

Using A Cognitive Architecture to Automate Cyberdefense Reasoning

D. Paul Benjamin Partha Pal, Franklin Webber, Paul Rubel, Mike Atigetchi
Pace University BBN Technolgies, Inc.
benjamin@pace.edu ppal@bbn.com, franklin@eutaxy.net, prubel@bbn.com, matighet@bbn.com

Abstract
The CSISM project is designing and implementing an
automated cyberdefense decision-making mechanism with
expert-level ability. CSISM interprets alerts and
observations and takes defensive actions to try to ensure
the survivability of the computing capability of the
network. The project goal is a difficult one: to produce
expert-level response in realtime with uncertain and
incomplete information. Our approach is to emulate
human reasoning and learning abilities by using a
cognitive architecture to embody the reasoning of human
cyberdefense experts. This paper focuses on the cognitive
reasoning component of CSISM.

1. Introduction and Background

We are developing an autonomous cognitive agent to
improve the survivability of computer networks by
detecting and countering attacks that require considerable
access to and privilege in the system. This agent monitors
events and observations about the behavior of the
network, formulates hypotheses about attackers and
selects actions to maximize the portion of the network
that can continue to support computation.

This project is a successor to the DPASA project [1],
which attempted to design and develop a survivable
version of a military information management system by
organizing the functional components and defense
mechanisms in a survivability architecture. The resulting
survivable system provided limited support for
autonomous defensive response. The approach taken in
the DPASA project is shown in Figure 1. Alerts from the
system were treated as accusations. Accusations from a
host H and accusations about H from others were
considered to estimate whether H can be trusted or not,
and when a host falls below a threshold, a response was
suggested. Although the DPASA system was able to
successfully survive 75% of attack runs, human experts
had to interpret the events outside of this automated
mechanism, and arbitrate defensive response overriding
its suggestions.

X_1

X_n

X_2
Y_2

Y_1

Y_n

Alerts

Defensive

responses
system information

fire y_2

= Trust Values

trust below threshold?

Yes

X_1

X_n

X_2
Y_2

Y_1

Y_n

Alerts

Defensive

responses
system information

fire y_2

= Trust Values

trust below threshold?

Yes

Figure 1: Realization in DPASA

As a follow up to the DPASA effort, we began
developing an autonomous cognitive capability that could
reason quickly and accurately based on potentially
incomplete and inaccurate information contained in
reported cyber events. By augmenting survivability
architectures (like DPASA) with such a cognitive control
loop it will be possible to automate the process of
selecting defensive actions in response to cyber attacks.
The time constraint for this DARPA program was that the
system must provide a response within 250 ms of
receiving its initial symptoms, while detecting at least
50% of all attacks with a false positive rate no greater
than 10%.

A number of approaches have been used to implement
control loops supporting survivability-management
decision-making with varying levels of success. But a key
part of the control loop, i.e., deciding when to take a
response , was based on definitive conditions encoded in
the system—either failures or a departure from pre-
specified expected behavior.

For instance, the AWDRAT [6] and RMPL [8]
approach inserts a cognitive mechanism in parallel with
the real execution: a model of the system is embedded in
the control loop as shown in Figure 2. The interpretation
involves executing the model with the same inputs as the
actual system. If system behavior deviates from the model
behavior (specified a-priori, by the designers), a response
is triggered. The response selection part then considers
the utility of potential choices only from the defense’s
perspective. And there is a learning loop that updates the
internal model.

Figure 2: Self-Regenerative Systems Approach

Cortex [4] inserts the decision making process in series
with the actual system. In this case, as shown in Figure 3,
interpretation involves running the intercepted input
though a set of testers. Death of a tester triggers a
response. This scheme does not have the option to
evaluate possible responses—its first fixed response (an
accurate one under the narrowly defined condition that the
attack is the input that killed the tester) is to block that
specific offending input. It then experiments with the
input by varying it along a predefined set of axes and
testing them against the tasters trying to come up with a
generalized input to block. Even though this mechanism
may learn a way resist future repetitions of the same input
or its variations, note that it also can only decide and
respond to what has been programmed into (i.e., death of
a tester) it. Minimizing response time or false positives
was not explored actively.

 Figure 3: Cortex approach

2. Cognitive Architectures

Advances in cognitive architectures make their
application in the context of this effort possible. The field
of cognitive science has progressed beyond modeling

individual aspects of cognition. In the past twenty years,
unified cognitive architectures have been implemented
that attempt to model the whole range of human cognitive
activity. One of the most notable architectures is Soar [5],
which was originally developed at Carnegie-Mellon
University. Soar exhibits a wide range of capabilities,
including learning to solve problems from experience,
concept learning, use of natural language, and the ability
to handle complex tasks. The Soar research community
has published an extensive literature that demonstrates
clearly successful programs of implementing cognitive
mechanisms and their application to a wide range of tasks.

Declarative knowledge in Soar resides in its working
memory, which contains all the facts Soar knows at any
instant. Procedural knowledge in Soar is represented as
operators, which are organized into problem spaces. Each
operator is implemented by a set of rules. Each problem
space contains the operators relevant to interacting with
some aspect of the system's environment. In our system,
some problem spaces contain operators describing how
CSISM interprets alerts or analyzes the attacker’s goals.
Other problem spaces contain operators that contain
system-specific knowledge, apply coherence reasoning,
and propagate truth values. At each step, Soar must
choose one operator from one of these problem spaces to
execute.

The basic problem-solving mechanism in Soar is
universal subgoaling: every time there is choice of two or
more operators, Soar creates a subgoal of deciding which
to select, and brings the entire knowledge of the system to
bear on solving this subgoal by selecting a problem space
and beginning to search. This search can itself encounter
situations in which two or more operators can fire, which
in turn causes subgoals to be created, etc. When an
operator is successfully chosen, the corresponding
subgoal has been solved and the entire solution process is
summarized in a new rule, called a chunk, which contains
the general conditions necessary for that operator to be
chosen. This rule is added to the system, so that in similar
future situations the search can be avoided. In this way,
Soar learns.

A distinctive aspect of our project is the use of such a
comprehensive, unified cognitive architecture to create an
autonomous cybersecurity agent. Soar is the architecture
we have chosen because of its emphasis on problem
solving and learning mechanisms. Using Soar enables us
to bring these general and powerful abilities to bear on the
task of building a cybersecurity agent. In particular, Soar
can evaluate possible predictions and responses in a very
flexible way. Soar's reasoning and sub-goaling abilities
enable it to bring a wide range of knowledge to bear on
reasoning about failures, not just a predefined set of
patterns, and it can learn new rules incorporating all of
this knowledge.

3. Design and Implementation of CSISM

Our system is named CSISM (Cognitive Support for
Intelligent Survivability Management), and consists of
two main components: a network simulator and the
cognitive reasoner. These are connected by Java. The
network simulator is written in JESS (Java Expert System
Shell), and provides a high-level abstraction of a
computer network.

The distributed system we simulate is the survivable
version of the information management system developed
in the DPASA project. This system was transitioned from
BBN development lab into AFRL in 2005 for red team
exercises. This network consists of 47 hosts organized
into four LANs and four quads. The hosts are
heterogeneous, running four different operating systems:
SeLinux, Windows XP, Solaris and Windows 2000.

The CSISM project aims to augment defense-enabled
systems with a survivability architecture like the DPASA
system. Therefore, a first step was to analyze the logs and
results of attacks on the DPASA system to understand
what the sensors embedded in the architecture observed,
reported, and how they were connected to defensive
responses by the human defenders. This analysis
identified five types of expert knowledge that needed to
be implemented:

Symptomatic knowledge, which consists of
possible explanations for anomalous events, e.g. “if A
says B is unresponsive, then either A is lying and
therefore corrupt, B is dead, or some intermediate
network component is bad.”

Reactive knowledge, which consists of possible
countermeasures to an attack, e.g. “if A is corrupt and
has been rebooted since that was known, consider
quarantining A”.

Teleological knowledge, which consists of
possible attacker goals in a given situation, e.g. “if P
and Q belong to a Byzantine fault-tolerant group G
with 6 or fewer members, and both P and Q have
accused non-group elements of corruption, then
corruption of G is a likely goal”.

Malicious knowledge, which consists of possible
attacker goals in a given situation, e.g. “if the goal is
corruption of group G, consider attacks against
members of G”.

Relational knowledge, which consists of
constraints that reinforce or eliminate possible
explanations, e.g. “A is a JBI client process on the
environmental LAN”.
The difficulty that confronted us in designing the

reasoning component was that we needed a reasoning
component that could perform these types of reasoning
used by the human experts, yet do so in a very efficient
way to reach a conclusion in less than 250ms. This meant
that we needed mechanisms for reasoning deductively to
derive conclusions that the human experts derived, and

mechanisms for handling a large amount of data,
including incomplete and inaccurate data. We could not
use existing systems for these purposes, e.g. a theorem
prover, because they were too slow.

Our solution was to implement a fast deductive model
checker and integrate it with a coherence reasoner in Soar.

Coherence theory [7] is a technique of partial
constraint satisfaction [2,3] that searches to find the
assignment of hypotheses (either “Accepted” or
“Rejected”) that is most consistent with the observations.
Coherence theory has been applied to a number of tasks,
and in particular has been successfully used to model
human scientific reasoning [7]. We chose coherence
theory because of its psychological plausibility and also
because it can be implemented very efficiently. Thagard
[7] gives results of several implementations, and found
that a greedy algorithm performed as well as more
comprehensive algorithms.

We integrate coherence and deduction by using a
single representation for the system’s beliefs, and
performing both types of reasoning on this representation.
This is a novel approach to integrating deduction and
optimization.

We accomplish this by modeling beliefs about the
behavior of the computer network as nodes in a graph.
These “hypothesis” nodes are connected by constraint
links that embody relationships between the hypotheses.
These links can be deductive or coherence links.

The greedy coherence algorithm is a simple hill
climber. It first computes a score for each hypothesis node
that is the total of the weights of its satisfied constraints
minus its unsatisfied constraints. (A positive constraint is
satisfied iff both its endpoints are in the same set; a
negative constraint is satisfied iff its endpoints are in
different sets.) Moving a node with a negative score to
the other set will increase the overall score of the
hypothesis network (the sum of all the scores of the
nodes.) The greedy algorithm moves the node with the
highest negative score to the other set, then repeats the
whole process until there are no nodes with negative
scores.

The reasoner’s goal is to find an assignment of
hypothesis nodes to “Accepted” or “Rejected” that
maximally satisfies the constraints while simultaneously
respecting the deductive conclusions. CSISM first
performs deductive inference to identify hypotheses that
are definitely true or false. These are the “islands of
certainty” in the hypothesis graph. The reasoner then
searches for an assignment of “Accepted” and “Rejected”
to the remaining nodes that maximizes the satisfaction of
constraints. CSISM then takes defensive action against
hosts identified by Accepted hypotheses with high
coherence scores.

Figure 4. Overall CSISM structure.

Let’s consider an example. Three CSISM rules are:

“if host x accuses y of an Omission failure, then either
x is corrupt or y is dead or the communications
between x and y are broken”

 accuses(x,y,Omission) ->
 corrupt(x) | dead(y) | comBroken(x,y)

 “if a host is dead then it is corrupt.”
 corrupt(x) -> dead(x)

 “if host x accuses host y then host x is not dead.”
 accuses(x,y) -> -dead(x)

When host_72 accuses host_40, CSISM uses these

rules to create a small graph of nodes:

Figure 5. Graph of nodes resulting from an

accusation.

As more alerts and observations arrive, CSISM grows

this structure into a graph of hypotheses and constraints,
which can contain more than a hundred nodes and a few
hundred constraints. Constraints may reflect either
deductive relationships or coherence relationships, which
are co-occurrence relationships. The events of DPASA
Run 11 (which occurred in November, 2005) lead to the
following graph (which has two separate components):

Figure 6a. First component of hypothesis graph
in Run 11.

Figure 6b. Second component of hypothesis

graph in Run 11.

In these two components, we see nodes (the hexagons
are inputs), and links reflecting deductive and coherence
relationships. Nodes contain relevant information,
including the type of hypothesis and the hosts involved.
Also included is the truth status of the hypothesis, which
can be “proved true”, “proved false” or “unproven”. For
example, in the graph in Figure 6a, the top-most circle’s
hypothesis is proven true and the hypothesis in the circle
below it is proven false. All the others are unprovable at
this point. The true hypothesis is labeled “Accepted” and
the false hypothesis is labeled “Rejected”.

CSISM’s model checker works by testing the
consistency of cases for an hypothesis. For example, the
model checker tries to determine what operating system
platform(s) the attacker has exploited by testing each
possible platform. It starts by selecting an operating
system, e.g. Windows, and attaching an hypothesis to the
graph that states that Windows is exploited, and attaching
hypotheses to the graph for the other operating systems
stating that those platforms are not exploited. The truth
values resulting from these hypotheses are propagated
throughout the graph. If a contradiction results, then the
reasoner concludes that the selected operating system is
not the one exploited. If no contradiction results, then the
case is consistent, and that platform is a possibility. In this
case, any hypotheses proved true or false are added to a
list of possible new theorems; any of these possible
theorems that hold in all consistent cases are new
theorems.

Once the deductive inference has taken place, the
coherence reasoning tries to assign “Accepted” and
“Rejected” to the nodes in a manner that is consistent with
the deductive results, i.e. it tries to extend the deductive
results to the unknown nodes.

Links with numeric scores reflect likelihood of co-
occurrence of those nodes; a positive number means that
those nodes are likely in the same set (both Accepted or
both Rejected, so they are cooperating) and a negative
link means those nodes are likely in different sets (they
are competing). A greedy search is used to reassign nodes
to maximize the weighted satisfaction of links.

This example graph reflects the reasoner’s knowledge
that one host is certainly known not to be dead
(host_aodb) and its belief that probably that host is not
corrupt at all, but that the problem lies with host_q1ap,
which is believed to be dead. CSISM will respond to this
interpretation by quarantining or rebooting host_q1ap.

The graph evolves over time. As new observations and
alerts arrive, the graph will expand. When CSISM reboots
a machine or otherwise resets its status, the symptoms and
hypotheses for that machine are removed from the graph.

Currently, CSISM’s reasoner comprises about 500
Soar rules. These reason about Omission accusations
(failure to act or respond), Policy accusations (violations
of stated policy), Value accusations (incorrect data) and
Timing accusations and alerts, as well as flooding attacks.
The reasoner is capable of deducing when an attacker
possesses an exploit that works only on a single platform
and when he has multiple platform exploits. In addition, it
reasons about the communications connectivity of the
network and what it implies for the status of the machines
on the network.

CSISM has been built and tested on the scenarios that
occurred in the DPASA tests in 2005, and works well on
them. Additionally, new tests have been developed and an
automatic problem generator has been implemented to
create a wide range of new scenarios for evaluating the
event interpretation in CSISM. CSISM passes all the tests
we have devised.

Testing is continuing, aimed at the approaching Red
Team tests scheduled to occur in May 2008. These tests
will assess the entire CSISM system, focusing on the
accuracy of the interpretive ability of the cognitive
reasoner.

4. Future Work

In its current configuration, CSISM does not exploit

Soar’s speedup learning ability. There is ample
opportunity to apply speedup learning throughout the
system, including both the deduction and coherence
reasoning. Once the Red Team tests have been completed,
this will definitely be done.

In addition, although the greedy algorithm for
coherence search has performed well, it is likely that as
the hypothesis graphs become larger that it will find local
maxima. Our planned approach to this problem is to use
machine learning methods to learn groups of hypotheses
that tend to occur together, and move them as a group
when performing coherence search.

CSISM does not fully exploit Soar’s lookahead search
ability. We intend to apply lookahead search within the
simulator to explore different ways in which the computer
network’s behavior might evolve, and use these results in
reasoning.

5. Acknowledgements

This research was funded by DARPA under Navy

Contract No. N00178-07-C-2003.

6. References

[1] J. Chong, P. Pal, M. Atighetchi, P. Rubel, and F. Webber.
Survivability Architecture of a Mission Critical System: The
DPASA Example. 21st Annual Computer Security Applications
Conference, Tucson, Arizona, December 2005
[2] Descorte, Y. and Latombe, J.C., Making compromises
among antagonistic constraints in a planner, Artificial
Intelligence 27, 183-217, 1985.
[3] Freuder, Eugene C. and Wallace, Richard J., Partial
Constraint Satisfaction, Artificial Intelligence, special issue on
constraint-based reasoning, Volume 58, Issue 1-3, pp.21-70,
Elsevier, December, 1992.
[4] K. Z. Haigh, C. Geib. CORTEX Presentation at the Self
Regenerative Systems PI Meeting December 2005,
http://www.tolerantsystems.org/SRSPIMeeting12/12pi_meeting.
html
[5] Laird, J.E., Newell, A. and Rosenbloom, P.S., 1987. “Soar:
An Architecture for General Intelligence”, Artificial Intelligence
33, pp.1-64.
[6] H. Shrobe, B. Balzer. AWDRAT Presentation at the Self
Regenerative Systems PI Meeting December 2005.
http://www.tolerantsystems.org/SRSPIMeeting12/12pi_meeting.
html
[7] Thagard, Paul, Coherence in Thought and Action, MIT
Press, 2000.
[8] B. Williams, P. Robertson. Pervasive Self-Regeneration
through Concurrent Model-Based Execution. Presentation at the
Self Regenerative Systems Kickoff Meeting,
http://www.tolerantsystems.org/SRSProgram/srs_program.html,
2004.

