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ABSTRACT 
 
A truly cognitive computer vision system has not yet been built. Current vision system designs are based on 
mathematical and engineering considerations rather than on cognitive principles. The goal of our research project is to 
create a vision system that is both cognitively and neurally plausible. We are designing a human-like vision system to 
better understand how the human visual system works and to understand any engineering advantages it possesses. 

We are building a cognitive vision system that is suitable for a mobile robot. This system works in a manner similar to 
the human vision system, using saccadic, vergence and pursuit movements to extract information from visual input. At 
each fixation, the system builds a 3D model of a small region, combining information about distance, shape, texture 
and motion to create a local dynamic spatial model. These local 3D models are composed to create an overall 3D 
model of the robot and its environment. This approach turns the computer vision problem into a search problem whose 
goal is the acquisition of sufficient spatial understanding for the robot to succeed at its tasks. 

This paper gives an overview of our work, beginning with the cognitive principles and structure of our existing 
system. We give an example showing how our system renders a bouncing ball. Then we describe our current and 
future work, which includes integrating our cognitive approach with existing work on neural visual structures. 

 
1. INTRODUCTION 

 
The current generation of behavior-based robots is programmed directly for each task. The programs are written in a way 
that uses as few built-in cognitive assumptions as possible, and as much sensory information as possible. The lack of 
cognitive assumptions gives them a certain robustness and generality in dealing with unstructured environments. However it 
is proving a challenge to extend the competence of such systems beyond navigation and some simple tasks [11]. Complex 
tasks that involve reasoning about spatial and temporal relationships require robots to possess more advanced mechanisms 
for planning, reasoning, learning and representation. 

The ADAPT project (Adaptive Dynamics and Active Perception for Thought) is a collaboration of three university research 
groups at Pace University, Brigham Young University, and Fordham University to produce a robot cognitive architecture 
that integrates the structures designed by cognitive scientists with those developed by robotics researchers for real-time 
perception and control [1-4]. Our goal is to create a new kind of robot architecture capable of robust behavior in 
unstructured environments, exhibiting problem solving and planning skills, learning from experience, novel methods of 
perception, comprehension of natural language and speech generation. 
 
Our approach is fundamentally different from other hybrid architectures, which typically attempt to build a comprehensive 
system by connecting modules for each different capability: learning, vision, natural language, etc. Instead, we are building 
a complete cognitive robotic architecture by merging RS [9,10], which provides a model for building and reasoning about 
sensory-motor schemas, with Soar [5,6], a cognitive architecture that is under development at a number of universities. RS 
possesses a sophisticated formal language for reasoning about networks of port automata and has been successfully applied 



to robot planning [8]. Soar is a unified cognitive architecture [45] that has been successfully applied to a wide range of tasks 
including tactical air warfare [12]. 

One of the most unique and important aspects of our architecture is its treatment of perception and language and their 
relationship to knowledge representation. Our view of perception is that it is an "active" process [7] that is goal-directed and 
task-dependent, i.e. it is a cognitive problem-solving process rather than a peripheral activity separate from cognitive 
processing. Furthermore, we view perception as intimately linked with the formation and modification of representations, so 
that perception's main purpose is to identify, build and modify representational structures that make the robot's goals easier 
to achieve. In this view, the robot solves problems primarily by searching among different ways of perceiving the world and 
the task. This is in contrast to the usual approach of searching among sequences of actions in one or a few fixed 
representations. Each way of perceiving the world and task leads to a distinct symbolic formulation. 

This cognitive approach to vision casts visual perception as a search process. ADAPT searches among ways to build a 
model of itself and the environment; its goal is a model that is sufficiently accurate to use for planning. The next 
section describes this search process in detail. 

2. A COGNITIVE APPROACH TO VISION 

One of the distinctive features of ADAPT is its virtual world. ADAPT’s virtual world is a multimedia simulation 
platform capable of realistic simulations of physical phenomena. It combines the various forms of map information 
found in most robots: topological, metric and conceptual information. In addition, this virtual world has a 
sophisticated physics plugin, giving it the ability to predict dynamics. ADAPT completely controls this virtual world, 
and can create arbitrary objects and behaviors in it. Central to ADAPT’s use of its virtual world is its ability to view 
these constructions from any point. 

ADAPT uses this virtual world in a novel way. Typical robotics architectures connect their sensory mechanisms to 
their world models, so that sensory data is processed and modeled in the world model. The reasoning engine then 
operates on the world model to plan the robot’s behaviors. This type of architecture treats perception as a separate 
process from the central reasoning, and typically the implementation reflects this, e.g. a computer vision module 
processes the vision data and puts symbolic representations of the recognized objects and their relationships in the 
world model, and the reasoning engine then manipulates these symbols to plan and learn. The reasoning engine does 
not process the sensory data. 

In contrast, ADAPT’s virtual world is not connected to its sensory processes. ADAPT’s sensory data is placed directly 
in the reasoning engine (after some low-level processing). The reasoning engine’s principal task in ADAPT is to 
reason about how to model the data. It does this using the following loop: 

It compares visual data from the camera with visual data from the corresponding virtual camera, using a 
least-squares measure to find areas of disagreement. Each disagreement causes a Soar operator to be 
proposed to attend to that disagreement.  

One Soar operator is selected, based on the robot’s current goals. For example, if the goal is navigation, 
operators will be preferred that are for visual disagreements in the robot’s current path. The selected 
operator fires, causing the cameras to saccade to the area of disagreement and fixate on it. 

Stereo disparity, color segmentation, and optical flow are computed only in the small region of focus. 
Restricting the computation to this small region permits the use of highly accurate but computationally 
expensive optimization algorithms for these computations.  

This information is input to the object recognition database, and a mesh model of the best match is rendered 
into the virtual world. If the information indicates that a current mesh model is inaccurate, that model is 
modified to incorporate the new information. Optical flow is used to create or update the RS process model 
associated with each object. 

The reasoning engine searches alternative combinations of virtual entities and behaviors to attempt to minimize the 
measured disagreement. In this way, perception becomes a problem-solving process. This enables all the knowledge 



of the system to be brought to bear on perception, and unifies the reasoning and learning processes of problem solving 
with those of perception. 

The research hypothesis of this work is that the movements of the robot’s cameras are only those that are necessary to 
build a sufficiently accurate world model for the robot’s current goals. For example, if the goal is to navigate through 
a room, the model needs to contain any obstacles that would be encountered, giving their approximate positions and 
sizes. Other information does not need to be rendered into the virtual world, so this approach trades model accuracy 
for speed. 

In this way, ADAPT prunes the information at the perception stage, using its knowledge about objects and dynamics. 
This is in contrast to the usual approach gathering lots of sensory information, processing it all and rendering it into a 
world model, then deciding which information is necessary for decision making. This latter approach wastes a great 
deal of time and processing effort to refine information that is discarded in the decision making process. 

3. EXAMPLE 

A robot wishes to predict the path of a bouncing ball so that it can intercept the ball as quickly as possible. The ball 
will bounce off walls that will alter its path. The robot needs to perceive the objects that the ball will hit and also 
perceive the ball’s motion, then combine this information to produce a predicted path. 

In Figure 1 below, we see two boards placed on the floor. Our vision system detects keypoints and lines in the images, 
then selects a region for initial focus. The density of keypoints at the bottom of the images causes this to be selected as 
the region of focus. This region is denoted by the dark boxes in Figure 2.  

 

Figure 1. Initial processing of two boards on the floor, showing keypoints and lines. 

 

The upper corners of the boards are detected, and registration of the left and right images produces an initial 
correspondence, together with position and orientation data. 



 

Figure 2. The region of focus is the boxes at the lower left, yielding the correspondence between the corners. 

A saccade is performed to the next region of focus. In this case, the closest region is chosen, which is a 
correspondence between the right boards. This process is repeated four times until the top corners of the boards are 
reached. 

Segmentation information is added, producing additional correspondences. This is combined with the 
correspondences from the keypoints, yielding a small set of best correspondences. In Figure 3, we see the tops of the 
boards correspond.  

 

Figure 3. Segmentation correspondence between the boards. 

Finally, the boards are rendered in PhysX, and a ball is added. The ball is rolled from right to left. 



 

Figure 4. A ball is rolled between two boards. Left and right images are at top. The virtual world is at bottom. 

The direction and velocity of the ball are computed over a small interval then duplicated in the virtual world. The 
physics engine is then run much faster than real-time, producing a predicted path for the ball. A mobile robot can use 
this prediction to intercept the ball efficiently. 

 
A	
  number	
  of	
  videos	
  showing	
  this	
  process	
  in	
  various	
  scenarios	
  are	
  available	
  at	
  
http://csis.pace.edu/robotlab/videos.html	
  

 

 

Figure 5. Schematic of the information flow in the system. 



 
4. INTEGRATING COGNITION WITH NEURAL IMPLEMENTATION 

 
A key goal of our project is to connect cognitive architectures with neural substrates to produce a neuroscientifically 
complete implementation. The convergence between behavioural and physiological findings in understanding the 
generation of saccades is an outstanding accomplishment of neuroscience. A large body of work has investigated the 
neural structure of the vision system, and especially that of saccades. For example, Buschman and Miller [14, 15] 
investigated the structure of serial search strategies in saccades, finding that scenes were serially scanned, driven by a 
fixed clock of 25 times per second. Aks [13] surveys the work on search strategies in saccades, with the goal of 
understanding and integrating dynamic neural patterns of saccades in search, and especially the role of self-organized 
criticality.  

This body of work provides a detailed account of the neural implementations of saccades and fixations in the human 
visual system, and how they can be used to search. However, the cognitive processing of the system (the goals) are not 
as well understood, and this literature does not connect them to saccades. We are currently investigating plausible goal 
structures and search methods for saccades. Our overall hypothesis is that one of the main purposes of the visual 
system is to build and maintain the 3D spatial model of the environment, and that saccades and fixations implement 
the search strategy used for this purpose. Our approach is to integrate various neural implementations with our 
existing cognitive system, and test the combined system on navigational tasks with our mobile robots, including tasks 
that involve interaction with people. 

5. SUMMARY 
 
We have sketched the overall design of a cognitive computer vision system based on the structure and behavior of the 
human visual system. Our system builds a 3D model of a dynamic environment, updating it in real time as the world 
changes. Stereo cameras are moved and refocused by a cognitive architecture to build and update this model. We are 
integrating our system with neural implementations of saccade structures derived from the published literature, and 
evaluating numerous tradeoffs in designing such a system. The vision system will be used on a mobile robot that 
performs a variety of tasks and interacts with humans. 

Further information on this work, including video clips showing the robot moving under the control of schemas and 
the use of the world model, can be downloaded from the website for the Pace University Robotics Lab: 
http://csis.pace.edu/robotlab 
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