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ABSTRACT 

 

An important component of cognitive robotics is the ability to mentally simulate physical processes and to 

compare the expected results with the information reported by a robot's sensors. In previous work, we have proposed an 

approach that integrates a 3D game-engine simulation into the robot control architecture. A key part of that architecture 

is the Match-Mediated Difference (MMD) operation, an approach to fusing sensory data and synthetic predictions at the 

image level.  The MMD operation insists that simulated and predicted scenes are similar in terms of the appearance of 

the objects in the scene. This is an overly restrictive constraint on the simulation since parts of the predicted scene may 

not have been previously viewed by the robot.   

In this paper we propose an extended MMD operation that relaxes the constraint and allows the real and 

synthetic scenes to differ in some features but not in (selected) other features. Image difference operations that allow a 

real image and synthetic image generated from an arbitrarily colored graphical model of a scene to be compared. Scenes 

with the same content show a zero difference. Scenes with varying foreground objects can be controlled to compare the 

color, size and shape of the foreground. 
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1. INTRODUCTION 

For robot systems to be able to carry out complex behaviors in an unstructured environment, they need to be 

capable of some level of cognitive reasoning. For example, a mobile robot mapping a disaster area should be able to 

assess how fragile a partially fallen structure appears to be, and where to move to avoid any danger if the structure 

should collapse. In previous work, we have developed a cognitive robotics approach that combined a 3D simulation with 

behaviour-based action and deliberation. The 3D simulation allows the robot to model and predict physical events, such 

as (many) objects falling and colliding, to determine how to act. We use the Nvidia PhysX
1
 real-time physics engine with 

OpenGL rendering as our 3D simulation engine. 

Our approach constrained the simulator to try to shape and color the components of the synthetic world as close 

to those in the real, sensed world as possible. If a robot is traversing an urban disaster site and predicts that a nearby 

column of masonry is leaning dangerously enough that it may collapse, there is no reason to ask that the simulator be 

able to color and shape the chunks of masonry in the collapsed wall.  In the current work, we expand the difference 

operation so that graphical images (such as, e.g., Figure 2(d)) can be compared to real scenes (such as, e.g., Figure 2(a)). 

We begin with a review of the prior work in the next section. Section 3 reprises our existing work to set the scene for the 

extended comparison operation in Section 4. The final section summarizes our results and compares them to other results 

in the field. 

   

  2. PRIOR WORK 

Recent evidence in cognitive psychology [19] and neuroscience [18] supports the proposition that simulation, 

the „re-enactment of perceptual, motor and introspective states‟ is a central cognitive mechanism.  Shanahan [19] 

                                                           
1
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proposes a large-scale neurologically plausible architecture that allows for direct action (similar to a behavior-based 

approach) and also „higher-order‟ or „internally looped‟ actions that correspond to the „rehearsal‟ or simulation of action 

without overt motion. Barsalou [2] proposes that distributed structures in the brain‟s feature and association areas learn 

to recognize categories of experience. He calls these simulators and proposes that they can recreate (simulate) small 

subsets of their content in what he refers to as situated conceptualizations. A situated conceptualization is an 

embodiment of a simulation in a context: A situated conceptualization of a bicycle in a context for repair might be very 

different than in a context for riding, and would include additional simulators to complete the embodiment.  Barsalou 

argues that by running the situated conceptualization as a simulation, the perceiver can anticipate future perception. 

Cognitive functions such as anticipation and planning operate through a process of internal simulation of 

actions and environment [18]. Indeed there is a history in the field of Artificial Intelligence of using „simulated action‟ as 

an algorithmic search procedure, e.g., game trees, though such an approach typically has problematic computational 

complexity. The Polybot architecture proposed by Cassimatis et al. [6], and based on his Polyscheme cognitive 

framework, implements planning and reasoning as sequences of „mental‟ simulations that include perceptive and reactive 

subcomponents. The simulations include not just the effect of actions, but also the understood „laws‟ of physics (e.g., 

will a falling object continue to fall) and are implemented as a collection of specialist modules that deliberate on 

propositions of relevance to the robot. Macaluso and Chella [7][15] base their cognitive robot architecture CiceRobot on 

the concept of emulators as developed by Gärdenfors [9]. The use a 3D robot/environment simulator coupled in a 

feedback loop with the robot controller. Control commands are sent to both simulation and robot. The simulator 

generates a set of 2D images of all expected scenes and these are compared to the actual visual input in order to 

determine which most closely represents the actual scene.  

 Pezzulo [18] argues that the evidence in favour of simulation suggests that the cognitive infrastructure for a 

robot should incorporate the perceptual and motor capabilities of the machine as fundamental tools in cognition. As just 

one example, consider that spatial terms are often used to give a grounded interpretation to more abstract concept and 

lead to standardized ways to view abstract concepts such as magnitude („higher‟ values and „lower‟ values). This should 

be contrasted with an approach that views a robot‟s sensors as a (transparent) tool with which to fill an object database 

for plan construction, and a robot‟s motors as a (transparent) way to cause change in the robot‟s external environment. 

Although AI uses algorithmic search in a space of simulated actions as a problem solving approach, the typical 

starting point in is a design selection of the state space to represent the problem and the world. This selection is problem 

oriented and independent of the motor and sensory skills of the problem-solving agent. As an example, consider Xiao 

and Zhang [20] integration of a simulation into a robotic assembly task planning architecture.  

In addition to being contraindicated by the evidence from cognitive psychology and neuroscience, this 

integration approach adds two additional difficulties: First, there is no general way to link the data structures of a 

simulation with the sensory apparatus of the robot. Second, selection of search space can have a serious impact on 

finding a solution [3].  

In previous work we have introduced ADAPT [4][5] an architecture for cognitive robotics. ADAPT merges RS 

[12], a language for specifying and reasoning about sensory-based robot plans with SOAR[10] a widely used cognitive 

architecture. RS, based on Arbib‟s „schema theory‟ [1], represents robot plans as networks of perceptual and motor 

schemas. We added a 3D simulation engine that allows physical scenarios to be simulated as part of planning and 

learning. In [11] [13], we developed a visual subsystem for ADAPT that allows the 3D simulation to communicate with 

the robot in a language common to its sensors – a visual image of the world. Our problem requires comparing the 

synthetic and real imagery to look for differences between actual and predicted object behaviours. We have developed an 

approach called the Match-Mediated Difference (MMD) image that allows effective comparison of real and synthetic 

views of a scene. The MMD image method also allows the real and synthetic camera poses to be synchronized.  In [11] 

we showed how this approach could be used to follow the behaviour of a rolling target through a collision event.  

However, that work demanded that the simulated scene and the actual scene be very close in appearance. That is 

a problem for three reasons: First, it is difficult to apply the texture-mapping approach of [11] to locations or objects in 

the simulation that have not yet been seen by the robot. Second, the cognitive psychology evidence [2] suggests that the 

level of detail in simulators varies significantly. Finally, it is difficult to justify every simulation needing to be 

photorealistic in its results. In this paper, we tackle the problem of extending the visual architecture of [11] [13] to 

provide a more relaxed comparison operation, allowing graphical 3D models to be visually compared to camera images. 

 

3. INTERNAL SIMULATION AND FUSION WITH VISUAL IMAGARY 

In previous work, we have developed an approach designed to allow a cognitive robot system to reason about 

complex physical actions. As an example of such reasoning, we have chosen a task where a robot must predict the 



location of a moving object in order to intercept it. In the simplest example of such a scenario, visual tracking of a rolling 

object, e.g., a ball, can yield a robust solution (Mantz and Jonker [15]). If the scenario is expanded realistically to include 

the ball moving towards a wall or another unexpected agent then the unexpected collisions and sliding render tracking 

much more challenging. A purely tracking approach puts the robot in the position of always playing „catch-up‟ with the 

target after a collision instead of predicting where it will be and moving there. This same issue can arise when a robot is 

operating in a complex dynamic environment, for example, an urban search and rescue robot moving in a field of semi-

stable rubble which can topple and move in complex ways.  

We start with a relatively simple scenario (see Figure 1(a)): A robot is positioned facing a wall. A ball is rolled 

across the field of view of the robot ultimately bouncing from the wall. The robot needs to intercept the ball after the 

bounce. Additional objects are placed by the wall so that ball bounces in a complex manner. In [11] we proposed and 

show results for a visual architecture designed for this task (Figure 1(b)). A brief introduction and review of that 

architecture is presented here to provide the context for the new results in the next section.  

Itti and Arbib [14] define the minimal subscene as the middle ground between language and visual attention. Salient 

objects, the actions associated with them, and other objects associated with those actions are recursively gathered into the 

minimal subscene which then provides the context for discourse. We adopt this concept, and in our case, the minimal 

subscene provides a perceptual, problem solving context. 

The minimal subscene is composed of a network of sensory and motor schema, put in place partially by the Soar 

module (top-down) and partially by ongoing perception (bottom-up). The elements of the subscene have corresponding 

elements in the simulation module. The fusion of visual attention module integrates the visual image generated by the 

simulation and the image from the video camera.  

 

                                                                                                  
                               (a)                                                                              (b) 

 

Figure 1: (a) Predicting complex behavior (b) The Minimal Subscene 

 
 

3.1 Synchronizing real and simulated scenes 

 Real and synthetic images of even identical looking scenes produce a large difference image because of the 

different methods of image generation. We developed the Match-Mediated Difference (MMD) to compare such images 

pairs effectively. The MMD method first looks for common corner features between both images. These matched 

features are used to first generate a homography mapping one image to the second He – this error homography then gives 

the camera pose correction. The synthetic camera pose is iteratively modified by mapping the error homography to a 

transformation of the camera pose until real and synthetic scenes are aligned. Secondly, the matched points are used to 

generate an MMD mask – if these points really correspond to the same features in both images, then we expect that the 

difference image should be zero close to these points. The MMD mask is used to enforce this constraint between the 

image pairs. Not only was the resulting comparison effectively able to align and compare real-synthetic image scenes 

with no foreground objects, and but also image scenes with expected and unexpected objects in the foreground [11][13]. 

 

3.2 Synchronizing real and simulated foreground 

 If any unexpected areas of difference are generated in the MMD comparison – that is, any area of difference not 

being already monitored by a perceptual schema in the minimal subscene of Figure 2(b), then a new perceptual schema is 

triggered to model and monitor and area and placed in the minimal subscene. The perceptual schema for a foreground 

object has the responsibility of both monitoring and modeling: monitoring the visual image for the object and interacting 

with the simulation to model the object behavior. The perceptual schema uses the MMD image information to adapt the 



simulation parameters of the object so that it more closely follows observed behavior, e.g., iteratively modifying the 

simulation velocity for a rolling target as in Lyons et al. [11][13]. 
 
 

 

4. RELAXING IMAGE FUSION 

 

 Our objective is to modify the image fusion operations so that the synthetic imagery need not be so similar to 

the actual camera imagery. Figure 2(a) shows the view from a robot camera showing one laboratory wall. Figure 2(b) is 

the standard 3D model used in our previous work, but shown from a different viewpoint so that the 3D structure is 

apparent. Figure 2(c) is a view of this model view-synchronized with the actual camera view. All our previous work used 

this model along with realistic-appearing foreground object such as boxes and balls. However, Figure 2(d) is a graphical 

model of the same scene and Figure 2(e) is a view of this model view-synchronized again with the camera view as was 

Figure 2(c). We would like to be able to compare Figures 2(a) and 2(e) using the approach we have used for comparing 

imagery such as Figures 2(a) and 2(c). 

 

         
(a)                          (b)                   (c) 

     
(d)    (e) 

Figure 2: (a) Camera view (b) 3D synthetic texture-mapped model (c) in synchronized view  

(d) 3D synthetic graphic model (e) in synchronized view 

 

     
(a)     (b)     (c)    (d) 

     
(e)     (f)     (g)    (h) 

Figure 3: (a) Synthetic graphical scene with corner detections, (b) Camera image with corner detections, (c) Affine 

transformed synthetic scene, (d) Match-mediated difference; (e) and (f) show Canny edge images of (a) and (b), 

respectively, (g) and (h) are edge images (e) and (f) anded with the Match-mediated difference image (d), respectively. 

  



 Our relaxed constraint therefore is that the regions in the real and synthetic scene represent the same objects, 

though the two images may need to be aligned and the colors and textures of regions corresponding to the same objects 

might be quite different. The first aspect of this comparison, alignment, is not so difficult because the edge and corner 

structure of the two images remain similar with our relaxed scenario, and hence the corner detection and affine 

transformation developed in Lyons & Benjamin [11] are still sufficient. Figure 3(a)-(c) shows an example of the corner 

detections and affine transformation for an empty (no foreground objects) real and synthetic scene. However, as Figure 

3(d) shows the match-mediated difference is not empty in this case because the appearances of the real and the graphical 

simulated scenes are just too different even enforcing the constraint of zero-difference at the match-points. 

In the relaxed scenario, the region boundary information becomes crucial to defining the scene since we can no 

longer rely on the region interiors to give reliable difference results. Figure 3 (e) and (f) are edge images extracted from 

the real and synthetic images respectively. If some of the difference in Figure 3(d) coincides with these edges, then it 

may indicate missing or unexpected objects in the scene. In this example, Figure 3(g) and (h) shown that the only 

coincidence with the edge images is along the back wall due to a remaining small misalignment – a correct result for two 

images that show the same scene. 

 

4.1 Relaxed fusion of foreground color 

 

It is important to be able to tell when a simulated, predicted image differs in the way we have explained from 

the real camera image. Figure 4(a) is a camera view with a single foreground object. Figure 4(b) is a synthetic, texture 

mapped view which works well with the match-mediated difference based system in Lyons et al. [13]. However, both 

Figure 4(c) and (d) would present problems for that system. 

 

       
Figure 4: (a) Camera view (b) Synthetic view with textured background and object (c) Synthetic view with textured 

background and graphical object (d) Synthetic graphical model with textured object. 

 

 We develop a modified fusion operation to handle foreground color as follows. Consider comparing the 

synthetic image Is in Figure 2(e) with the camera image Ir in Figure 4(a), that is, an empty synthetic scene to a real scene 

with an (unexpected) box. Let Hrs be the affine transformation to align the two images and let Im be the match-mediated 

mask image from Lyons & Benjamin [11]. Let Ics (Icr respectively) be a color feature image. In our current work, for 

example, it is the sum of the UV channels in the LUV representation of Is (Ir respectively). 

 Anding the camera edge image and MMD difference image produces a large area of difference which identifies 

the foreground. Figure 5(c) shows the edge image of the camera scene in Figure 2(e) (computed here using the Canny 

edge detector in the OpenCV library). The mask Mfr is as 

 

          
  
  
                  

    
 

 

 

where BBMMD is the bounding box of the difference region.  We define the weighted color feature difference as: 

 

      
                            

  
                                     (1) 

 

where kc is the color weight. The absolute difference between the real and warped synthetic image on the top line of eq. 

(1) is multiplied by the foreground mask Mfr and the color weight kc. The resulting image is divided by the MMD mask 

   (as is the intensity difference image in [11]).  In the case where the two foregrounds have similar color as in Figure 

4(a) and (b) the absolute difference is very small and result is a small color difference. In the case where the foreground 



colors are different, then the difference value depends on the color weight. The planning and deliberation modules can 

select a color weight based on whether color is an important difference feature to note in the simulated scenario. 

 

4.2 Foreground size and shape 

 

 In the previous section, the real and synthetic scenes had markedly different visual appearance, but in terms of 

scene structure and scene content, the only difference was the foreground box in the left of the camera image in Figure 

4(a) versus no foreground objects in the synthetic scene of Figure 2(e). If it were the other way around, we would need to 

use a mask Mfs (instead of Mfr) to restrict attention to just the synthetic foreground in eq. (1).  Mfs  is produced by anding 

the MMD difference image with the edge image for the synthetic image (Figure 5(b) shows the edge image for the 

synthetic scene in Figure 5(a)) and constructing a binary mask from the bounding box of the resulting difference region. 

 Note that some comparisons between the two scenes only make sense if there are foreground objects in both 

scenes. Figure 5(a) shows a synthetic, graphical scene with a light colored box of similar size and shape to the one in 

Figure 4(a) but on the opposite side of the image. Let‟s first consider implementing a visual comparison of the size of the 

two objects. A direct subtraction would of course produce two difference regions, one on each side of the difference 

image, as in Figure 5(d) below. We would prefer to have a single overlapped region whose size is related to the size 

difference between the two foreground objects.  

 By anding the MMD difference image (Figure 5(d)) with the two edge images (Figure 5(b) and (c)) and filtering 

for the small regions due to misalignment errors, we can produce the bounding box areas of the two foregrounds (Figure 

5(e) and (f)).  

 

 
                 (a)                                    (b)                                          (c)                                       (d) 

      
                 (e)                                    (f)                                          (g)                                       (h) 

Figure 5: (a) Synthetic graphical scene with foreground box, (b) Canny edge image of scene (d),  

(c) Canny edge image of scene in Fig. 4(a), (d) MMD difference image, (e) Synthetic foreground bounding box,  

(f) Real foreground bounding box, (g) Hsrs applied to Fig. 4(a), (d) masked size difference. 

 

To compare the two regions directly, we construct a homography Hsrs that transforms the real image so that its 

foreground coincides in image position with the synthetic foreground (Figure 5(g)). We can now define the size 

difference image as: 

 

      
                                

  
                                     (2) 

 

where ks is the size difference weight. Figure 5(h) shows this image for our running example with ks=1. 

 

We modify this operation to compare the shape of the two regions by first normalizing the size of the regions. The four 

corner points of the bounding box in each image is used to define a homography Hprs that maps the size of real image 

foreground region to the synthetic image foreground region. 

 

 



 

 

       
                                

  
                                        (3) 

 

Where kp is the shape difference weight. Figure 5(h) shows this image for our running example with ks=1. 

 

       
                                   (a)                                  (b)                                        (c)                           (d)                 (e) 

Figure 6: (a) Hprs applied to Fig. 4(a), (b) masked shape difference, (c) Ball foreground,  

(d) masked size difference with Fig. 4(a) ks=1, (e) masked shape difference with Fig. 4(a), kp=1. 

 

5. CONCLUSIONS 

 We have presented here an extension of the visual architecture developed in Lyons et al. [11] for cognitive 

robotics. In this extension we can visually compare synthetic camera images generated by a 3D graphical simulation with 

camera images of real scenes. The comparison operation can be parameterized (by ks, kp, kc) to ignore differences in the 

color of regions and/or in the shape or size of the foreground objects. This step was necessary to allow the comparison of 

simulation results with camera images of previously unseen areas or objects, to bring the architecture into line with 

evidence from cognitive psychology and neuroscience, and to make the process of simulation cheaper and faster. 

 Polyscheme/Polybot [6] is a framework for linking multiple specialists and representations into a single 

cognitive architecture. This is similar to our concept of including the 3D simulation as a separate and very different 

„specialist‟ in our architecture. However, Polyscheme focuses on integrating the specialists to make inferences about a 

situation. All of the Polyscheme specialists need to be interfaced to the general framework; they need to agree on a 

„lingua franca‟ or common language. The choice of such a language may impose unnatural constraints on the way 

specialists can communicate.  We take a different approach to integration, inspired by cognitive modelling when we 

integrate the simulation and robot control at the level of the semantics of the natural visual image.  

 In the CiceRobot architecture, Macaluso and Chella [15] follow a similar approach to ours. They compare 

synthetic images from a 3D simulator to real camera images to localize the robot in a building.  Although the general 

outline of CiceRobot is quite similar to the visual apparatus of ADAPT, it differs dramatically at the detailed level. Since 

the building is instrumented with carefully placed landmark wall-markings, the CiceRobot image comparison operation 

is simply the location and comparison of the landmarks in the synthetic and real images. In our case, there are no 

artificial landmarks, and image pair alignment and comparison is carried out by extracting „naturally occurring‟ corners 

and edges from both scenes.  

 The next steps in our work including integrating this expanded image difference operation into the target 

tracking and prediction system described in Lyons et al. [13] as well as looking to some of ways in which this can be 

made more efficient and general. For example, the bounding-box approach to the foreground masks is coarse, since it 

includes some of the background scene around the object, an arbitrarily shaped pixel mask would be more accurate. A 

set of convex regions, which minimally cover the foreground regions, would need to be generated from the difference 

image to build the pixel mask. In terms of generality, we have considered here the case of a single foreground region in 

both synthetic and real images. This is sufficient for the rolling target application. Multiple foreground masks will 

require going beyond the use of an edge image to filter the difference image. An image segmentation will need to be 

used in that case. This raises a data association problem between the foreground regions in the synthetic and real images. 

One approach is to generate multiple associations (multiple images) as in the CiceRobot localization framework [15] and 

employ a particle filter. 
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