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Abstract 
The CSISM project is designing and implementing an 
automated cyberdefense decision-making mechanism with 
expert-level ability. CSISM interprets alerts and 
observations and takes defensive actions to try to ensure 
the survivability of the computing capability of the 
network. The project goal is a difficult one: to produce 
expert-level response in realtime with uncertain and 
incomplete information. Our approach is to emulate 
human reasoning and learning abilities by using a 
cognitive architecture to embody the reasoning of human 
cyberdefense experts. This paper focuses on the cognitive 
reasoning component of CSISM. 
 
1. Introduction and Background 
 

We are developing an autonomous cognitive agent to 
improve the survivability of computer networks by 
detecting and countering attacks that require considerable 
access to and privilege in the system. This agent monitors 
events and observations about the behavior of the 
network, formulates hypotheses about attackers and 
selects actions to maximize the portion of the network 
that can continue to support computation. 

This project is a successor to the DPASA project [1], 
which attempted to design and develop a survivable 
version of a military information management system by 
organizing the functional components and defense 
mechanisms in a survivability architecture. The resulting 
survivable system provided limited support for 
autonomous defensive response. The approach taken in 
the DPASA project is shown in Figure 1. Alerts from the 
system were treated as accusations. Accusations from a 
host H and accusations about H from others were 
considered to estimate whether H can be trusted or not, 
and when a host falls below a threshold, a response was 
suggested. Although the DPASA system was able to 
successfully survive 75% of attack runs, human experts 
had to interpret the events outside of this automated 
mechanism, and arbitrate defensive response overriding 
its suggestions. 
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Figure 1: Realization in DPASA 

As a follow up to the DPASA effort, we began 
developing an autonomous cognitive capability that could 
reason quickly and accurately based on potentially 
incomplete and inaccurate information contained in 
reported cyber events. By augmenting survivability 
architectures (like DPASA) with such a cognitive control 
loop it will be possible to automate the process of 
selecting defensive actions in response to cyber attacks. 
The time constraint for this DARPA program was that the 
system must provide a response within 250 ms of 
receiving its initial symptoms, while detecting at least 
50% of all attacks with a false positive rate no greater 
than 10%. 

A number of approaches have been used to implement 
control loops supporting survivability-management 
decision-making with varying levels of success. But a key 
part of the control loop, i.e., deciding when to take a 
response , was based on definitive conditions encoded in 
the system—either failures or a departure from pre-
specified expected behavior.  

For instance, the AWDRAT [6] and RMPL [8] 
approach inserts a cognitive mechanism in parallel with 
the real execution: a model of the system is embedded in 
the control loop as shown in Figure 2. The interpretation 
involves executing the model with the same inputs as the 
actual system. If system behavior deviates from the model 
behavior (specified a-priori, by the designers), a response 
is triggered. The response selection part then considers 
the utility of potential choices only from the defense’s 
perspective.  And there is a learning loop that updates the 
internal model.  



 
Figure 2: Self-Regenerative Systems Approach 

Cortex [4] inserts the decision making process in series 
with the actual system. In this case, as shown in Figure 3, 
interpretation involves running the intercepted input 
though a set of testers. Death of a tester triggers a 
response. This scheme does not have the option to 
evaluate possible responses—its first fixed response (an 
accurate one under the narrowly defined condition that the 
attack is the input that killed the tester) is to block that 
specific offending input. It then experiments with the 
input by varying it along a predefined set of axes and 
testing them against the tasters trying to come up with a 
generalized input to block. Even though this mechanism 
may learn a way resist future repetitions of the same input 
or its variations, note that it also can only decide and 
respond to what has been programmed into (i.e., death of 
a tester) it. Minimizing response time or false positives 
was not explored actively.  

 

 
                   Figure 3: Cortex approach 
 
2. Cognitive Architectures 
 

Advances in cognitive architectures make their 
application in the context of this effort possible. The field 
of cognitive science has progressed beyond modeling 

individual aspects of cognition. In the past twenty years, 
unified cognitive architectures have been implemented 
that attempt to model the whole range of human cognitive 
activity. One of the most notable architectures is Soar [5], 
which was originally developed at Carnegie-Mellon 
University. Soar exhibits a wide range of capabilities, 
including learning to solve problems from experience, 
concept learning, use of natural language, and the ability 
to handle complex tasks. The Soar research community 
has published an extensive literature that demonstrates 
clearly successful programs of implementing cognitive 
mechanisms and their application to a wide range of tasks. 

Declarative knowledge in Soar resides in its working 
memory, which contains all the facts Soar knows at any 
instant. Procedural knowledge in Soar is represented as 
operators, which are organized into problem spaces. Each 
operator is implemented by a set of rules. Each problem 
space contains the operators relevant to interacting with 
some aspect of the system's environment. In our system, 
some problem spaces contain operators describing how 
CSISM interprets alerts or analyzes the attacker’s goals. 
Other problem spaces contain operators that contain 
system-specific knowledge, apply coherence reasoning,  
and propagate truth values. At each step, Soar must 
choose one operator from one of these problem spaces to 
execute.  

The basic problem-solving mechanism in Soar is 
universal subgoaling: every time there is choice of two or 
more operators, Soar creates a subgoal of deciding which 
to select, and brings the entire knowledge of the system to 
bear on solving this subgoal by selecting a problem space 
and beginning to search. This search can itself encounter 
situations in which two or more operators can fire, which 
in turn causes subgoals to be created, etc. When an 
operator is successfully chosen, the corresponding 
subgoal has been solved and the entire solution process is 
summarized in a new rule, called a chunk, which contains 
the general conditions necessary for that operator to be 
chosen. This rule is added to the system, so that in similar 
future situations the search can be avoided. In this way, 
Soar learns. 

A distinctive aspect of our project is the use of such a 
comprehensive, unified cognitive architecture to create an 
autonomous cybersecurity agent. Soar is the architecture 
we have chosen because of its emphasis on problem 
solving and learning mechanisms. Using Soar enables us 
to bring these general and powerful abilities to bear on the 
task of building a cybersecurity agent. In particular, Soar 
can evaluate possible predictions and responses in a very 
flexible way. Soar's reasoning and sub-goaling abilities 
enable it to bring a wide range of knowledge to bear on 
reasoning about failures, not just a predefined set of 
patterns, and it can learn new rules incorporating all of 
this knowledge. 

 
 



3. Design and Implementation of CSISM 
 

Our system is named CSISM (Cognitive Support for 
Intelligent Survivability Management), and consists of 
two main components: a network simulator and the 
cognitive reasoner. These are connected by Java. The 
network simulator is written in JESS (Java Expert System 
Shell), and provides a high-level abstraction of a 
computer network.  

The distributed system we simulate is the survivable 
version of the information management system developed 
in the DPASA project. This system was transitioned from 
BBN development lab into AFRL in 2005 for red team 
exercises. This network consists of 47 hosts organized 
into four LANs and four quads. The hosts are 
heterogeneous, running four different operating systems: 
SeLinux, Windows XP, Solaris and Windows 2000. 

The CSISM project aims to augment defense-enabled 
systems with a survivability architecture like the DPASA 
system. Therefore, a first step was to analyze the logs and 
results of attacks on the DPASA system to understand 
what the sensors embedded in the architecture observed, 
reported, and how they were connected to defensive 
responses by the human defenders. This analysis 
identified five types of expert knowledge that needed to 
be implemented: 

Symptomatic knowledge, which consists of 
possible explanations for anomalous events, e.g. “if A 
says B is unresponsive, then either A is lying and 
therefore corrupt, B is dead, or some intermediate 
network component is bad.” 

Reactive knowledge, which consists of possible 
countermeasures to an attack, e.g. “if A is corrupt and 
has been rebooted since that was known, consider 
quarantining A”. 

Teleological knowledge, which consists of 
possible attacker goals in a given situation, e.g. “if P 
and Q belong to a Byzantine fault-tolerant group G 
with 6 or fewer members, and both P and Q have 
accused non-group elements of corruption, then 
corruption of G is a likely goal”. 

Malicious knowledge, which consists of possible 
attacker goals in a given situation, e.g. “if the goal is 
corruption of group G, consider attacks against 
members of G”. 

Relational knowledge, which consists of 
constraints that reinforce or eliminate possible 
explanations, e.g. “A is a JBI client process on the 
environmental LAN”. 
The difficulty that confronted us in designing the 

reasoning component was that we needed a reasoning 
component that could perform these types of reasoning 
used by the human experts, yet do so in a very efficient 
way to reach a conclusion in less than 250ms. This meant 
that we needed mechanisms for reasoning deductively to 
derive conclusions that the human experts derived, and 

mechanisms for handling a large amount of data, 
including incomplete and inaccurate data. We could not 
use existing systems for these purposes, e.g. a theorem 
prover, because they were too slow. 

Our solution was to implement a fast deductive model 
checker and integrate it with a coherence reasoner in Soar.  

Coherence theory [7] is a technique of partial 
constraint satisfaction [2,3] that searches to find the 
assignment of hypotheses (either “Accepted” or 
“Rejected”) that is most consistent with the observations. 
Coherence theory has been applied to a number of tasks, 
and in particular has been successfully used to model 
human scientific reasoning [7]. We chose coherence 
theory because of its psychological plausibility and also 
because it can be implemented very efficiently. Thagard 
[7] gives results of several implementations, and found 
that a greedy algorithm performed as well as more 
comprehensive algorithms. 

We integrate coherence and deduction by using a 
single representation for the system’s beliefs, and 
performing both types of reasoning on this representation. 
This is a novel approach to integrating deduction and 
optimization. 

We accomplish this by modeling beliefs about the 
behavior of the computer network as nodes in a graph. 
These “hypothesis” nodes are connected by constraint 
links that embody relationships between the hypotheses. 
These links can be deductive or coherence links. 

The greedy coherence algorithm is a simple hill 
climber. It first computes a score for each hypothesis node 
that is the total of the weights of its satisfied constraints 
minus its unsatisfied constraints. (A positive constraint is 
satisfied iff both its endpoints are in the same set; a 
negative constraint is satisfied iff its endpoints are in 
different sets.)  Moving a node with a negative score to 
the other set will increase the overall score of the 
hypothesis network (the sum of all the scores of the 
nodes.) The greedy algorithm moves the node with the 
highest negative score to the other set, then repeats the 
whole process until there are no nodes with negative 
scores. 

The reasoner’s goal is to find an assignment of 
hypothesis nodes to “Accepted” or “Rejected” that 
maximally satisfies the constraints while simultaneously 
respecting the deductive conclusions. CSISM first 
performs deductive inference to identify hypotheses that  
are definitely true or false. These are the “islands of 
certainty” in the hypothesis graph. The reasoner then 
searches for an assignment of “Accepted” and “Rejected” 
to the remaining nodes that maximizes the satisfaction of 
constraints. CSISM then takes defensive action against 
hosts identified by Accepted hypotheses with high 
coherence scores. 

 



 
Figure 4. Overall CSISM structure. 

 
Let’s consider an example. Three CSISM rules are: 
 
“if host x accuses y of an Omission failure, then either 
x is corrupt or y is dead or the communications 
between x and y are broken” 

     accuses(x,y,Omission) ->  
                         corrupt(x) | dead(y) | comBroken(x,y) 
 
    “if a host is dead then it is corrupt.” 
     corrupt(x) -> dead(x) 

 
   “if host x accuses host y then host x is not dead.” 
     accuses(x,y) -> -dead(x) 

 
When host_72 accuses host_40, CSISM uses these 

rules to create a small graph of nodes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Graph of nodes resulting from an 

accusation. 

 
As more alerts and observations arrive, CSISM grows 

this structure into a graph of hypotheses and constraints, 
which can contain more than a hundred nodes and a few 
hundred constraints. Constraints may reflect either 
deductive relationships or coherence relationships, which 
are co-occurrence relationships. The events of DPASA 
Run 11 (which occurred in November, 2005) lead to the 
following graph (which has two separate components): 

 

 
 
 

Figure 6a. First component of hypothesis graph 
in Run 11. 

 



 
 
Figure 6b. Second component of hypothesis 

graph in Run 11. 
 

In these two components, we see nodes (the hexagons 
are inputs), and links reflecting deductive and coherence 
relationships. Nodes contain relevant information, 
including the type of hypothesis and the hosts involved. 
Also included is the truth status of the hypothesis, which 
can be “proved true”, “proved false” or “unproven”. For 
example, in the graph in Figure 6a, the top-most circle’s 
hypothesis is proven true and the hypothesis in the circle 
below it is proven false. All the others are unprovable at 
this point. The true hypothesis is labeled “Accepted” and 
the false hypothesis is labeled “Rejected”. 

CSISM’s model checker works by testing the 
consistency of cases for an hypothesis. For example, the 
model checker tries to determine what operating system 
platform(s) the attacker has exploited by testing each  
possible platform. It starts by selecting an operating 
system, e.g. Windows, and attaching an hypothesis to the 
graph that states that Windows is exploited, and attaching 
hypotheses to the graph for the other operating systems 
stating that those platforms are not exploited. The truth 
values resulting from these hypotheses are propagated 
throughout the graph. If a contradiction results, then the 
reasoner concludes that the selected operating system is 
not the one exploited. If no contradiction results, then the 
case is consistent, and that platform is a possibility. In this 
case, any hypotheses proved true or false are added to a 
list of possible new theorems; any of these possible 
theorems that hold in all consistent cases are new 
theorems. 

Once the deductive inference has taken place, the 
coherence reasoning tries to assign “Accepted” and 
“Rejected” to the nodes in a manner that is consistent with 
the deductive results, i.e. it tries to extend the deductive 
results to the unknown nodes. 

Links with numeric scores reflect likelihood of co-
occurrence of those nodes; a positive number means that 
those nodes are likely in the same set (both Accepted or 
both Rejected, so they are cooperating) and a negative 
link means those nodes are likely in different sets (they 
are competing). A greedy search is used to reassign nodes 
to maximize the weighted satisfaction of links. 

This example graph reflects the reasoner’s knowledge 
that one host is certainly known not to be dead 
(host_aodb) and its belief that probably that host is not 
corrupt at all, but that the problem lies with host_q1ap, 
which is believed to be dead. CSISM will respond to this 
interpretation by quarantining or rebooting host_q1ap. 

The graph evolves over time. As new observations and 
alerts arrive, the graph will expand. When CSISM reboots 
a machine or otherwise resets its status, the symptoms and 
hypotheses for that machine are removed from the graph.  

Currently, CSISM’s reasoner comprises about 500 
Soar rules. These reason about Omission accusations 
(failure to act or respond), Policy accusations (violations 
of stated policy), Value accusations (incorrect data) and 
Timing accusations and alerts, as well as flooding attacks. 
The reasoner is capable of deducing when an attacker 
possesses an exploit that works only on a single platform 
and when he has multiple platform exploits. In addition, it 
reasons about the communications connectivity of the 
network and what it implies for the status of the machines 
on the network. 

CSISM has been built and tested on the scenarios that 
occurred in the DPASA tests in 2005, and works well on 
them. Additionally, new tests have been developed and an 
automatic problem generator has been implemented to 
create a wide range of new scenarios for evaluating the 
event interpretation in CSISM. CSISM passes all the tests 
we have devised. 

Testing is continuing, aimed at the approaching Red 
Team tests scheduled to occur in May 2008. These tests 
will assess the entire CSISM system, focusing on the 
accuracy of the interpretive ability of the cognitive 
reasoner. 

 
4. Future Work 

 
In its current configuration, CSISM does not exploit 

Soar’s speedup learning ability. There is ample 
opportunity to apply speedup learning throughout the 
system, including both the deduction and coherence 
reasoning. Once the Red Team tests have been completed, 
this will definitely be done. 

In addition, although the greedy algorithm for 
coherence search has performed well, it is likely that as 
the hypothesis graphs become larger that it will find local 
maxima. Our planned approach to this problem is to use 
machine learning methods to learn groups of hypotheses 
that tend to occur together, and move them as a group 
when performing coherence search. 



CSISM does not fully exploit Soar’s lookahead search 
ability. We intend to apply lookahead search within the 
simulator to explore different ways in which the computer 
network’s behavior might evolve, and use these results in 
reasoning. 
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