is defined by the translations and rotations encapsulated in the
odometry data. These transformations move the robot relative to the /odom frame. If
we display the robot model in RViz and set the fixed frame to the /odom frame, the
robot's position will reflect where the robot "thinks" it is relative to its starting position.

 7.8 Out and Back Using Odometry
Now that we understand how odometry information is represented in ROS, we can be
more precise about moving our robot on an out-and-back course. Rather than guessing
distances and angles based on time and speed, our next script will monitor the robot's

 Controlling a Mobile Base - 57

position and orientation as reported by the transform between the /odom and
/base_link frames.

The new file is called odom_out_and_back.py in the rbx1_nav/nodes directory.
Before looking at the code, let's compare the results between the simulator and a real
robot.

 7.8.1 Odometry-Based Out and Back in the ArbotiX Simulator

If you already have a simulated robot running, first Ctrl-C out of the simulation so we
can start the odometry readings from scratch. Then bring up the simulated robot again,
run RViz, then run the odom_out_and_back.py script as follows:

$ roslaunch rbx1_bringup fake_turtlebot.launch

$ rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz

$ rosrun rbx1_nav odom_out_and_back.py

A typical result is shown below:

 Controlling a Mobile Base - 58

As you can see, using odometry in an ideal simulator without physics produces basically
perfect results. This should not be terribly surprising. So what happens when we try it
on a real robot?

 7.8.2 Odometry-Based Out and Back Using a Real Robot

If you have a TurtleBot or other ROS-compatible robot, you can try the odometry based
out-and-back script in the real world.

First make sure you terminate any running simulations. Then bring up your robot's
startup launch file(s). For a TurtleBot you would run:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

(Or use your own launch file if you have created one to store your calibration
parameters.)

Make sure your robot has plenty of room to work in—at least 1.5 meters ahead of it and
a meter on either side.

If you are using a TurtleBot, we will also run the odom_ekf.py script (included in the
rbx1_bringup package) so we can see the TurtleBot's combined odometry frame in
RViz. You can skip this if you are not using a TurtleBot. This launch file should be run
on the TurtleBot's laptop:

$ roslaunch rbx1_bringup odom_ekf.launch

If you already have RViz running from the previous test, you can simply un-check the
Odometry display and check the Odometry EKF display, then skip the following step.

If RViz is not already up, run it now on your workstation with the nav_ekf config file.
This file simply pre-selects the /odom_ekf topic for displaying the combined odometry
data:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/nav_ekf.rviz

Finally, launch the odometry-based out-and-back script just like we did in simulation.
You can run the following command either on your workstation or on the robot's laptop
after logging in with ssh:

$ rosrun rbx1_nav odom_out_and_back.py

Here is the result for my own TurtleBot when operating on a low-ply carpet:

 Controlling a Mobile Base - 59

As you can see from the picture, the result is much better than the timed out-and-back
case. If fact, in the real world, the result was even better than shown in RViz.
(Remember that the odometry arrows in RViz won't line up exactly with the actual
position and orientation of the robot in the real world.) In this particular run, the robot
ended up less than 1 cm from the starting position and only a few degrees away from the
correct orientation. Of course, to get results even this good, you will need to spend some
time carefully calibrating your robot's odometry as described earlier.

 7.8.3 The Odometry-Based Out-and-Back Script

Here now is the full odometry-based out-and-back script. The embedded comments
should make the script fairly self-explanatory but we will describe the key lines in
greater detail following the listing.

Link to source: odom_out_and_back.py

1 #!/usr/bin/env python
2
3 import rospy
4 from geometry_msgs.msg import Twist, Point, Quaternion
5 import tf
6 from rbx1_nav.transform_utils import quat_to_angle, normalize_angle
7 from math import radians, copysign, sqrt, pow, pi
8

 Controlling a Mobile Base - 60

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_nav/nodes/odom_out_and_back.py

9 class OutAndBack():
10 def __init__(self):
11 # Give the node a name
12 rospy.init_node('out_and_back', anonymous=False)
13
14 # Set rospy to execute a shutdown function when exiting
15 rospy.on_shutdown(self.shutdown)
16
17 # Publisher to control the robot's speed
18 self.cmd_vel = rospy.Publisher('/cmd_vel', Twist, queue_size=5)
19
20 # How fast will we update the robot's movement?
21 rate = 20
22
23 # Set the equivalent ROS rate variable
24 r = rospy.Rate(rate)
25
26 # Set the forward linear speed to 0.2 meters per second
27 linear_speed = 0.2
28
29 # Set the travel distance in meters
30 goal_distance = 1.0
31
32 # Set the rotation speed in radians per second
33 angular_speed = 1.0
34
35 # Set the angular tolerance in degrees converted to radians
36 angular_tolerance = radians(2.5)
37
38 # Set the rotation angle to Pi radians (180 degrees)
39 goal_angle = pi
40
41 # Initialize the tf listener
42 self.tf_listener = tf.TransformListener()
43
44 # Give tf some time to fill its buffer
45 rospy.sleep(2)
46
47 # Set the odom frame
48 self.odom_frame = '/odom'
49
50 # Find out if the robot uses /base_link or /base_footprint
51 try:
52 self.tf_listener.waitForTransform(self.odom_frame,
'/base_footprint', rospy.Time(), rospy.Duration(1.0))
53 self.base_frame = '/base_footprint'
54 except (tf.Exception, tf.ConnectivityException, tf.LookupException):
55 try:
56 self.tf_listener.waitForTransform(self.odom_frame,
'/base_link', rospy.Time(), rospy.Duration(1.0))
57 self.base_frame = '/base_link'
58 except (tf.Exception, tf.ConnectivityException,
tf.LookupException):
59 rospy.loginfo("Cannot find transform between /odom and
/base_link or /base_footprint")
60 rospy.signal_shutdown("tf Exception")
61

 Controlling a Mobile Base - 61

62 # Initialize the position variable as a Point type
63 position = Point()
64
65 # Loop once for each leg of the trip
66 for i in range(2):
67 # Initialize the movement command
68 move_cmd = Twist()
69
70 # Set the movement command to forward motion
71 move_cmd.linear.x = linear_speed
72
73 # Get the starting position values
74 (position, rotation) = self.get_odom()
75
76 x_start = position.x
77 y_start = position.y
78
79 # Keep track of the distance traveled
80 distance = 0
81
82 # Enter the loop to move along a side
83 while distance < goal_distance and not rospy.is_shutdown():
84 # Publish the Twist message and sleep 1 cycle
85 self.cmd_vel.publish(move_cmd)
86
87 r.sleep()
88
89 # Get the current position
90 (position, rotation) = self.get_odom()
91
92 # Compute the Euclidean distance from the start
93 distance = sqrt(pow((position.x - x_start), 2) +
94 pow((position.y - y_start), 2))
95
96 # Stop the robot before the rotation
97 move_cmd = Twist()
98 self.cmd_vel.publish(move_cmd)
99 rospy.sleep(1)
100
101 # Set the movement command to a rotation
102 move_cmd.angular.z = angular_speed
103
104 # Track the last angle measured
105 last_angle = rotation
106
107 # Track how far we have turned
108 turn_angle = 0
109
110 while abs(turn_angle + angular_tolerance) < abs(goal_angle) and not
rospy.is_shutdown():
111 # Publish the Twist message and sleep 1 cycle
112 self.cmd_vel.publish(move_cmd)
113 r.sleep()
114
115 # Get the current rotation
116 (position, rotation) = self.get_odom()
117

 Controlling a Mobile Base - 62

118 # Compute the amount of rotation since the last loop
119 delta_angle = normalize_angle(rotation - last_angle)
120
121 # Add to the running total
122 turn_angle += delta_angle
123 last_angle = rotation
124
125 # Stop the robot before the next leg
126 move_cmd = Twist()
127 self.cmd_vel.publish(move_cmd)
128 rospy.sleep(1)
129
130 # Stop the robot for good
131 self.cmd_vel.publish(Twist())
132
133 def get_odom(self):
134 # Get the current transform between the odom and base frames
135 try:
136 (trans, rot) = self.tf_listener.lookupTransform(self.odom_frame,
self.base_frame, rospy.Time(0))
137 except (tf.Exception, tf.ConnectivityException, tf.LookupException):
138 rospy.loginfo("TF Exception")
139 return
140
141 return (Point(*trans), quat_to_angle(Quaternion(*rot)))
142
143 def shutdown(self):
144 # Always stop the robot when shutting down the node.
145 rospy.loginfo("Stopping the robot...")
146 self.cmd_vel.publish(Twist())
147 rospy.sleep(1)
148
149if __name__ == '__main__':
150 try:
151 OutAndBack()
152 except:
153 rospy.loginfo("Out-and-Back node terminated.")

Let's now look at the key lines in the script.

4 from geometry_msgs.msg import Twist, Point, Quaternion
5 import tf
6 from rbx1_nav.transform_utils import quat_to_angle, normalize_angle

We will need the Twist, Point and Quaternion data types from the
geometry_msgs package. We will also need the tf library to monitor the
transformation between the /odom and /base_link (or /base_footprint) frames.
The transform_utils library is a small module that you can find in the
rbx1_nav/src/rbx1_nav directory and contains a couple of handy functions
borrowed from the TurtleBot package. The function quat_to_angle converts a
quaternion to an Euler angle (yaw) while the normalize_angle function removes the
ambiguity between 180 and -180 degrees as well as 0 and 360 degrees.

 Controlling a Mobile Base - 63

35 # Set the angular tolerance in degrees converted to radians
36 angular_tolerance = radians(2.5)

Here we define an angular_tolerance for rotations. The reason is that it is very easy
to overshoot the rotation with a real robot and even a slight angular error can send the
robot far away from the next location. Empirically it was found that a tolerance of about
2.5 degrees gives acceptable results.

41 # Initialize the tf listener
42 self.tf_listener = tf.TransformListener()
43
44 # Give tf some time to fill its buffer
45 rospy.sleep(2)
46
47 # Set the odom frame
48 self.odom_frame = '/odom'
49
50 # Find out if the robot uses /base_link or /base_footprint
51 try:
52 self.tf_listener.waitForTransform(self.odom_frame,
'/base_footprint', rospy.Time(), rospy.Duration(1.0))
53 self.base_frame = '/base_footprint'
54 except (tf.Exception, tf.ConnectivityException, tf.LookupException):
55 try:
56 self.tf_listener.waitForTransform(self.odom_frame,
'/base_link', rospy.Time(), rospy.Duration(1.0))
57 self.base_frame = '/base_link'
58 except (tf.Exception, tf.ConnectivityException,
tf.LookupException):
59 rospy.loginfo("Cannot find transform between /odom and
/base_link or /base_footprint")
60 rospy.signal_shutdown("tf Exception")

Next we create a TransformListener object to monitor frame transforms. Note that
tf needs a little time to fill up the listener's buffer so we add a call to
rospy.sleep(2). To obtain the robot's position and orientation, we need the
transform between the /odom frame and either the /base_footprint frame as used
by the TurtleBot or the /base_link frame as used by Pi Robot and Maxwell. First we
test for the /base_footprint frame and if we don't find it, we test for
the /base_link frame. The result is stored in the self.base_frame variable to be
used later in the script.

63 for i in range(2):
64 # Initialize the movement command
65 move_cmd = Twist()

As with the timed out-and-back script, we loop through the two legs of the trip: first
moving the robot 1 meter forward, then rotating it 180 degrees.

71 (position, rotation) = self.get_odom()
72

 Controlling a Mobile Base - 64

73 x_start = position.x
74 y_start = position.y

At the start of each leg, we record the starting position and orientation using the
get_odom() function. Let's look at that next so we understand how it works.

130 def get_odom(self):
131 # Get the current transform between the odom and base frames
132 try:
133 (trans, rot) = self.tf_listener.lookupTransform(self.odom_frame,
self.base_frame, rospy.Time(0))
134 except (tf.Exception, tf.ConnectivityException, tf.LookupException):
135 rospy.loginfo("TF Exception")
136 return
137
138 return (Point(*trans), quat_to_angle(Quaternion(*rot)))

The get_odom() function first uses the tf_listener object to look up the current
transform between the odometry and base frames. If there is a problem with the lookup,
we throw an exception. Otherwise, we return a Point representation of the translation
and a Quaternion representation of the rotation. The * in front of the trans and rot
variables is Python's notation for passing a list of numbers to a function and we use it
here since trans is a list of x, y, and z coordinates while rot is a list of x, y, z and w
quaternion components.

Now back to the main part of the script:

76 # Keep track of the distance traveled
77 distance = 0
78
79 # Enter the loop to move along a side
80 while distance < goal_distance and not rospy.is_shutdown():
81 # Publish the Twist message and sleep 1 cycle
82 self.cmd_vel.publish(move_cmd)
83
84 r.sleep()
85
86 # Get the current position
87 (position, rotation) = self.get_odom()
88
89 # Compute the Euclidean distance from the start
90 distance = sqrt(pow((position.x - x_start), 2) +
91 pow((position.y - y_start), 2))

This is just our loop to move the robot forward until we have gone 1.0 meters.

104 # Track how far we have turned
105 turn_angle = 0
106
107 while abs(turn_angle + angular_tolerance) < abs(goal_angle) and not
rospy.is_shutdown():
108 # Publish the Twist message and sleep for 1 cycle

 Controlling a Mobile Base - 65

109 self.cmd_vel.publish(move_cmd)
110 r.sleep()
111
112 # Get the current rotation
113 (position, rotation) = self.get_odom()
114
115 # Compute the amount of rotation since the last loop
116 delta_angle = normalize_angle(rotation - last_angle)
117
118 # Add to the running total
119 turn_angle += delta_angle
120 last_angle = rotation

And this is our loop for rotating through 180 degrees within the angular tolerance we set
near the beginning of the script.

 7.8.4 The /odom Topic versus the /odom Frame

The reader may be wondering why we used a TransformListener in the previous
script to access odometry information rather than just subscribing to the /odom topic.
The reason is that the data published on the /odom topic is not always the full story. For
example, the TurtleBot uses a single-axis gyro to provide an additional estimate of the
robot's rotation. This is combined with the data from the wheel encoders by the
robot_pose_ekf node (which is started in the TurtleBot launch file) to get a better
estimate of rotation than either source alone.

However, the robot_pose_ekf node does not publish its data back on the /odom topic
which is reserved for the wheel encoder data. Instead, it publishes it on the
/odom_combined topic. Furthermore, the data is published not as an Odometry
message but as a PoseWithCovarianceStamped message. It does however, publish a
transform from the /odom frame to the /base_link (or /base_footprint) frame
which provides the information we need. As a result, it is generally safer to use tf to
monitor the transformation between the /odom and /base_link (or
/base_footprint) frames than to rely on the /odom message topic.

In the rbx1_bringup/nodes directory you will find a node called odom_ekf.py that
republishes the PoseWithCovarianceStamped message found on the
/odom_combined topic as an Odometry type message on the topic called /odom_ekf.
This is done only so we can view both the /odom and /odom_ekf topics in RViz to
compare the TurtleBot's wheel-based odometry with the combined odometry that
includes the gyro data.

 7.9 Navigating a Square using Odometry
As we did with the odometry-based out-and-back script, we will monitor the position
and orientation of the robot using the tf transform between the /odom and
/base_link (or /base_footprint) frames. However, this time we will attempt to

 Controlling a Mobile Base - 66

move the robot in a square by setting four waypoints, one at each corner. At the end of
the run, we can see how close the robot gets back to the starting location and orientation.
Let's start with a simulation and then try it on a real robot.

 7.9.1 Navigating a Square in the ArbotiX Simulator

If you already have a simulated TurtleBot or Pi Robot running, first Ctrl-C out of the
simulation so we can start the odometry readings from scratch. Then bring up the
simulated robot again, run RViz, then run the nav_square.py script as follows:

$ roslaunch rbx1_bringup fake_turtlebot.launch

$ rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz

$ rosrun rbx1_nav nav_square.py

A typical result is shown below:

As before, the odometry arrows illustrate the heading of the robot at various points along
its route. As you can see, the square is not perfectly aligned with the grid lines, but it's
not bad.

 Controlling a Mobile Base - 67

 7.9.2 Navigating a Square using a Real Robot

If you have a robot, try out the nav_square script now to see how well it does with
real-world odometry. First terminate any running simulated robots, then launch the
startup file(s) for your robot. For a TurtleBot you would run:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

(Or use your own launch file if you have created one to store your calibration
parameters.)

Make sure your robot has plenty of room to work in—at least 1.5 meters ahead of it and
on either side.

If you are using a TurtleBot, we also need to run the odom_ekf.py script to be able to
see the TurtleBot's combined odometry frame in RViz. You can skip this if you are not
using a TurtleBot. The launch file should be run on the TurtleBot's laptop:

$ roslaunch rbx1_bringup odom_ekf.launch

If RViz is still running on your workstation, shut it down and bring it back up with the
ekf configuration file. Alternatively, simply un-check the Odometry display and check
the Odometry EKF display.

$ rosrun rviz rviz -d `rospack find rbx1_nav`/nav_ekf.rviz

Finally, run the nav_square.py script again:

$ rosrun rbx1_nav nav_square.py

The following image shows the results when using my own TurtleBot on a low-ply
carpet:

 Controlling a Mobile Base - 68

As you can see, the result is not too bad. In the real world, the robot ended up 11 cm
away from the starting point and about 15 degrees off the original orientation. But of
course, if we were to run the script a second time without repositioning the robot, the
error in the starting orientation would throw off the entire trajectory.

 7.9.3 The nav_square.py Script

The nav_square.py script is nearly identical to the odometry-based out-and-back
script that we just looked at so we won't display it here. The only difference is that we
now send the robot along four 1 meter legs using 90 degree rotations instead of two 1
meter legs using 180 rotations. You can look at the code at the link below or by viewing
your own copy in the rbx1_nav/nodes directory.

Link to source: nav_square.py

 7.9.4 The Trouble with Dead Reckoning

The processing of navigating a course while relying only on internal motion data and
without reference to external landmarks is referred to as dead reckoning. Any robot that
relies entirely on dead reckoning for any length of time will eventually become
completely lost. The root of the problem is that even small errors in odometry
accumulate over time. Imagine for example an error of even 1 degree in the robot's

 Controlling a Mobile Base - 69

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_nav/nodes/nav_square.py

estimated heading just before it moves straight for 3 meters. At the end of the run, the
robot will be have accumulated an error of over 5 cm in its position. Since the robot
does not know that it is 5 cm away from its intended destination, the calculation of the
next movement will be off by this amount before it even gets started.

Fortunately, roboticists long ago started working on various ways to incorporate
landmarks or other external references into robot navigation and we will do the same
with ROS in the chapter on SLAM.

 7.10 Teleoperating your Robot
It is always a good idea to maintain some kind of manual control over your robot,
especially when testing new code. We have seen that the base controller for a robot
subscribes to the /cmd_vel topic and maps any Twist messages published there into
motor signals. If we can coax a remote control device such as a joystick or game
controller to publish Twist messages on the /cmd_vel topic, we can use it to
teleoperate the robot. (This is another good example of how ROS enables us to abstract
away from the underlying hardware.)

Fortunately, the turtlebot_teleop package already includes nodes for sending
Twist commands via the keyboard, a joystick or a PS3 controller. To get the required
ROS packages, run the command:

$ sudo apt-get install ros-indigo-joystick-drivers \
ros-indigo-turtlebot-teleop

Before teleoperating a real robot, try it out using the ArbotiX simulator. Bring up the
fake TurtleBot if it is not already running:

$ roslaunch rbx1_bringup fake_turtlebot.launch

And it RViz is not still running, fire it up now:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz

Now let's take a look at teleoperating the simulated robot using either the keyboard or a
joystick.

 7.10.1 Using the Keyboard

The turtlebot_teleop package includes a keyboard_teleop.launch file that has
been copied to the rbx1_nav/launch directory so that we can edit a couple of
parameters described below. Use the following command to run this copy of the launch
file:

 Controlling a Mobile Base - 70

http://wiki.ros.org/turtlebot_teleop

$ roslaunch rbx1_nav keyboard_teleop.launch

You should then see the following instructions on your terminal screen:

Control Your Turtlebot!

Moving around:
 u i o
 j k l
 m , .

q/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
space key, k : force stop
anything else : stop smoothly

CTRL-C to quit

With your cursor over the teleop terminal window, try tapping the letter i. You should
see the fake TurtleBot move forward in RViz. Notice that if you stop tapping, the robot
will slow down and stop. Try some of the other keys to make sure everything is
working.

If you look at the keyboard_teleop.launch file in the rbx1_nav/launch
directory, you will see that the keyboard teleop node takes two parameters:
scale_linear and scale_angular for determining the default linear and angular
speed of the robot. When first testing teleoperating on a real robot, it is a good idea to
set these values smaller than the defaults so that the robot will move slowly.
Unfortunately, at the time of this writing, there is a bug in the turtlebot_teleop
package that prevents the two parameters from being read by the keyboard_teleop
node, so for the time being, these parameters will be ignored.

 7.10.2 Using a Logitech Game Pad

If you have a joystick or game pad you can use the joystick_teleop.launch file in
the turtlebot_teleop package. We have made a local copy of this file in the
rbx1_nav/launch directory so that various parameters can be edited to suit your
needs. The following description applies specifically to a Logitech wireless game pad.

To use the joystick teleop node, run the following command:

$ roslaunch rbx1_nav joystick_teleop.launch

If you get an error such as:

 Controlling a Mobile Base - 71

[ERROR] [1332893303.227744871]: Couldn't open joystick /dev/input/js0.
Will retry every second.

then your joystick or game pad is either not plugged in to a USB port or it is not
recognized by Ubuntu. If you do not receive any errors, press the "dead man" button
(see Note below) and try moving the joystick or the left-hand toggle stick on the game
pad.

NOTE: If you are using a Logitech game pad, you must first press and hold the right
index finger button before the robot will respond to the left toggle stick. This button is
called the "dead man" switch since the robot will stop moving if you release it.

You can edit the joystick_teleop.launch file to change the scale factors for linear
and angular speed. You can also map the dead man switch to a different button. To find
out the numbers corresponding to each button, try the jstest program:

$ sudo apt-get install joystick
$ jstest /dev/input/js0

Then press various buttons and look at the numbers at the bottom of the screen to see
which one turns from "off" to "on". Type Ctrl-C to exit the test screen.

the red dot with your mouse. Then move move the dot in the
direction you want your robot to move. Take care not to move it too far as the robot's
speed is controlled by the distance from the origin. If you are using the Pi Robot
simulator, you will also see controls for the arm joints as shown below:

 Controlling a Mobile Base - 72

To move one of the joints in the simulator, check the box beside the servo name, then
use the slider.

 7.10.4 TurtleBot Teleoperation Using Interactive Markers

The Turtlebot meta-package includes a very cool interactive markers package that
allows you to move the real robot by dragging controls in RViz. Instructions on how to
use it are provided on the turtlebot_interactive_markers tutorials Wiki page,
although the page has not been updated since Groovy. (Click on the Groovy tab at the
top of the page once it comes up.)

To install the package for ROS Indigo, run the command:

$ sudo apt-get install ros-indigo-turtlebot-interactive-markers

To try it out with the fake TurtleBot, run the following commands:

$ roslaunch rbx1_bringup fake_turtlebot.launch

Bring up RViz with the pre-configured interactive_markers.rviz config file:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/interactive_markers.rviz

Finally, bring up the interactive_markers.launch file in the rbx1_nav package:

$ roslaunch rbx1_nav interactive_markers.launch

 Controlling a Mobile Base - 73

http://ros.org/wiki/turtlebot_interactive_markers/Tutorials/UsingTurtlebotInteractiveMarkers

This launch file was copied from the turtlebot_interactive_markers package
and modified slightly to work with the fake TurtleBot.

Back in RViz, click on the Interact button along the top tool bar. The RViz screen
should look like this:

Click on the red arrows to move the fake robot forward or back and rotate the blue
annulus to turn the robot.

 Controlling a Mobile Base - 74

 8. NAVIGATION, PATH PLANNING AND SLAM
Now that we have covered the basics of how to control a differential drive robot, we are
ready to try one of the more powerful features in ROS; namely, Simultaneous
Localization and Mapping or SLAM.

A SLAM-capable robot can build a map of an unknown environment while
simultaneously locating itself in that map. Until recently, about the only way to do
reliable SLAM was to use a fairly expensive laser scanner to collect the data. With the
arrival of the Microsoft Kinect and Asus Xtion cameras, one can now do more
affordable SLAM by using the 3D point cloud from the camera to generate a "fake" laser
scan. (See the depthimage_to_laserscan and kinect_2d_scanner packages for
two ways to do this.) The TurtleBot is configured to do this out of the box. If you own
a TurtleBot, you might want to skip directly to the TurtleBot SLAM tutorial on the ROS
Wiki.

Another affordable SLAM robot is the Neato XV-11 vacuum cleaner which includes a
360-degree laser scanner. In fact, you can run the complete Navigation Stack using the
XV-11 thanks to the neato_robot ROS stack by Michael Ferguson.

In this chapter, we will cover the three essential ROS packages that make up the core of
the Navigation Stack:

• move_base for moving the robot to a goal pose within a given reference frame

• gmapping for creating a map from laser scan data (or simulated laser data from
a depth camera)

• amcl for localization using an existing map

When we are finished, we will be able to command the robot to go to any location or
series of locations within the map, all while avoiding obstacles. Before going further, it
is highly recommended that the reader check out the Navigation Robot Setup tutorial on
the ROS Wiki. This tutorial provides an excellent overview of the ROS navigation
stack. For an even better understanding, check out all of the Navigation Tutorials. And
for a superb introduction to the mathematics underlying SLAM, check out Sebastian
Thrun's online Artificial Intelligence course on Udacity.

 8.1 Path Planning and Obstacle Avoidance using move_base

In the previous chapter, we wrote a script to move the robot in a square. In that script,
we monitored the tf transform between the /odom frame and the /base_link (or
/base_footprint) frame to keep track of the distance traveled and the angles rotated.
ROS provides a much more elegant way to do the same thing using the move_base

 Navigation, Path Planning and SLAM - 75

http://ros.org/wiki/neato_robot
http://wiki.ros.org/turtlebot_navigation/Tutorials/Build%20a%20map%20with%20SLAM
http://wiki.ros.org/kinect_2d_scanner
http://wiki.ros.org/move_base
http://www.udacity.com/overview/Course/cs373/CourseRev/apr2012
http://wiki.ros.org/navigation/Tutorials
http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/amcl
http://wiki.ros.org/gmapping
http://wiki.ros.org/move_base
http://wiki.ros.org/depthimage_to_laserscan

package. (Please see the move_base Wiki page for a full explanation including an
excellent diagram of the various components of the package.)

The move_base package implements a ROS action for reaching a given navigation
goal. You should be familiar with the basics of ROS actions from the actionlib tutorials
on the ROS Wiki. Recall that actions provide feedback as progress is made toward the
goal. This means we no longer have to query the odometry topic ourselves to find out if
we have arrived at the desired location.

The move_base package incorporates the base_local_planner that combines
odometry data with both global and local cost maps when selecting a path for the robot
to follow. The global plan or path is computed before the robot starts moving toward the
next destination and takes into account known obstacles or areas marked as "unknown".
To actually move the robot, the local planner monitors incoming sensor data and chooses
appropriate linear and angular velocities for the robot to traverse the current segment of
the global path. How these local path segments are implemented over time is highly
configurable as we shall see.

 8.1.1 Specifying Navigation Goals Using move_base

To specify a navigation goal using move_base, we provide a target pose (position and
orientation) of the robot with respect to a particular frame of reference. The move_base
package uses the MoveBaseActionGoal message type for specifying the goal. To see
the definition of this message type, run the command:

$ rosmsg show MoveBaseActionGoal

which should produce the following output:

 Navigation, Path Planning and SLAM - 76

http://wiki.ros.org/move_base#move_base-1
http://wiki.ros.org/base_local_planner
http://wiki.ros.org/actionlib/Tutorials
http://wiki.ros.org/actionlib
http://wiki.ros.org/move_base

Header header
 uint32 seq
 time stamp
 string frame_id
actionlib_msgs/GoalID goal_id
 time stamp
 string id
move_base_msgs/MoveBaseGoal goal
 geometry_msgs/PoseStamped target_pose
 Header header
 uint32 seq
 time stamp
 string frame_id
 geometry_msgs/Pose pose
 geometry_msgs/Point position
 float64 x
 float64 y
 float64 z
 geometry_msgs/Quaternion orientation
 float64 x
 float64 y
 float64 z
 float64 w

As you can see, the goal consists of a standard ROS header including a frame_id, a
goal_id, and the goal itself which is given as a PoseStamped message. The
PoseStamped message type in turn consists of a header and a pose which itself
consists of a position and an orientation.

While the MoveBaseActionGoal message might seem a little complicated when
written out in full, in practice we will only have to set a few of the fields when
specifying move_base goals.

 8.1.2 Configuration Parameters for Path Planning

The move_base node requires four configuration files before it can be run. These files
define a number of parameters related to the cost of running into obstacles, the radius of
the robot, how far into the future the path planner should look, how fast we want the
robot to move and so on. The four configuration files can be found in the config
subdirectory of the rbx1_nav package and are called:

• base_local_planner_params.yaml

• costmap_common_params.yaml

• global_costmap_params.yaml

• local_costmap_params.yaml

 Navigation, Path Planning and SLAM - 77

http://www.ros.org/doc/api/geometry_msgs/html/msg/PoseStamped.html

We will describe just a few of the parameters here; in particular, those that you will be
most likely to tweak for your own robot. To learn about all of the parameters, please
refer to the Navigation Robot Setup on the ROS Wiki as well as the parameters section
of the costmap_2d and base_local_planner Wiki pages.

 8.1.2.1 base_local_planner_params.yaml

The values listed here are taken from base_local_planner_params.yaml in the
rbx1_nav/config/turtlebot directory and have been found to work fairly well for
the TurtleBot and Pi Robot. (Values that work well in the ArbotiX simulator can be
found in the directory rbx1_nav/config/fake.)

• controller_frequency: 3.0 – How many times per second should we
update the planning process? Setting this value too high can overload a
underpowered CPU. A value of 3 to 5 seems to work fairly well for a typical
laptop.

• max_vel_x: 0.3 – The maximum linear velocity of the robot in meters per
second. A value of 0.5 is rather fast for an indoor robot so a value of 0.3 is
chosen to be conservative.

• min_vel_x: 0.05: – The minimum linear velocity of the robot.

• max_vel_theta: 1.0 – The maximum rotational velocity of the robot in
radians per second. Don't set this too high or the robot will overshoot its goal
orientation.

• min_vel_theta: -1.0 – The minimum rotational velocity of the robot in
radians per second.

• min_in_place_vel_theta: 0.5 – The minimum in-place rotational
velocity of the robot in radians per second.

• escape_vel: -0.1 – Speed used for driving during escapes in meters per
sec. Note that it must be negative in order for the robot to actually reverse.

• acc_lim_x: 2.5 – The maximum linear acceleration in the x direction in m/s2

• acc_lim_y: 0.0 – The maximum linear acceleration in the y direction in
m/s2. We set this to 0 for a differential drive (non-holonomic) robot since such a
robot can only move linearly in the x direction (as well as rotate).

• acc_lim_theta: 3.2 – The maximum angular acceleration in rad/s2.

• holonomic_robot: false – Unless you have an omni-directional drive
robot, this is always set to false.

 Navigation, Path Planning and SLAM - 78

http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/base_local_planner#Parameters
http://wiki.ros.org/costmap_2d#Parameters

• yaw_goal_tolerance: 0.1 – How close to the goal orientation (in radians)
do we have to get? Setting this value to small may cause the robot to oscillate
near the goal.

• xy_goal_tolerance: 0.1 – How close (in meters) do we have to get to the
goal? If you set the tolerance too small, your robot may try endlessly to make
small adjustments around the goal location. NOTE: Do not set the tolerance
less than the resolution of your map (described in a later section) or your robot
will end up spinning in place indefinitely without reaching the goal.

• pdist_scale: 0.8 – The relative importance of sticking to the global path
as opposed to getting to the goal. Set this parameter larger than the
gdist_scale to favor following the global path more closely.

• gdist_scale: 0.4 – The relative importance of getting to the goal rather
than sticking to the global path. Set this parameter larger than the
pdist_scale to favor getting to the goal by whatever path necessary.

• occdist_scale: 0.1 - The relative importance of avoiding obstacles.

• sim_time: 1.0 – How many seconds into the future should the planner look?
This parameter together with the next (dwa) can greatly affect the path taken by
your robot toward a goal.

• dwa: true – Whether or not to use the Dynamic Window Approach when
simulating trajectories into the future. See the Base Local Planner Overview for
more details.

 8.1.2.2 costmap_common_params.yaml

There are only two parameters in this file that you might have to tweak right away for
your own robot:

• robot_radius: 0.165 – For a circular robot, the radius of your robot in
meters. For a non-circular robot, you can use the footprint parameter instead
as shown next. The value here is the radius of the original TurtleBot in meters.

• footprint: [[x0, y0], [x1, y1], [x2, y2], [x3, y3], etc] –
Each coordinate pair in the list represents a point on the boundary of the robot
with the robot's center assumed to be at [0, 0]. The measurement units are
meters. The points can be listed in either clockwise or counterclockwise order
around the perimeter of the robot.

• inflation_radius: 0.3 – The radius in meters that obstacles will be
inflated in the map. If your robot is having trouble passing through narrow

 Navigation, Path Planning and SLAM - 79

http://wiki.ros.org/base_local_planner#Overview

doorways or other tight spaces, trying reducing this value slightly. Conversely,
if the robot keeps running into things, try increasing the value.

 8.1.2.3 global_costmap_params.yaml

There are a few parameters in this file that you might experiment with depending on the
power of your robot's CPU and the reliability of the network connection between the
robot and your workstation:

• global_frame: /map – For the global cost map, we use the the map frame as
the global frame.

• robot_base_fame: /base_footprint – This will usually be either
/base_link or /base_footprint. For a TurtleBot it is
/base_footprint.

• update_frequency: 1.0 – The frequency in Hz of how often the global map
is updated with sensor information. The higher this number, the greater the load
on your computer's CPU. Especially for the global map, one can generally get
away with a relatively small value of between 1.0 and 5.0.

• publish_frequency: 0 – For a static global map, there is generally no need
to continually publish it.

• static_map: true – This parameter and the next are always set to opposite
values. The global map is usually static so we set static_map to true.

• rolling_window: false – The global map is generally not updated as the
robot moves to we set this parameter to false.

• transform_tolerance: 1.0 – Specifies the delay in seconds that is
tolerated between the frame transforms in the tf tree. For typical wireless
connections between the robot and the workstation, something on the order of
1.0 seconds works OK.

 8.1.2.4 local_costmap_params.yaml

There are a few more parameters to be considered for the local cost map:

• global_frame: /odom – For the local cost map, we use the odometry frame
as the global frame

• robot_base_fame: /base_footprint – This will usually be either
/base_link or /base_footprint. For a TurtleBot it is
/base_footprint.

 Navigation, Path Planning and SLAM - 80

• update_frequency: 3.0 – How frequently (times per second) do we update
the local map based on sensor data. For a really slow computer, you may have
to reduce this value.

• publish_frequency: 1.0 – We definitely want updates to the local map
published so we set a non-zero value here. Once per second should be good
enough unless your robot needs to move more quickly.

• static_map: false – This parameter and the next are always set to opposite
values. The local map is dynamically updated with sensor data so we set
static_map to false.

• rolling_window: true – The local map is updated within a rolling window
defined by the next few parameters.

• width: 6.0 – The x dimension in meters of the rolling map.

• height: 6.0 – The y dimension in meters of the rolling map.

• resolution: 0.01 – The resolution in meters of the rolling map. This
should match the resolution set in the YAML file for your map (explained in a
later section).

• transform_tolerance: 1.0 – Specifies the delay in seconds that is
tolerated between the frame transforms in the tf tree or the mapping process
will temporarily abort. On a fast computer connected directly to the robot, a
value 1.0 should work OK. But on slower computers and especially over
wireless connections, the tolerance may have to be increased. The tell-tale
warning message you will see when the tolerance is set too low will look like
the following:

[WARN] [1339438850.439571557]: Costmap2DROS transform
timeout. Current time: 1339438850.4395, global_pose stamp:
1339438850.3107, tolerance: 0.0001

If you are running the move_base node on a computer other than the robot's
computer, the above warning can also indicate that the clocks on the two
machines are out of sync. Recall from the earlier section on Networking that
you can use the ntpdate command to synchronize the two clocks. Refer back
to that section for details or review the Network Setup pages on the ROS Wiki.

 8.2 Testing move_base in the ArbotiX Simulator

The move_base node requires a map of the environment but the map can simply be a
blank square if we just want to test the move_base action interface. We will learn how
to create and use real maps in a later section. The rbx1_nav package includes a blank

 Navigation, Path Planning and SLAM - 81

http://wiki.ros.org/Robots/TurtleBot/Network%20Setup

map called blank_map.pgm in the maps subdirectory and its corresponding description
file is blank_map.yaml. The launch file for bringing up the move_base node and the
blank map is called fake_move_base_blank_map.launch in the launch
subdirectory. Let's take a look at it now:

<launch>
 <!-- Run the map server with a blank map -->
 <node name="map_server" pkg="map_server" type="map_server" args="$(find
rbx1_nav)/maps/blank_map.yaml"/>

 <!-- Launch move_base and load all navigation parameters -->
 <include file="$(find rbx1_nav)/launch/fake_move_base.launch" />

 <!-- Run a static transform between /odom and /map -->
 <node pkg="tf" type="static_transform_publisher" name="odom_map_broadcaster"
args="0 0 0 0 0 0 /odom /map 100" />
</launch>

The comments in the launch file help us understand what is going on. First we run the
ROS map_server node with the blank map. Note how the map is specified in terms of
its .yaml file which describes the size and resolution of the map itself. Then we include
the fake_move_base.launch file (described below) which runs the move_base node
and loads all the required configuration parameters that work well in the fake simulator.
Finally, since we are using a blank map and our simulated robot has no sensors, the
robot cannot use scan data for localization. Instead, we simply set a static identity
transform to tie the robot's odometry frame to the map frame which essentially assumes
that the odometry is perfect.

Let's take a look at the fake_move_base.launch file now:

<launch>

 <node pkg="move_base" type="move_base" respawn="false" name="move_base"
output="screen">
 <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml"
command="load" ns="global_costmap" />
 <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml"
command="load" ns="local_costmap" />
 <rosparam file="$(find rbx1_nav)/config/fake/local_costmap_params.yaml"
command="load" />
 <rosparam file="$(find rbx1_nav)/config/fake/global_costmap_params.yaml"
command="load" />
 <rosparam file="$(find rbx1_nav)/config/fake/base_local_planner_params.yaml"
command="load" />
 </node>

</launch>

The launch file runs the move_base node together with five calls to rosparam to load
the parameter files we described earlier. The reason that we load the
costmap_common_params.yaml file twice is to set those common parameters in both

 Navigation, Path Planning and SLAM - 82

the global_costmap namespace and the local_costmap namespace. This is
accomplished using the appropriate "ns" attribute in each line.

To try it out in simulation, first fire up the ArbotiX simulator:

$ roslaunch rbx1_bringup fake_turtlebot.launch

(Replace with your favorite fake robot.)

To launch the move_base node together with the blank map, run the command:

$ roslaunch rbx1_nav fake_move_base_blank_map.launch

You should see a series of messages similar to:

process[map_server-1]: started with pid [304]
process[move_base-2]: started with pid [319]
process[odom_map_broadcaster-3]: started with pid [334]
[INFO] [1386339148.328543477]: Loading from pre-hydro parameter style
[INFO] [1386339148.358918577]: Using plugin "static_layer"
[INFO] [1386339148.465150309]: Requesting the map...
[INFO] [1386339148.667043125]: Resizing costmap to 600 X 600 at
0.010000 m/pix
[INFO] [1386339148.766803526]: Received a 600 X 600 map at 0.010000
m/pix
[INFO] [1386339148.775537537]: Using plugin "obstacle_layer"
[INFO] [1386339148.777476200]: Subscribed to Topics:
[INFO] [1386339148.792662154]: Using plugin "footprint_layer"
[INFO] [1386339148.802180784]: Using plugin "inflation_layer"
[INFO] [1386339149.014790405]: Loading from pre-hydro parameter style
[INFO] [1386339149.033272052]: Using plugin "obstacle_layer"
[INFO] [1386339149.136896985]: Subscribed to Topics:
[INFO] [1386339149.159491227]: Using plugin "footprint_layer"
[INFO] [1386339149.167455772]: Using plugin "inflation_layer"
[INFO] [1386339149.312802700]: Created local_planner
base_local_planner/TrajectoryPlannerROS
[INFO] [1386339149.333349679]: Sim period is set to 0.33
[INFO] [1386339150.117016385]: odom received!

The line highlighted in bold above indicates that our parameter files are not using the
new layered costmap feature available starting in Hydro. Since we don't actually need
the layered costmap at this point, we can use the same parameter files as we have used in
previous releases and move_base will run in a backward compatibility mode.

If you're not already running RViz, bring it up now with the included navigation
configuration file:

 Navigation, Path Planning and SLAM - 83

$ rosrun rviz rviz -d `rospack find rbx1_nav`/nav.rviz

We are now ready to control the motion of the robot using move_base actions rather
than simple Twist messages. To test it out, let's move the robot 1.0 meters directly
forward. Since our robot is starting off at coordinates (0, 0, 0) in both the /map frame
and the /base_link frame, we could use either frame to specify the first movement.
However, since the first movement will not place the robot at exactly the goal position
and orientation, subsequent goals relative to the /base_link frame would start
accumulating error. For this reason, it is better to set our goals relative to the static /map
frame. Referring to the move_base goal message syntax listed earlier, the command we
want is:

$ rostopic pub /move_base_simple/goal geometry_msgs/PoseStamped \
'{ header: { frame_id: "map" }, pose: { position: { x: 1.0, y: 0, z:
0 }, orientation: { x: 0, y: 0, z: 0, w: 1 } } }'

You should see the robot move about 1 meter forward in RViz. (The large green arrow
that appears is the target pose.) Note that the orientation in the command above is
specified as a quaternion and a quaternion with components (0, 0, 0, 1) specifies an
identity rotation.

To move the robot back to the starting point, first type Ctrl-C to end the previous
command. Then send the coordinates (0, 0, 0) in the map frame with the robot pointing
upward:

$ rostopic pub /move_base_simple/goal geometry_msgs/PoseStamped \
'{ header: { frame_id: "map" }, pose: { position: { x: 0, y: 0, z:
0 }, orientation: { x: 0, y: 0, z: 0, w: 1 } } }'

The view in RViz after both commands should look something like the following:

 Navigation, Path Planning and SLAM - 84

(Note: the robot might make the return trip by turning left instead of left as shown
above. It is a bit of a coin toss depending on the exact orientation the robot has at the
first goal location.) As the robot moves, a thin green line (which might be difficult or
impossible to see if the Odometry arrows are being displayed) indicates the global path
planned for the robot from the starting position to the goal. A shorter red line is the
locally planned trajectory that gets updated more often as the robot makes progress
toward the destination.

The display of the global and local paths can be turned off and on using the check boxes
beside the appropriate displays in the Displays panel on the left in RViz. You can also
change the colors of the paths using the appropriate property value for each display. To
view the global and local paths more clearly, turn off the displays for Odometry, Goal
Pose and Mouse Pose, then re-run the two move_base commands above.

You will notice that the local trajectory in this case follows an arc that is fairly far off the
straight line global path. This is due partly to the fact that there are no obstacles in the
map, so the planner selects a nice smooth turning trajectory. It also reflects our choice
of the two parameters pdist_scale (0.4) and gdist_scale (0.8) and the max linear
speed of the robot (max_vel_x). To make the robot follow the global path more
closely, we can use rqt_reconfigure to dynamically increase the pdist_scale
parameter (or decrease max_vel_x) without having to restart all of the running nodes.

 Navigation, Path Planning and SLAM - 85

To try it out, open another terminal window and bring up rqt_reconfigure:

$ rosrun rqt_reconfigure rqt_reconfigure

Next, open the move_base group and select the TrajectoryPlannerROS node, then
set the pdist_scale parameter to something higher like 0.8 and reduce the
gdist_scale to 0.4. Then turn off the Odometry arrows in RViz (if they are still on)
and run the two move_base commands again to see the effect. You should see that the
robot now follows the global planned path (green) more closely.

 8.2.1 Point and Click Navigation in RViz

We can also specify a goal pose using the mouse in RViz. If you launched RViz with
the nav.rviz file as described above, you should be good to go. However, just to
check, if you don't see the Tool Properties window on the right side of the RViz screen,
click on the Panels menu and select Tool Properties. A pop-up window should appear
that looks like this:

Under the 2D Nav Goal category, the topic should be listed as
/move_base_simple/goal. If not, type that topic name into the field now.

If you had to make any changes, click on the File menu in RViz and choose Save
Config. When you are finished, you can close the Tool Properties window by clicking
the little x in the upper right corner.

With these preliminaries out of the way, we can now use the mouse to move the robot.
Click the Reset button to clear any left over odometry arrows. Next, click on the 2D
Nav Goal button near the top of the RViz screen. Then click and hold the mouse
somewhere on the grid where you'd like the robot to end up. If you move the mouse
slightly while holding down the button, a big green arrow will appear. Rotate the arrow
to indicate the goal orientation of the robot. Now release the mouse button and
move_base should guide the robot to the goal. Try setting a few different goals and
observe the changes in the global and local paths. As in the previous section, you can
also bring up rqt_reconfigure and change the relative values of the pdist_scale

 Navigation, Path Planning and SLAM - 86

and gdist_scale parameters as well as max_vel_x to change the behavior of the
local and global paths.

If you look back in the terminal window where you launched RViz, you'll see a number
of [INFO] messages indicating the poses (position and orientation) that you set with the
mouse. This information is useful if you ever want to write down a particular set of
coordinates on the map and use them later as a goal location for the robot as we will see
later.

 8.2.2 Navigation Display Types for RViz

As you can see from the earlier RViz screen shot, the nav.rviz configuration file we
used includes a number of display types typically used for navigation. In addition to the
Odometry and Robot Model displays, we also have one for the Map, the Local Plan
and Global Plan, a Laser Scan, the Goal Pose (including one for goals set using the
mouse) and one for Markers. (We will talk about the Pose Array later on when we
discuss localization.)

For a complete list of display types used with ROS navigation see the tutorial on the
ROS Wiki called Using rviz with the Navigation Stack. The tutorial includes an
excellent demonstration video which is a must-see you are new to either RViz or ROS
navigation. Note however that at the time of this writing, the video uses the pre-Indigo
version of RViz so the look and feel will be a little different.

 8.2.3 Navigating a Square using move_base

We are now ready to move our robot in a square using move_base rather than simple
Twist messages. The script move_base_square.py in the nodes subdirectory does
the work. The script simply cycles through four target poses, one for each corner of the
square. The four target poses are shown by the arrows in the figure below:

 Navigation, Path Planning and SLAM - 87

http://wiki.ros.org/navigation/Tutorials/Using%20rviz%20with%20the%20Navigation%20Stack

Remember that a "pose" in ROS means both a position and orientation.

To make sure we are starting with a clean slate, terminate any launch files used in the
previous section by typing Ctrl-C in the appropriate terminal windows. Then fire up
the fake TurtleBot and move_base node as before:

$ roslaunch rbx1_bringup fake_turtlebot.launch

And in another terminal:

$ roslaunch rbx1_nav fake_move_base_blank_map.launch

Then make sure you have RViz up with the nav.rivz configuration file:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/nav.rviz

If you already had RViz running, clear any left over Odometry arrows by clicking the
Reset button.

Finally, run the move_base_square.py script:

$ rosrun rbx1_nav move_base_square.py

When the scripts completes, the view in RViz should look something like the following:

 Navigation, Path Planning and SLAM - 88

The small squares indicate the locations of the four corner points we want to hit. (The
first square is hidden beneath the robot in the picture above.) As you can see, the square
trajectory is not bad even though all we specified were the four corner poses. One could
refine the trajectory even further by tweaking the configuration parameters for the base
local planner, or setting intermediate waypoints between the corners. But the real
purpose of move_base is not to follow a precise path, but to reach arbitrary goal
locations while avoiding obstacles. Consequently, it works very well for getting a robot
around the house or office without running into things as we shall see in the next
section.

Let's now take a look at the code.

Link to source: move_base_square.py

1. #!/usr/bin/env python
2.
3. import rospy
4. import actionlib
5. from actionlib_msgs.msg import *
6. from geometry_msgs.msg import Pose, Point, Quaternion, Twist
7. from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
8. from tf.transformations import quaternion_from_euler
9. from visualization_msgs.msg import Marker
10. from math import radians, pi
11.
12. class MoveBaseSquare():
13. def __init__(self):
14. rospy.init_node('nav_test', anonymous=False)
15.
16. rospy.on_shutdown(self.shutdown)
17.
18. # How big is the square we want the robot to navigate?
19. square_size = rospy.get_param("~square_size", 1.0) # meters
20.
21. # Create a list to hold the target quaternions (orientations)
22. quaternions = list()
23.
24. # First define the corner orientations as Euler angles
25. euler_angles = (pi/2, pi, 3*pi/2, 0)
26.
27. # Then convert the angles to quaternions
28. for angle in euler_angles:
29. q_angle = quaternion_from_euler(0, 0, angle, axes='sxyz')
30. q = Quaternion(*q_angle)
31. quaternions.append(q)
32.
33. # Create a list to hold the waypoint poses
34. waypoints = list()
35.
36. # Append each of the four waypoints to the list. Each waypoint
37. # is a pose consisting of a position and orientation in the map
frame.
38. waypoints.append(Pose(Point(square_size, 0.0, 0.0),
quaternions[0]))

 Navigation, Path Planning and SLAM - 89

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_nav/nodes/move_base_square.py

39. waypoints.append(Pose(Point(square_size, square_size, 0.0),
quaternions[1]))
40. waypoints.append(Pose(Point(0.0, square_size, 0.0),
quaternions[2]))
41. waypoints.append(Pose(Point(0.0, 0.0, 0.0), quaternions[3]))
42.
43. # Initialize the visualization markers for RViz
44. self.init_markers()
45.
46. # Set a visualization marker at each waypoint
47. for waypoint in waypoints:
48. p = Point()
49. p = waypoint.position
50. self.markers.points.append(p)
51.
52. # Publisher to manually control the robot (e.g. to stop it)
53. self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist,
queue_size=5)
54.
55. # Subscribe to the move_base action server
56. self.move_base = actionlib.SimpleActionClient("move_base",
MoveBaseAction)
57.
58. rospy.loginfo("Waiting for move_base action server...")
59.
60. # Wait 60 seconds for the action server to become available
61. self.move_base.wait_for_server(rospy.Duration(60))
62.
63. rospy.loginfo("Connected to move base server")
64. rospy.loginfo("Starting navigation test")
65.
66. # Initialize a counter to track waypoints
67. i = 0
68.
69. # Cycle through the four waypoints
70. while i < 4 and not rospy.is_shutdown():
71. # Update the marker display
72. self.marker_pub.publish(self.markers)
73.
74. # Initialize the waypoint goal
75. goal = MoveBaseGoal()
76.
77. # Use the map frame to define goal poses
78. goal.target_pose.header.frame_id = 'map'
79.
80. # Set the time stamp to "now"
81. goal.target_pose.header.stamp = rospy.Time.now()
82.
83. # Set the goal pose to the i-th waypoint
84. goal.target_pose.pose = waypoints[i]
85.
86. # Start the robot moving toward the goal
87. self.move(goal)
88.
89. i += 1
90.
91. def move(self, goal):

 Navigation, Path Planning and SLAM - 90

92. # Send the goal pose to the MoveBaseAction server
93. self.move_base.send_goal(goal)
94.
95. # Allow 1 minute to get there
96. finished_within_time =
self.move_base.wait_for_result(rospy.Duration(60))
97.
98. # If we don't get there in time, abort the goal
99. if not finished_within_time:
100. self.move_base.cancel_goal()
101. rospy.loginfo("Timed out achieving goal")
102. else:
103. # We made it!
104. state = self.move_base.get_state()
105. if state == GoalStatus.SUCCEEDED:
106. rospy.loginfo("Goal succeeded!")
107.
108. def init_markers(self):
109. # Set up our waypoint markers
110. marker_scale = 0.15
111. marker_lifetime = 0 # 0 is forever
112. marker_ns = 'waypoints'
113. marker_id = 0
114. marker_color = {'r': 1.0, 'g': 0.0, 'b': 0.0, 'a': 1.0}
115.
116. # Define a marker publisher.
117. self.marker_pub = rospy.Publisher('waypoint_markers', Marker,
queue_size=5)
118.
119. # Initialize the marker points list.
120. self.markers = Marker()
121. self.markers.ns = marker_ns
122. self.markers.id = marker_id
123. self.markers.type = Marker.CUBE_LIST
124. self.markers.action = Marker.ADD
125. self.markers.lifetime = rospy.Duration(marker_lifetime)
126. self.markers.scale.x = marker_scale
127. self.markers.scale.y = marker_scale
128. self.markers.color.r = marker_color['r']
129. self.markers.color.g = marker_color['g']
130. self.markers.color.b = marker_color['b']
131. self.markers.color.a = marker_color['a']
132.
133. self.markers.header.frame_id = 'map'
134. self.markers.header.stamp = rospy.Time.now()
135. self.markers.points = list()
136.
137. def shutdown(self):
138. rospy.loginfo("Stopping the robot...")
139. # Cancel any active goals
140. self.move_base.cancel_goal()
141. rospy.sleep(2)
142. # Stop the robot
143. self.cmd_vel_pub.publish(Twist())
144. rospy.sleep(1)
145.

 Navigation, Path Planning and SLAM - 91

146. if __name__ == '__main__':
147. try:
148. MoveBaseSquare()
149. except rospy.ROSInterruptException:
150. rospy.loginfo("Navigation test finished.")

Let's now examine the key lines of the script.

24. # First define the corner orientations as Euler angles
25. euler_angles = (pi/2, pi, 3*pi/2, 0)
26.
27. # Then convert the angles to quaternions
28. for angle in euler_angles:
29. q_angle = quaternion_from_euler(0, 0, angle, axes='sxyz')
30. q = Quaternion(*q_angle)
31. quaternions.append(q)

Here we define the target orientations at the four corners of the square, first as Euler
angles which are easier to visualize on the map, and then converted to quaternions.

38. waypoints.append(Pose(Point(square_size, 0.0, 0.0),
quaternions[0]))

39. waypoints.append(Pose(Point(square_size, square_size, 0.0),
quaternions[1]))

40. waypoints.append(Pose(Point(0.0, square_size, 0.0),
quaternions[2]))

41. waypoints.append(Pose(Point(0.0, 0.0, 0.0), quaternions[3]))

Next we create the four waypoint poses by combining the rotations with the coordinates
of the four corners.

43. # Initialize the visualization markers for RViz
44. self.init_markers()
45.
46. # Set a visualization marker at each waypoint
47. for waypoint in waypoints:
48. p = Point()
49. p = waypoint.position
50. self.markers.points.append(p)

While not covered in this volume, setting visualization markers in RViz is fairly
straightforward and a number of existing tutorials can be found here. The script places a
red square at each target corner and the function self.init_markers(), defined
toward the end of the script, sets up the marker shapes, sizes and colors. We then
append the four markers to a list to be used later.

56. self.move_base = actionlib.SimpleActionClient("move_base",
MoveBaseAction)

 Navigation, Path Planning and SLAM - 92

http://ros.org/wiki/rviz/Tutorials

Here we define a SimpleActionClient which will send goals to the move_base
action server.

61. self.move_base.wait_for_server(rospy.Duration(60))

Before we can start sending goals, we have to wait for the move_base action server to
become available. We give it 60 seconds before timing out.

69. # Cycle through each waypoint
70. while i < 4 and not rospy.is_shutdown():
71. # Update the marker display
72. self.marker_pub.publish(self.markers)
73.
74. # Initialize the waypoint goal
75. goal = MoveBaseGoal()
76.
77. # Use the map frame to define goal poses
78. goal.target_pose.header.frame_id = 'map'
79.
80. # Set the time stamp to "now"
81. goal.target_pose.header.stamp = rospy.Time.now()
82.
83. # Set the goal pose to the i-th waypoint
84. goal.target_pose.pose = waypoints[i]
85.
86. # Start the robot moving toward the goal
87. self.move(goal)
88.
89. i += 1

We then enter our main loop, cycling through each of the four waypoints. First we
publish the markers to indicate the four goal poses. (This has to be done on each cycle
to keep them visible throughout the movement.) Then we initialize the goal variable as
a MoveBaseGoal action type. Next we set the goal frame_id to the map frame and the
time stamp to the current time. Finally, we set the goal pose to the current waypoint and
send the goal to the move_base action server using the helper function move(), which
we describe next.

91. def move(self, goal):
92. # Send the goal pose to the MoveBaseAction server
93. self.move_base.send_goal(goal)
94.
95. # Allow 1 minute to get there
96. finished_within_time =

self.move_base.wait_for_result(rospy.Duration(60))
97.
98. # If we don't get there in time, abort the goal
99. if not finished_within_time:
100. self.move_base.cancel_goal()
101. rospy.loginfo("Timed out achieving goal")
102. else:
103. # We made it!
104. state = self.move_base.get_state()
105. if state == GoalStatus.SUCCEEDED:

 Navigation, Path Planning and SLAM - 93

106. rospy.loginfo("Goal succeeded!")

The move() helper function takes a goal as input, sends it to the MoveBaseAction
server, then waits up to 60 seconds for the robot to get there. A success or failure
message is then displayed on the screen. Note how much easier this approach is to code
than our earlier nav_square.py script that used Twist messages directly. In
particular, we no longer have to monitor the odometry data directly. Instead the
move_base action server takes care of it for us.

 8.2.4 Avoiding Simulated Obstacles

One of the more powerful features of move_base is the ability to avoid obstacles while
still getting to the goal. Obstacles can be a static part of the current map (such as a wall)
or they can appear dynamically such as when someone walks in front of the robot. The
base local planner can recompute the robot's path on the fly to keep the robot from
striking objects yet still allowing it to reach its destination.

To illustrate the process, will will load a new map with a pair of obstacles in the way of
the robot. We will then run the move_base_square.py script again to see if the base
local planner can find a path around the obstacles and still guide the robot to the four
goal locations.

First terminate any fake robots you might still have running as well as the earlier
fake_move_base_blank_map.launch file by typing Ctrl-C in the appropriate
terminal window(s). Then run the following commands:

$ roslaunch rbx1_bringup fake_turtlebot.launch

followed by:

$ rosparam delete /move_base

This command clears all existing move_base parameters which is less drastic than
killing and restarting roscore. You can also use the argument
clear_params="true" in the move_base launch file to accomplish the same thing
and this is done in the launch file fake_move_base_obstacles.launch which is
called by the launch file that we run next:

$ roslaunch rbx1_nav fake_move_base_map_with_obstacles.launch

This command brings up the move_base node along with a map with a pair of obstacles
near the center.

 Navigation, Path Planning and SLAM - 94

If you are already running RViz, close it down and bring it up again with the
nav_obstacles.rviz config file:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/nav_obstacles.rviz

When the move_base node is up and you see the obstacles in RViz, click the Reset
button in to refresh the display, then run the move_base_square.py script:

$ rosrun rbx1_nav move_base_square.py

When the script completes, the view in RViz should look something like this:

The obstacles are represented by the horizontal yellow bars while the multi-colored
oval-shaped regions around the obstacles reflect the inflation radius (0.2 meters) we
have set to provide a safety buffer. As you can see, the simulated robot has no difficulty
getting to the goal locations while avoiding the obstacles. Even better, on the way to the
third corner of the square (lower left), the base local planner chose the shorter route
between the two obstacles rather than going around the outside.

During the simulation you will notice a thin green line that indicates the global path
planned for the next goal location. The shorter red line that appears to shoot out in front
of the robot is the local path which can adapt more quickly to local conditions. Since we
aren't simulating any sensors, the robot is actually running blind and is relying only on
the static map and its (fake) odometry.

 Navigation, Path Planning and SLAM - 95

To get the robot around these tightly spaced obstacles, it was necessary to change a few
navigation parameters from the values we used with the blank map. If you look at the
launch file fake_move_base_map_with_obstacles.launch in the
rbx1_nav/launch directory, you will see that it brings up the move_base node by
including the additional launch file fake_move_base_obstacles.launch. This file
is almost identical to the launch file fake_move_base.launch that we used in the
previous section except that we have added a line that overrides a few of the navigation
parameters. The launch file looks like this:

<launch>
 <node pkg="move_base" type="move_base" respawn="false" name="move_base"
output="screen">
 <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml"
command="load" ns="global_costmap" />
 <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml"
command="load" ns="local_costmap" />
 <rosparam file="$(find rbx1_nav)/config/fake/local_costmap_params.yaml"
command="load" />
 <rosparam file="$(find rbx1_nav)/config/fake/global_costmap_params.yaml"
command="load" />
 <rosparam file="$(find rbx1_nav)/config/fake/base_local_planner_params.yaml"
command="load" />
 <rosparam file="$(find rbx1_nav)/config/nav_obstacles_params.yaml"
command="load" />
 </node>
</launch>

The key line is highlighted in bold faced and it loads the parameter file
nav_obstacles_params.yaml. That file in turn looks like this:

TrajectoryPlannerROS:
 max_vel_x: 0.3
 pdist_scale: 0.8
 gdist_scale: 0.4

As you can see, the file contains a handful of parameters that we used in the
base_local_planner_params.yaml file but sets them to values that work better for
avoiding obstacles. In particular, we have slowed down the max speed from 0.5 m/s to
0.3 m/s and we have reversed the relative weights on pdist_scale and gdist_scale
so that now we give more weight to following the planned path. We could have simply
created a whole new base_local_planner_params.yaml with these few changes,
but this way we can keep the bulk of our parameters in the main file and just override
them as need with special file "snippets" like the one used here.

 8.2.5 Setting Manual Goals with Obstacles Present

You can also use the mouse as we have done before to set navigation goals when
obstacles are present. As before, first click on the 2D Nav Goal button near the top of
the RViz window, then click somewhere on the map. If you try setting a goal inside one

 Navigation, Path Planning and SLAM - 96

of the obstacles or even too close to one, the base local planner will abort any attempt to
get there. (An abort message is also displayed in the terminal window in which you
launched the fake_move_base_map_with_obstacles.launch file.) As usual, any
time you want to clear the markers on the screen, just click the Reset button.

 8.3 Running move_base on a Real Robot

If you have a ROS-compatible robot with a mobile base, you can try out the
move_base_square.py script in the real world. If you are using an original
TurtleBot (using an iRobot Create base), you can probably get away with the
move_base configuration included in the rbx1_nav/config/turtlebot directory.
Otherwise, you might have to change a few parameters to better match your robot. For a
good introduction on tuning the navigation parameters, see the Navigation Tuning Guide
on the ROS Wiki.

 8.3.1 Testing move_base without Obstacles

To make sure we are running with a clean slate, Ctrl-C out of any running ROS launch
files or nodes including roscore. Then start up roscore again and get your robot
ready.

Make sure your robot has enough room to trace out the square (you can shorten the sides
in the script if you like). When you are ready, fire up the required launch file(s) to
connect to your robot. For an original TurtleBot (using an iRobot Create base). you
would run:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

(Or use your own launch file if you have created one to store your calibration
parameters.)

If you are using a TurtleBot, you might also run the odom_ekf.py script to be able to
see the TurtleBot's combined odometry frame in RViz. You can skip this if you are not
using a TurtleBot. This launch file should be run on the TurtleBot's laptop:

$ roslaunch rbx1_bringup odom_ekf.launch

Next, launch the move_base node with a blank map. NOTE: This is a different launch
file than the one we used for the simulated robot. This particular launch file loads a set
of navigation parameters that should work fairly well with the original TurtleBot.

$ roslaunch rbx1_nav tb_move_base_blank_map.launch

Now bring up RViz on your workstation with the nav configuration file. You'll
probably want to run this on your desktop machine rather than the TurtleBot's laptop:

 Navigation, Path Planning and SLAM - 97

http://wiki.ros.org/navigation/Tutorials/Navigation%20Tuning%20Guide

$ rosrun rviz rviz -d `rospack find rbx1_nav`/nav.rviz

Finally, run the move_base_square.py script. You can run this either on the robot's
laptop or your desktop:

$ rosrun rbx1_nav move_base_square.py

If all goes well, your robot should move from one corner of the square to the next and
then stop when it has come back to the start.

The following image shows the result when running my own TurtleBot on a low-ply
carpet:

In the real world, the robot came withing 27 cm of the starting position and
approximately 5 degrees out of alignment.

 8.3.2 Avoiding Obstacles using a Depth Camera as a Fake Laser

Our final test will use a depth camera such as the Kinect or Xtion Pro to emulate a kind
of fake laser scanner to detect obstacles so that move_base can plan a path around them
while guiding the robot to a goal. If you look at the parameter file

 Navigation, Path Planning and SLAM - 98

costmap_common_params.yaml in the rbx1_nav/config/turtlebot directory,
you'll see the following pair of lines:

observation_sources: scan
scan: {data_type: LaserScan, topic: /scan, marking: true, clearing:
true, expected_update_rate: 0}

The first line tells the base local planner to expect sensor data from a source called
"scan" and the second line indicates that the "scan" source is of type LaserScan and
it publishes its data on the /scan topic. Setting the flags marking and clearing to
True means that the laser data can be used to mark areas of the local cost map as
occupied or free as the robot moves about.

The expected_update_rate determines how often we should expect a reading from
the scan. A value of 0 allows an infinite time between readings and allows us to use the
navigation stack with or without an active laser scanner. However, if you typically
operate your robot using a laser scanner or the fake laser described here, it is better to set
this value to something like 0.3 so that the navigation stack will stop the robot if the
laser scanner stops working.

The following steps should work if you are using the original TurtleBot. If you don't
already have the robot's drivers running, fire them up now:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

(Or use your own launch file if you have created one to store your calibration
parameters.)

Make sure your Kinect or Xtion is plugged into a USB port on the robot, then log into
the TurtleBot's laptop and bring up the appropriate camera driver. If you have a
Microsoft Kinect, use the freenect camera driver as follows:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

If you have an Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 camera, use the openni2
driver as follows:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

The freenect or openni2 driver connects to the camera and publishes the depth data on
the topic /camera/depth_registered/image_rect. To turn the depth image into
an equivalent laser scan, fire up the depthimage_to_laserscan node using the
launch file included in the rbx1_bringup package:

 Navigation, Path Planning and SLAM - 99

http://wiki.ros.org/depthimage_to_laserscan
http://wiki.ros.org/openni2_launch
http://wiki.ros.org/freenect_launch

$ roslaunch rbx1_bringup depthimage_to_laserscan.launch

This launch file configures the depthimage_to_laserscan node to subscribe to the
/camera/depth_registered/image_rect topic and publish the fake laser scan
messages on the topic /scan.

Next, launch the TurtleBot move_base node with a blank map. NOTE: This is a
different launch file than the one we used for the simulated robot. This particular launch
file loads a set of navigation parameters that should work fairly well with the original
TurtleBot.

$ roslaunch rbx1_nav tb_move_base_blank_map.launch

If you are already running RViz, close it down and bring it up again with the
nav_obstacles.rviz config file:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/nav_obstacles.rviz

Assuming there is at least one object within the camera's range, you should see the laser
scan appear in RViz. The configuration file (nav_obstacles.rviz) we are using for
RViz includes a Laser Scan display which is set to the /scan topic by default. You can
verify this by scrolling down the Displays panel on the left of RViz. The light blue
areas around the laser scan are due to the Inflated Obstacles display which subscribes
to the topic /move_base/local_costmap/costmap and reflects the inflation radius
parameter we have set in the common_costmap_params.yaml file to provided a safety
buffer around obstacles.

So now we are ready to test how well the robot can avoid obstacles on the way to a goal.
Pick a point a few meters away from the robot and set the 2D Nav Goal in RViz using
the mouse as we have done previously. As the robot makes it way toward the goal, walk
into its path a few feet ahead of it. As soon as you enter the view of the (fake) laser
scan, the robot should veer to go around you, then continue on to the goal location.

Depending on the speed of your robot's computer, you may notice that the robot comes
fairly close to your feet even with the inflation radius set to 0.5. There are two possible
reasons for this. The first is the narrow field of view of the Kinect or Xtion cameras—
about 57 degrees. So as the robot begins moving past an obstacle, the object quickly
passes out of the field of view and the path planner figures it can start turning back
toward the goal. Second, both RGB-D cameras are blind to depths within about 50cm
(approx 2 feet) of the projector. This means it is possible for an obstacle to be
completely invisible even if it is situated directly in front of the robot. A real laser
scanner like a Hokuyo or the one found on the Neato XV-11 has a much wider field of
view (240 – 360 degrees) and can sense objects as close as a few centimeters.

 Navigation, Path Planning and SLAM - 100

 8.4 Map Building using the gmapping Package

Now that we understand how to use move_base, we can replace the blank map with a
real map of the robot's environment. A map in ROS is simply a bitmap image
representing an occupancy grid where white pixels indicate free space, black pixels
represent obstacles, and gray pixels stand for "unknown". You can therefore draw a map
yourself in any graphics program or use a map that someone else has created. However,
if your robot is equipped with a laser scanner or depth camera, the robot can create its
own map as it moves around the target area. If your robot has neither of these pieces of
hardware, you can use the test map include in rbx1_nav/maps. In this case, you might
want to skip directly to the next chapter on doing localization using an existing map.

The ROS gmapping package contains the slam_gmapping node that does the work of
combining the data from laser scans and odometry into an occupancy map. The usual
strategy is first to teleoperate the robot around an area while recording the laser and
odometry data in a rosbag file. Then we run the slam_gmapping node against the
recorded data to generate a map. The advantage of recording the data first is that you
can generate any number of test maps later using the same data but with different
parameters for gmapping. In fact, since we no longer need the robot at that point, you
could do this testing anywhere you have a computer with ROS and your rosbag data.

Lets take each of these steps in turn.

 8.4.1 Laser Scanner or Depth Camera?

To use the gmapping package, our robot needs either a laser scanner or a depth camera
like the Kinect or Xtion. If you have a laser scanner, you will need the ROS laser
drivers which you can install using:

$ sudo apt-get install ros-indigo-laser-* ros-indigo-hokuyo-node

In this case, your robot's startup files will need to launch the driver node for your
particular scanner. For example, Pi Robot uses a Hokuyo laser scanner and the
corresponding launch file looks like this:

<launch>
 <node name="hokuyo" pkg="hokuyo_node" type="hokuyo_node">
 <param name="min_ang" value="-1.7" />
 <param name="max_ang" value="1.7" />
 <param name="hokuyo_node/calibrate_time" value="true" />
 <param name="frame_id" value="/base_laser" />
 </node>
</launch>

You can find this hokuyo.launch file in the rbx1_bringup/launch subdirectory.

If you do not have a laser scanner but you do have a depth camera like the Kinect or
Xtion, then you can use the "fake laser scanner" as described in the previous section.

 Navigation, Path Planning and SLAM - 101

http://wiki.ros.org/rosbag
http://ros.org/wiki/gmapping

Note that the fake laser scan is rather narrow—about 57 degrees—which is the width of
the field of view of the Kinect or Xtion. A typical laser scanner has a width around 240
degrees or more. Nonetheless, the fake scan can be used to create fairly good maps.

To try out the fake laser scanner on an original TurtleBot, log into the robot's laptop and
run:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

Next, open another terminal window and log into the TurtleBot's laptop (or the computer
attached to your depth camera) and run one of the following fake laser launch files.
These files first launch either the freenect or openni2 driver for the camera, then
bring up a depthimage_to_laserscan node that uses the depth data from the camera
to generate a laser scan message on the topic /scan.

If your Turtlebot uses a Microsoft Kinect, use the freenect fake laser launch file:

$ roslaunch rbx1_bringup turtlebot_fake_laser_freenect.launch

If your TurtleBot uses an Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 camera, use
the openni2 version as follows:

$ roslaunch rbx1_bringup turtlebot_fake_laser_openni2.launch

Back on your desktop workstation, bring up RViz with the included fake_laser
configuration file:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/fake_laser.rviz

If all goes well, you should see something like the following in RViz:

 Navigation, Path Planning and SLAM - 102

This particular screen shot was taken with the robot part way down a hallway with open
doorways on the left and far right, another open door at the end of the hallway, and an
opening on the far left toward another hallway. The grid lines are 1 meter apart. Notice
how we are subscribing to the /scan topic under the Laser Scan Display. If you don't
see the scan points, click on the Topic field and check that the scan is being published
and is visible on your workstation.

 8.4.2 Collecting and Recording Scan Data

Whether using a laser scanner or depth camera, the strategy for collecting scan data is
the same. First we fire up any launch files required to control our robot's mobile base.
Then we launch the drivers for our laser scanner or fake laser together with a teleop
node so we can remotely control the robot. Finally, we start recording data into a ROS
bag file and proceed to drive the robot around the target area.

If you own a TurtleBot, you can simply follow the official TurtleBot gmapping Tutorial.
However, if you need a few more details, you can follow along here as well.

 Navigation, Path Planning and SLAM - 103

http://ros.org/wiki/turtlebot_navigation/Tutorials/Build%20a%20map%20with%20SLAM

It is probably a good idea to start your ROS environment with a clean slate. So kill off
any running launch files and even roscore. Then restart roscore and continue as
follows. These instructions should work with the original TurtleBot with an iRobot
Create base.

Log into the TurtleBot's laptop and run:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

Replace the above command with the appropriate launch file for your own robot if you
have one.

Next, log into the TurtleBot using another terminal and bring up the fake laser scanner
using either the freenect or openni2 launch files as described above. If you have a
real laser scanner, you would run its launch file here instead.

Next, launch the gmapping_demo.launch launch file. You can launch this file on
your desktop workstation or the robot's laptop:

$ roslaunch rbx1_nav gmapping_demo.launch

Then bring up RViz with the included gmapping configuration file:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/gmapping.rviz

Next, launch a teleop node for either the keyboard or joystick depending on your
hardware:

$ roslaunch rbx1_nav keyboard_teleop.launch

or

$ roslaunch rbx1_nav joystick_teleop.launch

The joystick (or the receiver if you have a wireless game controller) can be connected to
either the robot's laptop or your desktop. But remember that the
joystick_teleop.launch file needs to be launched on that same computer.

Test out your connection to the robot by trying to move it with the keyboard or joystick.
As the robot moves, the scan points in RViz should reflect the changing surroundings
near the robot. (Double-check that the Fixed Frame is set to the odom frame under
Global Options.)

 Navigation, Path Planning and SLAM - 104

The final step is to start recording the data to a bag file. You can create the file
anywhere you like, but there is a folder called bag_files in the rbx1_nav package for
this purpose if you want to use it:

$ roscd rbx1_nav/bag_files

Now start the recording process:

$ rosbag record -O my_scan_data /scan /tf

where my_scan_data can be any filename you like. The only data we need to record is
the laser scan data and the tf transforms. (The tf transform tree includes the
transformation from the /odom frame to the /base_link or /base_footprint frame
which gives us the needed odometry data.)

You are are now ready to drive the robot around the area you'd like to map. Be sure to
move the robot slowly, especially when rotating. Stay relatively close to walls and
furniture so that there is always something within range of the scanner. Finally, plan to
drive a closed loop and continue past the starting point for several meters to ensure a
good overlap between the beginning and ending scan data.

When you are finished collecting and recording data, type Ctrl-C in the rosbag
terminal window.

 8.4.3 Creating the Map

When you are finished driving the robot, type Ctrl-C in the rosbag terminal window
to stop the recording process. Then save the current map as follows:

$ roscd rbx1_nav/maps

$ rosrun map_server map_saver -f my_map

where "my_map" can be any name you like. This will save the generated map into the
current directory under the name you specified on the command line. If you look at the
contents of the rbx1_nav/maps directory, you will see two new files: my_map.pgm
which is the map image and my_map.yaml that describes the dimensions of the map. It
is this latter file that you will point to in subsequent launch files when you want to use
the map for navigation.

To view the new map, you can use any image viewer program to bring up the .pgm file
created above. For example, to use the Ubuntu eog viewer ("eye of Gnome") run the
command:

 Navigation, Path Planning and SLAM - 105

$ roscd rbx1_nav/maps
$ eog my_map.pgm

You can zoom the map using your scroll wheel or the +/- buttons.

Here is a video demonstrating the gmapping process using Pi Robot and a Hokuyo laser
scanner: http://youtu.be/7iIDdvCXIFM

 8.4.4 Creating a Map from Bag Data

You can also create the map from the bag data you stored during the scanning phase
above. This is a useful technique since you can try out different gmapping parameters
on the same scan data without having to drive the robot around again.

To try it out, first terminate your robot's startup nodes (e.g.
turtlebot_minimal_create.launch), as well as any laser nodes (including a fake
laser using a depth camera), the gmapping_demo.launch file (if it is still running) and
any running teleop nodes.

Next, turn on simulated time by setting the use_sim_time parameter to true:

$ rosparam set use_sim_time true

Then clear the move_base parameters and re-launch the gmapping_demo.launch file
again:

$ rosparam delete /move_base
$ roslaunch rbx1_nav gmapping_demo.launch

You can monitor the process in RViz using the gmapping configuration file:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/gmapping.rviz

Finally, play back your recorded data:

$ roscd rbx1_nav/bag_files
$ rosbag play my_scan_data.bag

You will probably have to zoom and/or pan the display to keep the entire scan area in
view.

When the rosbag file has played all the way through, you save the generated map the
same way we did with the live data:

 Navigation, Path Planning and SLAM - 106

http://youtu.be/7iIDdvCXIFM

$ roscd rbx1_nav/maps
$ rosrun map_server map_saver -f my_map

where "my_map" can be any name you like. This will save the generated map into the
current directory under the name you specified on the command line. If you look at the
contents of the rbx1_nav/maps directory, you will see two files: my_map.pgm which
is the map image and my_map.yaml that describes the dimensions of the map. It is this
latter file that you will point to in subsequent launch files when you want to use the map
for navigation.

To view the map created, you can use any image viewer program to bring up the .pgm
file created above. For example, to use the Ubuntu eog viewer ("eye of Gnome") run
the command:

$ roscd rbx1_nav/maps
$ eog my_map.pgm

You can zoom the map using your scroll wheel or the +/- buttons.

NOTE: Don't forget to reset the use_sim_time parameter after you are finished map
building. Use the command:

$ rosparam set use_sim_time false

Now that your map is saved we will learn how to use it for localization in the next
section.

For additional details about gmapping, take a look at the gmapping_demo.launch file
in the rbx1_nav/launch directory. There you will see many parameters that can be
tweaked if needed. This particular launch file is a copied from the
turtlebot_navigation package and the folks at OSRG have already dialed in the
settings that should work for you. To learn more about each parameter, you can check
out the gmapping Wiki page.

 8.4.5 Can I Extend or Modify an Existing Map?

The ROS gmapping package does not provide a way to start with an existing map and
then modify it through additional mapping. However, you can always edit a map using
your favorite graphics editor. For example, to keep your robot from entering a room,
draw a black line across the doorway(s). (NOTE: There may be a bug in move_base
that prevents this trick from working. You can also try setting all the pixels in forbidden
region to mid-gray.) To remove a piece of furniture that has been moved, erase the
corresponding pixels. In the next section we will find that localization is not terribly

 Navigation, Path Planning and SLAM - 107

http://ros.org/wiki/gmapping

sensitive to the exact placement of pixels so it can handle small changes to the locations
of objects. But if you have moved a large sofa from one side of a room to the other for
example, the new arrangement might confuse your robot. In such a case, you could
either move the corresponding pixels in your editor, or take your robot on another
scanning run and rebuild the map from scratch using new scan data.

 8.5 Navigation and Localization using a Map and amcl

If you do not have the hardware to build a map using your own robot, you can use the
test map in rbx1_nav/maps for this chapter. Otherwise, if you created a map of your
own by following the instructions in the previous section you can use it here.

ROS uses the amcl package to localize the robot within an existing map using the
current scan data coming from the robot's laser or depth camera. But before trying amcl
on a real robot, let's try fake localization in the ArbotiX simulator.

 8.5.1 Testing amcl with Fake Localization

Take a look at the launch file called fake_amcl.launch in the rbx1_nav/launch
directory:

<launch>

 <param name="use_sim_time" value="false" />

 <!-- Set the name of the map yaml file: can be overridden on the command line.
-->
 <arg name="map" default="test_map.yaml" />

 <!-- Run the map server with the desired map -->
 <node name="map_server" pkg="map_server" type="map_server" args="$(find
rbx1_nav)/maps/$(arg map)"/>

 <!-- The move_base node -->
 <include file="$(find rbx1_nav)/launch/fake_move_base.launch" />

 <!-- Run fake localization compatible with AMCL output -->
 <node pkg="fake_localization" type="fake_localization"
name="fake_localization" output="screen" />

 <!-- For fake localization we need a static transforms between /odom and /map
and /map and /world -->
 <node pkg="tf" type="static_transform_publisher" name="odom_map_broadcaster"
args="0 0 0 0 0 0 /odom /map 100" />
</launch>

As you can see from the launch file, first we load a map into the map server, in this case
the test map of a single floor house. The map name can be overridden on the command
line as we will see below. Alternatively, you can edit the launch file and change the
filename to your map so you do not have to type it on the command line.

 Navigation, Path Planning and SLAM - 108

http://wiki.ros.org/amcl

Next we include the same fake_move_base.launch file that we used earlier. Finally,
we fire up the fake_localization node. As you can read on the
fake_localization ROS Wiki page, this node simply republishes the robot's
odometry data in a form that is compatible with amcl.

To test it all out in the ArbotiX simulator, run the following commands—skip any
commands that you already have running in various terminals:

$ roslaunch rbx1_bringup fake_turtlebot.launch

(Replace with your favorite fake robot if desired.)

Next run the fake_amcl.launch file with the included test map or point it to your
own map on the command line:

$ roslaunch rbx1_nav fake_amcl.launch map:=test_map.yaml

Finally, bring up RViz with the amcl configuration file:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/amcl.rviz

Once the map appears in RViz, use the right mouse button or scroll wheel to zoom in or
out use the left mouse button to pan (shift-click) or rotate (click). If you are using the
test map, the image should look something like the following:

 Navigation, Path Planning and SLAM - 109

http://wiki.ros.org/fake_localization

When you have a view you like, click on the 2D Nav Goal button, then select a goal
pose for the robot within the map. As soon as you release the mouse, move_base will
take over to move the robot to the goal. Try a number of different goals to see how
amcl and move_base work together to plan and implement a path for the robot.

 8.5.2 Using amcl with a Real Robot

If your robot has a laser scanner or RGB-D camera like the Kinect or Xtion, you can try
out amcl in the real world. Assuming you have already created a map called
my_map.yaml in the directory rbx1_nav/maps, follow these steps to start localizing
your robot.

First, terminate any fake robots you may have running as well as the
fake_amcl.launch file if you ran it in the previous section. It's also not a bad idea to
shut down and restart your roscore process just to be sure we are starting with a clean
slate.

 Navigation, Path Planning and SLAM - 110

If you have a TurtleBot, you can run through the official TurtleBot SLAM Tutorial on
the ROS Wiki. You can also follow along here and get essentially the same result.

Begin by launching your robot's startup files. For an original TurtleBot, you would run
the following on the robot's laptop computer:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

(Or use your own launch file if you have stored your calibration parameters in a
different file.)

Next fire up the fake laser. (If you have a real laser scanner, run its launch file instead.)
Log into the robot in another terminal and run one of the following launch files. f your
Turtlebot uses a Microsoft Kinect, use the freenect fake laser launch file:

$ roslaunch rbx1_bringup turtlebot_fake_laser_freenect.launch

If your TurtleBot uses an Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 camera, use
the openni2 version as follows:

$ roslaunch rbx1_bringup turtlebot_fake_laser_openni2.launch

Now launch the tb_demo_amcl.launch file with your map as an argument:

$ roslaunch rbx1_nav tb_demo_amcl.launch map:=my_map.yaml

Finally, bring up RViz with the included navigation test configuration file:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/nav_test.rviz

When amcl first starts up, you have to give it the initial pose (position and orientation)
of the robot as this is something amcl cannot figure out on its own. To set the initial
pose, first click on the 2D Pose Estimate button in RViz. Then click on the point in the
map where you know your robot is located. While holding down the mouse button, a
large green arrow should appear. Move the mouse to orient the arrow to match the
orientation of your robot, then release the mouse.

With your robot's initial position set, you should be able to use the 2D Nav Goal button
in RViz to point-and-click navigation goals for your robot at different locations in the
map. Use your mouse scroll-wheel to zoom out or in as necessary. As the robot moves
about, you should see the laser scan points line up with walls and obstacle boundaries.

Probably the first thing you will notice in RViz is the cloud of light green arrows
surrounding the robot. These arrows represent the range of poses returned by amcl and

 Navigation, Path Planning and SLAM - 111

http://ros.org/wiki/turtlebot_navigation/Tutorials/Autonomously%20navigate%20in%20a%20known%20map

are being displayed because the nav_test config file we are using with RViz includes
a Pose Array display type. (Look just below the GlobalPlan display in the left-hand
panel in RViz.) The Pose Array topic is set to the /particlecloud topic which is the
default topic on which amcl publishes its pose estimates for the robot. (See the amcl
Wiki page for details.) As the robot moves about the environment, this cloud should
shrink in size as additional scan data allows amcl to refine its estimate of the robot's
position and orientation.

Here are a couple of screen shots from a live test. The first was taken just after the test
started and the second was taken after the robot had moved around the the environment
for a few minutes :

 Navigation, Path Planning and SLAM - 112

http://wiki.ros.org/amcl#Published_Topics
http://wiki.ros.org/amcl#Published_Topics

Notice how the pose array in the first image is quite spread out while in the second
image the array has contracted around the robot. At this point in the test, the robot is
fairly certain where it is in the map.

To test obstacle avoidance, start the robot toward a goal some distance away, then walk
in front of the robot as it is moving. The base local planner should steer the robot
around you and then continue on to the target location.

You can also also teleoperate the robot at any time while amcl is running if you launch
either a keyboard or joystick teleoperation node.

 8.5.3 Fully Autonomous Navigation

Using your mouse to send a robot to any location in the house is pretty cool, especially
when the robot will dynamically avoid obstacles along the way, but ultimately we want
to be able to specify locations programmatically and have the robot move about
autonomously. For instance, if we wanted to create a "Patrol Bot" application, we might
select a series of locations for the robot to visit, then set the program running and walk
away.

In this section we will look at a Python script that does precisely this. It was designed as
a kind of navigation endurance test to see how long Pi Robot could autonomously

 Navigation, Path Planning and SLAM - 113

navigate around the house without running into trouble. The file is called
nav_test.py in the rbx1_nav/nodes directory and it executes the following steps:

• Initialize a set of goal locations (poses) within the map.

• Randomly select the next location. (The locations were sampled without
replacement so that each location was visited equally often.)

• Send the appropriate MoveBaseGoal goal to the move_base action server.

• Record the success or failure of the navigation to the goal, as well as the elapsed
time and distance traveled.

• Pause for a configurable number of seconds at each location.

• Rinse and repeat.

Before trying it out on a real robot, let's run it in the ArbotiX simulator.

 8.5.4 Running the Navigation Test in Simulation

The entire set of nodes we need for the endurance test can be launched using the
fake_nav_test.launch file. This launch file is actually a good example of a
complete ROS application: it launches the robot drivers, the map_server, the
move_base node and the navigation test script.

For this test, the robot will be approaching target locations from different directions
depending on the previous location. Rather than force the robot to rotate to a particular
orientation at each location, we can set the yaw_goal_tolerance parameter to 360
degrees (6.28 radians) which means that once the robot gets to a goal location, the base
local planner will be happy with whatever orientation the robot has as it arrives. This
results in a more natural motion of the robot from one location to the next. (Of course,
for an actual Patrol Bot, you might have reasons for wanting the robot to face a
particular direction at specific locations.)

We can set this special yaw_goal_tolerance parameter in a separate config file and
load the file to override the value we specify in the default configuration file
base_local_planner_params.yaml. In the rbx1_nav/config directory you will
find the file rbx1_nav/config/nav_test_params.yaml that looks like this:

TrajectoryPlannerROS:
 yaw_goal_tolerance: 6.28

As you can see, the file is simply a snippet of the
base_local_planner_params.yaml file consisting of the namespace and the new
yaw tolerance. This file is then loaded after the

 Navigation, Path Planning and SLAM - 114

base_local_planner_params.yaml file in the fake_nav_test.launch file like
this:

 <!-- The move_base node -->
 <node pkg="move_base" type="move_base" respawn="false" name="move_base"
output="screen">
 <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml"
command="load" ns="global_costmap" />
 <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml"
command="load" ns="local_costmap" />
 <rosparam file="$(find rbx1_nav)/config/fake/local_costmap_params.yaml"
command="load" />
 <rosparam file="$(find rbx1_nav)/config/fake/global_costmap_params.yaml"
command="load" />
 <rosparam file="$(find rbx1_nav)/config/fake/base_local_planner_params.yaml"
command="load" />
 <rosparam file="$(find rbx1_nav)/config/nav_test_params.yaml" command="load"
/>
 </node>

where you see that the last rosparam line loads the nav_test_params.yaml file.

With these preliminaries out of the way, let's run the test. To make sure we are starting
with a clean slate, kill any running launch files as well as roscore. Begin with a new
roscore:

$ roscore

Next, fire up rqt_console. This allows us to view the status messages being output
by the nav_test.py script. The same messages are shown in the terminal window
used to run the the fake_nav_test.launch file, but rqt_console provides a nicer
monitoring interface.

$ rqt_console &

Now run the fake_nav_test.launch file. This launch file brings up a fake
TurtleBot, the map_server node with the test map loaded, the move_base node with
all the parameters tuned for the fake TurtleBot, the fake_localization node, and
finally, the nav_test.py script itself.

$ roslaunch rbx1_nav fake_nav_test.launch

The very last message in the output from the launch file should be:

*** Click the 2D Pose Estimate button in RViz to set the robot's initial
pose...

At this point, fire up RViz with the amcl configuration file:

 Navigation, Path Planning and SLAM - 115

$ rosrun rviz rviz -d `rospack find rbx1_nav`/amcl.rviz

When RViz is up and the robot is visible, click on the 2D Pose Estimate button to set
the initial pose of the robot. Then click on the middle of the robot and align the green
pose arrow with the yellow odometry arrow. As soon as you release the mouse, the
navigation test will start. Use the mouse to zoom or pan the map during the test.

The fake TurtleBot should now start moving in RViz from one location to another. For
the fake test, the robot does not pause at each location. The simulation will run forever
until you type Ctrl-C in the fake_nav_test.launch window.

As the test proceeds, bring the rqt_console window to the foreground and you can
monitor which goal location is next, the time elapsed, distance traveled, the number of
goal locations attempted and the success rate. You will probably have to widen the
Message column with your mouse to see each message in full.

 8.5.5 Understanding the Navigation Test Script

Before running the navigation test on a real robot, let's make sure we understand the
code that makes it work.

Link to source: nav_test.py

1. #!/usr/bin/env python
2.
3. import rospy
4. import actionlib
5. from actionlib_msgs.msg import *
6. from geometry_msgs.msg import Pose, PoseWithCovarianceStamped, Point,

Quaternion, Twist
7. from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
8. from random import sample
9. from math import pow, sqrt
10.
11. class NavTest():
12. def __init__(self):
13. rospy.init_node('nav_test', anonymous=True)
14.
15. rospy.on_shutdown(self.shutdown)
16.
17. # How long in seconds should the robot pause at each location?
18. self.rest_time = rospy.get_param("~rest_time", 10)
19.
20. # Are we running in the fake simulator?
21. self.fake_test = rospy.get_param("~fake_test", False)
22.
23. # Goal state return values
24. goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED',
25. 'SUCCEEDED', 'ABORTED', 'REJECTED',
26. 'PREEMPTING', 'RECALLING', 'RECALLED',
27. 'LOST']
28.

 Navigation, Path Planning and SLAM - 116

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_nav/nodes/nav_test.py

29. # Set up the goal locations. Poses are defined in the map frame.
30. # An easy way to find the pose coordinates is to point-and-click
31. # Nav Goals in RViz when running in the simulator.
32. # Pose coordinates are then displayed in the terminal
33. # that was used to launch RViz.
34. locations = dict()
35.
36. locations['hall_foyer'] = Pose(Point(0.643, 4.720, 0.000),
37. Quaternion(0.000, 0.000, 0.223, 0.975))
38. locations['hall_kitchen'] = Pose(Point(-1.994, 4.382, 0.000),
39. Quaternion(0.000, 0.000, -0.670, 0.743))
40. locations['hall_bedroom'] = Pose(Point(-3.719, 4.401, 0.000),
41. Quaternion(0.000, 0.000, 0.733, 0.680))
42. locations['living_room_1'] = Pose(Point(0.720, 2.229, 0.000),
43. Quaternion(0.000, 0.000, 0.786, 0.618))
44. locations['living_room_2'] = Pose(Point(1.471, 1.007, 0.000),
45. Quaternion(0.000, 0.000, 0.480, 0.877))
46. locations['dining_room_1'] = Pose(Point(-0.861, -0.019, 0.000),
47. Quaternion(0.000, 0.000, 0.892, -0.451))
48.
49. # Publisher to manually control the robot (e.g. to stop it)
50. self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist,

queue_size=5)
51.
52. # Subscribe to the move_base action server
53. self.move_base = actionlib.SimpleActionClient("move_base",

MoveBaseAction)
54.
55. rospy.loginfo("Waiting for move_base action server...")
56.
57. # Wait 60 seconds for the action server to become available
58. self.move_base.wait_for_server(rospy.Duration(60))
59.
60. rospy.loginfo("Connected to move base server")
61.
62. # A variable to hold the initial pose of the robot to be set by
63. # the user in RViz
64. initial_pose = PoseWithCovarianceStamped()
65.
66. # Variables to keep track of success rate, running time,
67. # and distance traveled
68. n_locations = len(locations)
69. n_goals = 0
70. n_successes = 0
71. i = n_locations
72. distance_traveled = 0
73. start_time = rospy.Time.now()
74. running_time = 0
75. location = ""
76. last_location = ""
77.
78. # Get the initial pose from the user
79. rospy.loginfo("Click on the map in RViz to set the intial

pose...")
80. rospy.wait_for_message('initialpose', PoseWithCovarianceStamped)
81. self.last_location = Pose()

 Navigation, Path Planning and SLAM - 117

82. rospy.Subscriber('initialpose', PoseWithCovarianceStamped,
self.update_initial_pose)

83.
84. # Make sure we have the initial pose
85. while initial_pose.header.stamp == "":
86. rospy.sleep(1)
87.
88. rospy.loginfo("Starting navigation test")
89.
90. # Begin the main loop and run through a sequence of locations
91. while not rospy.is_shutdown():
92. # If we've gone through the current sequence,
93. # start with a new random sequence
94. if i == n_locations:
95. i = 0
96. sequence = sample(locations, n_locations)
97. # Skip over first location if it is the same as
98. # the last location
99. if sequence[0] == last_location:
100. i = 1
101.
102. # Get the next location in the current sequence
103. location = sequence[i]
104.
105. # Keep track of the distance traveled.
106. # Use updated initial pose if available.
107. if initial_pose.header.stamp == "":
108. distance = sqrt(pow(locations[location].position.x
109. - locations[last_location].position.x, 2) +
110. pow(locations[location].position.y -
111. locations[last_location].position.y, 2))
112. else:
113. rospy.loginfo("Updating current pose.")
114. distance = sqrt(pow(locations[location].position.x
115. - initial_pose.pose.pose.position.x, 2) +
116. pow(locations[location].position.y -
117. initial_pose.pose.pose.position.y, 2))
118. initial_pose.header.stamp = ""
119.
120. # Store the last location for distance calculations
121. last_location = location
122.
123. # Increment the counters
124. i += 1
125. n_goals += 1
126.
127. # Set up the next goal location
128. self.goal = MoveBaseGoal()
129. self.goal.target_pose.pose = locations[location]
130. self.goal.target_pose.header.frame_id = 'map'
131. self.goal.target_pose.header.stamp = rospy.Time.now()
132.
133. # Let the user know where the robot is going next
134. rospy.loginfo("Going to: " + str(location))
135.
136. # Start the robot toward the next location

 Navigation, Path Planning and SLAM - 118

137. self.move_base.send_goal(self.goal)
138.
139. # Allow 5 minutes to get there
140. finished_within_time =

self.move_base.wait_for_result(rospy.Duration(300))
141.
142. # Check for success or failure
143. if not finished_within_time:
144. self.move_base.cancel_goal()
145. rospy.loginfo("Timed out achieving goal")
146. else:
147. state = self.move_base.get_state()
148. if state == GoalStatus.SUCCEEDED:
149. rospy.loginfo("Goal succeeded!")
150. n_successes += 1
151. distance_traveled += distance
152. else:
153. rospy.loginfo("Goal failed with error code: " +

str(goal_states[state]))
154.
155. # How long have we been running?
156. running_time = rospy.Time.now() - start_time
157. running_time = running_time.secs / 60.0
158.
159. # Print a summary success/failure, distance traveled and time

elapsed
160. rospy.loginfo("Success so far: " + str(n_successes) + "/" +
161. str(n_goals) + " = " +
162. str(100 * n_successes/n_goals) + "%")
163. rospy.loginfo("Running time: " + str(trunc(running_time, 1)) +
164. " min Distance: " + str(trunc(distance_traveled,

1)) + " m")
165. rospy.sleep(self.rest_time)
166.
167. def update_initial_pose(self, initial_pose):
168. self.initial_pose = initial_pose
169.
170. def shutdown(self):
171. rospy.loginfo("Stopping the robot...")
172. self.move_base.cancel_goal()
173. rospy.sleep(2)
174. self.cmd_vel_pub.publish(Twist())
175. rospy.sleep(1)
176.
177. def trunc(f, n):
178. # Truncates/pads a float f to n decimal places without rounding
179. slen = len('%.*f' % (n, f))
180. return float(str(f)[:slen])
181.
182. if __name__ == '__main__':
183. try:
184. NavTest()
185. rospy.spin()
186. except rospy.ROSInterruptException:
187. rospy.loginfo("AMCL navigation test finished.")

 Navigation, Path Planning and SLAM - 119

Here are the key lines of the script and what they do.

17. # How long in seconds should the robot pause at each location?
18. self.rest_time = rospy.get_param("~rest_time", 10)
19.
20. # Are we running in the fake simulator?
21. self.fake_test = rospy.get_param("~fake_test", False)

Set the number of seconds to pause at each location before moving to the next. If the
fake_test parameter is True, the rest_time parameter is ignored.

24. goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED',
25. 'SUCCEEDED', 'ABORTED', 'REJECTED',
26. 'PREEMPTING', 'RECALLING', 'RECALLED',
27. 'LOST']

It's nice to have a human readable form of the various MoveBaseAction goal states.

34. locations = dict()
35.
36. locations['hall_foyer'] = Pose(Point(0.643, 4.720, 0.000),
37. Quaternion(0.000, 0.000, 0.223, 0.975))
38. locations['hall_kitchen'] = Pose(Point(-1.994, 4.382, 0.000),
39. Quaternion(0.000, 0.000, -0.670, 0.743))
40. locations['hall_bedroom'] = Pose(Point(-3.719, 4.401, 0.000),
41. Quaternion(0.000, 0.000, 0.733, 0.680))
42. locations['living_room_1'] = Pose(Point(0.720, 2.229, 0.000),
43. Quaternion(0.000, 0.000, 0.786, 0.618))
44. locations['living_room_2'] = Pose(Point(1.471, 1.007, 0.000),
45. Quaternion(0.000, 0.000, 0.480, 0.877))
46. locations['dining_room_1'] = Pose(Point(-0.861, -0.019, 0.000),
47. Quaternion(0.000, 0.000, 0.892, -0.451))

The goal locations (poses) are stored as a Python dictionary. The Point and
Quaternion values can be found by clicking on the 2D Nav Goal button in RViz and
noting the values displayed in the terminal that was used to launch RViz. Then copy
and paste those values into your script.

83. rospy.Subscriber('initialpose', PoseWithCovarianceStamped,
self.update_initial_pose)

Here we subscribe to the initialpose topic so that we can set the initial location and
orientation of the robot within the map at the start of the test. When running the test on
a real robot, the initial pose is set by the user in RViz. For a fake robot (fake_test =
True), this variable is ignored since fake localization is already perfect.

91. while not rospy.is_shutdown():

Run the test until the user aborts the application.

 Navigation, Path Planning and SLAM - 120

96. sequence = sample(locations, n_locations)

We use the Python sample() function to generate a random sequence of goals from the
set of locations.

127. # Set up the next goal location
128. self.goal = MoveBaseGoal()
129. self.goal.target_pose.pose = locations[location]
130. self.goal.target_pose.header.frame_id = 'map'
131. self.goal.target_pose.header.stamp = rospy.Time.now()
132.
133. # Let the user know where the robot is going next
134. rospy.loginfo("Going to: " + str(location))
135.
136. # Start the robot toward the next location
137. self.move_base.send_goal(self.goal)

Finally, we set the goal location to the next location in the sequence and send it to the
move_base action server.

 8.5.6 Running the Navigation Test on a Real Robot

The procedure for running the navigation test with a real robot is nearly the same as with
the simulation. However, you will of course need your own map of the area where you
want the robot to run.

For this test, it is probably a good idea to run all nodes on the robot's computer except
rqt_console and RViz. This will ensure that there are no timing issues between the
robot and your desktop due to fluctuations in your wifi network.

The rbx1_nav directory includes a launch file called tb_nav_test.launch that
should work with a TurtleBot but you will need to edit it first and point to your own map
file. You can also supply the name of your map file on the command line as we did
earlier and as we will illustrate below.

First terminate any simulations you might have running. If you really want to be on the
safe side, shut down and restart roscore to make sure the entire parameter server is
also cleared.

Next, fire up your robot's startup files. In the case of the original TurtleBot, you would
run the following launch file on the TurtleBot's laptop:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

(Use your own launch file if you have saved your calibration parameters in a different
file.)

 Navigation, Path Planning and SLAM - 121

If you don't have a real laser scanner, launch the fake laser. First open another terminal
window and log into the TurtleBot's laptop (or the computer attached to your depth
camera). If your Turtlebot uses a Microsoft Kinect, use the freenect fake laser launch
file:

$ roslaunch rbx1_bringup turtlebot_fake_laser_freenect.launch

If your TurtleBot uses an Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 camera, use
the openni2 version as follows:

$ roslaunch rbx1_bringup turtlebot_fake_laser_openni2.launch

If it is not already running, bring up up rqt_console to monitor status messages
during the test. This can be run on your desktop:

$ rqt_console &

Next, launch the tb_nav_test.launch file. Run the launch file on the robot's
computer:

$ roslaunch rbx1_nav tb_nav_test.launch map:=my_map.yaml

where you need to replace my_map.yaml with the actual name of your map file. You
can leave off the map argument if you have edited your tb_nav_test.launch file to
include your map file there.

Finally, if you don't already have RViz running with the nav_test config file, bring it
up now on your desktop computer:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/nav_test.rviz

If everything goes well, you should see the following message in rqt_console and in
the terminal window used to launch the tb_nav_test.launch file:

*** Click the 2D Pose Estimate button in RViz to set the robot's initial
pose...

Before the navigation test will start, you need to set the initial pose of the robot. Click
on the approximate starting location of the robot in RViz, and when the large green
arrow appears, point the arrow to match the orientation of the robot. As soon as you
release the mouse button, the robot should begin the test.

NOTE: To stop the robot (and the test) at any time, simply type Ctrl-C in the terminal
window used to start the tb_nav_test.launch file. If you are using a TurtleBot, you
can also press the front bumper with your foot or hand and the robot will stop moving.

 Navigation, Path Planning and SLAM - 122

 8.5.7 What's Next?

This concludes the chapter on Navigation. You should now have the tools you need to
program your own robot to autonomously navigation your home or office. To get
started, you could try a few variations on the navigation test script. For example, instead
of using a set of fixed target locations, try picking locations at random, or simply add
some random variation around the primary locations. You could also have the robot
rotate in place at each location as a Patrol Bot might do to scan its surroundings.

 Navigation, Path Planning and SLAM - 123

 Navigation, Path Planning and SLAM - 124

 9. SPEECH RECOGNITION AND SYNTHESIS

Speech recognition and Linux have come a long way in the past few years, thanks
mostly to the CMU Sphinx and Festival projects. We can also benefit from existing
ROS packages for both speech recognition and text-to-speech. Consequently, it is quite
easy to add speech control and voice feedback to your robot as we will now show.

In this chapter we will:

• Install and test the pocketsphinx package for speech recognition

• Learn how to create a custom vocabulary for speech recognition

• Teleoperate a real and simulated robot using voice commands

• Install and test the Festival text-to-speech system and the ROS sound_play
package

 9.1 Installing PocketSphinx for Speech Recognition
Thanks to Michael Ferguson, we can use the ROS pocketsphinx package for speech
recognition. The pocketsphinx package requires the installation of the Ubuntu
package gstreamer0.10-pocketsphinx and we will also need the ROS sound
drivers stack (in case you don't already have it) so so let's take care of both first. You
will be prompted to install the Festival packages if you don't already have them—answer
"Y" if prompted:

$ sudo apt-get install gstreamer0.10-pocketsphinx
$ sudo apt-get install ros-indigo-pocketsphinx
$ sudo apt-get install ros-indigo-audio-common
$ sudo apt-get install libasound2

The pocketsphinx package includes the node recognizer.py. This script does all
the hard work of connecting to the audio input stream of your computer and matching
voice commands to the words or phrases in the current vocabulary. When the recognizer
node matches a word or phrase, it publishes it on the /recognizer/output topic.
Other nodes can subscribe to this topic to find out what the user has just said.

 9.2 Testing the PocketSphinx Recognizer
You will get the best speech recognition results using a headset microphone, either USB,
standard audio or Bluetooth. Once you have your microphone connected to your
computer, make sure it is selected as the input audio device. (If you are using Ubuntu
14.04 or higher, go to System Settings and click on the Sound control panel.) Once the

 Speech Recognition and Synthesis - 125

http://wiki.ros.org/pocketsphinx
http://wiki.ros.org/sound_play
http://wiki.ros.org/pocketsphinx
http://festvox.org/
http://cmusphinx.sourceforge.net/

Sound Preferences window opens, click on the Input tab and select your microphone
device from the list (if there is more than one). Speak a few words into your
microphone and you should see the volume meter respond. Then click on the Output
tab, select your desired output device, and adjust the volume slider. Finally, close the
Sound window.

NOTE: If you disconnect a USB or Bluetooth microphone and then reconnect it later,
you will likely have to select it as the input again using the procedure described above.

Michael Ferguson includes a vocabulary file suitable for RoboCup@Home competitions
that you can use to the test the recognizer. Fire it up now by running:

$ roslaunch pocketsphinx robocup.launch

You should see a list of INFO messages indicating that the various parts of the
recognition model are being loaded. The last few messages will look something like
this:

INFO: ngram_search_fwdtree.c(186): Creating search tree
INFO: ngram_search_fwdtree.c(191): before: 0 root, 0 non-root channels,
12 single-phone words
INFO: ngram_search_fwdtree.c(326): after: max nonroot chan increased to
328
INFO: ngram_search_fwdtree.c(338): after: 77 root, 200 non-root
channels, 11 single-phone words

Now say a few of the RoboCup phrases such as "bring me the glass", "go to the
kitchen", or "come with me". In the terminal window, you should see INFO lines that
echo the spoken phrases like this:

[INFO] [WallTime: 1387548761.587537] bring me the glass
[INFO] [WallTime: 1387548765.296757] go to the kitchen
[INFO] [WallTime: 1387548769.417876] come with me

Congratulations—you can now talk to your robot! The recognized phrase is also
published on the topic /recognizer/output. To see the result, bring up another
terminal and run:

$ rostopic echo /recognizer/output

Now try the same three phrases as above and you should see:

 Speech Recognition and Synthesis - 126

data: bring me the glass

data: go to the kitchen

data: come with me

For my voice, and using a Bluetooth over-the-ear microphone, the recognizer was
surprisingly fast and accurate.

To see all the phrases you can use with the RoboCup demo, run the following
commands:

$ roscd pocketsphinx/demo
$ more robocup.corpus

Now try saying a phrase that is not in the vocabulary, such as "the sky is blue". In my
case, the result on the /recognizer/output topic was "this go is room". As you can
see, the recognizer will respond with something no matter what you say. This means
that care must be taken to "mute" the speech recognizer if you don't want random
conversation to be interpreted as speech commands. We will see how to do this below
when we learn how to map speech recognition into actions.

 9.3 Creating a Vocabulary
It is easy to create a new vocabulary or corpus as it is referred to in PocketSphinx.
First, create a simple text file with one word or phrase per line. Here is a corpus that
could be used to drive your robot around using voice commands. We will store it in a
file called nav_commands.txt in the config subdirectory of the rbx1_speech
package. To view its contents, run the commands:

$ roscd rbx1_speech/config
$ more nav_commands.txt

You should see the following list of phrases (they will appear all in one column on your
screen):

 Speech Recognition and Synthesis - 127

pause speech
continue speech
move forward
move backward
move back
move left
move right
go forward
go backward
go back
go left
go right
go straight

come forward
come backward
come left
come right
turn left
turn right
rotate left
rotate right
faster
speed up
slower
slow down
quarter speed
half speed
full speed

stop
stop now
halt
abort
kill
panic
help
help me
freeze
turn off
shut down
cancel

You can also bring the file up in your favorite editor and add, delete or change some of
these words or phrases before proceeding to the next step. When you enter your
phrases, try not to mix upper and lower case and do not use punctuation marks. Also, if
want to include a number such as 54, spell it out like "fifty four".

Before we can use this corpus with PocketSphinx, we need to compile it into special
dictionary and pronunciation files. This can be done using the online CMU language
model (lm) tool located at:

http://www.speech.cs.cmu.edu/tools/lmtool-new.html

Follow the directions to upload your nav_commands.txt file, click the Compile
Knowledge Base button, then download the file labeled COMPRESSED TARBALL
that contains all the language model files. Extract these files into the config
subdirectory of the rbx1_speech package. The files will all begin with the same
number, such as 3026.dic, 3026.lm, etc. These files define your vocabulary as a
language model that PocketSphinx can understand. You can rename all these files to
something more memorable using a command like the following (the 4-digit number
will likely be different in your case):

$ roscd rbx1_speech/config
$ rename -f 's/3026/nav_commands/' *

Next, take a look at the voice_nav_commands.launch file found in the
rbx1_speech/launch subdirectory. It looks like this:

<launch>
 <node name="recognizer" pkg="pocketsphinx" type="recognizer.py"
output="screen">
 <param name="lm" value="$(find rbx1_speech)/config/nav_commands.lm"/>

 Speech Recognition and Synthesis - 128

http://www.speech.cs.cmu.edu/tools/lmtool-new.html

 <param name="dict" value="$(find rbx1_speech)/config/nav_commands.dic"/>
 </node>
</launch>

As you can see, the launch file runs the recognizer.py node from the
pocketsphinx package and we point the lm and dict parameters to the files
nav_commands.lm and nav_commands.dic created in the steps above. Note also
that the parameter output="screen" is what allows us to see the real-time recognition
results in the launch window.

Launch this file and test speech recognition by monitoring the /recognizer/output
topic. First type Ctrl-C to terminate the earlier RoboCup demo if it is still running.
Then run the commands:

$ roslaunch rbx1_speech voice_nav_commands.launch

And in another terminal:

$ rostopic echo /recognizer/output

Try saying a few navigation phrases such as "move forward", "slow down" and "stop".
You should see your commands echoed on the /recognizer/output topic.

 9.4 A Voice-Control Navigation Script
The recognizer.py node in the pocketsphinx package publishes recognized speech
commands to the /recognizer/output topic. To map these commands to robot
actions, we need a second node that subscribes to this topic, looks for appropriate
messages, then causes the robot to execute different behaviors depending on the
message received. To get us started, Michael Ferguson includes a Python script called
voice_cmd_vel.py in the pocketsphinx package that maps voice commands into
Twist messages that can be used to control a mobile robot. We will use a slightly
modified version of this script called voice_nav.py found in the
rbx1_speech/nodes subdirectory.

Let's now look at the voice_nav.py script.

Link to source: voice_nav.py

1 #!/usr/bin/env python
2
3 """
4 Based on the voice_cmd_vel.py script by Michael Ferguson in
5 the pocketsphinx ROS package.
6
7 See http://wiki.ros.org/pocketsphinx

 Speech Recognition and Synthesis - 129

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_speech/nodes/voice_nav.py

8 """
9
10
11 import rospy
12 from geometry_msgs.msg import Twist
13 from std_msgs.msg import String
14 from math import copysign
15
16 class VoiceNav:
17 def __init__(self):
18 rospy.init_node('voice_nav')
19
20 rospy.on_shutdown(self.cleanup)
21
22 # Set a number of parameters affecting the robot's speed
23 self.max_speed = rospy.get_param("~max_speed", 0.4)
24 self.max_angular_speed = rospy.get_param("~max_angular_speed", 1.5)
25 self.speed = rospy.get_param("~start_speed", 0.1)
26 self.angular_speed = rospy.get_param("~start_angular_speed", 0.5)
27 self.linear_increment = rospy.get_param("~linear_increment", 0.05)
28 self.angular_increment = rospy.get_param("~angular_increment", 0.4)
29
30 # We don't have to run the script very fast
31 self.rate = rospy.get_param("~rate", 5)
32 r = rospy.Rate(self.rate)
33
34 # A flag to determine whether or not voice control is paused
35 self.paused = False
36
37 # Initialize the Twist message we will publish.
38 self.cmd_vel = Twist()
39
40 # Publish the Twist message to the cmd_vel topic
41 self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5)
42
43 # Subscribe to the /recognizer/output topic to receive voice commands.
44 rospy.Subscriber('/recognizer/output', String, self.speech_callback)
45
46 # A mapping from keywords or phrases to commands
47 self.keywords_to_command = {'stop': ['stop', 'halt', 'abort', 'kill',
'panic', 'off', 'freeze', 'shut down', 'turn off', 'help', 'help me'],
48 'slower': ['slow down', 'slower'],
49 'faster': ['speed up', 'faster'],
50 'forward': ['forward', 'ahead',
'straight'],
51 'backward': ['back', 'backward', 'back
up'],
52 'rotate left': ['rotate left'],
53 'rotate right': ['rotate right'],
54 'turn left': ['turn left'],
55 'turn right': ['turn right'],
56 'quarter': ['quarter speed'],
57 'half': ['half speed'],
58 'full': ['full speed'],
59 'pause': ['pause speech'],
60 'continue': ['continue speech']}
61

 Speech Recognition and Synthesis - 130

62 rospy.loginfo("Ready to receive voice commands")
63
64 # We have to keep publishing the cmd_vel message if we want
 # the robot to keep moving.
65 while not rospy.is_shutdown():
66 self.cmd_vel_pub.publish(self.cmd_vel)
67 r.sleep()
68
69 def get_command(self, data):
70 # Attempt to match the recognized word or phrase to the
71 # keywords_to_command dictionary and return the appropriate
72 # command
73 for (command, keywords) in self.keywords_to_command.iteritems():
74 for word in keywords:
75 if data.find(word) > -1:
76 return command
77
78 def speech_callback(self, msg):
79 # Get the motion command from the recognized phrase
80 command = self.get_command(msg.data)
81
82 # Log the command to the screen
83 rospy.loginfo("Command: " + str(command))
84
85 # If the user has asked to pause/continue voice control,
86 # set the flag accordingly
87 if command == 'pause':
88 self.paused = True
89 elif command == 'continue':
90 self.paused = False
91
92 # If voice control is paused, simply return without
93 # performing any action
94 if self.paused:
95 return
96
97 # The list of if-then statements should be fairly
98 # self-explanatory
99 if command == 'forward':
100 self.cmd_vel.linear.x = self.speed
101 self.cmd_vel.angular.z = 0
102
103 elif command == 'rotate left':
104 self.cmd_vel.linear.x = 0
105 self.cmd_vel.angular.z = self.angular_speed
106
107 elif command == 'rotate right':
108 self.cmd_vel.linear.x = 0
109 self.cmd_vel.angular.z = -self.angular_speed
110
111 elif command == 'turn left':
112 if self.cmd_vel.linear.x != 0:
113 self.cmd_vel.angular.z += self.angular_increment
114 else:
115 self.cmd_vel.angular.z = self.angular_speed
116

 Speech Recognition and Synthesis - 131

117 elif command == 'turn right':
118 if self.cmd_vel.linear.x != 0:
119 self.cmd_vel.angular.z -= self.angular_increment
120 else:
121 self.cmd_vel.angular.z = -self.angular_speed
122
123 elif command == 'backward':
124 self.cmd_vel.linear.x = -self.speed
125 self.cmd_vel.angular.z = 0
126
127 elif command == 'stop':
128 # Stop the robot! Publish a Twist message consisting of all
zeros.
129 self.cmd_vel = Twist()
130
131 elif command == 'faster':
132 self.speed += self.linear_increment
133 self.angular_speed += self.angular_increment
134 if self.cmd_vel.linear.x != 0:
135 self.cmd_vel.linear.x += copysign(self.linear_increment,
self.cmd_vel.linear.x)
136 if self.cmd_vel.angular.z != 0:
137 self.cmd_vel.angular.z += copysign(self.angular_increment,
self.cmd_vel.angular.z)
138
139 elif command == 'slower':
140 self.speed -= self.linear_increment
141 self.angular_speed -= self.angular_increment
142 if self.cmd_vel.linear.x != 0:
143 self.cmd_vel.linear.x -= copysign(self.linear_increment,
self.cmd_vel.linear.x)
144 if self.cmd_vel.angular.z != 0:
145 self.cmd_vel.angular.z -= copysign(self.angular_increment,
self.cmd_vel.angular.z)
146
147 elif command in ['quarter', 'half', 'full']:
148 if command == 'quarter':
149 self.speed = copysign(self.max_speed / 4, self.speed)
150
151 elif command == 'half':
152 self.speed = copysign(self.max_speed / 2, self.speed)
153
154 elif command == 'full':
155 self.speed = copysign(self.max_speed, self.speed)
156
157 if self.cmd_vel.linear.x != 0:
158 self.cmd_vel.linear.x = copysign(self.speed,
self.cmd_vel.linear.x)
159
160 if self.cmd_vel.angular.z != 0:
161 self.cmd_vel.angular.z = copysign(self.angular_speed,
self.cmd_vel.angular.z)
162
163 else:
164 return
165

 Speech Recognition and Synthesis - 132

166 self.cmd_vel.linear.x = min(self.max_speed, max(-self.max_speed,
self.cmd_vel.linear.x))
167 self.cmd_vel.angular.z = min(self.max_angular_speed, max(-
self.max_angular_speed, self.cmd_vel.angular.z))
168
169 def cleanup(self):
170 # When shutting down be sure to stop the robot!
171 twist = Twist()
172 self.cmd_vel_pub.publish(twist)
173 rospy.sleep(1)
174
175if __name__=="__main__":
176 try:
177 VoiceNav()
178 rospy.spin()
179 except rospy.ROSInterruptException:
180 rospy.loginfo("Voice navigation terminated.")

The script is fairly straightforward and heavily commented so we will only describe the
highlights.

46 # A mapping from keywords or phrases to commands
47 self.keywords_to_command = {'stop': ['stop', 'halt', 'abort', 'kill',
'panic', 'off', 'freeze', 'shut down', 'turn off', 'help', 'help me'],
48 'slower': ['slow down', 'slower'],
49 'faster': ['speed up', 'faster'],
50 'forward': ['forward', 'ahead',
'straight'],
51 'backward': ['back', 'backward', 'back
up'],
52 'rotate left': ['rotate left'],
53 'rotate right': ['rotate right'],
54 'turn left': ['turn left'],
55 'turn right': ['turn right'],
56 'quarter': ['quarter speed'],
57 'half': ['half speed'],
58 'full': ['full speed'],
59 'pause': ['pause speech'],
60 'continue': ['continue speech']}
61

The keywords_to_command Python dictionary allows us to map different verbal
works and phrases into the same action. For example, it is really important to be able to
stop the robot once it is moving. However, the word "stop" is not always recognized by
the PocketSphinx recognizer. So we provide a number of alternative ways of telling the
robot to stop like "halt", "abort", "help", etc. Of course, these alternatives must be
included in our original PocketSphinx vocabulary (corpus).

The voice_nav.py node subscribes to the /recognizer/output topic and looks for
recognized keywords as specified in the nav_commands.txt corpus. If a match is
found, the keywords_to_commands dictionary maps the matched phrase to an

 Speech Recognition and Synthesis - 133

appropriate command word. Our callback function then maps the command word to the
appropriate Twist action sent to the robot.

Another feature of the voice_nav.py script is that it will respond to the two special
commands "pause speech" and "continue speech". If you are voice controlling your
robot, but you would like to say something to another person without the robot
interpreting your words as movement commands, just say "pause speech". When you
want to continue controlling the robot, say "continue speech".

 9.4.1 Testing Voice-Control in the ArbotiX Simulator

Before using voice navigation with a real robot, let's give it a try in the ArbotiX
simulator. First fire up the fake TurtleBot as we have done before:

$ roslaunch rbx1_bringup fake_turtlebot.launch

Next, bring up RViz with the simulation config file:

$ rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz

Let's also use rqt_console to more easily monitor the output of the voice navigation
script. In particular, this will allow us to view the commands the script recognizes:

$ rqt_console &

Next, check your Sound Settings as described earlier to make sure your microphone is
still set as the Input device. Now run the voice_nav_commands.launch file which
brings up the PocketSphinx recognizer with the navigation vocabulary:

$ roslaunch rbx1_speech voice_nav_commands.launch

Finally, use the turtlebot_voice_nav.launch file to fire up the voice_nav.py
node. This launch file (found in the rbx1_speech/launch directory) runs the
voice_nav.py node while setting some parameters controlling the speed of the
simulated robot:

$ roslaunch rbx1_speech turtlebot_voice_nav.launch

You should now be able to use voice commands to move the fake TurtleBot around in
RViz. For example, try the commands "rotate left", "move forward", "full speed",
"halt", and so on. Here is the list of voice commands again for easy reference:

 Speech Recognition and Synthesis - 134

pause speech
continue speech
move forward
move backward
move back
move left
move right
go forward
go backward
go back
go left
go right
go straight

come forward
come backward
come left
come right
turn left
turn right
rotate left
rotate right
faster
speed up
slower
slow down
quarter speed
half speed
full speed

stop
stop now
halt
abort
kill
panic
help
help me
freeze
turn off
shut down
cancel

You can also try the two special commands, "pause speech" and "continue speech" to
see if you can turn voice control off and on again.

 9.4.2 Using Voice-Control with a Real Robot

To voice control a TurtleBot, move the robot into an open space free of obstacles, then
start the turtlebot.launch file on the TurtleBot's laptop:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

If it's not already running, bring up rqt_console to more easily monitor the output of
the voice navigation script:

$ rqt_console &

Before running the voice navigation script, check your Sound Settings as described
earlier to make sure your microphone is still set as the Input device.

On your workstation computer, run the voice_nav_commands.launch file:

$ roslaunch rbx1_speech voice_nav_commands.launch

and in another terminal run the turtlebot_voice_nav.launch file:

$ roslaunch rbx1_speech turtlebot_voice_nav.launch

Try a relatively safe voice command first such as "rotate right". Refer to the list of
commands above for different ways you can move the robot. The
turtlebot_voice_nav.launch file includes parameters you can set that determine
the maximum speed of the TurtleBot as well as the increments used when you say "go
faster" or "slow down".

 Speech Recognition and Synthesis - 135

The following video presents a short demonstration of the script running on a modified
TurtleBot: http://www.youtube.com/watch?v=10ysYZUX_jA

 9.5 Installing and Testing Festival Text-to-Speech
Now that we can talk to our robot, it would be nice if it could talk back to us. Text-to-
speech (TTS) is accomplished using the CMU Festival system together with the ROS
sound_play package which in turn is part of the ros-indigo-audio-common meta-
package. If you have followed this chapter from the beginning, you have already
installed the necessary packages. Otherwise, run the commands now. You will be
prompted to install the Festival packages if you don't already have them—answer "Y" of
course:

$ sudo apt-get install ros-indigo-audio-common
$ sudo apt-get install libasound2

The sound_play package uses the CMU Festival TTS library to generate synthetic
speech. Let's test it out with the default voice as follows. First fire up the primary
sound_play node:

$ rosrun sound_play soundplay_node.py

In another terminal, enter some text to be converted to voice:

$ rosrun sound_play say.py "Greetings Humans. Take me to your leader."

The default voice is called kal_diphone. To see all the English voices currently
installed on your system:

$ ls /usr/share/festival/voices/english

To get a list of all basic Festival voices available, run the following command:

$ sudo apt-cache search --names-only festvox-*

To install the festvox-don voice (for example), run the command:

$ sudo apt-get install festvox-don

And to test out your new voice, add the voice name to the end of the command line like
this:

 Speech Recognition and Synthesis - 136

http://wiki.ros.org/audio_common?distro=indigo
http://wiki.ros.org/sound_play
http://www.youtube.com/watch?v=10ysYZUX_jA

$ rosrun sound_play say.py "Welcome to the future" voice_don_diphone

There aren't a huge number of voices to choose from, but a few additional voices can be
installed as described here and demonstrated here. Here are the steps to get and use two
of those voices, one male and one female:

$ sudo apt-get install festlex-cmu
$ cd /usr/share/festival/voices/english/
$ sudo wget -c \

http://www.speech.cs.cmu.edu/cmu_arctic/packed/cmu_us_clb_arctic\
-0.95-release.tar.bz2

$ sudo wget -c \
http://www.speech.cs.cmu.edu/cmu_arctic/packed/cmu_us_bdl_arctic\
-0.95-release.tar.bz2

$ sudo tar jxfv cmu_us_clb_arctic-0.95-release.tar.bz2
$ sudo tar jxfv cmu_us_bdl_arctic-0.95-release.tar.bz2
$ sudo rm cmu_us_clb_arctic-0.95-release.tar.bz2
$ sudo rm cmu_us_bdl_arctic-0.95-release.tar.bz2
$ sudo ln -s cmu_us_clb_arctic cmu_us_clb_arctic_clunits
$ sudo ln -s cmu_us_bdl_arctic cmu_us_bdl_arctic_clunits

You can test these two voices like this:

$ rosrun sound_play say.py "I am speaking with a female C M U voice" \
voice_cmu_us_clb_arctic_clunits

$ rosrun sound_play say.py "I am speaking with a male C M U voice" \
voice_cmu_us_bdl_arctic_clunits

NOTE: If you don't hear the phrase on the first try, try re-running the command. Also,
remember that a sound_play node must already be running in another terminal.

You can also use sound_play to play wave files or a number of built-in sounds. To
play the R2D2 wave file in the rbx1_speech/sounds directory, use the command:

$ rosrun sound_play play.py `rospack find rbx1_speech`/sounds/R2D2a.wav

Note that the play.py script requires the absolute path to the wave file which is why
we used rospack find. You could also just type out the full path name.

To hear one of the built-in sounds, use the playbuiltin.py script together with a
number from 1 to 5. Turn down your volume for this one!

$ rosrun sound_play playbuiltin.py 4

 Speech Recognition and Synthesis - 137

http://festvox.org/voicedemos.html
http://ubuntuforums.org/showthread.php?t=677277

 9.5.1 Using Text-to-Speech within a ROS Node

So far we have only used the Festival voices from the command line. To see how to use
text-to-speech from within a ROS node, let's take a look at the talkback.py script that
can be found in the rbx1_speech/nodes directory.

Link to source: talkback.py

1. #!/usr/bin/env python
2.
3. import rospy
4. from std_msgs.msg import String
5. from sound_play.libsoundplay import SoundClient
6. import sys
7.
8. class TalkBack:
9. def __init__(self, script_path):
10. rospy.init_node('talkback')
11.
12. rospy.on_shutdown(self.cleanup)
13.
14. # Set the default TTS voice to use
15. self.voice = rospy.get_param("~voice", "voice_don_diphone")
16.
17. # Set the wave file path if used
18. self.wavepath = rospy.get_param("~wavepath", script_path +

"/../sounds")
19.
20. # Create the sound client object
21. self.soundhandle = SoundClient()
22.
23. # Wait a moment to let the client connect to the
24. # sound_play server
25. rospy.sleep(1)
26.
27. # Make sure any lingering sound_play processes are stopped.
28. self.soundhandle.stopAll()
29.
30. # Announce that we are ready for input
31. self.soundhandle.playWave(self.wavepath + "/R2D2a.wav")
32. rospy.sleep(1)
33. self.soundhandle.say("Ready", self.voice)
34.
35. rospy.loginfo("Say one of the navigation commands...")
36.
37. # Subscribe to the recognizer output and set the callback

function
38. rospy.Subscriber('/recognizer/output', String, self.talkback)
39.
40. def talkback(self, msg):
41. # Print the recognized words on the screen
42. rospy.loginfo(msg.data)
43.
44. # Speak the recognized words in the selected voice
45. self.soundhandle.say(msg.data, self.voice)
46.

 Speech Recognition and Synthesis - 138

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_speech/nodes/talkback.py

47. # Uncomment to play one of the built-in sounds
48. #rospy.sleep(2)
49. #self.soundhandle.play(5)
50.
51. # Uncomment to play a wave file
52. #rospy.sleep(2)
53. #self.soundhandle.playWave(self.wavepath + "/R2D2a.wav")
54.
55. def cleanup(self):
56. self.soundhandle.stopAll()
57. rospy.loginfo("Shutting down talkback node...")
58.
59. if __name__=="__main__":
60. try:
61. TalkBack(sys.path[0])
62. rospy.spin()
63. except rospy.ROSInterruptException:
64. rospy.loginfo("AMCL navigation test finished.")

Let's look at the key lines of the script.

5. from sound_play.libsoundplay import SoundClient

The script talks to the sound_play server using the SoundClient class which we
import from the sound_play library.

15. self.voice = rospy.get_param("~voice", "voice_don_diphone")

Set the Festival voice for text-to-speech. This can be overridden in the launch file.

18. self.wavepath = rospy.get_param("~wavepath", script_path +
"/../sounds")

Set the path for reading wave files. The sound_play client and server need the full
path to wave files so we read in the script_path from the sys.path[0] environment
variable (see the "__main__" block toward the end of the script.)

21. self.soundhandle = SoundClient()

Create a handle to the SoundClient() object.

30. self.soundhandle.playWave(self.wavepath + "/R2D2a.wav")
31. rospy.sleep(1)
32. self.soundhandle.say("Ready", self.voice)

Use the self.soundhandle object to play a short wave file (R2D2 sound) and speak
"Ready" in the default voice.

40. def talkback(self, msg):
41. # Print the recognized words on the screen

 Speech Recognition and Synthesis - 139

42. rospy.loginfo(msg.data)
43.
44. # Speak the recognized words in the selected voice
45. self.soundhandle.say(msg.data, self.voice)

This is our callback when receiving messages on the /recognizer/output topic. The
msg variable holds the text spoken by the user as recognized by the PocketSphinx node.
As you can see, we simply echo the recognized text back to the terminal as well as speak
it using the default voice.

To learn more about the SoundClient object, take a look at the libsoundplay API on
the ROS Wiki.

 9.5.2 Testing the talkback.py script

You can test the script using the talkback.launch file. The launch file first brings up
the PocketSphinx recognizer node and loads the navigation phrases. Then the
sound_play node is launched, followed by the talkback.py script. So first
terminate any sound_play node you might still have running, then run the command:

$ roslaunch rbx1_speech talkback.launch

Now try saying one of the voice navigation commands we used earlier such as "move
right" and you should hear it echoed back by the TTS voice.

You should now be able to write your own script that combines speech recognition and
text-to-speech. For example, see if you can figure out how to ask your robot the date
and time and get back the answer from the system clock.

 Speech Recognition and Synthesis - 140

http://www.ros.org/doc/api/sound_play/html/libsoundplay_8py_source.html

 10. ROBOT VISION

One might say that we are living in a golden age for computer vision. Webcams are
cheap and depth cameras like the Microsoft Kinect and Asus Xtion allow even a hobby
roboticist to work with 3D vision without breaking the bank on an expensive stereo
camera. But getting the pixels and depth values into your computer is just the
beginning. Using that data to extract useful information about the visual world is a
challenging mathematical problem. Fortunately for us, decades of research by
thousands of scientists has yielded powerful vision algorithms from simple color
matching to people detectors that we can use without having to start from scratch.

The overall goal of machine vision is to recognize the structure of the world behind the
changing pixel values. Individual pixels are in a continual state of flux due to changes
in lighting, viewing angle, object motion, occlusions and random noise. So computer
vision algorithms are designed to extract more stable features from these changing
values. Features might be corners, edges, blobs, colors, motion patches, etc. Once a set
of robust features can be extracted from an image or video stream, they can be tracked
or grouped together into larger patterns to support object detection and recognition.

 10.1 OpenCV, OpenNI and PCL
The three pillars of computer vision in the ROS community are OpenCV, OpenN I2 +
OpenKinect, and PCL. OpenCV is used for 2D image processing and machine learning.
OpenNI2 and OpenKinect provide drivers for depth cameras such as the Microsoft
Kinect and Asus Xtion Pro. And PCL, or Point Cloud Library, is the library of choice
for processing 3D point clouds. In this book, we will focus on OpenCV but we will also
provide a brief introduction to OpenNI/OpenKinect and PCL. (For those readers already
familiar with OpenCV and PCL, you might also be interested in Ecto, a vision
framework from Willow Garage that allows one to access both libraries through a
common interface.)

In this chapter we will learn how to:

• connect to a webcam or RGB-D (depth) camera using ROS

• use the ROS cv_bridge utility for processing ROS image streams with
OpenCV

• write ROS programs to detect faces, track keypoints using optical flow, and
follow objects of a particular color

• track a user's skeleton using an RGB-D camera and OpenNI/OpenKinect

• detect the nearest person using PCL

 Robot Vision - 141

http://plasmodic.github.com/ecto/
http://pointclouds.org/
https://github.com/OpenKinect
http://structure.io/openni
http://structure.io/openni
http://opencv.org/

 10.2 A Note about Camera Resolutions
Most video cameras used in robotics can be run at various resolutions, typically
160x120 (QQVGA), 320x240 (QVGA), 640x480 (VGA) and sometimes as high as
1280x960 (SXGA). It is often tempting to set the camera to the highest resolution
possible under the assumption that more detail is better. However, more pixels come at
the cost of more computation per frame. For example, each frame of a 1280x960 video
contains four times as many pixels as a 640x480 video. That means four times as many
operations per frame for most kinds of basic image processing. If your CPU and
graphics processor are already maxed out when processing a 640x480 video at 20
frames per second (fps), you will be lucky to get 5 fps for a 1280x960 video which is
often too slow for real-time vision processing on a mobile robot. Furthermore, all those
extra pixels are rarely needed for basic vision tasks such as color tracking or face
detection.

The default camera launch files distributed with ROS use a 640x480 resolution. If you
need lower or higher resolution, you can use rqt_reconfigure or the camera's launch
file to change resolution modes as we will illustrate below.

NOTE: Recall from earlier in the book that when using a Microsoft Kinect and the
freenect driver, 640x480 (VGA) is the lowest resolution available.

 10.3 Installing and Testing the ROS Camera Drivers
If you haven't done so already, install the ROS drivers necessary for your camera
following the instructions below.

 10.3.1 Installing the ROS OpenNI and OpenKinect (freenect) Drivers

To install the ROS openni and freenect drivers, run the command:

$ sudo apt-get install ros-indigo-openni-* ros-indigo-openni2-* \
ros-indigo-freenect-*

$ rospack profile

That's all there is to it!

 10.3.2 Installing a Webcam Driver

There are a number of possible ROS drivers available for webcams. The official driver
package is libuvc_camera but it requires root privileges or the addition of udev rules
for the specific vendor of your camera. You are certainly free to use libuvc_camera if
you prefer, especially if you are already doing so.

In previous revisions of this book, we used the excellent uvc_cam driver by Eric Perko.
Although uvc_cam still builds and runs under ROS Indigo, Eric is no longer
maintaining the package. So for this revision, we will switch to the Bosch usb_cam

 Robot Vision - 142

http://wiki.ros.org/usb_cam
http://wiki.ros.org/libuvc_camera

driver which appears to work well with a number of different internal and external web
cameras. Although there is an Ubuntu Debian package for the driver, we need the
newest source install which contains a recent enhancement. To install the driver from
source, run the following commands:

$ cd ~/catkin_ws/src
$ git clone https://github.com/bosch-ros-pkg/usb_cam.git
$ cd ~/catkin_ws
$ catkin_make
$ rospack profile

 10.3.3 Testing your Kinect or Xtion Camera

Once you have the openni or freenect drivers installed, make sure you can see the video
stream from the camera by using the ROS image_view package. For the Kinect or
Xtion, first plug the camera into any available USB port (and for the Kinect, make sure
it has power through its 12V adapter or other means), then run one of the following
commands:

For the Microsoft Kinect:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

If the connection to the camera is successful, you should see a series of diagnostic
messages that look something like this:

process[camera/camera_nodelet_manager-1]: started with pid [18070]
[INFO] [1420555647.969035762]: Initializing nodelet with 4 worker
threads.
process[camera/driver-2]: started with pid [18078]
Warning: USB events thread - failed to set priority. This might cause
loss of data...
process[camera/rectify_color-3]: started with pid [18112]
process[camera/depth_rectify_depth-4]: started with pid [18126]
etc.

NOTE: Don't worry if you see a few WARN messages regarding the use of default values.
These messages are normal and can be ignored.

Next, use the ROS image_view utility to view the RGB video stream. The color video
stream is published on the ROS topic /camera/rgb/image_raw. To view the video,
we therefore run:

 Robot Vision - 143

http://wiki.ros.org/image_view

$ rosrun image_view image_view image:=/camera/rgb/image_raw

A small camera display window should pop up and after a brief delay, you should see
the live video stream from your camera. Move something in front of the camera to
verify that the image updates appropriately. You can resize the image window using
your mouse like you would any other window. Once you are satisfied that you have a
live video, close the image_view window or type Ctrl-C in the terminal from which
you launched it.

To test the depth image from your camera, run image_view against the depth image
topic /camera/depth_registered/image_rect as follows:

$ rosrun image_view image_view
image:=/camera/depth_registered/image_rect

In this case, the grayscale values in the image represent depth, with darker values
indicating points closer to the camera and brighter pixels representing points further
away.

 10.3.4 Testing your USB Webcam

For a USB camera, we need to specify the video device we want to use. If your
computer has an internal camera (as many laptops do), it will likely be on
/dev/video0 while an externally attached USB camera will probably be on
/dev/video1. Be sure to Ctrl-C out of any openni or freenect launch files you might
have running from the previous section, then run the appropriate command below
depending on your webcam's video device:

$ roslaunch rbx1_vision usb_cam.launch video_device:=/dev/video0

or

$ roslaunch rbx1_vision usb_cam.launch video_device:=/dev/video1

If the connection is successful, you should see a stream of diagnostic messages
describing various camera settings. Don't worry if some of these messages indicate that
a control parameter could not be set.

Next, use the ROS image_view utility to view the basic video stream. We have set up
our camera launch files so that the color video stream is published on the ROS topic
/camera/rgb/image_raw. To view the video, we therefore run:

$ rosrun image_view image_view image:=/camera/rgb/image_raw

A small camera display window should pop up and, after a brief delay, you should see
the live video stream from your camera. Move something in front of the camera to

 Robot Vision - 144

verify that the image updates appropriately. You can resize the image window using
your mouse like you would any other window. Once you are satisfied that you have a
live video, close the image_view window or type Ctrl-C in the terminal from which
you launched it.

NOTE: By default, the usb_cam node publishes the image on the topic
/usb_cam/image_raw. Our launch file usb_cam.launch remaps the topic to
/camera/rgb/image_raw which is the topic used by the openni and freenect launch
files for depth cameras. This way we can use the same code below for either type of
camera.

 10.4 Installing OpenCV on Ubuntu Linux
The easiest way to install OpenCV under Ubuntu Linux is to get the Debian packages.
At the time of this writing, the latest version is 2.4 which can be installed with the
following command:

$ sudo apt-get install ros-indigo-vision-opencv libopencv-dev \
python-opencv

$ rospack profile

To check your installation, try the following commands:

$ python
>>> from cv2 import cv
>>> quit()

Assuming you do not get an import error, you should be ready to go and you can skip to
the next section. If instead you get an error of the form:

ImportError: No module named cv2

then either OpenCV is not install properly or your Python path is not set correctly. The
OpenCV Python library is stored in the file cv2.so. To verify that it is installed, run the
command:

$ locate cv2.so | grep python

You should get an output similar to:

/usr/lib/python2.7/dist-packages/cv2.so

 Robot Vision - 145

 10.5 ROS to OpenCV: The cv_bridge Package

With the camera drivers up and running, we now need a way to process ROS video
streams using OpenCV. ROS provides the cv_bridge package to convert between
ROS and OpenCV and image formats. The Python script cv_bridge.demo.py in the
rbx1_vision/nodes directory demonstrates how to use cv_bridge. Before we look
at the code, you can try it out as follows.

If you have a Kinect or Xtion, make sure you first run the appropriate driver if it is not
already running.

For the Microsoft Kinect:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

or, for a webcam:

$ roslaunch rbx1_vision usb_cam.launch video_device:=/dev/video0

(Change the video device is necessary.)

Now run the cv_bridge_demo.py node:

$ rosrun rbx1_vision cv_bridge_demo.py

After a brief delay, you should see two image windows appear. The window on the top
shows the live video after been converted to grayscale then sent through OpenCV blur
and edge filters. The window on the bottom shows a grayscale depth image where white
pixels are further away and dark gray pixels are closer to the camera. (This window will
remain blank if you are using an ordinary webcam.) To exit the demo, either type the
letter "q" with the mouse over one of the windows or Ctrl-C in the terminal where you
launched the demo script.

Let's now look at the code to see how it works.

Link to source: cv_bridge_demo.py

1. #!/usr/bin/env python
2.
3. import rospy
4. import sys
5. import cv2

 Robot Vision - 146

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_vision/nodes/cv_bridge_demo.py
http://wiki.ros.org/cv_bridge

6. import cv2.cv as cv
7. from sensor_msgs.msg import Image, CameraInfo
8. from cv_bridge import CvBridge, CvBridgeError
9. import numpy as np
10.
11. class cvBridgeDemo():
12. def __init__(self):
13. self.node_name = "cv_bridge_demo"
14.
15. rospy.init_node(self.node_name)
16.
17. # What we do during shutdown
18. rospy.on_shutdown(self.cleanup)
19.
20. # Create the OpenCV display window for the RGB image
21. self.cv_window_name = self.node_name
22. cv.NamedWindow(self.cv_window_name, cv.CV_WINDOW_NORMAL)
23. cv.MoveWindow(self.cv_window_name, 25, 75)
24.
25. # And one for the depth image
26. cv.NamedWindow("Depth Image", cv.CV_WINDOW_NORMAL)
27. cv.MoveWindow("Depth Image", 25, 350)
28.
29. # Create the cv_bridge object
30. self.bridge = CvBridge()
31.
32. # Subscribe to the camera image and depth topics and set
33. # the appropriate callbacks
34. self.image_sub = rospy.Subscriber("/camera/rgb/image_color",
35. Image, self.image_callback
36. self.depth_sub =
rospy.Subscriber("/camera/depth_registered/image_rect",
37. Image, self.depth_callback)
38.
39. rospy.loginfo("Waiting for image topics...")
40.
41. def image_callback(self, ros_image):
42. # Use cv_bridge() to convert the ROS image to OpenCV format
43. try:
44. frame = self.bridge.imgmsg_to_cv2(ros_image, "bgr8")
45. except CvBridgeError, e:
46. print e
47.
48. # Convert the image to a Numpy array since most cv2 functions
49. # require Numpy arrays.
50. frame = np.array(frame, dtype=np.uint8)
51.
52. # Process the frame using the process_image() function
53. display_image = self.process_image(frame)
54.
55. # Display the image.
56. cv2.imshow(self.node_name, display_image)
57.
58. # Process any keyboard commands
59. self.keystroke = cv.WaitKey(5)
60. if 32 <= self.keystroke and self.keystroke < 128:
61. cc = chr(self.keystroke).lower()

 Robot Vision - 147

62. if cc == 'q':
63. # The user has press the q key, so exit
64. rospy.signal_shutdown("User hit q key to quit.")
65.
66. def depth_callback(self, ros_image):
67. # Use cv_bridge() to convert the ROS image to OpenCV format
68. try:
69. # Use the default passthrough encoding for the depth image
70. depth_image = self.bridge.imgmsg_to_cv2(ros_image,
"passthrough")
71. except CvBridgeError, e:
72. print e
73.
74. # Convert the depth image to a Numpy array
75. depth_array = np.array(depth_image, dtype=np.float32)
76.
77. # Normalize the depth image to fall between 0 and 1
78. cv2.normalize(depth_array, depth_array, 0, 1, cv2.NORM_MINMAX)
79.
80. # Process the depth image
81. depth_display_image = self.process_depth_image(depth_array)
82.
83. # Display the result
84. cv2.imshow("Depth Image", depth_display_image)
85.
86. def process_image(self, frame):
87. # Convert to grayscale
88. grey = cv2.cvtColor(frame, cv.CV_BGR2GRAY)
89.
90. # Blur the image
91. grey = cv2.blur(grey, (7, 7))
92.
93. # Compute edges using the Canny edge filter
94. edges = cv2.Canny(grey, 15.0, 30.0)
95.
96. return edges
97.
98. def process_depth_image(self, frame):
99. # Just return the raw image for this demo
100. return frame
101.
102. def cleanup(self):
103. print "Shutting down vision node."
104. cv2.destroyAllWindows()
105.
106. def main(args):
107. try:
108. cvBridgeDemo()
109. rospy.spin()
110. except KeyboardInterrupt:
111. print "Shutting down vision node."
112. cv.DestroyAllWindows()
113.
114. if __name__ == '__main__':
115. main(sys.argv)

 Robot Vision - 148

Let's take a look at the key lines in this script.

5. import cv2
6. import cv2.cv as cv
7. from sensor_msgs.msg import Image, CameraInfo
8. from cv_bridge import CvBridge, CvBridgeError
9. import numpy as np

All of our OpenCV scripts will import the cv2 library as well as the older pre-cv2
functions found in cv2.cv. We will also usually need the ROS message types Image
and CameraInfo from the sensor_msgs package. For a node that needs to convert
ROS image format to OpenCV, we need the CvBridge and CvBridgeError classes
from the ROS cv_bridge package. Finally, OpenCV does most of its image
processing using Numpy arrays, so we almost always need access to the Python numpy
module.

20. # Create the OpenCV display window for the RGB image
21. self.cv_window_name = self.node_name
22. cv.NamedWindow(self.cv_window_name, cv.CV_WINDOW_NORMAL)
23. cv.MoveWindow(self.cv_window_name, 25, 75)
24.
25. # And one for the depth image
26. cv.NamedWindow("Depth Image", cv.CV_WINDOW_NORMAL)
27. cv.MoveWindow("Depth Image", 25, 350)

If you are already familiar with OpenCV, you'll recognize these statements that create
named display windows for monitoring video streams; in this case, one window for the
regular RGB video and one for the depth image if we are using an RGB-D camera. We
also move the windows so that the depth window lies below the RGB window.

30. self.bridge = CvBridge()

This is how we create the CvBridge object to be used later to convert ROS images to
OpenCV format.

34. self.image_sub = rospy.Subscriber("/camera/rgb/image_color",
35. Image, self.image_callback)
36. self.depth_sub =

rospy.Subscriber("/camera/depth_registered/image_rect",
37. Image, self.depth_callback)

These are the two key subscribers, one for the RGB image stream and one for the depth
image. Normally we would not hard code the topic names so that they can be remapped
in the appropriate launch file but for the demo we'll use the default topic names used by
the openni node. As with all subscribers, we assign the callback functions for doing
the actual work on the images.

41. def image_callback(self, ros_image):
42. # Use cv_bridge() to convert the ROS image to OpenCV format
43. try:

 Robot Vision - 149

44. frame = self.bridge.imgmsg_to_cv2(ros_image, "bgr8")
45. except CvBridgeError, e:
46. print e

This is the start of our callback function for the RGB image. ROS provides the image as
the first argument which we have called ros_image. The try-except block then uses
the imgmsg_to_cv2 function to convert the image to OpenCV format assuming a
blue/green/red 8-bit conversion.

50. frame = np.array(frame, dtype=np.uint8)
51.
52. # Process the frame using the process_image() function
53. display_image = self.process_image(frame)
54.
55. # Display the image.
56. cv2.imshow(self.node_name, display_image)

Most OpenCV functions require the image to be converted to a Numpy array so we
make the conversion here. Then we send the image array to the process_image()
function which we will describe below. The result is a new image called
display_image which is displayed in our previously-created display window using the
OpenCV imshow() function.

58. # Process any keyboard commands
59. self.keystroke = cv.WaitKey(5)
60. if 32 <= self.keystroke and self.keystroke < 128:
61. cc = chr(self.keystroke).lower()
62. if cc == 'q':
63. # The user has press the q key, so exit
64. rospy.signal_shutdown("User hit q key to quit.")

Finally, we look for keyboard input from the user. In this case, we only look for a key
press of the letter "q" which signals that we want to terminate the script.

64. def depth_callback(self, ros_image):
65. # Use cv_bridge() to convert the ROS image to OpenCV format
66. try:
67. # Use the default passthrough encoding for the depth image
68. depth_image = self.bridge.imgmsg_to_cv2(ros_image,

"passthrough")
69. except CvBridgeError, e:
70. print e

The depth callback begins similar to the image callback described earlier. The first
difference we notice is that we use the default "passthrough" encoding instead of the 3-
channel 8 bit color conversion used for the RGB image.

76. depth_array = np.array(depth_image, dtype=np.float32)
77.
78. # Normalize the depth image to fall between 0 and 1

 Robot Vision - 150

79. cv2.normalize(depth_array, depth_array, 0, 1, cv2.NORM_MINMAX)

Since OpenCV stores images as Numpy arrays, we convert the raw depth image to a
float32 array. Then we normalize the array to the interval [0, 1] since OpenCV's
imshow() function can display grayscale images when the pixel values lie between 0
and 1.

82. depth_display_image = self.process_depth_image(depth_array)
83.
84. # Display the result
85. cv2.imshow("Depth Image", depth_display_image)

The depth array is sent to the process_depth_image() function for further
processing (if desired) and the result is displayed in the depth image window created
earlier.

87. def process_image(self, frame):
88. # Convert to grayscale
89. grey = cv2.cvtColor(frame, cv.CV_BGR2GRAY)
90.
91. # Blur the image
92. grey = cv2.blur(grey, (7, 7))
93.
94. # Compute edges using the Canny edge filter
95. edges = cv2.Canny(grey, 15.0, 30.0)
96.
97. return edges

Recall that the image callback function in turn called the process_image() function
in case we want to manipulate the image before displaying it back to the user. For the
purposes of this demonstration, here we convert the image to grayscale, blur it using a
Gaussian filter with a variance of 7 pixels in the x and y dimensions, then compute the
Canny edges over the result. The edge image is returned to the callback where it is
displayed to the user.

99. def process_depth_image(self, frame):
100. # Just return the raw image for this demo
101. return frame

In this demo, we do nothing with the depth image and just return the original frame.
Feel free to add your own set of OpenCV filters here.

 Robot Vision - 151

 10.6 The ros2opencv2.py Utility

Many of our ROS vision nodes will share a common set of functions such as converting
from ROS to OpenCV image format using cv_bridge, drawing text on the screen,
allowing the user to selection regions with the mouse and so on. We will therefore begin
by programming a script that takes care of these common tasks and can be included in
other nodes.

The file ros2opencv2.py found in the rbx1_vision/src/rbx1_vision
subdirectory performs the following tasks:

• Subscribes to the raw image topic that is published by the camera driver. The
format of this image is defined by the ROS sensor_msgs/Image message
type.

• Creates an instance of the ROS cv_bridge utility that converts the ROS image
format into OpenCV format.

• Creates an OpenCV display window for monitoring the image.

• Creates a callback for processing mouse clicks by the user; e.g., selecting a
region to track.

• Creates a process_image() function that will do all the work of processing
the image and returning the results.

• Creates a process_depth_image() function for processing a depth image.

• Publishes a region of interest (ROI) on the /roi topic that contains the pixels or
keypoints that are returned by process_image().

• Stores the currently detected target's location in the global variable
self.detect_box.

• Stores the currently tracked target's location in the global variable
self.track_box.

Other ROS nodes that we develop below will override the functions process_image()
and/or process_depth_image() and detect specific features such as faces or colors
as well as track keypoints found within the detected region.

Most of the code in this script is fairly straightforward and simply expands on the
cv_bridge_demo.py script we saw earlier so we won't run through it line-by-line.
(The script is heavily commented and should give you a good idea what each part does.
You can also view it online here:

Link to source: ros2opencv2.py

 Robot Vision - 152

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_vision/src/rbx1_vision/ros2opencv2.py
http://wiki.ros.org/cv_bridge

But before moving on to more complex vision processing, let's test the
ros2opencv2.py node on its own. With your camera's driver up and running, move
to another terminal and run the ros2opencv2.launch file as follows:

$ roslaunch rbx1_vision ros2opencv2.launch

After a brief pause, you should see the OpenCV display window appear. By default, you
will also see the processing speed (CPS = cycles per second) and the image resolution.
(Cycles per second is the reciprocal of the time it take to process a single frame. It is
therefore an estimate of the fastest frame rate we could process.) You can resize the
window by dragging one of the corners. If you click on a point in the image, a small
yellow circle or dot will appear on the image in that location. If you drag across the
image, a selection rectangle will be drawn in yellow until you release the mouse at
which point it turns green and remains on the image. The green box represents your
region of interest (ROI). To see the coordinates of the ROI, open another terminal and
view the /roi topic:

$ rostopic echo /roi

Try drawing different rectangles on the image window and you will see the values of the
ROI fields change accordingly. The meaning of these fields are:

• x_offset: x-coordinate of the upper left corner of the region

• y_offset: y-coordinate of the upper left corner of the region

• height: height of the region in pixels

• width : width of the region in pixels

• do_rectify: boolean value (True or False). Usually False which means
that the ROI is defined with respect to the whole image. However, if True then
the ROI is defined within a sub-window of the image.

Note that the offset coordinates are relative to the upper left corner of the image window
which has coordinates (0, 0). Positive x values increase to the right while y values
increase downward. The largest x value is width–1 and the largest y value is height–
1.

 Robot Vision - 153

 10.7 Processing Recorded Video
The rbx1_vision package also contains a node called video2ros.py for converting
recorded video files into a ROS video stream so that you can use it instead of a live
camera. To test the node, terminate any camera drivers you may have running in
another terminal. Also terminate the ros2opencv2.py node if it is still running. Then
run the following commands:

$ rosrun rbx1_vision cv_bridge_demo.py

[INFO] [WallTime: 1362334257.368930] Waiting for image topics...

$ roslaunch rbx1_vision video2ros.launch input:=`rospack find \
rbx1_vision`/videos/hide2.mp4

(The test video comes courtesy of the Honda/UCSD video database.)

You should see two active video display windows. (The depth video window will remain
blank.) The display window called "Video Playback" allows you to control the recorded
video: click anywhere on the window to bring it to the foreground, then hit the Space
Bar to pause/continue the video and hit the "r" key to restart the video from the
beginning. The other window displays the output from our cv_bridge_demo.py node
which, as you will recall, computes the edge map of the input.

The video2ros.py script is heavily commented and fairly self-explanatory. You can
find the source online at the following link:

Link to source: video2ros.py

Now that our basic vision nodes are working, we are ready to try out a number of
OpenCV's vision processing functions.

 10.8 OpenCV: The Open Source Computer Vision Library
OpenCV was developed in 1999 by Intel to test CPU intensive applications and the code
was released to the public in 2000. In 2008, primary development was taken over by
Willow Garage. OpenCV is not as easy to use as some GUI-based vision packages such
as RoboRealm for Windows. However, the functions available in OpenCV represent
many state-of-the-art vision algorithms as well as methods for machine learning such as
Support Vector Machines, artificial neural networks and Random Trees.

OpenCV can be run as a standalone library on Linux, Windows, MacOS X and Android.
For those new to OpenCV, please note that we will only touch on a small fraction of
OpenCV's capabilities. For a complete introduction to the library and all its features,
please refer to Learning OpenCV by Gary Bradski and Adrian Kaehler. You can also
refer to the complete online manual including a number of introductory tutorials.

 Robot Vision - 154

http://www.roborealm.com/
http://www.opencv.org/
https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_vision/nodes/video2ros.py
http://docs.opencv.org/
http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
http://vision.ucsd.edu/~leekc/HondaUCSDVideoDatabase/HondaUCSD.html

 10.8.1 Face Detection

OpenCV makes it relatively easy to detect faces in an image or video stream. And since
this is a popular request for those interested in robot vision, it is a good place to start.

OpenCV's face detector uses a Cascade Classifier with Haar-like features. You can learn
more about cascade classifiers and Haar features at the provided link. For now, all we
need to understand is that the OpenCV cascade classifier can be initialized with different
XML files that define the object we want to detect. We will use two of these files to
detect a face when seen directly from the front. Another file will allow us to detect a face
when seen from the side (profile view). These files were created by training machine
learning algorithms on hundreds or even thousands of images that either contain a face
or do not. The learning algorithm is then able to extract the features that characterize
faces and the results are stored in XML format. (Additional cascade files have been
trained for detecting eyes and even whole people.)

A few of these XML files have been copied from the OpenCV source tree to the
rbx1_vision/data/haar_detectors directory and we will use them in our scripts
below.

Our ROS face detector node is located in the file face_detector.py in the
rbx1_vision/src/rbx1_vision directory. Before we look at the code, let's give it a
try.

To run the detector, first launch the appropriate video driver:

For the Microsoft Kinect:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

Or for a webcam:

$ roslaunch rbx1_vision uvc_cam.launch device:=/dev/video0

(Change the video device if necessary.)

Now launch the face detector node:

$ roslaunch rbx1_vision face_detector.launch

 Robot Vision - 155

http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html

If you position your face within the frame of the camera, you should see a green box
around your face when the cascade detector finds it. When the detector loses your face,
the box disappears and you will see the message "LOST FACE!" on the screen. Try
turning your face from side to side and up and down. Also try moving your hand in
front of your face. The "Hit Rate" number also displayed on the screen is the number of
frames in which your face was detected divided by the total number of frames so far.

As you can see, the detector is pretty good, but it has limitations–the detector loses your
face when you turn your head too far from either a frontal or side view. Nonetheless,
since people (and robots) tend to interact while facing each other, the detector can get
the job done is many situations.

Let's now take a look the code.

Link to source: face_detector.py

1. #!/usr/bin/env python
2.
3. import rospy
4. import cv2
5. import cv2.cv as cv
6. from rbx1_vision.ros2opencv2 import ROS2OpenCV2
7.
8. class FaceDetector(ROS2OpenCV2):
9. def __init__(self, node_name):
10. super(FaceDetector, self).__init__(node_name)
11.
12. # Get the paths to the cascade XML files for the Haar detectors.
13. # These are set in the launch file.
14. cascade_1 = rospy.get_param("~cascade_1", "")
15. cascade_2 = rospy.get_param("~cascade_2", "")
16. cascade_3 = rospy.get_param("~cascade_3", "")
17.
18. # Initialize the Haar detectors using the cascade files
19. self.cascade_1 = cv2.CascadeClassifier(cascade_1)
20. self.cascade_2 = cv2.CascadeClassifier(cascade_2)
21. self.cascade_3 = cv2.CascadeClassifier(cascade_3)
22.
23. # Set cascade parameters that tend to work well for faces.
24. # Can be overridden in launch file
25. self.haar_minSize = rospy.get_param("~haar_minSize", (20, 20))
26. self.haar_maxSize = rospy.get_param("~haar_maxSize", (150, 150))
27. self.haar_scaleFactor = rospy.get_param("~haar_scaleFactor", 1.3)
28. self.haar_minNeighbors = rospy.get_param("~haar_minNeighbors", 1)
29. self.haar_flags = rospy.get_param("~haar_flags",
cv.CV_HAAR_DO_CANNY_PRUNING)
30.
31. # Store all parameters together for passing to the detector
32. self.haar_params = dict(minSize = self.haar_minSize,
33. maxSize = self.haar_maxSize,
34. scaleFactor = self.haar_scaleFactor,
35. minNeighbors = self.haar_minNeighbors,
36. flags = self.haar_flags)

 Robot Vision - 156

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_vision/src/rbx1_vision/face_detector.py

37.
38. # Do we should text on the display?
39. self.show_text = rospy.get_param("~show_text", True)
40.
41. # Initialize the detection box
42. self.detect_box = None
43.
44. # Track the number of hits and misses
45. self.hits = 0
46. self.misses = 0
47. self.hit_rate = 0
48.
49. def process_image(self, cv_image):
50. # Create a grayscale version of the image
51. grey = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
52.
53. # Equalize the histogram to reduce lighting effects
54. grey = cv2.equalizeHist(grey)
55.
56. # Attempt to detect a face
57. self.detect_box = self.detect_face(grey)
58.
59. # Did we find one?
60. if self.detect_box is not None:
61. self.hits += 1
62. else:
63. self.misses += 1
64.
65. # Keep tabs on the hit rate so far
66. self.hit_rate = float(self.hits) / (self.hits + self.misses)
67.
68. return cv_image
69.
70. def detect_face(self, input_image):
71. # First check one of the frontal templates
72. if self.cascade_1:
73. faces = self.cascade_1.detectMultiScale(input_image,
**self.haar_params)
74.
75. # If that fails, check the profile template
76. if len(faces) == 0 and self.cascade_3:
77. faces =
self.cascade_3.detectMultiScale(input_image,**self.haar_params)
78.
79. # If that also fails, check a the other frontal template
80. if len(faces) == 0 and self.cascade_2:
81. faces = self.cascade_2.detectMultiScale(input_image,
**self.haar_params)
82.
83. # The faces variable holds a list of face boxes.
84. # If one or more faces are detected, return the first one.
85. if len(faces) > 0:
86. face_box = faces[0]
87. else:
88. # If no faces were detected, print the "LOST FACE" message on
the screen
89. if self.show_text:

 Robot Vision - 157

90. font_face = cv2.FONT_HERSHEY_SIMPLEX
91. font_scale = 0.5
92. cv2.putText(self.marker_image, "LOST FACE!",
93. (int(self.frame_size[0] * 0.65),
int(self.frame_size[1] * 0.9)),
94. font_face, font_scale, cv.RGB(255, 50, 50))
95. face_box = None
96.
97. # Display the hit rate so far
98. if self.show_text:
99. font_face = cv2.FONT_HERSHEY_SIMPLEX
100. font_scale = 0.5
101. cv2.putText(self.marker_image, "Hit Rate: " +
102. str(trunc(self.hit_rate, 2)),
103. (20, int(self.frame_size[1] * 0.9)),
104. font_face, font_scale, cv.RGB(255, 255, 0))
105.
106. return face_box
107.
108. def trunc(f, n):
109. '''Truncates/pads a float f to n decimal places without rounding'''
110. slen = len('%.*f' % (n, f))
111. return float(str(f)[:slen])
112.
113. if __name__ == '__main__':
114. try:
115. node_name = "face_detector"
116. FaceDetector(node_name)
117. rospy.spin()
118. except KeyboardInterrupt:
119. print "Shutting down face detector node."
120. cv2.destroyAllWindows()

Let's take a look at the key lines of the script.

6. from rbx1_vision.ros2opencv2 import ROS2OpenCV2
7.
8. class FaceDetector(ROS2OpenCV2):
9. def __init__(self, node_name):
10. super(FaceDetector, self).__init__(node_name)

First we must import the ROS2OpenCV2 class from the ros2opencv2.py script that we
developed earlier. The face detector node is then defined as a class that extends the
ROS2OpenCV2 class. In this way it inherits all the housekeeping functions and variables
from the ros2opencv2.py script such as user selections with the mouse, displaying a
box around the ROI and so on. Whenever we extend a class, we have to initialize the
parent class as well which is done with Python's super() function as shown in the last
line above.

14. cascade_1 = rospy.get_param("~cascade_1", "")
15. cascade_2 = rospy.get_param("~cascade_2", "")
16. cascade_3 = rospy.get_param("~cascade_3", "")

 Robot Vision - 158

These three parameters store the path names to the XML files we want to use for the
Haar cascade detector. The paths are specified in the launch file
rbx1_vision/launch/face_detector.launch. The XML files themselves are
not included in the OpenCV or ROS Indigo Debian packages so they were copied from
the OpenCV source to the ros-by-example repository and can be found in the
directory rbx1_vision/data/haar_detectors.

19. self.cascade_1 = cv2.CascadeClassifier(cascade_1)
20. self.cascade_2 = cv2.CascadeClassifier(cascade_2)
21. self.cascade_3 = cv2.CascadeClassifier(cascade_3)

These three lines create the OpenCV cascade classifiers based on the three XML files,
two for frontal face views and one for side profiles.

25. self.haar_minSize = rospy.get_param("~haar_minSize", (20, 20))
26. self.haar_maxSize = rospy.get_param("~haar_maxSize", (150, 150))
27. self.haar_scaleFactor = rospy.get_param("~haar_scaleFactor", 1.3)
28. self.haar_minNeighbors = rospy.get_param("~haar_minNeighbors", 1)
29. self.haar_flags = rospy.get_param("~haar_flags",

cv.CV_HAAR_DO_CANNY_PRUNING)
30.

The cascade classifiers require a number a parameters that determine their speed and the
probability of correctly detecting a target. In particular, the minSize and maxSize
parameters (specified in x and y pixel dimensions) set the smallest and largest target
(faces in our case) that will be accepted. The scaleFactor parameter acts as a
multiplier to change the image size as the detector runs from one scale to the next. The
smaller this number (it must be > 1.0), the finer the scale pyramid used to scan for faces
but the longer it will take on each frame. You can read up on the other parameters in the
OpenCV documentation.

32. self.haar_params = dict(minSize = self.haar_minSize,
33. maxSize = self.haar_maxSize,
34. scaleFactor = self.haar_scaleFactor,
35. minNeighbors = self.haar_minNeighbors,
36. flags = self.haar_flags)

Here we stick all the parameters into a Python dictionary variable for easy reference
later in the script.

49. def process_image(self, cv_image):
50. # Create a grayscale version of the image
51. grey = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
52.
53. # Equalize the histogram to reduce lighting effects
54. grey = cv2.equalizeHist(grey)

 Robot Vision - 159

http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html?highlight=cascade#cv2.CascadeClassifier

Since the FaceDetector class extends the ROS2OpenCV2 class, the
process_image() function overrides the one defined in ros2opencv2.py. In this
case, we begin by converting the image to grayscale. Many feature detection algorithms
run on a grayscale version of the image and this includes the Haar cascade detector. We
then equalize the histogram of the grayscale image. Histogram equalization is a
standard technique for reducing the effects of changes in overall lighting.

56. self.detect_box = self.detect_face(grey)
57.
58. # Did we find one?
59. if self.detect_box is not None:
60. self.hits += 1
61. else:
62. self.misses += 1
63.
64. # Keep tabs on the hit rate so far
65. self.hit_rate = float(self.hits) / (self.hits + self.misses)

Here we send the pre-processed image to the detect_face() function which we will
describe below. If a face is detected, the bounding box is returned to the variable
self.detect_box which in turn is drawn on the image by the ROS2OpenCV2 base
class.

If a face is detected in this image frame, we increment the number of hits by 1,
otherwise we add to the number of misses. The running hit rate is then updated
accordingly.

70. def detect_face(self, input_image):
71. # First check one of the frontal templates
72. if self.cascade_1:
73. faces = self.cascade_1.detectMultiScale(input_image,

**self.haar_params)

Here we start the heart of the script—the detect_face() function. We run the input
image through the cascade detector using the first XML template. The
detectMultiScale() function searches the image across multiple scales and returns
any faces as a list of OpenCV rectangles in the form (x, y, w, h) where (x, y) are the
coordinates of the upper left corner of the box and (w, h) are the width and height in
pixels.

76. if len(faces) == 0 and self.cascade_3:
77. faces =
self.cascade_3.detectMultiScale(input_image,**self.haar_params)
78.
79. # If that also fails, check a the other frontal template
80. if len(faces) == 0 and self.cascade_2:
81. faces = self.cascade_2.detectMultiScale(input_image,
**self.haar_params)

 Robot Vision - 160

If a face is not detected using the first cascade, we try a second detector and then a third
if necessary.

85. if len(faces) > 0:
86. face_box = faces[0]

If one or more faces are found, the faces variable will hold a list of face boxes
(cvRect). We will only track the first face found so we set the face_box variable to
faces[0]. If no faces are found in this frame, we set face_box to None. Either way,
the result is returned to the calling function process_image().

That completes the script. The process_image() and detect_face() functions are
applied to every frame of the video. The result is that the detect box tracks your face as
long as it can be found in the current frame. Don't forget that you can monitor the /roi
topic to see the coordinates of the tracked face:

$ rostopic echo /roi

Tracking an object by running a detector over and over across the entire image is
computationally expensive and can easily lose track of the object on any given frame. In
the next two sections, we will show how to quickly detect and track a set of keypoints
for any given region of an image. We will then combine the tracker with the face
detector to make a better face tracker.

 10.8.2 Keypoint Detection using GoodFeaturesToTrack

The Haar face detector scans an image for a specific type of object. A different strategy
involves looking for smaller image features that are fairly easy to track from one frame
to the next. These features are called keypoints or interest points. Keypoints tend to
be regions where there are large changes in intensity in more than one direction.
Consider for example the images shown below:

 Robot Vision - 161

The image on the left shows the pixels from the left eye region from the image on the
right. The square on the left indicates the region where the intensity changes the most in
all directions. The center of such a region is a keypoint of the image and it is likely to
be re-detected in the same location of the face regardless of its orientation or scale.

OpenCV 2.4 includes a number of keypoint
detectors including goodFeaturesToTrack(),
cornerHarris() and SURF(). We will use
goodFeaturesToTrack() for our
programming example. The image on the right
illustrates the keypoints returned by
goodFeaturesToTrack().

As you can see, keypoints are concentrated in
areas where the intensity gradients are largest.
Conversely, areas of the painting which are
fairly homogeneous have few or no keypoints.
(To reproduce this image or find the keypoints
in other images, take a look at the Python
program called script_good_features.py
in the rbx1_vision/scripts directory.)

We are now ready to detect keypoints on a live
video stream. Our ROS node is called
good_features.py and it can be found in the
rbx1_vision/src/rbx1_vision
subdirectory. The corresponding launch file is good_features.launch in the launch
subdirectory. The launch file contains a number of parameters that affect the keypoints
returned by goodFeaturesToTrack():

• maxCorners: Puts an upper limit on how many keypoints are returned.

• qualityLevel: Reflects how strong a corner-like feature must be before it
counts as a keypoint. Setting lower values returns more points.

• minDistance: The minimum number of pixels between keypoints.

• blockSize: The size of the neighborhood around a pixel used to compute
whether or not there is a corner there.

• useHarrisDetector: Whether or not to use the original Harris corner detector
or a minimum eigenvalue criterion.

• k: A free parameter for the Harris corner detector.

 Robot Vision - 162

http://docs.opencv.org/modules/nonfree/doc/feature_detection.html?highlight=surf#cv2.SURF
http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=cornerharris#cv2.cornerHarris
http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=goodfeaturestotrack#cv2.goodFeaturesToTrack

The good_features.launch file sets reasonable defaults for these parameters but try
experimenting with them to see their effects.

To run the detector, first make sure the driver for your camera is up and running as
described previously. Terminate the face detector launch file if you still have it running
from the previous section, then run the command:

$ roslaunch rbx1_vision good_features.launch

When the video appears, draw a rectangle with your mouse around some object in the
image. A rectangle should indicate the selected region and you should see a number of
green dots indicating the keypoints found in that region by goodFeaturesToTrack().
Try drawing a box around other areas of the image and see if you can guess where the
keypoints will appear. Note that we are not yet tracking these keypoints—we are simply
computing them for whatever patch of the scene lies within your select box.

You will probably notice that some of the keypoints jiggle around a bit even on a
stationary part of the scene. This is due to noise in the video. Strong keypoints are less
susceptible to noise as you can see by drawing your test box around the corner of a table
or other high contrast point.

Let's now look at the code.

Link to source: good_features.py

1. #!/usr/bin/env python
2.
3. import rospy
4. import cv2
5. import cv2.cv as cv
6. from rbx1_vision.ros2opencv2 import ROS2OpenCV2
7. import numpy as np
8.
9. class GoodFeatures(ROS2OpenCV2):
10. def __init__(self, node_name):
11. super(GoodFeatures, self).__init__(node_name)
12.
13. # Do we show text on the display?
14. self.show_text = rospy.get_param("~show_text", True)
15.
16. # How big should the feature points be (in pixels)?
17. self.feature_size = rospy.get_param("~feature_size", 1)
18.
19. # Good features parameters
20. self.gf_maxCorners = rospy.get_param("~gf_maxCorners", 200)
21. self.gf_qualityLevel = rospy.get_param("~gf_qualityLevel", 0.05)
22. self.gf_minDistance = rospy.get_param("~gf_minDistance", 7)
23. self.gf_blockSize = rospy.get_param("~gf_blockSize", 10)
24. self.gf_useHarrisDetector =
rospy.get_param("~gf_useHarrisDetector", True)

 Robot Vision - 163

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_vision/src/rbx1_vision/good_features.py

25. self.gf_k = rospy.get_param("~gf_k", 0.04)
26.
27. # Store all parameters together for passing to the detector
28. self.gf_params = dict(maxCorners = self.gf_maxCorners,
29. qualityLevel = self.gf_qualityLevel,
30. minDistance = self.gf_minDistance,
31. blockSize = self.gf_blockSize,
32. useHarrisDetector = self.gf_useHarrisDetector,
33. k = self.gf_k)
34.
35. # Initialize key variables
36. self.keypoints = list()
37. self.detect_box = None
38. self.mask = None
39.
40. def process_image(self, cv_image):
41. # If the user has not selected a region, just return the image
42. if not self.detect_box:
43. return cv_image
44.
45. # Create a grayscale version of the image
46. grey = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
47.
48. # Equalize the histogram to reduce lighting effects
49. grey = cv2.equalizeHist(grey)
50.
51. # Get the good feature keypoints in the selected region
52. keypoints = self.get_keypoints(grey, self.detect_box)
53.
54. # If we have points, display them
55. if keypoints is not None and len(keypoints) > 0:
56. for x, y in keypoints:
57. cv2.circle(self.marker_image, (x, y), self.feature_size,
(0, 255, 0, 0), cv.CV_FILLED, 8, 0)
58.
59. # Process any special keyboard commands
60. if 32 <= self.keystroke and self.keystroke < 128:
61. cc = chr(self.keystroke).lower()
62. if cc == 'c':
63. # Clear the current keypoints
64. keypoints = list()
65. self.detect_box = None
66.
67. return cv_image
68.
69. def get_keypoints(self, input_image, detect_box):
70. # Initialize the mask with all black pixels
71. self.mask = np.zeros_like(input_image)
72.
73. # Get the coordinates and dimensions of the detect_box
74. try:
75. x, y, w, h = detect_box
76. except:
77. return None
78.
79. # Set the selected rectangle within the mask to white

 Robot Vision - 164

80. self.mask[y:y+h, x:x+w] = 255
81.
82. # Compute the good feature keypoints within the selected region
83. keypoints = list()
84. kp = cv2.goodFeaturesToTrack(input_image, mask = self.mask,
**self.gf_params)
85. if kp is not None and len(kp) > 0:
86. for x, y in np.float32(kp).reshape(-1, 2):
87. keypoints.append((x, y))
88.
89. return keypoints
90.
91. if __name__ == '__main__':
92. try:
93. node_name = "good_features"
94. GoodFeatures(node_name)
95. rospy.spin()
96. except KeyboardInterrupt:
97. print "Shutting down the Good Features node."
98. cv.DestroyAllWindows()

Overall, we see that the script has the same structure as the face_detector.py node.
We initialize a GoodFeatures class that extends the ROS2OpenCV2 class. We then
define a process_image() function that does most the work. Let's examine the more
important lines of the script:

20. self.gf_maxCorners = rospy.get_param("~gf_maxCorners", 200)
21. self.gf_qualityLevel = rospy.get_param("~gf_qualityLevel", 0.02)
22. self.gf_minDistance = rospy.get_param("~gf_minDistance", 7)
23. self.gf_blockSize = rospy.get_param("~gf_blockSize", 10)
24. self.gf_useHarrisDetector =

rospy.get_param("~gf_useHarrisDetector", True)
25. self.gf_k = rospy.get_param("~gf_k", 0.04)

As with the Haar detector, the Good Features detector takes a number of parameters to
fine tune its behavior. Probably the two most important parameters above are
qualityLevel and minDistance. Smaller values for qualityLevel will result in a
great number of feature points, but a number of them will be due to noise and not very
consistent from one image frame to the next. Setting a higher value that is too high will
yield only a few keypoints at the very strongest corners. Something on the order of 0.02
or so seems to strike a good balance for videos of natural scenes.

The minDistance parameter specifies the smallest distance in pixels we will allow
between keypoints. The larger this value, the further apart keypoints must be resulting
in fewer of them.

40. def process_image(self, cv_image):
41. # If the user has not selected a region, just return the image
42. if not self.detect_box:
43. return cv_image
44.

 Robot Vision - 165

45. # Create a grayscale version of the image
46. grey = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
47.
48. # Equalize the histogram to reduce lighting effects
49. grey = cv2.equalizeHist(grey)
50.
51. # Get the good feature keypoints in the selected region
52. keypoints = self.get_keypoints(grey, self.detect_box)

As with the face detector node, we define a process_image() function which first
converts the image to grayscale and equalizes the histogram. The resulting image is
passed to the get_keypoints() function which does all the work of finding the Good
Features.

69. def get_keypoints(self, input_image, detect_box):
70. # Initialize the mask with all black pixels
71. self.mask = np.zeros_like(input_image)
72.
73. # Get the coordinates and dimensions of the detect_box
74. try:
75. x, y, w, h = detect_box
76. except:
77. return None
78.
79. # Set the selected rectangle within the mask to white
80. self.mask[y:y+h, x:x+w] = 255
81.
82. # Compute the good feature keypoints within the selected region
83. keypoints = list()
84. kp = cv2.goodFeaturesToTrack(input_image, mask = self.mask,

**self.gf_params)
85. if kp is not None and len(kp) > 0:
86. for x, y in np.float32(kp).reshape(-1, 2):
87. keypoints.append((x, y))
88.
89. return keypoints

The get_keypoints() function implements OpenCV's GoodFeaturesToTrack
detector. Since we only want the keypoints within the box selected by the user
(detect_box) we mask the image with the box by starting with a mask of all zeros
(black) and then filling in the detect box with all white pixels (255). The output from
the cv2.goodFeaturesToTrack() function is a vector of keypoint coordinates. So
we use a little numpy reshaping to turn it into a Python list of (x,y) pairs. The resulting
list is returned to the process_image() function where the points are drawn on the
image.

 10.8.3 Tracking Keypoints using Optical Flow

Now that we can detect keypoints in an image, we can use them to track the underlying
object from one video frame to the next by using OpenCV's Lucas-Kanade optical flow
function calcOpticalFlowPyrLK(). A detailed explanation of the Lucas-Kanade
method can be found on Wikipedia. The basic idea is as follows.

 Robot Vision - 166

http://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_method

We begin with the current image frame and the set of keypoints we have already
extracted. Each keypoint has a location (x and y coordinates) and a neighborhood of
surrounding image pixels. In the next image frame, the Lucas-Kanade algorithm uses a
least squares method to solve for a small constant-velocity transformation that maps a
given neighborhood of pixels from the first frame to the next. If the least squares error
for a given neighborhood does not exceed some threshold, we assume it is the same
neighborhood as in the first frame and we assign it the same keypoint to that location;
otherwise the keypoint is discarded. Note that we are not extracting new keypoints in
subsequent frames. Instead, calcOpticalFlowPyrLK() calculates new positions for
the original keypoints. In this manner, we can extract the keypoints in the first frame,
then follow them from frame to frame as the underlying object or camera moves over
time.

After a number of frames, tracking will degrade for two reasons: keypoints will be
dropped when the tracking error is too high between frames, and nearby keypoints will
take the place of those in the original set as the algorithms makes errors in predictions.
We will look at ways to overcome these limitations in later sections.

Our new node, lk_tracker.py, can be found in the
rbx1_vision/src/rbx1_vision directory and combines our earlier keypoint
detector (using goodFeaturesToTrack()) with this optical flow tracking. Terminate
the good features launch file if you still have it running, then run:

$ roslaunch rbx1_vision lk_tracker.launch

When the video window appears, draw a rectangle with your mouse around an object of
interest. As in the previous section, keypoints will appear over the image as green dots.
Now try moving the object or the camera and the keypoints should follow the object. In
particular, try drawing a box around your face. You should see keypoints attach to
varies parts of your face. Now move your head around and the keypoints should move
with it. Notice how much faster the CPS value is compared to running the Haar face
detector. On my machine, tracking keypoints using the LK method is fully twice as fast
as using the Haar face detector. It is also much more reliable in that it continues to track
the face keypoints under a greater range of movement. You can best see this by turning
on "night mode" (hit the "n" key when the video window is in the foreground.)

Remember that the base class ROS2OpenCV2 publishes the bounding box around the
tracked points on the /roi topic. So if you run the command:

$ rostopic echo /roi

while using the lk_tracker node, you should see the ROI move as the points move.
This means that if you have another node that needs to follow the location of the tracked
points, it only has to subscribe to the /roi topic to follow them in real time.

 Robot Vision - 167

Now let's look at the code:

Link to source: lk_tracker.py

1. #!/usr/bin/env python
2.
3. import rospy
4. import cv2
5. import cv2.cv as cv
6. import numpy as np
7. from rbx1_vision.good_features import GoodFeatures
8.
9. class LKTracker(GoodFeatures):
10. def __init__(self, node_name)
11. super(LKTracker, self).__init__(node_name)
12.
13. self.show_text = rospy.get_param("~show_text", True)
14. self.feature_size = rospy.get_param("~feature_size", 1)
15.
16. # LK parameters
17. self.lk_winSize = rospy.get_param("~lk_winSize", (10, 10))
18. self.lk_maxLevel = rospy.get_param("~lk_maxLevel", 2)
19. self.lk_criteria = rospy.get_param("~lk_criteria",
(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 20, 0.01))
20. self.lk_derivLambda = rospy.get_param("~lk_derivLambda", 0.1)
21.
22. self.lk_params = dict(winSize = self.lk_winSize,
23. maxLevel = self.lk_maxLevel,
24. criteria = self.lk_criteria,
25. derivLambda = self.lk_derivLambda)
26.
27. self.detect_interval = 1
28. self.keypoints = list()
29.
30. self.detect_box = None
31. self.track_box = None
32. self.mask = None
33. self.grey = None
34. self.prev_grey = None
35.
36. def process_image(self, cv_image):
37. # If we don't yet have a detection box (drawn by the user
38. # with the mouse), keep waiting
39. if self.detect_box is None:
40. return cv_image
41.
42. # Create a grayscale version of the image
43. self.grey = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
44.
45. # Equalize the grey histogram to minimize lighting effects
46. self.grey = cv2.equalizeHist(self.grey)
47.
48. # If we haven't yet started tracking, set the track box to the
49. # detect box and extract the keypoints within it
50. if self.track_box is None or not
self.is_rect_nonzero(self.track_box):

 Robot Vision - 168

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_vision/src/rbx1_vision/lk_tracker.py

51. self.track_box = self.detect_box
52. self.keypoints = list()
53. self.keypoints = self.get_keypoints(self.grey,
self.track_box)
54.
55. else:
56. if self.prev_grey is None:
57. self.prev_grey = self.grey
58.
59. # Now that have keypoints, track them to the next frame
60. # using optical flow
61. self.track_box = self.track_keypoints(self.grey,
self.prev_grey)
62.
63. # Process any special keyboard commands for this module
64. if 32 <= self.keystroke and self.keystroke < 128:
65. cc = chr(self.keystroke).lower()
66. if cc == 'c':
67. # Clear the current keypoints
68. self.keypoints = list()
69. self.track_box = None
70. self.detect_box = None
71. self.classifier_initialized = True
72.
73. self.prev_grey = self.grey
74.
75. return cv_image
76.
77. def track_keypoints(self, grey, prev_grey):
78. try:
79. # We are tracking points between the previous frame and the
80. # current frame
81. img0, img1 = prev_grey, grey
82.
83. # Reshape the current keypoints into a numpy array required
84. # by calcOpticalFlowPyrLK()
85. p0 = np.float32([p for p in self.keypoints]).reshape(-1, 1,
2)
86.
87. # Calculate the optical flow from the previous frame
88. # tp the current frame
89. p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0,
None, **self.lk_params)
90.
91. # Do the reverse calculation: from the current frame
92. # to the previous frame
93. p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1,
None, **self. lk_params)
94.
95. # Compute the distance between corresponding points
96. # in the two flows
97. d = abs(p0-p0r).reshape(-1, 2).max(-1)
98.
99. # If the distance between pairs of points is < 1 pixel, set
100. # a value in the "good" array to True, otherwise False
101. good = d < 1
102.

 Robot Vision - 169

103. # Initialize a list to hold new keypoints
104. new_keypoints = list()
105.
106. # Cycle through all current and new keypoints and only keep
107. # those that satisfy the "good" condition above
108. for (x, y), good_flag in zip(p1.reshape(-1, 2), good):
109. if not good_flag:
110. continue
111. new_keypoints.append((x, y))
112.
113. # Draw the keypoint on the image
114. cv2.circle(self.marker_image, (x, y),
self.feature_size, (0, 255, 0, 0), cv.CV_FILLED, 8, 0)
115.
116. # Set the global keypoint list to the new list
117. self.keypoints = new_keypoints
118.
119. # If we have >6 points, find the best ellipse around them
120. if len(self.keypoints) > 6:
121. self.keypoints_matrix = cv.CreateMat(1,
len(self.keypoints), cv.CV_32SC2)
122. i = 0
123. for p in self.keypoints:
124. cv.Set2D(self.keypoints_matrix, 0, i, (int(p[0]),
int(p[1])))
125. i = i + 1
126. track_box = cv.FitEllipse2(self.keypoints_matrix)
127. else:
128. # Otherwise, find the best fitting rectangle
129. track_box = cv2.boundingRect(self.keypoints_matrix)
130. except:
131. track_box = None
132.
133. return track_box
134.
135.
136. if __name__ == '__main__':
137. try:
138. node_name = "lk_tracker"
139. LKTracker(node_name)
140. rospy.spin()
141. except KeyboardInterrupt:
142. print "Shutting down LK Tracking node."
143. cv.DestroyAllWindows()

Let's look at the key lines of the script.

7. from rbx1_vision.good_features import GoodFeatures
8.
9. class LKTracker(GoodFeatures):
10. def __init__(self, node_name):
11. super(LKTracker, self).__init__(node_name)

The overall structure of the script is once again similar to the face_detector.py
node. However, this time we import good_features.py and define the LKTracker

 Robot Vision - 170

class as an extension of the GoodFeatures class rather than the ROS2OpenCV2. Why?
Because the keypoints we will track are precisely those we obtained from the
GoodFeatures class in the previous section. And since the GoodFeatures class itself
extends the ROS2Opencv2 class, we are covered.

36. def process_image(self, cv_image):

 . . .

53. self.keypoints = self.get_keypoints(self.grey,
self.track_box)

 . . .

61. self.track_box = self.track_keypoints(self.grey,
self.prev_grey)

The process_image() function is very similar to the one we used in the
good_features.py script. The key lines are 53 and 61 above. In line 53 we are
using the get_keypoints() function from the GoodFeatures class to get the initial
keypoints. And in line 61, we track those keypoints using the new
track_keypoints() function which we will now describe.

77. def track_keypoints(self, grey, prev_grey):
78. try:
79. # We are tracking points between the previous frame and the
80. # current frame
81. img0, img1 = prev_grey, grey
82.
83. # Reshape the current keypoints into a numpy array required
84. # by calcOpticalFlowPyrLK()
85. p0 = np.float32([p for p in self.keypoints]).reshape(-1, 1,

2)

To track the keypoints, we begin by storing the previous grayscale image and the current
grayscale image in a couple of variables. We then store the current keypoints using a
numpy array format required by the calcOpticalFlowPyrLK() function.

89. p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None,
**self.lk_params)

In this line we use the OpenCV calcOpticalFlowPyrLK() function to predict the
next set of keypoints from the current keypoints and the two grayscale images.

93. p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None,
**self. lk_params)

And in this line, we make the reverse calculation: here we predict the previous points
from the future points we just computed. This allows us to do a consistency check since
we can compare the actual previous points (the keypoints we started with) with these
reverse-predicted points.

 Robot Vision - 171

97. d = abs(p0-p0r).reshape(-1, 2).max(-1)

Next we compute the distances between pairs of reverse-predicted points (p0r) and our
original keypoints (p0). The result, d, is an array of these distances. (Python can seemly
awfully compact sometimes.)

101. good = d < 1

And here we define a new array (good) that is a set of True or False values depending
on whether or not the distance between a pair of points is less than 1 pixel.

108. for (x, y), good_flag in zip(p1.reshape(-1, 2), good):
109. if not good_flag:
110. continue
111. new_keypoints.append((x, y))

Finally, we drop any keypoints that are more than 1 pixel away from their reverse-
predicted counterpart.

117. self.keypoints = new_keypoints

The result becomes our new global set of keypoints that we send through the next
tracking cycle.

 10.8.4 Building a Better Face Tracker

We now have the ingredients we need to improve on our original face detector. Recall
that the face_detector.py node attempts to detect a face over and over on every
frame. This is not only CPU-intensive, but it can also fail to detect a face at all fairly
often. A better strategy is to first detect the face, then use goodFeaturesToTrack()
to extract keypoints from the face region and then use calcOpticalFlowPyrLK() to
track those features from frame to frame. In this way, detection is only done once to
originally acquire the face region.

Our processing pipeline looks like this:

detect_face() → get_keypoints() → track_keypoints()

In terms of the nodes we have developed so far, the pipeline becomes:

face_detector.py() → good_features.py() → lk_tracker.py()

Our new node, face_tracker.py implements this pipeline. To try it out, make sure
you have launched the driver to your camera, then run:

$ roslaunch rbx1_vision face_tracker.launch

 Robot Vision - 172

If you move your face into view of the camera, the Haar face detector should find it.
After the initial detection, the keypoints are computed over the face region and then
tracked through subsequent frames using optical flow. To clear the current keypoints
and force a re-detection of the face, hit the "c" key when the video window is in the
foreground.

Let's now look at the code.

Link to source: face_tracker.py

1. #!/usr/bin/env python
2.
3. import rospy
4. import cv2
5. import cv2.cv as cv
6. import numpy as np
7.
8. from rbx1_vision.face_detector import FaceDetector
9. from rbx1_vision.lk_tracker import LKTracker
10.
11. class FaceTracker(FaceDetector, LKTracker):
12. def __init__(self, node_name):
13. super(FaceTracker, self).__init__(node_name)
14.
15. self.n_faces = rospy.get_param("~n_faces", 1)
16. self.show_text = rospy.get_param("~show_text", True)
17. self.feature_size = rospy.get_param("~feature_size", 1)
18.
19. self.keypoints = list()
20. self.detect_box = None
21. self.track_box = None
22.
23. self.grey = None
24. self.prev_grey = None
25.
26. def process_image(self, cv_image):
27. # Create a grayscale version of the image
28. self.grey = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
29.
30. # Equalize the grey histogram to minimize lighting effects
31. self.grey = cv2.equalizeHist(self.grey)
32.
33. # STEP 1: Detect the face if we haven't already
34. if self.detect_box is None:
35. self.detect_box = self.detect_face(self.grey)
36.
37. else:
38. # Step 2: If we aren't yet tracking keypoints, get them now
39. if self.track_box is None or not
self.is_rect_nonzero(self.track_box):
40. self.track_box = self.detect_box
41. self.keypoints = self.get_keypoints(self.grey,
self.track_box)
42.
43. # Step 3: If we have keypoints, track them using optical flow

 Robot Vision - 173

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_vision/nodes/face_tracker.py

44. if len(self.keypoints) > 0:
45. # Store a copy of the current grey image used for LK
tracking
46. if self.prev_grey is None:
47. self.prev_grey = self.grey
48.
49. self.track_box = self.track_keypoints(self.grey,
self.prev_grey)
50. else:
51. # We have lost all keypoints so re-detect the face
52. self.detect_box = None
53.
54. # Process any special keyboard commands for this module
55. if 32 <= self.keystroke and self.keystroke < 128:
56. cc = chr(self.keystroke).lower()
57. if cc == 'c':
58. self.keypoints = list()
59. self.track_box = None
60. self.detect_box = None
61.
62. # Set store a copy of the current image used for LK tracking
63. self.prev_grey = self.grey
64.
65. return cv_image
66.
67. if __name__ == '__main__':
68. try:
69. node_name = "face_tracker"
70. FaceTracker(node_name)
71. rospy.spin()
72. except KeyboardInterrupt:
73. print "Shutting down face tracker node."
74. cv.DestroyAllWindows()

The face_tracker node essentially combines two nodes we have already developed:
the face_detector node and the lk_tracker node. The lk_tracker node in turn
depends on the good_features node. The following breakdown explains how we
combine these Python classes.

8. from rbx1_vision.face_detector import FaceDector
9. from rbx1_vision.lk_tracker import LKTracker
10.
11. class FaceTracker(FaceDetector, LKTracker):
12. def __init__(self, node_name):
13. super(FaceTracker, self).__init__(node_name)

To use the face_detector and lk_tracker code we developed earlier, we first have
to import their classes, FaceDetector and LKTracker. We then define our new
FaceTracker class as extending both classes. In Python this is called multiple
inheritance. As before, we then use the super() function to initialize our new class
which also takes care of initializing the parent classes.

26. def process_image(self, cv_image):

 Robot Vision - 174

27. # Create a grayscale version of the image
28. self.grey = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
29.
30. # Equalize the grey histogram to minimize lighting effects
31. self.grey = cv2.equalizeHist(self.grey)

As we did with our other nodes, we begin the process_image() function by
converting the image to grayscale and equalizing the histogram to minimize lighting
effects.

33. # STEP 1: Detect the face if we haven't already
34. if self.detect_box is None:
35. self.detect_box = self.detect_face(self.grey)

Step 1 is to detect the face is have not already. The detect_face() function comes
from the FaceDetector class we imported.

38. # STEP 2: If we aren't yet tracking keypoints, get them now
39. if self.track_box is None or not

self.is_rect_nonzero(self.track_box):
40. self.track_box = self.detect_box
41. self.keypoints = self.get_keypoints(self.grey, self.track_box)

Once we have detected a face, Step 2 is to get the keypoints from the face region using
the get_keypoints() function we imported from the LKTracker class, which in turn
actually gets the function from the GoodFeatures class that it imports.

43. # STEP 3: If we have keypoints, track them using optical flow
44. if len(self.keypoints) > 0:
45. # Store a copy of the current grey image used for LK tracking
46. if self.prev_grey is None:
47. self.prev_grey = self.grey
48.
49. self.track_box = self.track_keypoints(self.grey,

self.prev_grey)

Once we have the keypoints, Step 3 starts tracking them using the
track_keypoints() function that we imported from the LKTracker class.

1. else:
2. # We have lost all keypoints so re-detect the face
3. self.detect_box = None

If during tracking the number of keypoints dwindles to zero, we set the detect box to
None so that we can re-detect the face in Step 1.

In the end, you can see that the overall script is essentially just a combination of our
earlier nodes.

 Robot Vision - 175

 10.8.5 Dynamically Adding and Dropping Keypoints

If you play with the face tracker for a little bit, you will notice that the keypoints can
drift onto other objects besides your face. You will also notice that the number of
keypoints shrinks over time as the optical flow tracker drops them due to a low tracking
score.

We can easily add new keypoints and drop bad ones during the tracking process. To add
keypoints, we run goodFeaturesToTrack() every once in awhile over the region we
are tracking. To drop keypoints, we can run a simple statistical clustering test on the
collection of keypoints and remove the outliers.

The node face_tracker2.py incorporates these improvements. If your camera's
driver is already running, try out the new face tracker with the command:

$ roslaunch rbx1_vision face_tracker2.launch

You should now see improved tracking of your face as keypoints are added and dropped
to reflect the movements of your head. To actually see the points that are added and
dropped, as well as the region around the face from which new keypoints are drawn, hit
the "d" key over the image window. The expanded keypoint region is shown by a
yellow box. Added keypoints will flash briefly in light blue and dropped points will
flash briefly in red before they disappear. Hit the "d" key again to turn off the display.
You can also hit the "c" key at any time to clear the current keypoints and force a re-
detection of the face.

The code for face_tracker2.py is nearly the same as the first face_tracker.py
script so we won't describe it in detail again. The full source can be found here:

Link to source: face_tracker2.py

The two new functions are add_keypoints() and drop_keypoints() which should
be fairly self-explanatory from the comments in the code. However, it is worth briefly
describing the new parameters that control when points are dropped and added. These
can be found in the launch file face_tracker2.launch in the
rbx1_vision/launch directory. Let's look at those parameters now. The default
values are in parentheses:

• use_depth_for_tracking:(True) If you are using a depth camera, setting
this value to True will drop keypoints that fall too far away from the face plane.
(This parameter is assumed to be False if using a webcam.)

• min_keypoints:(20) The minimum number of keypoints before we will add
new ones.

 Robot Vision - 176

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_vision/nodes/face_tracker2.py

• abs_min_keypoints:(6) The absolute minimum number of keypoints before
we consider the face lost and try to re-detect it.

• add_keypoint_distance:(10) A new keypoint must be at least this
distance (in pixels) from any existing keypoint.

• std_err_xy:(2.5) The standard error (in pixels) for determining whether or
not a keypoint is an outlier.

• pct_err_z:(1.5) The depth threshold (as a percent) that determines when we
drop a keypoint for falling too far off the face plane.

• max_mse:(10000) The maximum total mean squared error in the current
feature cluster before we start over and re-detect the face.

• expand_roi:(1.02) When looking for new keypoints, the expansion factor to
grow the ROI on each cycle.

• add_keypoints_interval:(1) How often do we attempt to add new
keypoints. A value of 1 means every frame, 2 every other frame and so on.

• drop_keypoints_interval:(1) How often do we attempt to drop
keypoints. A value of 1 means every frame, 2 every other frame and so on.

Most of the defaults should work fairly well but of course feel free to try different
values.

 10.8.6 Color Blob Tracking (CamShift)

So far we have not made any use of color information to track the object of interest.
OpenCV includes the CamShift filter which allows us to track a selected region of the
image based on the color histogram of that region. For an excellent explanation of how
the CamShift filter works, be sure to check out Robin Hewitt's article on How OpenCV's
Face Tracker Works. In short, the CamShift filter scans successive frames of the video
stream and assigns each pixel a probability of belonging to the original color histogram.
The collection of pixels with the highest probability of "belonging" becomes the new
target region to be tracked.

Before we look at the code, you can try it out as follows. Tracking works best with
brightly colored objects. So first find an object such as a plastic ball that is fairly
uniform in color and stands out from any background colors.

Next be sure to run the appropriate camera driver for the camera you are using. Then
launch the CamShift node with the following command:

$ roslaunch rbx1_vision camshift.launch

 Robot Vision - 177

http://kucitypic.kasetsart.org/kucity.com9/kucity9_TPA_ROBOT_CONTEST_2011/openCvPart03_text.pdf
http://kucitypic.kasetsart.org/kucity.com9/kucity9_TPA_ROBOT_CONTEST_2011/openCvPart03_text.pdf
http://docs.opencv.org/modules/video/doc/motion_analysis_and_object_tracking.html?highlight=camshift#cv2.CamShift

When the video window appears, hold the target object in front of the camera and draw
a rectangle around it. The CamShift node will immediately begin to follow the object as
best it can based on the color histogram computed from the selected region. Notice how
the tracked region actually fills out the object even if you only select a smaller piece of
it. This is because the CamShift algorithm is adaptively matching a range of colors in
the selected region, not just a single RGB value.

Two other windows will be present on the screen. The first is a group of slider controls
that look like this:

These controls determine the selectivity of the CamShift filter. For brightly colored
objects like a green tennis ball, the default values should work fairly well. However, for
natural colors like faces, you may have to turn down the Saturation and Min Value
settings and tweak the Threshold parameter slightly. Once you find a group of settings
that work for your camera, you can set them in the camshift.launch file.

The second window shows the "back projection" of the histogram probabilities back
onto the image. The result is a grayscale image where white pixels represent a high
probability of belonging to the histogram and gray or black pixels represent lower
probabilities. It is useful to have the back projection window visible when adjusting the
slider controls: the goal is to have mostly white pixels over the target and black
elsewhere.

The following video demonstrates the CamShift filter in action:

http://www.youtube.com/watch?v=rDTun7A6HO8&feature=plcp

Let's now look at the code.

Link to source: camshift.py

1. #!/usr/bin/env python
2.
3. import rospy

 Robot Vision - 178

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_vision/nodes/camshift.py
http://www.youtube.com/watch?v=rDTun7A6HO8&feature=plcp

4. import cv2
5. from cv2 import cv as cv
6. from rbx1_vision.ros2opencv2 import ROS2OpenCV2
7. from std_msgs.msg import String
8. from sensor_msgs.msg import Image
9. import numpy as np
10.
11. class CamShiftNode(ROS2OpenCV2):
12. def __init__(self, node_name):
13. ROS2OpenCV2.__init__(self, node_name)
14.
15. self.node_name = node_name
16.
17. # The minimum saturation of the tracked color in HSV space,
18. # as well as the min and max value (the V in HSV) and a
19. # threshold on the backprojection probability image.
20. self.smin = rospy.get_param("~smin", 85)
21. self.vmin = rospy.get_param("~vmin", 50)
22. self.vmax = rospy.get_param("~vmax", 254)
23. self.threshold = rospy.get_param("~threshold", 50)
24.
25. # Create a number of windows for displaying the histogram,
26. # parameters controls, and backprojection image
27. cv.NamedWindow("Histogram", cv.CV_WINDOW_NORMAL)
28. cv.MoveWindow("Histogram", 700, 50)
29. cv.NamedWindow("Parameters", 0)
30. cv.MoveWindow("Parameters", 700, 325)
31. cv.NamedWindow("Backproject", 0)
32. cv.MoveWindow("Backproject", 700, 600)
33.
34. # Create the slider controls for saturation, value and threshold
35. cv.CreateTrackbar("Saturation", "Parameters", self.smin, 255,
self.set_smin)
36. cv.CreateTrackbar("Min Value", "Parameters", self.vmin, 255,
self.set_vmin)
37. cv.CreateTrackbar("Max Value", "Parameters", self.vmax, 255,
self.set_vmax)
38. cv.CreateTrackbar("Threshold", "Parameters", self.threshold, 255,
self.set_threshold)
39.
40. # Initialize a number of variables
41. self.hist = None
42. self.track_window = None
43. self.show_backproj = False
44.
45. # These are the callbacks for the slider controls
46. def set_smin(self, pos):
47. self.smin = pos
48.
49. def set_vmin(self, pos):
50. self.vmin = pos
51.
52. def set_vmax(self, pos):
53. self.vmax = pos
54.
55. def set_threshold(self, pos):
56. self.threshold = pos

 Robot Vision - 179

57.
58. # The main processing function computes the histogram and
backprojection
59. def process_image(self, cv_image):
60. # First blue the image
61. frame = cv2.blur(cv_image, (5, 5))
62.
63. # Convert from RGB to HSV spave
64. hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
65.
66. # Create a mask using the current saturation and value parameters
67. mask = cv2.inRange(hsv, np.array((0., self.smin, self.vmin)),
np.array((180., 255., self.vmax)))
68.
69. # If the user is making a selection with the mouse,
70. # calculate a new histogram to track
71. if self.selection is not None:
72. x0, y0, w, h = self.selection
73. x1 = x0 + w
74. y1 = y0 + h
75. self.track_window = (x0, y0, x1, y1)
76. hsv_roi = hsv[y0:y1, x0:x1]
77. mask_roi = mask[y0:y1, x0:x1]
78. self.hist = cv2.calcHist([hsv_roi], [0], mask_roi, [16], [0,
180])
79. cv2.normalize(self.hist, self.hist, 0, 255, cv2.NORM_MINMAX);
80. self.hist = self.hist.reshape(-1)
81. self.show_hist()
82.
83. if self.detect_box is not None:
84. self.selection = None
85.
86. # If we have a histogram, tracking it with CamShift
87. if self.hist is not None:
88. # Compute the backprojection from the histogram
89. backproject = cv2.calcBackProject([hsv], [0], self.hist, [0,
180], 1)
90.
91. # Mask the backprojection with the mask created earlier
92. backproject &= mask
93.
94. # Threshold the backprojection
95. ret, backproject = cv2.threshold(backproject, self.threshold,
255, cv.CV_THRESH_TOZERO)
96.
97. x, y, w, h = self.track_window
98. if self.track_window is None or w <= 0 or h <=0:
99. self.track_window = 0, 0, self.frame_width - 1,
self.frame_height - 1
100.
101. # Set the criteria for the CamShift algorithm
102. term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,
10, 1)
103.
104. # Run the CamShift algorithm
105. self.track_box, self.track_window = cv2.CamShift(backproject,
self.track_window, term_crit)

 Robot Vision - 180

106.
107. # Display the resulting backprojection
108. cv2.imshow("Backproject", backproject)
109.
110. return cv_image
111.
112. def show_hist(self):
113. bin_count = self.hist.shape[0]
114. bin_w = 24
115. img = np.zeros((256, bin_count*bin_w, 3), np.uint8)
116. for i in xrange(bin_count):
117. h = int(self.hist[i])
118. cv2.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h),
(int(180.0*i/bin_count), 255, 255), -1)
119. img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
120. cv2.imshow('Histogram', img)
121.
122.
123. def hue_histogram_as_image(self, hist):
124. """ Returns a nice representation of a hue histogram """
125. histimg_hsv = cv.CreateImage((320, 200), 8, 3)
126.
127. mybins = cv.CloneMatND(hist.bins)
128. cv.Log(mybins, mybins)
129. (_, hi, _, _) = cv.MinMaxLoc(mybins)
130. cv.ConvertScale(mybins, mybins, 255. / hi)
131.
132. w,h = cv.GetSize(histimg_hsv)
133. hdims = cv.GetDims(mybins)[0]
134. for x in range(w):
135. xh = (180 * x) / (w - 1) # hue sweeps from 0-180 across the
image
136. val = int(mybins[int(hdims * x / w)] * h / 255)
137. cv2.rectangle(histimg_hsv, (x, 0), (x, h-val), (xh,255,64),
-1)
138. cv2.rectangle(histimg_hsv, (x, h-val), (x, h), (xh,255,255),
-1)
139.
140. histimg = cv2.cvtColor(histimg_hsv, cv.CV_HSV2BGR)
141.
142. return histimg
143.
144.
145. if __name__ == '__main__':
146. try:
147. node_name = "camshift"
148. CamShiftNode(node_name)
149. try:
150. rospy.init_node(node_name)
151. except:
152. pass
153. rospy.spin()
154. except KeyboardInterrupt:
155. print "Shutting down vision node."
156. cv.DestroyAllWindows()

 Robot Vision - 181

Let's look at the key lines in the script.

20. self .smin = rospy.get_param("~smin", 85)
21. self .vmin = rospy.get_param("~vmin", 50)
22. self .vmax = rospy.get_param("~vmax", 254)
23. self .threshold = rospy.get_param("~threshold", 50)

These are the parameters that control the color sensitivity of the CamShift algorithm.
The algorithm will not work at all without setting these to the right values for your
camera. The defaults should be close but you will want to play with the slider controls
(which appear after launching the program) to find good values for your setup. Once
you are satisfied with your numbers, you can enter them in the launch file to override the
defaults.

The smin value controls the minimum saturation in the HSV image (Hue, Saturation,
Value). It is a measure of the "richness" of a color. The vmin and vmax parameters
determine the minimum and maximum value (brightness) a color needs to have. Finally,
the threshold parameter is applied after the backprojection is computed to filter out
low-probability pixels from the result.

35. cv.CreateTrackbar("Saturation", "Parameters", self.smin, 255,
self.set_smin)

36. cv.CreateTrackbar("Min Value", "Parameters", self.vmin, 255,
self.set_vmin)

37. cv.CreateTrackbar("Max Value", "Parameters", self.vmax, 255,
self.set_vmax)

38. cv.CreateTrackbar("Threshold", "Parameters", self.threshold, 255,
self.set_threshold)

Here we use OpenCV's trackbar function to create slider controls on the "Parameters"
window. The last three arguments of the CreateTrackbar() function specify the
minimum, maximum and default values for each trackbar.

59. def process_image(self, cv_image):
60. # First blue the image
61. frame = cv2.blur(cv_image, (5, 5))
62.
63. # Convert from RGB to HSV spave
64. hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

The main processing loop begins by blurring the image, then converting it from blue-
green-red (BGR) to hue-saturation-value (HSV). Blurring helps wash out some of the
color noise in typical video images. Working in HSV space is a common practice when
processing color images. In particular, the hue dimension maps nicely into what we (i.e.
humans) consider different colors such as red, orange, yellow, green, blue, etc. The
saturation dimension maps into how "rich" versus "washed out" a color appears to us,
and the value dimension maps into how bright the color appears.

 Robot Vision - 182

67. mask = cv2.inRange(hsv, np.array((0., self.smin, self.vmin)),
np.array((180., 255., self.vmax)))

The OpenCV inRange() function turns our saturation and value limits into a mask so
that we process only those pixels that fall within our color parameters. Note that we are
not filtering on hue—so we are still accepting any color at this point. Instead, we are
selecting only those colors that have a fairly high saturation and value.

71. if self.selection is not None:
72. x0, y0, w, h = self.selection
73. x1 = x0 + w
74. y1 = y0 + h
75. self.track_window = (x0, y0, x1, y1)
76. hsv_roi = hsv[y0:y1, x0:x1]
77. mask_roi = mask[y0:y1, x0:x1]

In this block we take a selection from the user (made with the mouse) and turn it into a
region of interest for computing a color histogram and a mask.

78. self.hist = cv2.calcHist([hsv_roi], [0], mask_roi, [16], [0,
180])

79. cv2.normalize(self.hist, self.hist, 0, 255, cv2.NORM_MINMAX);
80. self.hist = self.hist.reshape(-1)
81. self.show_hist()

Here we use the OpenCV calcHist() function to calculate a histogram over the hues
in the selected region. Note that the region is also masked with mask_roi. We then
normalize the histogram so that the maximum value is 255. This allows us to display
the result as an 8-bit color image which is done with the last two lines using the helper
function show_hist() defined later in the script.

89. backproject = cv2.calcBackProject([hsv], [0], self.hist, [0,
180], 1)

90.
91. # Mask the backprojection with the mask created earlier
92. backproject &= mask
93.
94. # Threshold the backprojection
95. ret, backproject = cv2.threshold(backproject, self.threshold,

255, cv.CV_THRESH_TOZERO)

Once we have a histogram to track, we use the OpenCV calcBackProject() function
to assign a probability to each pixel in the image of belonging to the histogram. We then
mask the probabilities with our earlier mask and threshold it to eliminate low probability
pixels.

102. term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,
10, 1)

103.
104. # Run the CamShift algorithm
105. self.track_box, self.track_window = cv2.CamShift(backproject,

self.track_window, term_crit)

 Robot Vision - 183

With the masked and thresholded backprojection in hand, we can finally run the
CamShift algorithm itself which converts the probabilities into a new location of the
track window.

The whole process is repeated on every frame (without any further selection from the
user of course) and the track window follows the pixels that have the highest probability
of belonging to the original histogram. If you find your target object is not being
followed very well, start with a brightly colored ball or other uniformly colored object.
You will also probably have to tweak the saturation and value slider controls to get the
result you want.

 10.9 OpenNI and Skeleton Tracking
Perhaps the earliest and best known robotics application using a depth camera is
skeleton tracking. The ROS openni_tracker package can use the depth data from a
Kinect or Asus Xtion to track the joint positions of a person standing in front of the
camera. Using this data, one can program a robot to follow gesture commands signaled
by the user. One example of how to do this using ROS and Python can be found in the
pi_tracker package.

While we won't go into a lot of detail on the use of skeleton tracking, let's at least take a
look at the basics.

 10.9.1 Installing NITE and openni_tracker for ROS Indigo

At the time of this writing, neither the NITE binaries nor the openni_tracker ROS
package was available as a Debian package for ROS Indigo so we need to install them
manually.

To install the NITE binaries, follow these instructions:

1. Download the NiTE v1.5.2.23 binary package from one of the following links
depending on whether you are using a 32-bit or 64-bit installation of Ubuntu:

a. 32-bit: http://www.openni.ru/wp-content/uploads/2013/10/NITE-Bin-Linux-
x86-v1.5.2.23.tar.zip

b. 64-bit: http://www.openni. ru /wp-content/uploads/2013/10/NITE-Bin-Linux-
x64-v1.5.2.23.tar.zip

2. Unzip and extract the archive to a location of your choice (e.g. ~/tmp)

3. The unzipped archive is actually another archive in bz2 format so unzip and
extract the archive to the same location as in Step 2.

 Robot Vision - 184

http://www.openni.ru/wp-content/uploads/2013/10/NITE-Bin-Linux-x64-v1.5.2.23.tar.zip
http://www.openni.ru/wp-content/uploads/2013/10/NITE-Bin-Linux-x64-v1.5.2.23.tar.zip
http://www.openni.ru/wp-content/uploads/2013/10/NITE-Bin-Linux-x64-v1.5.2.23.tar.zip
http://www.openni.ru/wp-content/uploads/2013/10/NITE-Bin-Linux-x64-v1.5.2.23.tar.zip
http://www.openni.ru/wp-content/uploads/2013/10/NITE-Bin-Linux-x86-v1.5.2.23.tar.zip
http://www.openni.ru/wp-content/uploads/2013/10/NITE-Bin-Linux-x86-v1.5.2.23.tar.zip
http://wiki.ros.org/pi_tracker
http://ros.org/wiki/openni_tracker

4. The resulting folder should be called NITE-Bin-Dev-Linux-x64-v1.5.2.23 (64-
bit) or NITE-Bin-Linux-x86-v1.5.2.23 (32-bit). Move into this folder and then
run the uninstall.sh script followed by the install.sh scripts. For the 64-bit
version this would look like the following:

$ cd ~/tmp/NITE-Bin-Dev-Linux-x64-v1.5.2.23
$ sudo ./uninstall.sh
$ sudo ./install.sh

5. To finish the NITE installation, run the command:

$ sudo niLicense -l 0KOIk2JeIBYClPWVnMoRKn5cdY4=

That should do it. We are now ready to install the openni_tracker package as
follows:

$ cd ~/catkin_ws/src
$ git clone https://github.com/ros-drivers/openni_tracker.git
$ cd ~/catkin_ws
$ catkin_make
$ rospack profile

 10.9.2 Viewing Skeletons in RViz

The ROS openni_tracker package connects to a PrimeSense device such as a Kinect
or Asus Xtion and broadcasts a ROS frame transform for each skeleton joint detected in
front of the camera. The tf transforms are defined relative to the
openni_depth_frame which is embedded inside the camera behind the depth sensor.

To view the skeleton frames in RViz, perform the following steps. First, plug in your
Kinect or Asus camera and in the case of the Kinect, make sure it has power as well. Be
sure to terminate any openni launch files you might already have running. Then run
the openni_tracker command:

$ rosrun openni_tracker openni_tracker

(Don't worry if you do not see any initial output from this command. Status messages
will appear later when you stand in front of the camera and your joints are tracked.)

Now bring up RViz with the included skeleton_frames.rviz config file:

$ rosrun rviz rviz -d `rospack find rbx1_vision`/skeleton_frames.rviz

 Robot Vision - 185

http://ros.org/wiki/openni_tracker

Keep your eye on RViz and stand back from the camera at least a 5 or 6 feet while
assuming the "Psi pose". (See the openni_tracker page for an example of the Psi
pose.) Once the tracker locks onto you, you should see your skeleton tf frames appear
in RViz as shown below.

At this point you can move around as you like in front of the camera and the skeleton in
RViz should mimic your actions.

 10.9.3 Accessing Skeleton Frames in your Programs

Since the openni_tracker node makes the skeleton joints available as ROS tf
frames, we can use a tf TransformListener to find the current position of a given
joint. An example of how this works can be found in the skeleton_markers package.
You can install it into your personal ROS catkin directory, using the following
commands:

 Robot Vision - 186

http://wiki.ros.org/skeleton_markers
http://ros.org/wiki/openni_tracker

$ cd ~/catkin_ws/src
$ git clone -b https://github.com/pirobot/skeleton_markers.git
$ cd skeleton_markers
$ git checkout indigo-devel
$ cd ~/catkin_ws
$ catkin_make
$ rospack profile

Let's try it out before looking at the code. First terminate any instances of
openni_tracker and RViz you may have launched in the previous section. Next, run
the following two commands:

$ roslaunch skeleton_markers markers_from_tf.launch

and

$ rosrun rviz rviz -d `rospack find \
skeleton_markers`/markers_from_tf.rviz

Now assume the "Psi Pose" in front of the camera while keeping an eye on RViz until
calibration is complete and tracking begins. Once the tracker locks onto you, you should
see the green skeleton markers appear in RViz. At this point you can move around as
you like in front of the camera and the skeleton in RViz should follow your actions as
shown in the image below:

 Robot Vision - 187

Before we look at the code, let's be sure we understand the launch file
markers_from_tf.launch listed below:

<launch>
 <node pkg="openni_tracker" name="openni_tracker" type="openni_tracker"
output="screen">
 <param name="fixed_frame" value="openni_depth_frame" />
 </node>

 <node pkg="skeleton_markers" name="markers_from_tf" type="markers_from_tf.py"
output="screen">
 <rosparam file="$(find skeleton_markers)/params/marker_params.yaml"
command="load" />

 </node>
</launch>

First we run the openni_tracker node with the fixed frame set to the camera's depth
frame. (This is the default so strictly speaking, specifying the parameter in the launch
file is not necessary.) Then we fire up our markers_from_tf.py script and load the
parameter file marker_params.yaml from the params directory. This file defines
parameters describing the appearance of the markers as well as the list of skeleton
frames we want to track.

Let's now look at the markers_from_tf.py script. Our overall strategy will be to use
the tf library to find the transformation between each skeleton frame and the fixed
depth frame. All we need for our purposes is the coordinates of each frame's origin
relative to the depth frame. This allows us to place a visualization marker at that
location to represent the position of the corresponding skeleton joint in space.

Link to source: markers_from_tf.py

1 #!/usr/bin/env python
2
3 import rospy
4
5 from visualization_msgs.msg import Marker
6 from geometry_msgs.msg import Point
7 import tf
8
9 class SkeletonMarkers():
10 def __init__(self):
11 rospy.init_node('markers_from_tf')
12
13 rospy.loginfo("Initializing Skeleton Markers Node...")
14
15 rate = rospy.get_param('~rate', 20)
16 r = rospy.Rate(rate)
17
18 # There is usually no need to change the fixed frame from the default
19 self.fixed_frame = rospy.get_param('~fixed_frame',
'openni_depth_frame')
20

 Robot Vision - 188

https://github.com/pirobot/skeleton_markers/blob/indigo-devel/nodes/markers_from_tf.py

21 # Get the list of skeleton frames we want to track
22 self.skeleton_frames = rospy.get_param('~skeleton_frames', '')
23
24 # Initialize the tf listener
25 tf_listener = tf.TransformListener()
26
27 # Define a marker publisher
28 marker_pub = rospy.Publisher('skeleton_markers', Marker, queue_size=5)
29
30 # Intialize the markers
31 self.initialize_markers()
32
33 # Make sure we see the openni_depth_frame
34 tf_listener.waitForTransform(self.fixed_frame, self.fixed_frame,
rospy.Time(), rospy.Duration(60.0))
35
36 # A flag to track when we have detected a skeleton
37 skeleton_detected = False
38
39 # Begin the main loop
40 while not rospy.is_shutdown():
41 # Set the markers header
42 self.markers.header.stamp = rospy.Time.now()
43
44 # Clear the markers point list
45 self.markers.points = list()
46
47 # Check to see if a skeleton is detected
48 while not skeleton_detected:
49 # Assume we can at least see the head frame
50 frames = [f for f in tf_listener.getFrameStrings() if
f.startswith('head_')]
51
52 try:
53 # If the head frame is visible, pluck off the
54 # user index from the name
55 head_frame = frames[0]
56 user_index = head_frame.replace('head_', '')
57
58 # Make sure we have a transform between the head
59 # and the fixed frame
60 try:
61 (trans, rot) =
tf_listener.lookupTransform(self.fixed_frame, head_frame, rospy.Time(0))
62 skeleton_detected = True
63
64 except (tf.Exception, tf.ConnectivityException,
tf.LookupException):
65 skeleton_detected = False
66 rospy.loginfo("User index: " + str(user_index))
67 r.sleep()
68 except:
69 skeleton_detected = False
70
71 # Loop through the skeleton frames
72 for frame in self.skeleton_frames:
73 # Append the user_index to the frame name

 Robot Vision - 189

74 skel_frame = frame + "_" + str(user_index)
75
76 # We only need the origin of each skeleton frame
77 # relative to the fixed frame
78 position = Point()
79
80 # Get the transformation from the fixed frame
81 # to the skeleton frame
82 try:
83 (trans, rot) =
tf_listener.lookupTransform(self.fixed_frame, skel_frame, rospy.Time(0))
84 position.x = trans[0]
85 position.y = trans[1]
86 position.z = trans[2]
87
88 # Set a marker at the origin of this frame
89 self.markers.points.append(position)
90 except:
91 pass
92
93 # Publish the set of markers
94 marker_pub.publish(self.markers)
95
96 r.sleep()
97
98 def initialize_markers(self):
99 # Set various parameters
100 scale = rospy.get_param('~scale', 0.07)
101 lifetime = rospy.get_param('~lifetime', 0) # 0 is forever
102 ns = rospy.get_param('~ns', 'skeleton_markers')
103 id = rospy.get_param('~id', 0)
104 color = rospy.get_param('~color', {'r': 0.0, 'g': 1.0, 'b': 0.0, 'a':
1.0})
105
106 # Initialize the marker points list
107 self.markers = Marker()
108 self.markers.header.frame_id = self.fixed_frame
109 self.markers.ns = ns
110 self.markers.id = id
111 self.markers.type = Marker.POINTS
112 self.markers.action = Marker.ADD
113 self.markers.lifetime = rospy.Duration(lifetime)
114 self.markers.scale.x = scale
115 self.markers.scale.y = scale
116 self.markers.color.r = color['r']
117 self.markers.color.g = color['g']
118 self.markers.color.b = color['b']
119 self.markers.color.a = color['a']
120
121if __name__ == '__main__':
122 try:
123 SkeletonMarkers()
124 except rospy.ROSInterruptException:
125 pass

126

 Robot Vision - 190

Let's examine the key lines:

18 # There is usually no need to change the fixed frame from the default
19 self.fixed_frame = rospy.get_param('~fixed_frame',
'openni_depth_frame')
20
21 # Get the list of skeleton frames we want to track
22 self.skeleton_frames = rospy.get_param('~skeleton_frames', '')

Here we set the fixed frame to be the default used by the openni_tracker node. We
also read in the list of skeleton frames we want to track as specified in the parameter file
marker_params.yaml. The parameter file looks like this:

The fixed reference frame
fixed_frame: 'openni_depth_frame'

Update rate
rate: 20

Height and width of markers in meters
scale: 0.07

Duration of markers in RViz; 0 is forever
lifetime: 0

Marker namespace
ns: 'skeleton_markers'

Marker id
id: 0

Marker color
color: { 'r': 0.0, 'g': 1.0, 'b': 0.0, 'a': 1.0 }

skeleton_frames: [
head,
neck,
torso,
left_shoulder,
left_elbow,
left_hand,
left_hip,
left_knee,
left_foot,
right_shoulder,
right_elbow,
right_hand,
right_hip,
right_knee,
right_foot
]

The parameter file is used to define the update rate, the appearance of the markers to
display in RViz and the list of skeleton frames we want to track.

Returning to the markers_from_tf.py script:

 Robot Vision - 191

24 # Initialize the tf listener
25 tf_listener = tf.TransformListener()
26
27 # Define a marker publisher
28 marker_pub = rospy.Publisher('skeleton_markers', Marker, queue_size=5)

Here we create a TransformListener from the ROS tf library and set up a publisher
for the visualization markers.

31 self.initialize_markers()

This line calls a function (defined later in the script) to initialize the markers. We won't
discuss markers in this volume but you can probably follow the initializing function
fairly easily. You can also look at the Markers Tutorial on the ROS Wiki, although the
examples are in C++.

34 tf_listener.waitForTransform(self.fixed_frame, self.fixed_frame,
rospy.Time(), rospy.Duration(60.0))

Before we start looking for skeleton frames, we make sure we can at least see the
camera's fixed frame and we allow 60 seconds before we time out.

37 skeleton_detected = False

A flag to indicate whether or not a skeleton is visible.

39 # Begin the main loop
40 while not rospy.is_shutdown():
41 # Set the markers header
42 self.markers.header.stamp = rospy.Time.now()
43
44 # Clear the markers point list
40 self.markers.points = list()

Now we enter the main loop of the script. First we time stamp the marker list and clear
any marker coordinates.

48 while not skeleton_detected:
49 # Assume we can at least see the head frame
50 frames = [f for f in tf_listener.getFrameStrings() if
f.startswith('head_')]

Next we use the tf listener to get a list of all available frames and check to see if we can
see the head frame.

52 try:
53 # If the head frame is visible, pluck off the
54 # user index from the name
55 head_frame = frames[0]

 Robot Vision - 192

http://ros.org/wiki/rviz/Tutorials/Markers:%20Basic%20Shapes

56 user_index = head_frame.replace('head_', '')
57
58 # Make sure we have a transform between the head
59 # and the fixed frame
60 try:
61 (trans, rot) =
tf_listener.lookupTransform(self.fixed_frame, head_frame, rospy.Time(0))
62 skeleton_detected = True
63
64 except (tf.Exception, tf.ConnectivityException,
tf.LookupException):
65 skeleton_detected = False
66 rospy.loginfo("User index: " + str(user_index))
67 r.sleep()
68 except:
69 skeleton_detected = False

If we have a head frame, the outside try-except block will succeed and we look up
the transform between the head frame and the fixed frame. If the lookup succeeds, we
can be confident we have detected a skeleton and we set the flag to True so that we can
break out of the outer while loop.
72 for frame in self.skeleton_frames:
73 # Append the user_index to the frame name
74 skel_frame = frame + "_" + str(user_index)
75
76 # We only need the origin of each skeleton frame
77 # relative to the fixed frame
78 position = Point()
79
80 # Get the transformation from the fixed frame
81 # to the skeleton frame
82 try:
83 (trans, rot) =
tf_listener.lookupTransform(self.fixed_frame, skel_frame, rospy.Time(0))
84 position.x = trans[0]
85 position.y = trans[1]
86 position.z = trans[2]
87
88 # Set a marker at the origin of this frame
89 self.markers.points.append(position)
90 except:
91 pass

Now we can loop through all skeleton frames and attempt to look up the transform
between each frame and the fixed frame. If the lookup is successful, the translation and
rotation are returned separately. We only care about the translation component (the
location of the frame's origin relative to the fixed frame) so we store x, y and z
components in the position variable we initialized earlier as type Point. This point
is then appended to the list of markers.

94 marker_pub.publish(self.markers)
95

 Robot Vision - 193

77 r.sleep()

Once we have a marker for each frame, we publish the whole set of markers and then
wait for one rate cycle before starting a new loop.

 10.10 PCL Nodelets and 3D Point Clouds
The Point Cloud Library, or PCL, is an expansive project including many powerful
algorithms for processing point clouds. It is especially useful for robots equipped with
an RGB-D camera like the Kinect at Xtion Pro or even a more traditional stereo camera.
While the details of using PCL are beyond the scope of this volume, we can at least
touch on some of the basics.

At the time of this writing, the primary API for PCL is still C++. If you are already an
experienced C++ programmer, you can start right away with the excellent tutorials on
the PCL website. For Python enthusiasts, a preliminary set of Python bindings is now
available. In the meantime, the pcl_ros package provides a number of nodelets for
processing point clouds using PCL without having to write any code at all. For this
reason, we will take a brief look at a few functions we can perform on point clouds using
pcl_ros. (You can also find a complete list of available pcl_ros nodelets in the
pcl_ros tutorials on the ROS Wiki.)

 10.10.1 The PassThrough Filter

The first PCL nodelet we will look at is the PassThrough filter. This filter is handy if
you want to restrict your attention to the part of the image that falls within a certain
depth range. We will use this filter in our Person Follower application in the next
chapter since we will want the robot to follow only those objects that are located within
a certain distance.

Before trying out the filter, let's look at the launch file passthrough.launch in the
rbx1_vision/launch directory:

<launch>

 <!-- Start the nodelet manager -->
 <node pkg="nodelet" type="nodelet" name="pcl_filter_manager" args="manager"
output="screen" />

 <!-- Run a passthrough filter on the z axis -->
 <node pkg="nodelet" type="nodelet" name="passthrough" args="load
pcl/PassThrough pcl_filter_manager" output="screen">
 <remap from="~input" to="/camera/depth_registered/points" />
 <remap from="~output" to="/passthrough" />
 <rosparam>
 filter_field_name: z
 filter_limit_min: 1.0
 filter_limit_max: 1.25
 filter_limit_negative: False
 </rosparam>

 Robot Vision - 194

http://wiki.ros.org/pcl_ros/Tutorials/PassThrough%20filtering
http://wiki.ros.org/pcl_ros/Tutorials
http://wiki.ros.org/nodelet
http://wiki.ros.org/pcl_ros
http://www.pointclouds.org/news/2013/02/07/python-bindings-for-the-point-cloud-library/
http://www.pointclouds.org/documentation/tutorials/
http://www.pointclouds.org/

 </node>
</launch>

The launch file first loads the pcl_filter_manager nodelet and then the
passthrough nodelet. The passthrough nodelet takes a number of parameters
described as follows:

• filter_field_name: Typically this will be either x, y or z to indicate the
optical axis that should be filtered. By "filtered" we mean that only points
within the min and max limits (defined next) will be kept. Remember that the z-
axis points out from the camera and is what we normally mean by depth.

• filter_limit_min: The minimum value (in meters) we will accept.

• filter_limit_max: The maximum value (in meters) we will accept.

• filter_limit_negative: If set to True, then only keep what lies outside the
filter limits.

In the sample launch file, we have set the min and max limits to 1.0 and 1.25 meters,
respectively. This means that only points that fall between about 3 feet and 4 feet from
the camera will be retained.

Note that the launch file sets the input point cloud topic to
/camera/depth_registered/points and the output topic to /passthrough. This
output topic name is needed when you want to view the results in RViz.

To see the result, start by launching the appropriate driver for your depth camera:

For the Microsoft Kinect:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

NOTE: Here we turn on depth registration so that the depth image and RGB image are
properly aligned pixel-by-pixel. Registration is generally desirable if you plan to use
both the RGB and depth components of an image and associated point cloud.

In another terminal, launch the passthrough filter:

$ roslaunch rbx1_vision passthrough.launch

Next, bring up RViz with the provided PCL config file:

 Robot Vision - 195

$ rosrun rviz rviz -d `rospack find rbx1_vision`/pcl.rviz

When RViz is up, look in the Displays panel on the left. By default, the Original
PointCloud should be checked and you should see a color-coded point cloud in the
main display. Use your mouse to rotate the cloud and view it from different angles. You
can also zoom in and out of the point cloud using your mouse scroll wheel.

To see the result of the Passthrough filter, un-check the Original PointCloud display
and check the PassThrough display. The PassThrough display topic should be set to
/passthrough. If not, click on the Topic field and select it from the list.

Since we have set the distance limits to a fairly narrow window, do not be alarmed if you
do not see any points in RViz when selecting the PassThrough display. However, stand
in front of the camera and move toward and away from it and you should see the image
of yourself appear and disappear as you pass through the filter limits.

To try different values of the minimum and maximum limits as well as the
filter_limit_negative parameter, first bring up rqt_reconfigure:

$ rosrun rqt_reconfigure rqt_reconfigure

then select the passthrough node. If you check the checkbox beside
filter_limit_negative, you should now find a "hole" in between the distance
limits. Now everything outside your limits should be visible but as you move through
the hole, you will disappear.

By the way, you can change how depth is displayed for a given point cloud topic by
changing the Color Transformer type listed under PassThrough display options. For
example, selecting RGB8 instead of Axis will display the actual pixel color values while
the Axis setting uses a color-coded depth map. The recommended setting for the Style
setting is Points. You can try other options here but you will likely find that they slow
down your computer significantly unless you have a very powerful machine.

 10.10.2 Combining More than One PassThrough Filter

We can combine more than one PassThrough filter in a single launch file. In
particular, we can put limits on all three dimensions and create a box such that only
points inside the box are visible. The result is a kind of 3D focus of attention. If we set
the filter_limit_negative parameter to True for each filter, only points outside
the box will be visible.

As an example, take a look at the launch file passthrough2.launch in the directory
rbx1_vision/launch. The launch file includes three instances of the passthrough
nodelet, one for each optical dimension x, y and z. Note that each nodelet must have a
unique name so we have called them passthrough_x, passthrough_y and

 Robot Vision - 196

passthrough_z. We then set min/max distance limits on each filter to create a box of
the desired size. Note how the input topic of a subsequent filter is set to be the output
topic of the one before it. The final result of all three filters is still published on the
/passthrough topic so you can use the same RViz config file to see it. Terminate the
previous passthrough.launch file and run:

$ roslaunch rbx1_vision passthrough2.launch

Now move around in front of the camera and you should be able to determine the
boundaries of the passthrough box. You can also play with the settings in
rqt_reconfigure to create filter boxes of different size. (Note: rqt_reconfigure
does not automatically refresh the list of nodes when a new node is launched. So you
will have to exit rqt_reconfigure and bring it up again.)

 10.10.3 The VoxelGrid Filter

The second filter we will look at is the VoxelGrid filter. Point clouds from high
resolution cameras contain a very large number of points and can take a lot of CPU
power to process. To reduce the load and ensure faster frame rates, the VoxelGrid
filter downsamples the input cloud using parameters specified in the launch file. The
result is a new point cloud with many fewer points. Let's take a look at the launch file
voxel.launch found in the rbx1_vision/launch directory:

<launch>

 <!-- Start the nodelet manager -->
 <node pkg="nodelet" type="nodelet" name="pcl_manager" args="manager"
output="screen" />

 <!-- Run a VoxelGrid filter to clean NaNs and downsample the data -->
 <node pkg="nodelet" type="nodelet" name="voxel_grid" args="load pcl/VoxelGrid
pcl_manager" output="screen">
 <remap from="~input" to="/camera/depth_registered/points" />
 <remap from="~output" to="/voxel_grid" />
 <rosparam>
 filter_field_name: z
 filter_limit_min: 0.01
 filter_limit_max: 3.5
 filter_limit_negative: False
 leaf_size: 0.05
 </rosparam>
 </node>
</launch>

Notice that the first four parameters are identical to the PassThrough filter and the
behave the same way. The fourth parameter, leaf_size, determines the coarseness of
the sampling grid. A value of 0.05 means that the original point cloud is sampled every
5cm to produce the output cloud.

 Robot Vision - 197

http://wiki.ros.org/pcl_ros/Tutorials/VoxelGrid%20filtering

If you are still running the passthrough2 launch file from the previous section,
terminate it now. If you don't still have the camera driver running, bring it up now using
the appropriate launch file for your camera as described in the previous section.

If you don't already have RViz running with the pcl.rviz config file, run it now:

$ rosrun rviz rviz -d `rospack find rbx1_vision`/pcl.rviz

Finally, fire up the VoxelGrid filter:

$ roslaunch rbx1_vision voxel.launch

To view the result of the VoxelGrid filter, un-check both the Original PointCloud and
PassThrough displays in RViz and check the box beside VoxelGrid. You should see a
fairly sparse cloud. This is especially apparent if you zoom in on the cloud using your
mouse scroll wheel. You can also use rqt_reconfigure to change the leaf_size on
the fly and observe the result in RViz.

 Robot Vision - 198

 11. COMBINING VISION AND BASE CONTROL

Now that we have a handle on basic vision processing and motion control in ROS, we
are ready to put them together into a full ROS application. In this chapter we will look
at two such applications: object tracking and person following.

 11.1 A Note about Camera Coordinate Axes
ROS assumes that the optical coordinate frame attached to a given camera is oriented
with the z-axis pointing outward from the camera and perpendicular to the image plane.
Within the image plane, the x-axis points horizontally to the right and the y-axis points
vertically downward.

Note that this frame differs from the one typically attached to a mobile base which, as
we saw earlier, has the z-axis pointing upward, the x-axis pointing forward, and the y-
axis point to the left. While we won't have to worry too much about this difference in
this volume, it is important to keep in mind that when we talk about "depth" in the
context of an RGB-D camera such as the Kinect, we are talking about the camera's z-
axis which points outward from the camera.

 11.2 Object Tracker
In the chapter on Robot Vision, we learned how to use OpenCV to track faces, keypoints
and colors. In all cases, the result is a region of interest (ROI) that follows the object
and is published on the ROS topic /roi. If the camera is mounted on a mobile robot,
we can use the x_offset coordinate of the /roi to keep the object centered in the field
of view by rotating the robot to compensate for the offset. In this way, the robot will
rotate left or right to track the object as it moves. (In the next section we will add depth
to the equation so that the robot can also move forward and backward and keep the
object at a fixed distance as it moves away or comes closer.)

Our tracker node can be found in the object_tracker.py script located in the
directory rbx1_apps/nodes. Before we review the code, let's test the tracking as
follows.

 11.2.1 Testing the Object Tracker with rqt_plot

This test can be run without a robot and requires only a camera attached to your
computer. Start by launching the driver for either a depth camera or a webcam:

For the Microsoft Kinect:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

 Combining Vision and Base Control - 199

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

For a webcam run:

$ roslaunch rbx1_vision usb_cam.launch video_device:=/dev/video0

(Change the video device if necessary.)

Next, bring up the face_tracker2 node we developed earlier:

$ roslaunch rbx1_vision face_tracker2.launch

Now bring up the object_tracker node:

$ roslaunch rbx1_apps object_tracker.launch

Finally, run rqt_plot to view the angular component of the /cmd_vel topic:

$ rqt_plot /cmd_vel/angular/z

A plotting window should appear with time scrolling along the horizontal axis and the
value of /cmd_vel/angular/z plotted along the vertical axis. As shown in the image
below, set the back end plotting engine to MathPlot by clicking on the little gear icon
at the upper right corner of the rqt_plot window (circled in red below) and then
selecting the MathPlot radio button. Then click OK.

 Combining Vision and Base Control - 200

Now look at the camera and when the face tracker detects your face, move your head
left and right. As you do so, you should see the angular velocity in rqt_plot vary
between roughly -1.5 and 1.5 radians per second. The further away from center you
move your face, the larger the velocity value on rqt_plot. If these values were being
sent to a robot, the robot would rotate accordingly.

 11.2.2 Testing the Object Tracker with a Simulated Robot

Instead of rqt_plot, we can use the ArbotiX simulator to test the functionality of the
object tracker code. The procedure is the same as the preceding section except that
instead of running rqt_plot as the last step, bring up the simulator and RViz as we
have done before:

$ roslaunch rbx1_bringup fake_turtlebot.launch

$ rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz

 Combining Vision and Base Control - 201

You should see the fake TurtleBot in RViz. If you now move your head left or right in
front of the camera, the TurtleBot should rotate in the corresponding direction. The
further left/right you move, the faster it should rotate. Note that the robot will continue
to rotate as long as your face is off-center since the camera is not actually on the
simulated robot. A we will show below, a real robot would stop rotating once the
camera is aligned with your face.

 11.2.3 Understanding the Object Tracker Code

Before running the tracking application on a real robot, let's take a look at the code.

Link to source: object_tracker.py

1 #!/usr/bin/env python
2
3 import rospy
4 from sensor_msgs.msg import RegionOfInterest, CameraInfo
5 from geometry_msgs.msg import Twist
6 import thread
7
8 class ObjectTracker():
9 def __init__(self):
10 rospy.init_node("object_tracker")
11
12 # Set the shutdown function (stop the robot)
13 rospy.on_shutdown(self.shutdown)
14
15 # How often should we update the robot's motion?
16 self.rate = rospy.get_param("~rate", 10)
17 r = rospy.Rate(self.rate)
18
19 # The maximum rotation speed in radians per second
20 self.max_rotation_speed = rospy.get_param("~max_rotation_speed", 2.0)
21
22 # The minimum rotation speed in radians per second
23 self.min_rotation_speed = rospy.get_param("~min_rotation_speed", 0.5)
24
25 # Sensitivity to target displacements. Setting this too high
26 # can lead to oscillations of the robot.
27 self.gain = rospy.get_param("~gain", 2.0)
28
29 # The x threshold (% of image width) indicates how far off-center
30 # the ROI needs to be in the x-direction before we react
31 self.x_threshold = rospy.get_param("~x_threshold", 0.1)
32
33 # Publisher to control the robot's movement
34 self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5)
35
36 # Intialize the movement command
37 self.move_cmd = Twist()
38
39 # Get a lock for updating the self.move_cmd values
40 self.lock = thread.allocate_lock()
41
42 # We will get the image width and height from the camera_info topic

 Combining Vision and Base Control - 202

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_apps/nodes/object_tracker.py

43 self.image_width = 0
44 self.image_height = 0
45
46 # Set flag to indicate when the ROI stops updating
47 self.target_visible = False
48
49 # Wait for the camera_info topic to become available
50 rospy.loginfo("Waiting for camera_info topic...")
51 rospy.wait_for_message('camera_info', CameraInfo)
52
53 # Subscribe the camera_info topic to get the image width and height
54 rospy.Subscriber('camera_info', CameraInfo, self.get_camera_info)
55
56 # Wait until we actually have the camera data
57 while self.image_width == 0 or self.image_height == 0:
58 rospy.sleep(1)
59
60 # Subscribe to the ROI topic and set the callback to update the
robot's motion
61 rospy.Subscriber('roi', RegionOfInterest, self.set_cmd_vel)
62
63 # Wait until we have an ROI to follow
64 rospy.wait_for_message('roi', RegionOfInterest)
65
66 rospy.loginfo("ROI messages detected. Starting tracker...")
67
68 # Begin the tracking loop
69 while not rospy.is_shutdown():
70 # Acquire a lock while we're setting the robot speeds
71 self.lock.acquire()
72
73 try:
74 # If the target is not visible, stop the robot
75 if not self.target_visible:
76 self.move_cmd = Twist()
77 else:
78 # Reset the flag to False by default
79 self.target_visible = False
80
81 # Send the Twist command to the robot
82 self.cmd_vel_pub.publish(self.move_cmd)
83
84 finally:
85 # Release the lock
86 self.lock.release()
87
88 # Sleep for 1/self.rate seconds
89 r.sleep()
90
91 def set_cmd_vel(self, msg):
92 # Acquire a lock while we're setting the robot speeds
93 self.lock.acquire()
94
95 try:
96 # If the ROI has a width or height of 0, we have lost the target
97 if msg.width == 0 or msg.height == 0:
98 self.target_visible = False

 Combining Vision and Base Control - 203

99 return
100
101 # If the ROI stops updating this next statement will not happen
102 self.target_visible = True
103
104 # Compute the displacement of the ROI from the center of the image
105 target_offset_x = msg.x_offset + msg.width / 2 -
self.image_width / 2
106
107 try:
108 percent_offset_x = float(target_offset_x) /
(float(self.image_width) / 2.0)
109 except:
110 percent_offset_x = 0
111
112 # Rotate the robot only if the displacement of the target exceeds
the threshold
113 if abs(percent_offset_x) > self.x_threshold:
114 # Set the rotation speed proportional to the displacement of
the target
115 try:
116 speed = self.gain * percent_offset_x
117 if speed < 0:
118 direction = -1
119 else:
120 direction = 1
121 self.move_cmd.angular.z = -direction *
max(self.min_rotation_speed,
122 min(self.max_rotation_speed,
abs(speed)))
123 except:
124 self.move_cmd = Twist()
125 else:
126 # Otherwise stop the robot
127 self.move_cmd = Twist()
128
129 finally:
130 # Release the lock
131 self.lock.release()
132
133 def get_camera_info(self, msg):
134 self.image_width = msg.width
135 self.image_height = msg.height
136
137 def shutdown(self):
138 rospy.loginfo("Stopping the robot...")
139 self.cmd_vel_pub.publish(Twist())
140 rospy.sleep(1)
141
142if __name__ == '__main__':
143 try:
144 ObjectTracker()
145 rospy.spin()
146 except rospy.ROSInterruptException:
147 rospy.loginfo("Object tracking node terminated.")

 Combining Vision and Base Control - 204

By this point in the book, the script will probably be fairly self-explanatory. However,
let's run through the key lines. Keep in mind the overall goal of the tracker application:
we want to monitor the /roi topic for any change in the position of the target to either
the left of right of the camera's center of view. We will then rotate the robot in the
appropriate direction to compensate.

19 # The maximum rotation speed in radians per second
20 self.max_rotation_speed = rospy.get_param("~max_rotation_speed", 2.0)
21
22 # The minimum rotation speed in radians per second
23 self.min_rotation_speed = rospy.get_param("~min_rotation_speed", 0.5)

When controlling a mobile robot, it is always a good idea to set a maximum speed.
Setting a minimum speed as well can ensure that the robot does not struggle against its
own weight and friction when trying to move too slowly.

27 self.gain = rospy.get_param("~gain", 2.0)

Most feedback loops require a gain parameter to control how fast we want the system to
respond to displacements of the target from the neutral point. In our case, the gain
parameter will determine how quickly the robot reacts to movements of the target away
from the center of view.

31 self.x_threshold = rospy.get_param("~x_threshold", 0.05)

We don't want the robot to be draining its battery chasing every tiny movement of the
target. So we set a threshold on the horizontal displacement of the target to which the
robot will respond. In this case, the threshold is specified as a percentage (0.05 = 5%) of
the image width.

39 # Get a lock for updating the self.move_cmd values
40 self.lock = thread.allocate_lock()

Callback functions assigned to ROS subscribers run in a separate thread from the main
program. Since we will be modifying the robot's rotation speed both in the ROI callback
function and in the main program loop, we need to use a lock to make the overall script
thread safe. We will see how to implement the lock below.

47 self.target_visible = False

If the target is lost (e.g. goes out of the field of view), we want the robot to stop. So we
will use a flag to indicate when the target is visible or not.

54 rospy.Subscriber('camera_info', CameraInfo, self.get_camera_info)

 Combining Vision and Base Control - 205

Rather than hard code the video resolution into the program, we can get it dynamically
from the appropriate camera_info topic. The actual name of this topic is mapped in
the launch file object_tracker.launch. In the case of a Kinect or Xtion camera
driven by the OpenNI node, the topic name is usually /camera/rgb/camera_info.
The callback function self.get_camera_info (defined later in the script) simply sets
the global variables self.image_width and self.image_height from the
camera_info messages.

61 rospy.Subscriber('roi', RegionOfInterest, self.set_cmd_vel)

Here we subscribe to the /roi topic and set the callback function to set_cmd_vel()
which will set the Twist command to send to the robot when the position of the target
changes.

69 while not rospy.is_shutdown():
70 # Acquire a lock while we're setting the robot speeds
71 self.lock.acquire()
72
73 try:
74 # If the target is not visible, stop the robot
75 if not self.target_visible:
76 self.move_cmd = Twist()
77 else:
78 # Reset the flag to False by default
79 self.target_visible = False
80
81 # Send the Twist command to the robot
82 self.cmd_vel_pub.publish(self.move_cmd)
83
84 finally:
85 # Release the lock
86 self.lock.release()
87
88 # Sleep for 1/self.rate seconds
89 r.sleep()

This is our main control loop. First we acquire a lock to protect the two global variables
self.move_cmd and self.target_visible since both variables can also be
modified in the set_cmd_vel() callback function. Then we test to see if the target is
still visible. If not we stop the robot by setting the movement command to the empty
Twist message. Otherwise, we set the target_visible flag back to False (the safe
default) and then publish the current movement command as set in the set_cmd_vel()
callback described next. Finally, we release the lock and sleep for one cycle.

91 def set_cmd_vel(self, msg):
92 # Acquire a lock while we're setting the robot speeds
93 self.lock.acquire()
94
95 try:

 Combining Vision and Base Control - 206

96 # If the ROI has a width or height of 0, we have lost the target
97 if msg.width == 0 or msg.height == 0:
98 self.target_visible = False
99 return
100
101 # If the ROI stops updating this next statement will not happen
102 self.target_visible = True

The set_cmd_vel() callback gets triggered whenever there is a new message on the
/roi topic. The first thing to check is that neither the width nor height of the ROI is
zero. If so, the target has probably been lost so we return immediately to the main loop
which will stop the robot from rotating. Otherwise, we set the target_visible flag
to True so that the robot will react to the target's position.

89 target_x_offset = msg.x_offset + (msg.width / 2.0) - (self.image_width
/ 2.0)
90
91 try:
92 percent_offset = float(target_x_offset) / (float(self.image_width)
/ 2.0)
93 except:
94 percent_offset = 0

Before we can determine how the robot should move, we compute the displacement of
the target from the center of the camera image. Recall that the x_offset field in an
ROI message specifies the x-coordinate of the upper left corner of the region, so to find
the center of the region we add half the width. Then to find the displacement from the
center of the image we subtract half the width of the image. With the displacement
computed in pixels, we then get the displacement as a fraction of the image width. The
try-catch block ensures we trap any attempt to divide by zero which can happen if the
camera_info topic hiccups and sends us an image_width value of 0.

97 if abs(percent_x_offset) > self.x_threshold:
98 # Set the rotation speed proportional to the displacement of the
target
99 try:
100 speed = self.gain * percent_x_offset
101 if speed < 0:
102 direction = -1
103 else:
104 direction = 1
105 self.move_cmd.angular.z = -direction *
max(self.min_rotation_speed, min(self.max_rotation_speed, abs(speed)))
106 except:
107 self.move_cmd = Twist()
108 else:
109 # Otherwise stop the robot
110 self.move_cmd = Twist()

 Combining Vision and Base Control - 207

Finally we compute the rotation speed of the robot to be proportional to the
displacement of the target where the multiplier is the parameter self.gain. If the
target offset does not exceed the x_threshold parameter, we set the movement
command to the empty Twist message to stop the robot (or keep it stopped).

 11.2.4 Object Tracking on a Real Robot

We're now ready to try the object tracker on a real robot. Since the robot will only be
rotating left and right, you shouldn't have to worry about it running into anything, but
move it into a clear area anyway.

If you are using a TurtleBot with its fixed camera location, you might have to get on
your hands and knees to do face tracking. Alternatively, you can run the CamShift
tracker and hold a colored object in from the robot to test tracking. To get it all rolling,
follow these steps.

First terminate any launch files you might have running from the previous section. Then
start up your robot's launch files. For the original TurtleBot we would run:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

If your robot has a Microsoft Kinect, run:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

Otherwise, for the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras, use:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

Next launch either the CamShift tracker or the face tracker:

$ roslaunch rbx1_vision camshift.launch

or

$ roslaunch rbx1_vision face_tracker2.launch

Finally, bring up the object tracker node:

$ roslaunch rbx1_apps object_tracker.launch

If you launched the Camshift tracker, move a brightly colored object in front of the
camera, select it with the mouse, and adjust the parameters so you get good isolation of
the target in the backprojection window. Now move the object left or right and the robot
should then rotate to keep the object centered in the image frame.

 Combining Vision and Base Control - 208

If you are running the face tracker instead, move in front of your robot's camera so your
face is in the field of view, wait for your face to be detected, then move to the left or
right. The robot should rotate to keep your face centered in the image frame.

Try adjusting the parameters in the object_tracker.launch file to get the response
sensitivity you desire.

 11.3 Object Follower
Our next script combines the object tracker with depth information so that the robot can
also move forward and backward to keep the tracked object at a fixed distance. In this
way, the robot can actually follow the target as it moves about. The script will track any
target published on the /roi topic so we can use our earlier vision nodes such as the
face tracker, CamShift or LK tracker nodes to provide the target.

The new script is called object_follower.py located in the rbx1_apps/nodes directory.
In addition to the /roi topic, we now subscribe to the depth image published on the
topic /camera/depth_registered/image_rect. This allows us to compute an
average distance over the region of interest and should reflect how far away the target
object is from the camera. We can then move the robot forward or backward to keep the
target at a given distance. (Remember that if your camera is displaced back from the
front of the robot that you will want to account for that offset in the goal distance you set
for following.)

 11.3.1 Adding Depth to the Object Tracker

The object follower program is similar to the object tracker script but this time we will
add depth information. There are two ways we can get depth values from an RGBD
camera using ROS; we can subscribe either to the depth image published by the openni
or freenect node and use OpenCV to process that image, or we can subscribe to the
depth point cloud and use PCL. For the object follower node, we will use the depth
image and OpenCV. For our "person follower" script described in the next section, we
will show how to use a point cloud and PCL nodelets.

The openni or freenect camera driver publishes the depth image on the topic
/camera/depth_registered/image_raw using the message type
sensor_msgs/Image. Each "pixel" in the image stores the depth value at that point in
millimeters. We will therefore need to divide these values by 1000 to get the results in
meters. Our callback function will use cv_bridge to convert the depth image into a
Numpy array that we can use to compute the average depth over the ROI.

Rather than list out the entire script, let's focus on what is new relative to the object
tracker node from the previous section.

self.depth_subscriber = rospy.Subscriber("depth_image", Image,
self.convert_depth_image, queue_size=1)

 Combining Vision and Base Control - 209

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_apps/nodes/object_follower.py

Here we subscribe to the depth image topic and assign the callback function
convert_depth_image(). We use the generic topic name "depth_image" so that we
can remap it in the launch file. If you look at the launch file
object_follower.launch found in the rbx1_apps/launch directory, you will see
that we do the appropriate remapping as follows:

 <remap from="camera_info" to="/camera/rgb/camera_info" />
 <remap from="depth_image" to="/camera/depth_registered/image_rect" />

Our callback function convert_depth_image() then looks like this:

 def convert_depth_image(self, ros_image):
 # Use cv_bridge() to convert the ROS image to OpenCV format
 try:
 # Convert the depth image using the default passthrough encoding
 depth_image = self.cv_bridge.imgmsg_to_cv2(ros_image, "passthrough")
 except CvBridgeError, e:
 print e

 # Convert the depth image to a Numpy array
 self.depth_array = np.array(depth_image, dtype=np.float32)

Here we use CvBridge to convert the depth image to a Numpy array and store it in the
variable self.depth_array. This will allow us to access depth values for each x-y
coordinate of the image that falls within the target ROI.

Recall from the object tracker script that we use the callback function set_cmd_vel()
to map messages on the /roi topic to Twist commands to move the robot. In that case
we computed the left-right offset of the target so that we could rotate the robot to keep
the target in the center of the camera view. We now add the following code to get the
average depth to the ROI.

 # Acquire a lock while we're setting the robot speeds
 self.lock.acquire()

 try:

 (... some code omitted that is the same as object_tracker.py ...)

 # Initialize a few depth variables
 n_z = sum_z = mean_z = 0

 # Shrink the ROI slightly to avoid the target boundaries
 scaled_width = int(self.roi.width * self.scale_roi)
 scaled_height = int(self.roi.height * self.scale_roi)

 # Get the min/max x and y values from the scaled ROI
 min_x = int(self.roi.x_offset + self.roi.width * (1.0 - self.scale_roi) /
2.0)
 max_x = min_x + scaled_width

 Combining Vision and Base Control - 210

 min_y = int(self.roi.y_offset + self.roi.height * (1.0 - self.scale_roi) /
2.0)
 max_y = min_y + scaled_height

 # Get the average depth value over the ROI
 for x in range(min_x, max_x):
 for y in range(min_y, max_y):
 try:
 # Get a depth value in millimeters
 z = self.depth_array[y, x]

 # Convert to meters
 z /= 1000.0

 except:
 # It seems to work best if we convert exceptions to 0
 z = 0

 # Check for values outside max range
 if z > self.max_z:
 continue

 # Increment the sum and count
 sum_z = sum_z + z
 n_z += 1

 # Stop the robot's forward/backward motion by default
 linear_x = 0

 # If we have depth values...
 if n_z:
 mean_z = float(sum_z) / n_z

 # Don't let the mean fall below the minimum reliable range
 mean_z = max(self.min_z, mean_z)

 # Check the mean against the minimum range
 if mean_z > self.min_z:
 # Check the max range and goal threshold
 if mean_z < self.max_z and (abs(mean_z - self.goal_z) >
self.z_threshold):
 speed = (mean_z - self.goal_z) * self.z_scale
 linear_x = copysign(min(self.max_linear_speed,
max(self.min_linear_speed, abs(speed))), speed)

 if linear_x == 0:
 # Stop the robot smoothly
 self.move_cmd.linear.x *= self.slow_down_factor
 else:
 self.move_cmd.linear.x = linear_x
 finally:
 # Release the lock
 self.lock.release()

 Combining Vision and Base Control - 211

ROS callbacks operate in their own thread so first we set a lock to protect any variables
that might also be updated in the main body of our script. This includes the variable
self.move_cmd for controlling the robot's motion and the self.target_visible
flag that indicates whether or not we have lost the target. If we didn't use a lock,
unpredictable results could occur when both the callback and the body of the script try to
use these variables at the same time.

First we get the range of x and y values that covers an area slightly smaller than the
ROI. We shrink the ROI by the factor self.scale_roi (default: 0.9) so that we don't
pick up distance values from the background near the edges of the tracked object. A
more sophisticated approach would be to drop depth values that exceed the average
depth by a certain threshold.

Next we loop over the x-y coordinates of the reduced ROI and pull the depth value at
each point from the depth array we got from our depth image callback. Note how the
order of x and y are reversed when indexing the depth array. We also check for
exceptions and set the depth to zero for these points. We could also just drop these
points but it turns out that by setting them to zero we actually get better following
behavior when the person is close to the robot.

Finally, we compute the average depth and set the linear speed component of the robot
to either move toward or away from the target depending on whether we are too far
away or too close compared to our goal distance set in the self.goal_z parameter. In
case we don't have any valid depth values, we stop the robot smoothly by reducing the
linear speed by 10%. (Don't be confused by the use of "z" for depth info from the
camera and "x" for the linear speed of the robot. This is simply a consequence of the
two different coordinate conventions used for cameras and robot motion.)

When we are done with the callback, we release the lock.

In the meantime, our main loop is operating as follows;

 while not rospy.is_shutdown():
 # If the target is not visible, stop the robot smoothly
 self.lock.acquire()

 try:
 if not self.target_visible:
 self.move_cmd.linear.x *= self.slow_down_factor
 self.move_cmd.angular.z *= self.slow_down_factor
 else:
 # Reset the flag to False by default
 self.target_visible = False

 finally:
 self.lock.release()

 # Send the Twist command to the robot
 self.cmd_vel_pub.publish(self.move_cmd)

 Combining Vision and Base Control - 212

 # Sleep for 1/self.rate seconds
 r.sleep()

The only difference here compared to the same loop used in the object_tracker.py
script is that we now acquire a lock at the beginning and release it at the end of each
update cycle. This is to protect the variables self.move_cmd and
self.target_visible that can also be modified by our callback set_cmd_vel().

 11.3.2 Testing the Object Follower with a Simulated Robot

Since the object follower requires depth information, the script will only work with a
depth camera such as the Kinect or Xtion Pro. Therefore, start by attaching your camera
to your computer and launching the appropriate driver:

For the Microsoft Kinect:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

Next, bring up the fake TurtleBot and RViz:

$ roslaunch rbx1_bringup fake_turtlebot.launch

$ rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz

You should see the fake TurtleBot in RViz.

Now launch the face_tracker2 node we developed earlier:

$ roslaunch rbx1_vision face_tracker2.launch

Position the camera so that it can detect your face. Remember that you can hit the 'c' key
over the video window to clear the tracked points and force the node to re-detect your
face.

Now bring up the object_follower node:

$ roslaunch rbx1_apps object_follower.launch

 Combining Vision and Base Control - 213

Make sure the RViz window is visible so that you can see the fake TurtleBot. If you
now move your head in front of the camera, the fake TurtleBot should move to track
your motion. The goal distance set in the object_follower.launch file is 0.7
meters so if you move your head within that distance of the camera, the robot will move
backward. If you move further away than 0.7 meters, the robot will move forward.

You can try the same experiment using the CamShift node to track a colored object.
Simply terminate the face tracker launch file and run the camshift launch file instead:

$ roslaunch rbx1_vision camshift.launch

Select the object you want to track with the mouse and watch the fake TurtleBot in RViz
as you move the object in front of the camera.

 11.3.3 Object Following on a Real Robot

We're now ready to try the object follower on a real robot. Before starting, make sure
your robot has lots of room to move about.

If you are using a TurtleBot with its fixed camera location, you might have to get on
your hands and knees to do face tracking. Alternatively, you can run the CamShift
tracker and hold a colored object in from the robot to test tracking.

First terminate any launch files you might have running from the previous section. Then
start up your robot's launch files. For the original TurtleBot we would run:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

If your robot has a Microsoft Kinect, run:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

Otherwise, for the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras, use:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

Next launch either the CamShift tracker or the face tracker:

$ roslaunch rbx1_vision camshift.launch

or

$ roslaunch rbx1_vision face_tracker2.launch

 Combining Vision and Base Control - 214

Finally, bring up the object follower node:

$ roslaunch rbx1_apps object_follower.launch

If you launched the Camshift tracker, move a brightly colored object in front of the
camera, select it with the mouse, and adjust the parameters so you get good isolation of
the target in the backprojection window. Now move the object left, right, or forward and
back from the camera and the robot should then move to keep the object centered and at
roughly the goal distance set in the launch file.

If you are running the face tracker instead, move in front of your robot's camera so your
face is in the field of view, wait for your face to be detected, then move to the left or
right, forward or back. The robot should move to track your motion.

Try adjusting the parameters in the object_tracker.launch file to get the response
sensitivity you desire.

As yet another option, try running the lk_tracker.launch node rather than the face
tracker or CamShift. This will allow the robot to follow any object you select with the
mouse by tracking the keypoints on its surface.

 11.4 Person Follower
Our second application is designed to make our robot follow a person as they walk
around the room. If you have a TurtleBot, you can use the most excellent
turtlebot_follower application by Tony Pratkanis that uses PCL and is written in C++.
Our goal will be to write a similar application in Python where we don't have access to
the full PCL API.

The ROS sensor_msgs package defines a class for the PointCloud2 message type
and a module called point_cloud2.py that we can use to access individual depth
values. Tony Pratkanis' turtlebot_follower program doesn't really know what a
person looks like. Instead, it uses the following strategy to detect a "person-like blob" in
front of it and then keep that object within a certain distance:

• First, define the minimum and maximum size of the blob in the x, y and z
dimensions. This way the robot won't tend to fixate on pieces of furniture or
chair legs.

• Next, define how close we want the robot to stay to the blob (person). For a
depth camera, the z-coordinate is the relevant dimension here.

• Start the main loop:

◦ If the robot is too far or too close to the person, move forward or backward
accordingly.

 Combining Vision and Base Control - 215

https://github.com/ros/common_msgs/blob/indigo-devel/sensor_msgs/src/sensor_msgs/point_cloud2.py
http://www.formicite.com/
http://ros.org/wiki/turtlebot_follower

◦ If the person is to the left or right of the robot, rotate right or left
appropriately.

◦ Publish the corresponding movement as a Twist message on the /cmd_vel
topic.

Let's now program a similar ROS application in Python.

 11.4.1 Testing the Follower Application in Simulation

The Python script that implements the follower application is called follower.py in
the rbx1_apps/nodes directory. Before looking at the code, you can try it out in the
ArbotiX simulator.

First, make sure your camera is plugged in, then run the appropriate driver:

For the Microsoft Kinect:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

Next, launch the follower application:

$ roslaunch rbx1_apps follower.launch

Finally, bring up the simulator and RViz as we have done before:

$ roslaunch rbx1_bringup fake_turtlebot.launch

$ rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz

You should see the simulated TurtleBot in RViz. If you now move your body toward or
away from the camera, the TurtleBot should move forward or backward. If you move to
the right or left, the robot should rotate to track you. Since your body is not actually part
of the simulation, the robot will continue to move as long as your are not centered or at
the goal distance from the camera.

 11.4.2 Understanding the Follower Script

Let's now take a look at the follower code.

Link to source: follower.py

 Combining Vision and Base Control - 216

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_apps/nodes/follower.py

1 #!/usr/bin/env python
2
3 import rospy
4 from roslib import message
5 from sensor_msgs.msg import PointCloud2
6 from sensor_msgs import point_cloud2
7 from geometry_msgs.msg import Twist
8 from math import copysign
9
10 class Follower():
11 def __init__(self):
12 rospy.init_node("follower")
13
14 # Set the shutdown function (stop the robot)
15 rospy.on_shutdown(self.shutdown)
16
17 # The dimensions (in meters) of the box in which we will search
18 # for the person (blob). These are given in camera coordinates
19 # where x is left/right,y is up/down and z is depth (forward/backward)
20 self.min_x = rospy.get_param("~min_x", -0.2)
21 self.max_x = rospy.get_param("~max_x", 0.2)
22 self.min_y = rospy.get_param("~min_y", -0.3)
23 self.max_y = rospy.get_param("~max_y", 0.5)
24 self.max_z = rospy.get_param("~max_z", 1.2)
25
26 # The goal distance (in meters) to keep between the robot
 # and the person
27 self.goal_z = rospy.get_param("~goal_z", 0.6)
28
29 # How far away from the goal distance (in meters) before the robot
reacts
30 self.z_threshold = rospy.get_param("~z_threshold", 0.05)
31
32 # How far away from being centered (x displacement) on the person
33 # before the robot reacts
34 self.x_threshold = rospy.get_param("~x_threshold", 0.1)
35
36 # How much do we weight the goal distance (z) when making a movement
37 self.z_scale = rospy.get_param("~z_scale", 1.0)
38
39 # How much do we weight x-displacement of the person when
 # making a movement
40 self.x_scale = rospy.get_param("~x_scale", 2.5)
41
42 # The maximum rotation speed in radians per second
43 self.max_angular_speed = rospy.get_param("~max_angular_speed", 2.0)
44
45 # The minimum rotation speed in radians per second
46 self.min_angular_speed = rospy.get_param("~min_angular_speed", 0.0)
47
48 # The max linear speed in meters per second
49 self.max_linear_speed = rospy.get_param("~max_linear_speed", 0.3)
50
51 # The minimum linear speed in meters per second
52 self.min_linear_speed = rospy.get_param("~min_linear_speed", 0.1)
53
54 # Publisher to control the robot's movement

 Combining Vision and Base Control - 217

55 self.cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=5)
56
57 rospy.Subscriber('point_cloud', PointCloud2, self.set_cmd_vel)
58
59 # Wait for the point cloud topic to become available
60 rospy.wait_for_message('point_cloud', PointCloud2)
61
62 def set_cmd_vel(self, msg):
63 # Initialize the centroid coordinates and point count
64 x = y = z = n = 0
65
66 # Read in the x, y, z coordinates of all points in the cloud
67 for point in point_cloud2.read_points(msg, skip_nans=True):
68 pt_x = point[0]
69 pt_y = point[1]
70 pt_z = point[2]
71
72 # Keep only those points within our designated boundaries
 # and sum them up
73 if -pt_y > self.min_y and -pt_y < self.max_y and pt_x <
self.max_x and pt_x > self.min_x and pt_z < self.max_z:
74 x += pt_x
75 y += pt_y
76 z += pt_z
77 n += 1
78
79 # Stop the robot by default
80 move_cmd = Twist()
81
82 # If we have points, compute the centroid coordinates
83 if n:
84 x /= n
85 y /= n
86 z /= n
87
88 # Check our movement thresholds
89 if (abs(z - self.goal_z) > self.z_threshold) or (abs(x) >
self.x_threshold):
90 # Compute the linear and angular components of the movement
91 linear_speed = (z - self.goal_z) * self.z_scale
92 angular_speed = -x * self.x_scale
93
94 # Make sure we meet our min/max specifications
95 linear_speed = copysign(max(self.min_linear_speed,
96 min(self.max_linear_speed,
abs(linear_speed))), linear_speed)
97 angular_speed = copysign(max(self.min_angular_speed,
98 min(self.max_angular_speed,
abs(angular_speed))), angular_speed)
99
100 move_cmd.linear.x = linear_speed
101 move_cmd.angular.z = angular_speed
102
103 # Publish the movement command
104 self.cmd_vel_pub.publish(move_cmd)
105
106

 Combining Vision and Base Control - 218

107def shutdown(self):
108 rospy.loginfo("Stopping the robot...")
109 self.cmd_vel_pub.publish(Twist())
110 rospy.sleep(1)
111
112if __name__ == '__main__':
113 try:
114 Follower()
115 rospy.spin()
116 except rospy.ROSInterruptException:
117 rospy.loginfo("Follower node terminated.")

The overall strategy behind the script is fairly simple. First, sample all the points in the
depth cloud that lie within a search box in front of the robot. From those points,
compute the centroid of the region; i.e. the average x, y and z value for all the points. If
there is a person in front of the robot, the z-coordinate of the centroid tells us how far
away they are and the x-coordinate reflects whether they are to the right or left. From
these two numbers we can compute an appropriate Twist message to keep the robot
near the person.

Let's now look at the key lines of the script.

4 from roslib import message
5 from sensor_msgs import point_cloud2
6 from sensor_msgs.msg import PointCloud2

To access the points in the depth cloud, we need the message class from roslib and
the point_cloud2 library from the ROS sensor_msgs package. We also need the
PointCloud2 message type.

The long list of parameters should be fairly self-explanatory from the comments in the
code. The heart of the script is the set_cmd_vel() callback on the point cloud topic:

56 rospy.Subscriber('point_cloud', PointCloud2, self.set_cmd_vel)

Note how we use a generic topic name ('point_cloud') in the Subscriber statement.
This allows us to remap the cloud topic in the launch file. Typically we will use the
topic /camera/depth_registered/points but if we filter the cloud beforehand, we
might use a different topic.

61 def set_cmd_vel(self, msg):
62 # Initialize the centroid coordinates and point count
63 x = y = z = n = 0

Each time we receive a message on the point_cloud topic, we begin the
set_cmd_vel callback by zeroing the centroid coordinates and point count.

66 for point in point_cloud2.read_points(msg, skip_nans=True):

 Combining Vision and Base Control - 219

67 pt_x = point[0]
68 pt_y = point[1]
69 pt_z = point[2]

Here we use the point_cloud2 library to cycle through all the points in the cloud. The
skip_nans parameter is handy since a NaN (not a number) can occur when the point is
inside or outside the camera's depth range.

72 if -pt_y > self.min_y and -pt_y < self.max_y and pt_x <
self.max_x and pt_x > self.min_x and pt_z < self.max_z:
73 x += pt_x
74 y += pt_y
75 z += pt_z
76 n += 1

For each point in the cloud message, we check to see if it falls within the search box. If
so, add its x, y and z coordinates to the centroid sums and increment the point count.

79 move_cmd = Twist()

Initialize the movement command to the empty Twist message which will stop the
robot by default.

82 if n:
83 x /= n
84 y /= n
85 z /= n

Assuming we found at least one non-NaN point, we compute the centroid coordinates by
dividing by the point count. If there is a person in front of the robot, these coordinates
should give us a rough idea of how far away they are and whether they are to the left or
right.

88 if (abs(z - self.goal_z) > self.z_threshold) or (abs(x) >
self.x_threshold):
89
90 linear_speed = (z - self.goal_z) * self.z_scale
91 angular_speed = -x * self.x_scale

If the person is closer or further than the goal distance by more than the z_threshold,
or the left/right displacement exceeds the x_threshold, set the robot's linear and
angular speed appropriately, weighing each by the z_scale and x_scale parameters.

103 self.cmd_vel_pub.publish(move_cmd)

Finally, publish the movement command to move (or stop) the robot.

 Combining Vision and Base Control - 220

 11.4.3 Running the Follower Application on a TurtleBot

If you have a TurtleBot, you can compare our Python follower node to the C++ version
by Tony Pratkanis which is found in the turtlebot_follower package. In either
case, start with your robot in the middle of a large room as far away from walls,
furniture, or other people as possible.

Make sure the TurtleBot is powered on, then launch the startup file:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

Next, bring up the depth camera:

For the Microsoft Kinect:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

Fire up the follower node using the follower.launch file:

$ roslaunch rbx1_apps follower.launch

Then move in front of the robot to see if you can get it to follow you. You can adjust the
robot's behavior by changing the parameters in the launch file. Note that if you move
too close to a wall or another object, the robot will likely lock onto it instead of you and
you might have to pick up the robot and rotate it way from the distracting object. Also
note that dark clothing, especially black and dark blue, tends not to reflect the IR pattern
used by depth cameras such as the Kinect or Xtion Pro. So if you find the robot is not
following you very well, make sure you aren't wearing black or navy blue pants.

If you find that the robot is a little slow to track your movements, it is likely because of
the load we are putting on the CPU by checking every point in the point cloud to see if it
falls within our tracking ranges. And we are doing this checking in Python which is not
particularly suitable for such a task. A faster and more efficient way to run the follower
program is to first filter the cloud using a number of PCL nodelets which are written in
C++ and run much faster than a bunch of Python if-then statements. This is the
approach we take in the next section and it should result in noticeably improved
responsiveness during the robot's following behavior.

 11.4.4 Running the Follower Node on a Filtered Point Cloud

In our current follower.py script, we test every point in the cloud to see if it falls
within the search box. You might be wondering, why not use the PassThrough nodelet

 Combining Vision and Base Control - 221

we learned about earlier to pre-filter the cloud so this test isn't necessary? Indeed, this is
a viable alternative and an implementation can be found in the follower2.launch
file. This file runs a VoxelGrid filter plus a number of PassThrough filters to create
the search box, then launches the follower2.py node. This new script is very similar
to the original but now we can skip the test to see if a point falls within the search box.

By this point in the book, you can probably follow both the follower2.launch file
and the follower2.py script on your own so we will leave it to the reader as an
exercise. To test the script on a TurtleBot, follow the same instructions as in the
previous section but run the follower2.launch file instead of follower.launch.
If you are starting from scratch, run the following three launch files.

Make sure the TurtleBot is powered on, then launch the startup file:

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch

Next, bring up the depth camera driver:

For the Microsoft Kinect:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

Finally, run the follower2.py node:

$ roslaunch rbx1_apps follower2.launch

 Combining Vision and Base Control - 222

 12. DYNAMIXEL SERVOS AND ROS
It is hard to beat a pan-and-tilt head for adding life-like behavior to your robot. With
just two servos, the robot can track your face or other moving objects, or simply look
around without having to rotate its entire
body. Indeed, you don't even need a robot
for this chapter: just a camera mounted on
a pair of servos.

A number of third-party ROS packages
provide all the tools we need to get started
with joint control. At the time of this
writing, our only choice of servo is the
Robotis Dynamixel, primarily because
these servos provides real-time feedback
for position, speed and torque which is key
to the way that ROS manages robot joints.
A pair of the low-end AX-12 servos are
generally sufficient to support the weight
of a Kinect or Asus Xtion Pro camera.
However, the Kinect is heavy enough that
the tilt servo should not be held too far away from the vertical position for more than a
few minutes at a time to prevent overheating.

In this chapter we will cover the following topics:

• Adding a pan-and-tilt head to a TurtleBot

• Choosing a Dynamixel controller and ROS package

• Understanding the ROS JointState message type

• Using basic joint control commands

• Connecting the hardware controller and setting the servo IDs

• Configuring the launch files and parameters

• Testing the servos

• Programming a head tracking node

• Combining head tracking with face tracking

 Dynamixel Servos and ROS - 223

http://www.trossenrobotics.com/dynamixel-ax-12-robot-actuator.aspx
http://www.robotis.com/xe/dynamixel_en

 12.1 A TurtleBot with a Pan-and-Tilt Head
For this chapter, we will use a modified TurtleBot with the Kinect placed on top of a pair
of pan and tilt Dynamixel servos as shown in the picture above. (An Asus Xtion would
work as well.)

If you have a TurtleBot and would like to add a pan-and-tilt head using Dynamixel
servos, you can either build your own using Robotis brackets or, if you have more
money than time, you might pick up a PhantomX Turret Kit from Trossen Robotics.
Note that this kit can be purchased without servos and without the ArbotiX controller.
We will be using a USB2Dynamixel controller instead.

To test the URDF model of the modified TurtleBot, make sure you terminate any other
launch files that might be running, then run the following commands:

$ roslaunch rbx1_description test_turtlebot_with_head.launch

and then in another terminal:

$ rosrun rviz rviz -d `rospack find rbx1_description`/urdf.rviz

If all goes well, you should see the robot in RViz as it appears in the picture at the start
of the chapter. In addition, a small pop-up window will appear with a number of slider
controls that allow you to test the movement of the servos. Try moving the sliders and
make sure the servos rotate the head appropriately. (See if you can use the right-hand
rule to figure out why a positive tilt rotates the camera downward and a positive pan
causes the head to rotate counter-clockwise.)

Type Ctrl-C in the test_turtlebot_with_head.launch window when you are
finished.

 12.2 Choosing a Dynamixel Hardware Controller
There are two Dynamixel hardware controllers that work well with ROS: the ArbotiX
controller from Vanadium Labs used on the Mini Max and Maxwell robots, and the
Robotis USB2Dynamixel controller. We will use the USB2Dynamixel controller in this
book since we don't need the onboard base controller that is also provided by the
ArbotiX.

You will also need a way to power the servos. The USB2Dynamixel controller does not
itself have a power connection so you will need something like the SMPS2Dynamixel or
6-port AX/MX Power Hub together with a 12V power supply.

 Dynamixel Servos and ROS - 224

http://www.trossenrobotics.com/6-port-ax-mx-power-hub
http://www.trossenrobotics.com/store/p/5886-SMPS2Dynamixel-Adapter.aspx
http://www.trossenrobotics.com/robotis-bioloid-usb2dynamixel.aspx
http://wiki.ros.org/maxwell
http://wiki.ros.org/mini_max
http://www.trossenrobotics.com/p/arbotix-robot-controller.aspx
http://www.trossenrobotics.com/robotis-bioloid-usb2dynamixel.aspx
http://www.trossenrobotics.com/p/phantomX-robot-turret.aspx

 12.3 A Note Regarding Dynamixel Hardware
While Dynamixel servos are very sophisticated pieces of hardware, the cable
connections between the servos need to be secured with tie wraps or other methods to
ensure reliability. Even a slight movement of the connectors in the sockets can
sometimes cause a loss of signal which in turn can cause the software drivers to crash.
In such cases, power cycling the servos and restarting the driver is often necessary. The
same precautions should be taken for the power connection between the battery source
and the SMPS2Dynamixel device.

 12.4 Choosing a ROS Dynamixel Package
The two most actively developed ROS Dynamixel projects are the arbotix meta-package
by Michael Ferguson and the dynamixel_motor packages by Antons Rebguns. Both
stacks can be used with a USB2Dynamixel controller while the arbotix stack can also
be used with the ArbotiX controller. We will use the dynamixel_motor packages in
this volume to be consistent with earlier tutorials on the Pi Robot website. The arbotix
packages are covered in Volume 2.

To install the dynamixel_motor packages, run the command:

$ sudo apt-get install ros-indigo-dynamixel-motor

That's all there is to it!

 12.5 Understanding the ROS JointState Message Type

The ROS JointState message type is designed to keep track of all of the joints on a
robot. As with all message types, we can display its fields using the rosmsg command:

$ rosmsg show sensor_msgs/JointState

which should produce the following output:

Header header
 uint32 seq
 time stamp
 string frame_id
string[] name
float64[] position
float64[] velocity
float64[] effort

As you can see, the JointState message includes a standard ROS Header component
made up of a sequence number (seq), a timestamp (stamp) and a frame_id. This is
followed by four arrays: a string array called name to hold the names of the joints, then

 Dynamixel Servos and ROS - 225

http://www.pirobot.org/wordpress/
http://wiki.ros.org/dynamixel_motor
http://wiki.ros.org/arbotix

three float arrays to hold the position, velocity and effort (usually torque) for
each joint.

We can now see why Dynamixel servos are a good fit with ROS: namely, we can query
each servo for its current position, velocity and torque which is exactly the data we need
to fill in the JointState message. Once we have chosen a hardware controller for the
Dynamixel servos, a ROS driver for that controller would be expected to publish the
servo states as a JointState message on some topic. This topic is typically called
/joint_states and other nodes can subscribe to the topic to find out the current state
of all the joints.

While most joints used on robots are revolute like servos, ROS can also deal with linear
joints which are referred to as prismatic. A prismatic joint can be used to move a robot's
torso up and down like on the PR2, or to extend or retract an arm. In either case, the
position, velocity and torque of a prismatic joint can be specified in the same way as a
servo-type joint and so ROS can easily handle both.

 12.6 Controlling Joint Position, Speed and Torque
Setting the position, speed and torque of a servo or linear joint in ROS is done using
topics and services as we would expect. The dynamixel_motor meta-package
contains the dynamixel_controllers package that works in a manner similar to the
one used on the Willow Garage PR2: first a controller manager node is launched that
connects to the Dynamixel bus (in our case a USB2Dynamixel controller). The
controller node then launches a number of individual controllers, one for each servo.

Each controller uses a topic to control the servo's position and a collection of services
for setting the servo's speed, torque, and other Dynamixel properties. Fortunately, the
authors of the dynamixel_motor stack (Antons Rebguns, Cody Jorgensen and Cara
Slutter) have nicely documented their package on the ROS Wiki. The part of the
documentation we are interested in right now can be found on the
dynamixel_controllers page. Click on the link and then click on the electric tab at
the top of the page to see the documentation. (For some reason, the documentation is
not showing for later ROS releases but the basic API has not changed.) Finally, click on
the link called "Common Joint Controller Interface" in the table of contents. Here is a
screen shot of that part of the page:

 Dynamixel Servos and ROS - 226

http://wiki.ros.org/dynamixel_controllers
http://wiki.ros.org/dynamixel_controllers

The topics and services listed here allow us to control many aspects of the servos. The
ones we are interested in for now are setting position, speed and torque so let's look at
them next.

 12.6.1 Setting Servo Position

To set a servo's position in radians from center, we publish the desired position on the
topic called:

<joint_controller_name>/command

So if the controller for moving a head pan servo is called head_pan_joint, then we
would use the following command to set the position of the servo to 1.0 radians
clockwise from center:

 Dynamixel Servos and ROS - 227

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- -1.0

The pair of hyphens (--) before the position value is required when publishing a
negative value so that rostopic does not think we are supplying an option like "-r".
We can also use them when publishing positive values but they are not required. To
position the servo 1.0 radians counter-clockwise from center, we would use the
command:

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- 1.0

or without the hyphens:

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 1.0

 12.6.2 Setting Servo Speed

To set a servo's speed in radians per second, use the set_speed service called:

<joint_controller_name>/set_speed

So to set the speed of of the head pan servo to 0.5 radians per second, we would use the
command:

$ rosservice call /head_pan_joint/set_speed 0.5

 12.6.3 Controlling Servo Torque

The dynamixel_controllers package provides two services related to torque:
torque_enable and set_torque_limit. The torque_enable service allows us to
relax the torque completely or to turn it back on. Starting your robot with the servos in
the relaxed state conveniently allows you to position the joints by hand before running
any tests.

To relax the head pan servo, we would use the following command:

$ rosservice call /head_pan_joint/torque_enable False

And to turn it back on:

$ rosservice call /head_pan_joint/torque_enable True

The set_torque_limit service allows you to set how hard you want the servo to
work against a load. For example, if your robot has a multi-jointed arm, you might want
the torque limits set just high enough to lift the arm's own weight. This way if the arm

 Dynamixel Servos and ROS - 228

bumps against a person or object, the servos won't mindless attempt to push through the
obstacle. The following command would set the head pan servo torque limit to 0.1:

$ rosservice call /head_pan_joint/set_torque_limit 0.1

This is a relatively low limit and when we try it out on a real servo later in the chapter,
we will find that you can still rotate the servo by hand but now it will rotate back to its
starting position when you let go.

 12.7 Checking the USB2Dynamixel Connection
To check the connection to the USB2Dynamixel controller, first make sure that the
micro switch on the side of the device is moved to the correct setting. For 3-pin AX-12,
AX-18 or the new "T" series servos (e.g. MX-28T), you want the TTL setting. For any
of the 4-pin or "R" series servos (e.g. MX-28R, RX-28, EX-106+), you need the RS-485
setting.

Next, unplug any other USB devices from your computer if possible, then connect your
controller to a USB port. You can also connect it to a USB hub that is connected to your
computer. Once connected, a red LED on the controller should illuminate. Then issue
the following command to see what USB ports you have connected:

$ ls /dev/ttyUSB*

Hopefully you will see something like the following output:

/dev/ttyUSB0

If instead you get back the message:

ls: cannot access /dev/ttyUSB*: No such file or directory

then your USB2Dynamixel has not been recognized. Try plugging it into a different
USB port, use a different cable, or check your USB hub.

If you have no other USB devices attached, your USB2Dynamixel should be on
/dev/ttyUSB0. If you need to have other USB devices connected at the same time,
plug in the USB2Dynamixel first so that it gets assigned the device /dev/ttyUSB0. If
it has to be on a different device, e.g. /dev/ttyUSB1, simply make a note of it for the
following configuration sections.

 12.8 Setting the Servo Hardware IDs
If you have already set the hardware IDs of your Dynamixel servos, you can skip this
section. Otherwise, read on.

 Dynamixel Servos and ROS - 229

All Dynamixels are shipped with an ID of 1 so if you are using more than one servo on
the bus, at least one ID has to be changed. In the case of our pan-and-tilt head, we'll
assume we want the ID for the pan servo to be 1 and 2 for the tilt servo. You can set
them to be whatever you like but be sure to remember your choices for the next section
on configuration.

If both servos still have their default value of 1, connect the tilt servo to the bus on its
own. In other words, disconnect the pan servo from the bus if is already connected.
Then power up the servo. Assuming your USBDynamixel is still plugged into your
computer from the previous section, bring up the arbotix_terminal application as
follows:

$ arbotix_terminal /dev/ttyUSB0 1000000

Note the device name /dev/ttyUSB0 on the command line. If your controller is using
a different device, such as /dev/ttyUSB1, use that instead. The second parameter is
the baud rate of the USB2Dynamixel which is always 1000000.

If all goes well, you should see the following on your screen:

ArbotiX Terminal --- Version 0.1
Copyright 2011 Vanadium Labs LLC
>>

To list the servos on the bus, run the ls command at the >> prompt. Hopefully your
screen will then look something like this:

ArbotiX Terminal --- Version 0.1
Copyright 2011 Vanadium Labs LLC
>> ls
 1
....
>>

Notice the 1 before all the …. characters. This indicates that a servo with an ID of 1 was
found on the bus. If no IDs are shown, run the ls command a second time. If still no
IDs are displayed, check the connection between your servo and the USB2Dynamixel
controller. Also double-check that the servo has power. If all else fails, try replacing the
USB cable between your PC and the USB2Dynamixel controller. (This happened to me
once.)

To change this servo's ID from 1 to 2, use the mv command:

>> mv 1 2

then issue the ls command again. If all goes well, you should see that the servo now
has ID 2:

 Dynamixel Servos and ROS - 230

>> ls
.... 2
....

Next, disconnect the tilt servo and connect the pan servo instead, again ensuring that it
has power. Run the ls command to find its current ID. If it is already set to 1, you can
leave it as is. Otherwise, use the mv command to set it to 1.

Finally, connect both servos at the same time and run the ls command. The result
should be:

>> ls
 1 2
....

To exit the arbotix_terminal program, type Ctrl-C.

 12.9 Configuring and Launching dynamixel_controllers

In this section we will learn how to interpret the servo configuration file and examine
the dynamixel_controllers launch file.

 12.9.1 The dynamixel_controllers Configuration File

The servo configuration parameters are store in the file dynamixel_params.yaml
found in the rbx1_dynamixels/config subdirectory and looks like this:

joints: ['head_pan_joint', 'head_tilt_joint']

head_pan_joint:
 controller:
 package: dynamixel_controllers
 module: joint_position_controller
 type: JointPositionController
 joint_name: head_pan_joint
 joint_speed: 2.0
 motor:
 id: 1
 init: 512
 min: 0
 max: 1024

head_tilt_joint:
 controller:
 package: dynamixel_controllers
 module: joint_position_controller
 type: JointPositionController
 joint_name: head_tilt_joint
 joint_speed: 2.0
 motor:
 id: 2
 init: 512
 min: 300
 max: 800

 Dynamixel Servos and ROS - 231

First we define a list parameter called joints that contains the names of our servos.
Next, we have a block for each servo controller beginning with the controller name. In
our case, the two controllers are called head_pan_joint and head_tilt_joint.
These are the names that are used in the topics and services we learned about in the
previous section.

For each servo controller, we specify the type of controller
(JointPositionController), as well as its hardware ID, the initial position value
and its minimum and maximum position values. If your servo IDs are different than 1
and 2, edit this file accordingly.

The init/min/max numbers are given in servo ticks which vary from 0 to 1023 for the
AX-12's. In the configuration above, we give the head tilt controller less than full range
since it cannot go all the way forward or back without hitting the mounting plate. (We
also specify these limits in the robot's URDF file but using radians instead of servo
ticks.)

 12.9.2 The dynamixel_controllers Launch File

The file dynamixels.launch in the rbx1_dynamixels/launch directory illustrates
how to fire up the servo controllers when we have a USB2Dynamixel controller on
device /dev/ttyUSB0 and two Dynamixel servos on the bus with hardware IDs 1 and
2. Let's take a look at it now:

<launch>
 <param name="/use_sim_time" value="false" />

 <!-- Load the URDF/Xacro model of our robot -->
<param name="robot_description" command="$(find xacro)/xacro.py '$(find

rbx1_description)/urdf/turtlebot_with_head.xacro'" />

 <!-- Publish the robot state -->
<node name="robot_state_publisher" pkg="robot_state_publisher"

type="state_publisher">
 <param name="publish_frequency" value="20.0"/>
 </node>

 <!-- Start the Dynamixel low-level driver manager with parameters -->
 <node name="dynamixel_manager" pkg="dynamixel_controllers"
 type="controller_manager.py" required="true" output="screen">
 <rosparam>
 namespace: turtlebot_dynamixel_manager
 serial_ports:
 dynamixel_ax12:
 port_name: "/dev/ttyUSB0"
 baud_rate: 1000000
 min_motor_id: 1
 max_motor_id: 2
 update_rate: 20
 </rosparam>
 </node>

 Dynamixel Servos and ROS - 232

 <!-- Load the joint controller configuration from a YAML file -->
 <rosparam file="$(find rbx1_dynamixels)/config/dynamixel_params.yaml"
command="load"/>

 <!-- Start the head pan and tilt controllers -->
 <node name="dynamixel_controller_spawner_ax12" pkg="dynamixel_controllers"
 type="controller_spawner.py"
 args="--manager=turtlebot_dynamixel_manager
 --port=dynamixel_ax12
 --type=simple
 head_pan_joint
 head_tilt_joint"
 output="screen" />

 <!-- Start the Dynamixel Joint States Publisher -->
 <node name="dynamixel_joint_states_publisher" pkg="rbx1_dynamixels"
type="dynamixel_joint_state_publisher.py" output="screen" />

 <!-- Start all Dynamixels in the relaxed state -->
 <node pkg="rbx1_dynamixels" type="relax_all_servos.py"
name="relax_all_servos" />

</launch>

If your USB2Dynamixel controller is on a device other than /dev/ttyUSB0 and/or
your servo IDs are other than 1 and 2, edit this file now before going any further.

The launch file first loads the URDF model for the robot and runs a
robot_state_publisher node to publish the state of the robot to tf. We then
launch the controller_manager.py node, load the dynamixels_param.yaml file
we looked at earlier, then spawn a pair of joint controllers, one for each servo.

The next node launched is called dynamixel_joint_state_publisher.py and is
found in the rbx1_dynamixels/nodes directory. This is not part of the
dynamixel_controllers package but is necessary to correct one inconsistency in the
way the package publishes joint states. Rather than use the standard ROS JointState
message type that we introduced earlier, the dynamixel_controllers package uses a
custom message type to publish the joint states including some additional useful
information such as servo temperature. If you look at the code in the
dynamixel_joint_state_publisher.py node, you will see that it simply
republishes the custom joint state information as a standard JointState message on
the /joint_states topic.

Finally, the launch file runs the relax_all_servos.py node found in the
rbx1_dynamixels/nodes directory which relaxes the torque on each servo and sets a
reasonable default speed and torque limit. (More on this below.)

 Dynamixel Servos and ROS - 233

 12.10 Testing the Servos
To test the pan and tilt servos, first connect your servos and USB2Dynamixel to a power
source, then make sure your USB2Dynamixel is connected to a USB port on your
computer.

 12.10.1 Starting the Controllers

Before running the next command, be sure to terminate the
test_turtlebot_with_head.launch file we used in the previous section if you
haven't already.

Next fire up the dynamixels.launch file. This launch file also loads the URDF
model for the TurtleBot with a Kinect on pan and tilt servos:

$ roslaunch rbx1_dynamixels dynamixels.launch

You should see a number of startup messages that look something like this:

process[robot_state_publisher-1]: started with pid [11415]
process[dynamixel_manager-2]: started with pid [11416]
process[dynamixel_controller_spawner_ax12-3]: started with pid [11417]
process[fake_pub-4]: started with pid [11418]
process[dynamixel_joint_states_publisher-5]: started with pid [11424]
process[relax_all_servos-6]: started with pid [11426]
process[world_base_broadcaster-7]: started with pid [11430]
[INFO] [WallTime: 1340671865.017257] Pinging motor IDs 1 through 2...
[INFO] [WallTime: 1340671865.021896] Found motors with IDs: [1, 2].
[INFO] [WallTime: 1340671865.054116] dynamixel_ax12 controller_spawner:
waiting for controller_manager turtlebot_dynamixel_manager to startup in
global namespace...
[INFO] [WallTime: 1340671865.095946] There are 2 AX-12+ servos connected
[INFO] [WallTime: 1340671865.096249] Dynamixel Manager on port
/dev/ttyUSB0 initialized
[INFO] [WallTime: 1340671865.169167] Starting Dynamixel Joint State
Publisher at 20Hz
[INFO] [WallTime: 1340671865.363797] dynamixel_ax12 controller_spawner:
All services are up, spawning controllers...
[INFO] [WallTime: 1340671865.468773] Controller head_pan_joint
successfully started.
[INFO] [WallTime: 1340671865.530030] Controller head_tilt_joint
successfully started.
[dynamixel_controller_spawner_ax12-3] process has finished cleanly.

NOTE: If one of the startup messages gives an error containing the message:

serial.serialutil.SerialException: could not open port /dev/ttyUSB0:

then try the following. First, power-cycle the USB2Dynamixel controller (unplug the
power supply and plug it back it again), then unplug the USB cable from your computer
and plug it back in again. This will fix this error 9 times out of 10. Also double-check

 Dynamixel Servos and ROS - 234

that your USB2Dynamixel really is connected to /dev/ttyUSB0 and not some other
port such as /dev/ttyUSB1.

 12.10.2 Monitoring the Robot in RViz

To view the robot in RViz and observe the motion of the servos as we start testing
below, bring up RViz now as follows:

$ rosrun rviz rviz -d `rospack find rbx1_dynamixels`/dynamixels.rviz

 12.10.3 Listing the Controller Topics and Monitoring Joint States

Once the dynamixels.launch file is up and running, bring up another terminal and
list the active topics:

$ rostopic list

Among the topics listed, you should see the following dynamixel-related topics:

/diagnostics
/head_pan_joint/command
/head_pan_joint/state
/head_tilt_joint/command
/head_tilt_joint/state
/joint_states
/motor_states/dynamixel_ax12

For now, the topics we will look at are:

/head_pan_joint/command
/head_tilt_joint/command
/head_pan_joint/state
/head_tilt_joint/state
/joint_states

The two command topics are for setting the the servo positions as we saw earlier and we
will test them below. The /joint_states topic (which is actually published by our
auxiliary node dynamixel_joint_state_publisher.py) holds the current state of
the servos as a JointState message. Use the rostopic echo command to see the
messages:

$ rostopic echo /joint_states

which should yield a stream of messages that look something like the following:

 Dynamixel Servos and ROS - 235

header:
 seq: 11323
 stamp:
 secs: 1344138755
 nsecs: 412811040
 frame_id: 'base_link'
name: ['head_pan_joint', 'head_tilt_joint']
position: [-0.5266667371740702, 0.08692557798018634]
velocity: [0.0, 0.0]
effort: [0.0, 0.0]

Here we see the header with the sequence number and timestamp, a frame_id set to
base_link and then the four arrays for name, position, velocity and effort.
Since our servos are not moving, the velocities are 0 and since they are not under load,
the effort (torque) is 0.

While the messages are still streaming on the screen, try moving the servos by hand.
You should immediately see the position, velocity and effort values change to match
your movements. You should also see the movements in RViz.

Returning to the full list of dynamixel topics above, the two controller state topics are
useful for monitoring the servo temperatures and other parameters. Try viewing the
messages on the state topic for the head pan controller:

$ rostopic echo /head_pan_joint/state

A typical message looks like this:

header:
 seq: 25204
 stamp:
 secs: 1344221332
 nsecs: 748966932
 frame_id: ''
name: head_pan_joint
motor_ids: [1]
motor_temps: [37]
goal_pos: 0.0
current_pos: -0.00511326929295
error: -0.00511326929295
velocity: 0.0
load: 0.0
is_moving: False

Perhaps the most important number here is the servo temperature listed in the
motor_temps field. A value of 37 degrees is fairly typical for a resting AX-12 servo.
When the temperature starts getting up around 50 degrees or higher, it's probably a good
idea to give it rest. To visually monitor the temperates of both servos, you could keep a
running plot using rqt_plot:

 Dynamixel Servos and ROS - 236

$ rqt_plot /head_pan_joint/state/motor_temps[0], \
/head_tilt_joint/state/motor_temps[0]

(We have to index the motor_temps fields since the dynamixel_controllers
package uses an array variable for this field to accommodate joints that use more than
one motor.)

NOTE: If you only see one plot line on the rqt_plot graph, change the back end
plotting engine to PyQtGraph instead of MathPlot by clicking on the small settings
cog icon at the upper-right corner of the window. For some reason, the MathPlot
setting does not auto scale and so the plot line of the servo with the higher temperature
can be off the top of the graph.

Since you now know the topics that include servo temperatures, you could subscribe to
these topics in your scripts and relax the servos or move them to a neutral position if the
temperature gets too high. A more sophisticated approach uses ROS diagnostics which
is covered in Volume 2.

 12.10.4 Listing the Controller Services

To list the ROS services available for each joint, run command:

$ rosservice list | grep '/head_pan\|/head_tilt'

Among the services listed, you should see the following:

/head_pan_joint/set_speed
/head_pan_joint/set_torque_limit
/head_pan_joint/torque_enable

/head_tilt_joint/set_speed
/head_tilt_joint/set_torque_limit
/head_tilt_joint/torque_enable

(We will not be using the other compliance-related services in this book.)

These are just the services we have already met in an earlier section. Let's now test the
position command topic and these services on live servos.

 12.10.5 Setting Servo Position, Speed and Torque

Once the dynamixel controllers are up and running, bring up a new terminal and send a
couple of simple pan and tilt commands. The first command should pan the head fairly
slowly to the left (counter-clockwise) through 1 radian or about 57 degrees:

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- 1.0

Re-center the servo with the command:

 Dynamixel Servos and ROS - 237

http://www.pirobot.org/wordpress/
http://wiki.ros.org/diagnostics

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- 0.0

Now try tilting the head downward half a radian (about 28 degrees):

$ rostopic pub -1 /head_tilt_joint/command std_msgs/Float64 -- 0.5

And bring it back up:

$ rostopic pub -1 /head_tilt_joint/command std_msgs/Float64 -- 0.0

To change the speed of the head pan servo to 1.0 radians per second, use the
set_speed service:

$ rosservice call /head_pan_joint/set_speed 1.0

Then try panning the head again at the new speed:

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- -1.0

To relax a servo so that you can move it by hand, use the torque_enable service:

$ rosservice call /head_pan_joint/torque_enable False

Now try rotating the head by hand. Note that relaxing a servo does not prevent it from
moving when it receives a new position command. For example, re-issue the last
panning command:

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- -1.0

The position command will automatically re-enable the torque and move the servo. To
re-enable the torque manually, run the command:

$ rosservice call /head_pan_joint/torque_enable True

And try again rotating the servo by hand--but don't force it! You should find that the
servo is locked into the current position.

Finally, set the torque limit to a small value:

$ rosservice call /head_pan_joint/set_torque_limit 0.1

Now try rotating the head by hand. This time you should feel a little more resistance
compared to a completely relaxed servo. Furthermore, when you release your grip, the
servo will return to the position it held before you moved it.

Now set the torque limit back to a moderate value:

 Dynamixel Servos and ROS - 238

$ rosservice call /head_pan_joint/set_torque_limit 0.5

Note: If the torque limit is set very low, you will find that there is also a limit to how fast
you can move the servo regardless of how high you set the speed using the set_speed
service.

 12.10.6 Using the relax_all_servos.py Script

To relax all the servos at once, use the relax_all_servos.py utility script which is
included in the rbx1_dynamixels/nodes directory:

$ rosrun rbx1_dynamixels relax_all_servos.py

If you examine the relax_all_servos.py script, you will see that relaxing is done by using
a torque_enable(False) service call to each servo. The set_speed service is also
used to set the servo speeds to a relatively low value (0.5 rad/s) so that we are not
surprised by a fast motion the first time a position command is sent. Finally, the
set_torque_limit service is called on each servo to set the maximum torque to a
moderate value (0.5). You can edit this script to set your own defaults as desired.

After running the script, sending a position command to a servo will automatically re-
enable its torque so there is no need to explicitly turn the torque back on when you want
to move the servo.

The relax_all_servos.py script is run from the dynamixels.launch file we used
earlier to start up the servo controllers.

 12.11 Tracking a Visual Target
In the chapter on Robot Vision, we developed a number of nodes for tracking a visual
target including faces, keypoints, and colors. We now have all the ingredients we need
to program a head tracking node that will move the robot's pan-and-tilt camera to follow
a moving object.

The script that does the job is called head_tracker.py and can be found in the
rbx1_dynamixels/nodes directory. Before looking at the code, you can try it out
with our earlier face tracking node.

 12.11.1 Tracking a Face

First make sure your camera driver is up and running.

For the Microsoft Kinect:

 Dynamixel Servos and ROS - 239

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_dynamixels/nodes/relax_all_servos.py

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

or if you are using a webcam:

$ roslaunch rbx1_vision usb_cam.launch video_device:=/dev/video0

(Change the video device if necessary.)

Next, make sure your servos are powered up and the USB2Dynamixel controller is
plugged into a USB port. If you have already launched the dynamixels.launch file,
you can skip this next command:

$ roslaunch rbx1_dynamixels dynamixels.launch

Make sure your servos are connected by testing the pan servo with the commands:

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- 1.0
$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- 0.0

With the servos good to go, fire up the face tracking node we developed earlier:

$ roslaunch rbx1_vision face_tracker2.launch

When the video window appears, move your face in front of the camera and make sure
the tracking is working. Remember that you can hit the 'c' key to clear tracking and
have your face re-detected.

We are now ready to launch the head tracking node with the command:

$ roslaunch rbx1_dynamixels head_tracker.launch

Assuming the face tracking node still has a lock on your face, the pan and tilt servos
should now keep the camera centered on your face as you move in front of the camera.
If your face is lost for a long enough period of time, the servos will re-center the camera.
If you Ctrl-C out of the head_tracker.launch process, the servos will also re-
center before the node shuts down. If the keypoints in the face tracker window start
drifting onto other objects, hit the 'c' key to clear the points and re-detect your face.

The following video demonstrates the behavior using a printout of the Mona Lisa as the
target face: http://youtu.be/KHJL09BTnlY

 Dynamixel Servos and ROS - 240

http://youtu.be/KHJL09BTnlY

NOTE: If you find that your computer's CPU is not fast enough to smoothly track your
face at 640x480 (VGA) resolution, try using rqt_reconfigure to set the resolution to
320x240 pixels (QVGA) for both RGB and depth. (At the time of this writing, this is
only possible when using an Asus Xtion camera as the freenect camera does not support
QVGA resolution for the Kinect.) After making the change, you will need to terminate
the face tracker node and then bring it back up again. At the same time, terminate the
head_tracker.launch file started above and launch the QVGA version instead:

$ roslaunch rbx1_dynamixels head_tracker_qvga.launch

The only difference between this file and the regular head_tracker.launch file is
that the pan and tilt gain parameters are doubled from 0.75 to 1.5.

 12.11.2 The Head Tracker Script

The head_tracker.py script is rather long but straightforward. The overall process is
as follows:

• Initialize the servos.

• Subscribe to the /roi topic.

• If the /roi moves away from the center of view, command the servos to move
the camera in a direction to re-center it.

• If the /roi is lost for a given amount of time, re-center the servos to protect
them from overheating.

To track the target, the script uses a kind of "speed tracking". If you move the camera to
the position where the tracked object is now, it may have moved by the time the camera
gets there. You might think you could just update the camera's target position at a high
rate and therefore keep up with the object. However, this kind of position tracking will
result in a jerky staccato-like motion of the camera. A better strategy is to always aim
the camera ahead of the target, but adjust the servo speeds to be proportional to the
displacement of the target from the center of view. This results in much smoother
camera motion and will ensure that it moves quickly if the target is far off-center and
more slowly if the displacement is small. When the target is centered, the servo speeds
will be zero and so the camera will not move.

The head_tracker.py script is a little long to display in its entirety, so let's take a
look at just the key sections of the code. You can see the entire source file at the
following link:

Link to source: head_tracker.py

Here now are the key lines.

 Dynamixel Servos and ROS - 241

https://github.com/pirobot/rbx1/blob/indigo-devel/rbx1_dynamixels/nodes/head_tracker.py

 rate = rospy.get_param("~rate", 10)
 r = rospy.Rate(rate)
 tick = 1.0 / rate

 # Keep the speed updates below about 5 Hz; otherwise the servos
 # can behave erratically.
 speed_update_rate = rospy.get_param("~speed_update_rate", 10)
 speed_update_interval = 1.0 / speed_update_rate

 # How big a change do we need in speed before we push an update
 # to the servos?
 self.speed_update_threshold = rospy.get_param("~speed_update_threshold", 0.01)

We define two rate parameters near the top of the script. The overall rate parameter
controls how fast we update the tracking loop which involves changing both the speed
and joint angle of the servos depending on the location of the target. The
speed_update_parameter is typically set lower and defines how often we update the
servos speeds. The only reason for doing this is that it turns out that Dynamixel servos
can act a little erratically if we try to adjust their speed too often. An update rate less
than 10 Hz or so seems to result in better behavior. We also set a
speed_update_threshold so that we only update the servo speeds if the newly
calculated speed differs by this much from the previous speed.

 self.head_pan_joint = rospy.get_param('~head_pan_joint', 'head_pan_joint')
 self.head_tilt_joint = rospy.get_param('~head_tilt_joint', 'head_tilt_joint')

 self.joints = [self.head_pan_joint, self.head_tilt_joint]

We need to know the name of the pan and tilt joints in the URDF model of the robot. If
your joint names differ from the defaults, use these two parameters in the
head_tracker.launch file to set them accordingly.

 # Joint speeds are given in radians per second
 self.default_joint_speed = rospy.get_param('~default_joint_speed', 0.3)
 self.max_joint_speed = rospy.get_param('~max_joint_speed', 0.5)

 # How far ahead or behind the target (in radians) should we aim for?
 self.lead_target_angle = rospy.get_param('~lead_target_angle', 1.0)

 # The pan/tilt thresholds indicate what percentage of the image window
 # the ROI needs to be off-center before we make a movement
 self.pan_threshold = rospy.get_param('~pan_threshold', 0.025)
 self.tilt_threshold = rospy.get_param('~tilt_threshold', 0.025)

 # The gain_pan and gain_tilt parameter determine how responsive the
 # servo movements are. If these are set too high, oscillation can
 # result.
 self.gain_pan = rospy.get_param('~gain_pan', 1.0)
 self.gain_tilt = rospy.get_param('~gain_tilt', 1.0)

 # Set limits on the pan and tilt angles
 self.max_pan = rospy.get_param('~max_pan', radians(145))
 self.min_pan = rospy.get_param('~min_pan', radians(-145))
 self.max_tilt = rospy.get_param('~max_tilt', radians(90))

 Dynamixel Servos and ROS - 242

 self.min_tilt = rospy.get_param('~min_tilt', radians(-90))

Next comes a list of parameters for controlling the tracking behavior. Most the
parameters are easily understood from the embedded comments. The gain_pan and
gain_tilt parameters control how quickly the servos will respond to a displacement
of the target from the camera's field of view. If these are set too high, oscillation will
result. If they are set too low, the camera's motion will lag behind a moving target.

 self.recenter_timeout = rospy.get_param('~recenter_timeout', 5)

The recenter_timeout parameter determines how long (in seconds) a target can be
lost before we recenter the servos. When a target goes out of sight, the
head_tracker.py script stops the servos so that they are holding the camera in the
last position they had before the target was lost. However, this can cause the servos to
overheat if the camera is held this way for too long. Re-centering the servos allows
them to return to a neutral position and cool down.

 # Get a lock for updating the self.move_cmd values
 self.lock = thread.allocate_lock()

Here we allocate a thread lock object and assign it to the variable self.lock. We will
need this lock to make our overall program thread safe since we will be updating the
joint positions and speeds in two places: the main body of the script and the callback
function (defined below) assigned to the /roi topic. Since ROS spins a separate thread
for each subscriber callback, we need to protect our joint updates with a lock as we will
show further on.

 self.init_servos()

The initialization of the servos is tucked away in the init_servos() function which
looks like this.

 def init_servos(self):
 # Create dictionaries to hold the speed, position and torque controllers
 self.servo_speed = dict()
 self.servo_position = dict()
 self.torque_enable = dict()

First we define three Python dictionaries to store the servo controllers for speed, position
and torque.

 for joint in sorted(self.joints):

We then loop through all the joints listed in the self.joints parameter. In our case,
there are only two servos named head_pan_joint and head_tilt_joint.

 Dynamixel Servos and ROS - 243

 set_speed_service = '/' + joint + '/set_speed'
 rospy.wait_for_service(set_speed_service)
 self.servo_speed[joint] = rospy.ServiceProxy(set_speed_service,
SetSpeed, persistent=True)

Recall that the dynamixel_controller package uses a set_speed service for each
servo to set the servo's speed. We therefore connect to the set_speed service for each
servo controller. Using the persistent=True argument in the ServiceProxy
statement is important. Otherwise rospy has to reconnect to the set_speed service
every time we want to adjust the speed of a servo. Since we will be updating servo
speeds continuously during tracking, we want to avoid this connection delay.

 self.servo_speed[name](self.default_joint_speed)

Once we are connected to the set_speed services, we can initialize each servo speed to
the default speed.

 torque_service = '/' + joint + '/torque_enable'
 rospy.wait_for_service(torque_service)
 self.torque_enable[name] = rospy.ServiceProxy(torque_service,
TorqueEnable)
 # Start each servo in the disabled state so we can move them by hand
 self.torque_enable[name](False)

In a similar manner, we connect to the torque_enable service for each servo and
initialize them to the relaxed state so we can move them by hand if necessary.

 self.servo_position[name] = rospy.Publisher('/' + joint + '/command',
Float64, queue_size=5)

The position controller uses a ROS publisher rather a than service so we define one for
each servo. This completes servo initialization.

 rospy.Subscriber('roi', RegionOfInterest, self.set_joint_cmd)

We assume that the position of the target is published on the /roi topic as it will be if
we are using any of our earlier vision nodes such as the face tracker or camshift nodes.
The callback function set_joint_cmd() will set the servo speeds and target positions
to track the target.

 self.joint_state = JointState()
 rospy.Subscriber('joint_states', JointState, self.update_joint_state)

We also keep tabs on the current servo positions by subscribing to the /joint_states.

 while not rospy.is_shutdown():
 # Acquire the lock
 self.lock.acquire()

 Dynamixel Servos and ROS - 244

 try:
 # If we have lost the target, stop the servos
 if not self.target_visible:
 self.pan_speed = 0.0
 self.tilt_speed = 0.0

 # Keep track of how long the target is lost
 target_lost_timer += tick
 else:
 self.target_visible = False
 target_lost_timer = 0.0

This is the start of the main tracking loop. First we acquire a lock at the beginning of
each update cycle. This is to protect the variables self.pan_speed,
self.tilt_speed and self.target_visible which are also modified by our
callback set_joint_cmd(). We use the variable self.target_visible to
indicate if we have lost the ROI. This variable is set to True in the set_joint_cmd
callback as we shall see below. Otherwise, it defaults to False. If the target is lost, we
stop the servos by setting their speed to 0 and increment a timer to keep track of how
long the target remains lost. Otherwise, we use the pan and tilt speeds set in the
set_joint_cmd callback and reset the timer to 0. We also set the
self.target_visible flag back to False so that we have to explicitly set it to True
when the next ROI message is received.

 if target_lost_timer > self.recenter_timeout:
 rospy.loginfo("Cannot find target.")
 self.center_head_servos()
 target_lost_timer = 0.0

If the target is lost long enough, recenter the servos by calling the
center_head_servos() function defined later in the script. This not only prevents
the servos from overheating but also places the camera in a more central position to
reacquire the target.

 else:
 # Update the servo speeds at the appropriate interval
 if speed_update_timer > speed_update_interval:
 if abs(self.last_pan_speed - self.pan_speed) >
self.speed_update_threshold:
 self.set_servo_speed(self.head_pan_joint, self.pan_speed)
 self.last_pan_speed = self.pan_speed

 if abs(self.last_tilt_speed - self.tilt_speed) >
self.speed_update_threshold:
 self.set_servo_speed(self.head_tilt_joint, self.tilt_speed)
 self.last_tilt_speed = self.tilt_speed

 speed_update_timer = 0.0

 # Update the pan position
 if self.last_pan_position != self.pan_position:

 Dynamixel Servos and ROS - 245

 self.set_servo_position(self.head_pan_joint,
self.pan_position)
 self.last_pan_position = self.pan_position

 # Update the tilt position
 if self.last_tilt_position != self.tilt_position:
 self.set_servo_position(self.head_tilt_joint,
self.tilt_position)
 self.last_tilt_position = self.tilt_position

 speed_update_timer += tick

 finally:
 # Release the lock
 self.lock.release()

 r.sleep()

Here we finally update the servo speeds and positions. First we check if we have
reached the speed_update_interval. Otherwise, we leave the speeds alone. Recall
that we do this because the Dynamixels can behave erratically if we attempt to update
their speeds too frequently. We also check to see if the new speeds differ significantly
from the previous speeds; otherwise we skip the speed update.

The variables self.pan_speed and self.pan_position are set in the
set_joint_cmd() callback which we will look at below. The callback also sets the
pan and tilt angles, self.pan_position and self.tilt_position based on the
location of the target relative to the camera's center of view.

At the end of the update cycle, we release the lock and sleep for 1/self.rate seconds.

Finally, let's look at the set_joint_cmd() callback function which fires whenever we
receive a message on the /roi topic.

 def set_joint_cmd(self, msg):
 # Acquire the lock
 self.lock.acquire()

 try:
 # Target is lost if it has 0 height or width
 if msg.width == 0 or msg.height == 0:
 self.target_visible = False
 return

 # If the ROI stops updating this next statement will not happen
 self.target_visible = True

First we acquire a lock to protect the joint variables and the target_visible flag.
Then we check for zero width or height for the incoming ROI message as this would
indicate a region with zero area. In such cases, we set the target visibility flat to False
and return immediately.

 Dynamixel Servos and ROS - 246

If we make it past the first check, we set the target_visible flag to True. As we
saw earlier in the main program loop, the flag is reset to False on each cycle.

 # Compute the displacement of the ROI from the center of the image
 target_offset_x = msg.x_offset + msg.width / 2 - self.image_width / 2
 target_offset_y = msg.y_offset + msg.height / 2 - self.image_height / 2

Next, we compute how far off-center the middle of ROI lies. Recall that the x_offset
and y_offset fields in an ROI message specify coordinates of the upper left corner of
the ROI. (The width and height of the image are determined by the
get_camera_info() callback which in turn is assigned to the subscriber to the
camera_info topic.)

 try:
 percent_offset_x = float(target_offset_x) / (float(self.image_width) /
2.0)
 percent_offset_y = float(target_offset_y) / (float(self.image_height) /
2.0)
 except:
 percent_offset_x = 0
 percent_offset_y = 0

To accommodate different image resolutions, it is better to work in relative
displacements. The try-except block is used since the camera_info topic can
sometimes hiccup and send us a value of 0 for the image width and height.

 # Get the current position of the pan servo
 current_pan =
self.joint_state.position[self.joint_state.name.index(self.head_pan_joint)]

We will need the current pan position of the servo which we can get from the array
self.joint_state.position. Recall that self.joint_state is set in the
callback assigned to the subscriber to the joint_state topic.

 # Pan the camera only if the x target offset exceeds the threshold
 if abs(percent_offset_x) > self.pan_threshold:
 # Set the pan speed proportional to the target offset
 self.pan_speed = min(self.max_joint_speed, max(0, self.gain_pan *
abs(percent_offset_x)))

 if target_offset_x > 0:
 self.pan_position = max(self.min_pan, current_pan -
self.lead_target_angle)
 else:
 self.pan_position = min(self.max_pan, current_pan +
self.lead_target_angle)

 else:
 self.pan_speed = 0
 self.pan_position = current_pan

 Dynamixel Servos and ROS - 247

If the horizontal displacement of the target exceeds our threshold, we set the pan servo
speed proportional to the displacement. We then set the pan position to the current
position plus or minus the lead angle depending on the direction of the displacement. If
the target displacement falls below the threshold, then we set the servo speed to 0 and
the goal position to the current position.

The process is then repeated for the tilt servo, setting its speed and target position
depending on the vertical displacement of the target.

 finally:
 # Release the lock
 self.lock.release()

Finally, we release the lock. And that completes the most important parts of the script.
The rest should be fairly self-explanatory from the comments in the code.

 12.11.3 Tracking Colored Objects

We can use the same head_tracker.py node to track colored objects or arbitrary
objects selected using the mouse. The head tracker script simply follows the coordinates
published on the /roi topic, so any node that publishes RegionOfInterest messages
on that topic can control the movement of the camera.

To track a colored object, simply launch the CamShift node we developed earlier instead
of the face tracker node used in the first head tracking example.

The complete sequence of steps would be as follows. Skip any launch files that you
already have running. But Ctrl-C out of the face tracker launch if it is still running.

First make sure your camera driver is up and running.

For the Microsoft Kinect:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

or if you are using a webcam:

$ roslaunch rbx1_vision usb_cam.launch video_device:=/dev/video0

(Change the video device if necessary.)

Now fire up the servo launch file if is not already running:

 Dynamixel Servos and ROS - 248

$ roslaunch rbx1_dynamixels dynamixels.launch

Next, launch the CamShift node:

$ roslaunch rbx1_vision camshift.launch

When the CamShift video window appears, select the target region with your mouse and
adjust the hue/value slider controls as necessary to isolate the target from the
background. When you are finished, bring up the head tracker node:

$ roslaunch rbx1_dynamixels head_tracker.launch

The servos should now move the camera to track the colored target.

NOTE: See the previous section regarding camera resolution. For color tracking
especially, using a 320x240 resolution (QVGA) is generally sufficient and will produce
smoother tracking and less load on your CPU.

 12.11.4 Tracking Manually Selected Targets

Recall that the lk_tracker.py node allows us to select an object with the mouse and
the script will then use keypoints and optical flow to track the object. Since the
coordinates of the tracked object are published on the /roi topic, we can use the head
tracker node just as we did with faces and colors.

This demo works best if the target object has a highly textured surface with robust
keypoints such as the cover of a book or other graphic. It also helps if the background is
fairly homogeneous such as a wall.

The complete sequence of steps would be as follows. Skip any launch files that you
already have running. But Ctrl-C out of either the CamShift or face tracker if it is still
running.

First make sure your camera driver is up and running.

For the Microsoft Kinect:

$ roslaunch freenect_launch freenect-registered-xyzrgb.launch

For the Asus Xtion, Xtion Pro, or Primesense 1.08/1.09 cameras:

$ roslaunch openni2_launch openni2.launch depth_registration:=true

or if you are using a webcam:

 Dynamixel Servos and ROS - 249

$ roslaunch rbx1_vision usb_cam.launch video_device:=/dev/video0

(Change the video device if necessary.)

Fire up the servos:

$ roslaunch rbx1_dynamixels dynamixels.launch

Launch the lk_tracker.py node:

$ roslaunch rbx1_vision lk_tracker.launch

When the video window appears, select the target object with your mouse then bring up
the head tracker node:

$ roslaunch rbx1_dynamixels head_tracker.launch

The servos should now move the camera to track the selected target. There will be a
limit to how fast you can move the target otherwise the optical flow tracker will not keep
up. Also, you can re-select the target region at any time with your mouse.

 12.12 A Complete Head Tracking ROS Application
The last three examples all have three out of four launch files in common. We can
create a single launch file that includes the three common files and then selects the
particular vision launch file we want based on a command line argument.

Take a look at the head_tracker_app.launch file in the rbx1_apps/launch
directory and reproduced below:

<launch>

 <!-- The camera arg can be one of kinect, xtion, or usb -->
 <arg name="kinect" default="false" />
 <arg name="xtion" default="false" />
 <arg name="usb" default="false" />

 <!-- These arguments determine which vision node we run -->
 <arg name="face" default="false" />
 <arg name="color" default="false" />
 <arg name="keypoints" default="false" />

 <!-- Launch the appropriate camera driver -->
 <include if="$(arg kinect)" file="$(find
freenect_launch)/launch/examples/freenect-registered-xyzrgb.launch" />

 <include if="$(arg xtion)" file="$(find
openni2_launch)/launch/openni2.launch">
 <arg name="depth_registration" value="true" />
 </include>

 Dynamixel Servos and ROS - 250

 <include if="$(arg usb)" file="$(find rbx1_vision)/launch/usb_cam.launch" />

 <include if="$(arg face)" file="$(find
rbx1_vision)/launch/face_tracker2.launch" />
 <include if="$(arg color)" file="$(find
rbx1_vision)/launch/camshift.launch" />
 <include if="$(arg keypoints)" file="$(find
rbx1_vision)/launch/lk_tracker.launch" />

 <include file="$(find rbx1_dynamixels)/launch/dynamixels.launch" />

 <include file="$(find rbx1_dynamixels)/launch/head_tracker.launch" />

</launch>

The launch file uses a number of arguments to control which other launch files are
included in any particular run. The first three arguments, kinect, xtion or usb,
specify which camera driver to load. All arguments are set to false by default so we
set one to true on the command line as we will show below.

The next three arguments, face, color, and keypoints determine which vision node
we will run. All three default to false so we must set one of them to true on the
command line. Following the argument definitions, we run either the freenect driver,
the openni2 driver or the usb_cam driver depending on the camera argument supplied on
the command line.

One of the next three lines is run depending on which vision argument we set to True
on the command line. For example, if use set the color argument to True, then the
camshift.launch file will be run.

Next we run the dynamixels.launch file to fire up the servos. And finally, we run
the head_tracker_app.launch file to start the head tracking.

Using our new launch file, we can now start the entire head tracking application to track
either faces, colors or keypoints with a single command. For example, to track a face
using Kinect (the default), we would run:

$ roslaunch rbx1_apps head_tracker_app.launch kinect:=true face:=true

To track colors instead, we would run:

$ roslaunch rbx1_apps head_tracker_app.launch color:=True

Or to use a webcam and keypoint tracking:

$ roslaunch rbx1_apps head_tracker_app.launch \
depth_camera:=False keypoints:=True

 Dynamixel Servos and ROS - 251

One final note: if you forget to select one of the vision modes on the command line, you
can always run its launch file afterward. In other words, the command:

$ roslaunch rbx1_apps head_tracker_app.launch face:=True

is equivalent to running:

$ roslaunch rbx1_apps head_tracker_app.launch

followed by:

$ roslaunch rbx1_vision face_tracker2.launch

 Dynamixel Servos and ROS - 252

 13. WHERE TO GO NEXT?
Hopefully this book has provided enough examples to help you get a good start on
programming your own ROS applications. You should now have the tools you need to
write applications that combine computer vision with speech recognition, text-to-speech,
robot navigation and servo control. For example, how about writing an application that
periodically scans the room for a person's face and when someone is detected, speaks a
greeting of some sort, moves toward the person, then asks if they need any help? Or
how about placing an object on your robot and using a voice command to take it to a
person in another room?

As we mentioned in the introduction, there are still many areas of ROS to explore. In
Volume 2 of this series, we cover some of the more advanced ROS packages and
programs such as:

• Task execution using SMACH and Behavior Trees

• Creating a URDF model for your robot

• Head tracking in 3D

• Detecting and tracking augmented reality (AR) tags

• Controlling a multi-jointed arm using Moveit!

• Robot diagnostics

• Dynamic reconfigure

• Multiplexing topics with mux & yocs

• Gazebo: Simulating worlds and robots

• Rosbridge: Building a web GUI for your robot

In addition, there are now over 2000 packages and libraries available for ROS. Click on
the Browse Software link at the top of the ROS Wiki for a list of all ROS packages and
stacks that have been submitted for indexing. When you are ready, you can contribute
your own package(s) back to the ROS community. Welcome to the future of robotics.
Have fun and good luck!

 Where to Go Next? - 253

http://www.ros.org/browse/list.php
http://www.pirobot.org/wordpress/

Notes

	Preface
	Printed vs PDF Versions of the Book
	Changes Since Hydro
	1. Purpose of this Book
	2. Real and Simulated Robots
	2.1 Gazebo, Stage, and the ArbotiX Simulator
	2.2 Introducing the TurtleBot, Maxwell and Pi Robot

	3. Operating Systems and ROS Versions
	3.1 Installing Ubuntu Linux
	3.2 Getting Started with Linux
	3.3 A Note about Updates and Upgrades

	4. Reviewing the ROS Basics
	4.1 Installing ROS
	4.2 Installing rosinstall
	4.3 Building ROS Packages with Catkin
	4.4 Creating a catkin Workspace
	4.5 Doing a "make clean" with catkin
	4.6 Rebuilding a Single catkin Package
	4.7 Mixing catkin and rosbuild Workspaces
	4.8 Working through the Official ROS Tutorials
	4.9 RViz: The ROS Visualization Tool
	4.10 Using ROS Parameters in your Programs
	4.11 Using rqt_reconfigure (formerly dynamic_reconfigure) to set ROS Parameters
	4.12 Networking Between a Robot and a Desktop Computer
	4.12.1 Time Synchronization
	4.12.2 ROS Networking using Zeroconf
	4.12.3 Testing Connectivity
	4.12.4 Setting the ROS_MASTER_URI and ROS_HOSTNAME Variables
	4.12.5 Opening New Terminals
	4.12.6 Running Nodes on both Machines
	4.12.7 ROS Networking across the Internet

	4.13 ROS Recap
	4.14 What is a ROS Application?
	4.15 Installing Packages with SVN, Git, and Mercurial
	4.15.1 SVN
	4.15.2 Git
	4.15.3 Mercurial

	4.16 Removing Packages from your Personal catkin Directory
	4.17 How to Find Third-Party ROS Packages
	4.17.1 Searching the ROS Wiki
	4.17.2 Using the roslocate Command
	4.17.3 Browsing the ROS Software Index
	4.17.4 Doing a Google Search

	4.18 Getting Further Help with ROS

	5. Installing the ros-by-example Code
	5.1 Installing the Prerequisites
	5.2 Cloning the Indigo ros-by-example Repository
	5.2.1 Upgrading from Electric or Fuerte
	5.2.2 Upgrading from Groovy
	5.2.3 Upgrading from Hydro
	5.2.4 Cloning the rbx1 repository for Indigo for the first time

	5.3 About the Code Listings in this Book

	6. Installing the Arbotix Simulator
	6.1 Installing the Simulator
	6.2 Testing the Simulator
	6.3 Running the Simulator with Your Own Robot

	7. Controlling a Mobile Base
	7.1 Units and Coordinate Systems
	7.2 Levels of Motion Control
	7.2.1 Motors, Wheels, and Encoders
	7.2.2 Motor Controllers and Drivers
	7.2.3 The ROS Base Controller
	7.2.4 Frame-Base Motion using the move_base ROS Package
	7.2.5 SLAM using the gmapping and amcl ROS Packages
	7.2.6 Semantic Goals
	7.2.7 Summary

	7.3 Twisting and Turning with ROS
	7.3.1 Example Twist Messages
	7.3.2 Monitoring Robot Motion using RViz

	7.4 Calibrating Your Robot's Odometry
	7.4.1 Linear Calibration
	7.4.2 Angular Calibration

	7.5 Sending Twist Messages to a Real Robot
	7.6 Publishing Twist Messages from a ROS Node
	7.6.1 Estimating Distance and Rotation Using Time and Speed
	7.6.2 Timed Out-and-Back in the ArbotiX Simulator
	7.6.3 The Timed Out-and-Back Script
	7.6.4 Timed Out and Back using a Real Robot

	7.7 Are We There Yet? Going the Distance with Odometry
	7.8 Out and Back Using Odometry
	7.8.1 Odometry-Based Out and Back in the ArbotiX Simulator
	7.8.2 Odometry-Based Out and Back Using a Real Robot
	7.8.3 The Odometry-Based Out-and-Back Script
	7.8.4 The /odom Topic versus the /odom Frame

	7.9 Navigating a Square using Odometry
	7.9.1 Navigating a Square in the ArbotiX Simulator
	7.9.2 Navigating a Square using a Real Robot
	7.9.3 The nav_square.py Script
	7.9.4 The Trouble with Dead Reckoning

	7.10 Teleoperating your Robot
	7.10.1 Using the Keyboard
	7.10.2 Using a Logitech Game Pad
	7.10.3 Using the ArbotiX Controller GUI
	7.10.4 TurtleBot Teleoperation Using Interactive Markers

	8. Navigation, Path Planning and SLAM
	8.1 Path Planning and Obstacle Avoidance using move_base
	8.1.1 Specifying Navigation Goals Using move_base
	8.1.2 Configuration Parameters for Path Planning
	8.1.2.1 base_local_planner_params.yaml
	8.1.2.2 costmap_common_params.yaml
	8.1.2.3 global_costmap_params.yaml
	8.1.2.4 local_costmap_params.yaml

	8.2 Testing move_base in the ArbotiX Simulator
	8.2.1 Point and Click Navigation in RViz
	8.2.2 Navigation Display Types for RViz
	8.2.3 Navigating a Square using move_base
	8.2.4 Avoiding Simulated Obstacles
	8.2.5 Setting Manual Goals with Obstacles Present

	8.3 Running move_base on a Real Robot
	8.3.1 Testing move_base without Obstacles
	8.3.2 Avoiding Obstacles using a Depth Camera as a Fake Laser

	8.4 Map Building using the gmapping Package
	8.4.1 Laser Scanner or Depth Camera?
	8.4.2 Collecting and Recording Scan Data
	8.4.3 Creating the Map
	8.4.4 Creating a Map from Bag Data
	8.4.5 Can I Extend or Modify an Existing Map?

	8.5 Navigation and Localization using a Map and amcl
	8.5.1 Testing amcl with Fake Localization
	8.5.2 Using amcl with a Real Robot
	8.5.3 Fully Autonomous Navigation
	8.5.4 Running the Navigation Test in Simulation
	8.5.5 Understanding the Navigation Test Script
	8.5.6 Running the Navigation Test on a Real Robot
	8.5.7 What's Next?

	9. Speech Recognition and Synthesis
	9.1 Installing PocketSphinx for Speech Recognition
	9.2 Testing the PocketSphinx Recognizer
	9.3 Creating a Vocabulary
	9.4 A Voice-Control Navigation Script
	9.4.1 Testing Voice-Control in the ArbotiX Simulator
	9.4.2 Using Voice-Control with a Real Robot

	9.5 Installing and Testing Festival Text-to-Speech
	9.5.1 Using Text-to-Speech within a ROS Node
	9.5.2 Testing the talkback.py script

	10. Robot Vision
	10.1 OpenCV, OpenNI and PCL
	10.2 A Note about Camera Resolutions
	10.3 Installing and Testing the ROS Camera Drivers
	10.3.1 Installing the ROS OpenNI and OpenKinect (freenect) Drivers
	10.3.2 Installing a Webcam Driver
	10.3.3 Testing your Kinect or Xtion Camera
	10.3.4 Testing your USB Webcam

	10.4 Installing OpenCV on Ubuntu Linux
	10.5 ROS to OpenCV: The cv_bridge Package
	10.6 The ros2opencv2.py Utility
	10.7 Processing Recorded Video
	10.8 OpenCV: The Open Source Computer Vision Library
	10.8.1 Face Detection
	10.8.2 Keypoint Detection using GoodFeaturesToTrack
	10.8.3 Tracking Keypoints using Optical Flow
	10.8.4 Building a Better Face Tracker
	10.8.5 Dynamically Adding and Dropping Keypoints
	10.8.6 Color Blob Tracking (CamShift)

	10.9 OpenNI and Skeleton Tracking
	10.9.1 Installing NITE and openni_tracker for ROS Indigo
	10.9.2 Viewing Skeletons in RViz
	10.9.3 Accessing Skeleton Frames in your Programs

	10.10 PCL Nodelets and 3D Point Clouds
	10.10.1 The PassThrough Filter
	10.10.2 Combining More than One PassThrough Filter
	10.10.3 The VoxelGrid Filter

	11. Combining Vision and Base Control
	11.1 A Note about Camera Coordinate Axes
	11.2 Object Tracker
	11.2.1 Testing the Object Tracker with rqt_plot
	11.2.2 Testing the Object Tracker with a Simulated Robot
	11.2.3 Understanding the Object Tracker Code
	11.2.4 Object Tracking on a Real Robot

	11.3 Object Follower
	11.3.1 Adding Depth to the Object Tracker
	11.3.2 Testing the Object Follower with a Simulated Robot
	11.3.3 Object Following on a Real Robot

	11.4 Person Follower
	11.4.1 Testing the Follower Application in Simulation
	11.4.2 Understanding the Follower Script
	11.4.3 Running the Follower Application on a TurtleBot
	11.4.4 Running the Follower Node on a Filtered Point Cloud

	12. Dynamixel Servos and ROS
	12.1 A TurtleBot with a Pan-and-Tilt Head
	12.2 Choosing a Dynamixel Hardware Controller
	12.3 A Note Regarding Dynamixel Hardware
	12.4 Choosing a ROS Dynamixel Package
	12.5 Understanding the ROS JointState Message Type
	12.6 Controlling Joint Position, Speed and Torque
	12.6.1 Setting Servo Position
	12.6.2 Setting Servo Speed
	12.6.3 Controlling Servo Torque

	12.7 Checking the USB2Dynamixel Connection
	12.8 Setting the Servo Hardware IDs
	12.9 Configuring and Launching dynamixel_controllers
	12.9.1 The dynamixel_controllers Configuration File
	12.9.2 The dynamixel_controllers Launch File

	12.10 Testing the Servos
	12.10.1 Starting the Controllers
	12.10.2 Monitoring the Robot in RViz
	12.10.3 Listing the Controller Topics and Monitoring Joint States
	12.10.4 Listing the Controller Services
	12.10.5 Setting Servo Position, Speed and Torque
	12.10.6 Using the relax_all_servos.py Script

	12.11 Tracking a Visual Target
	12.11.1 Tracking a Face
	12.11.2 The Head Tracker Script
	12.11.3 Tracking Colored Objects
	12.11.4 Tracking Manually Selected Targets

	12.12 A Complete Head Tracking ROS Application

	13. Where to Go Next?

