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ABSTRACT

In this paper we sketch the integration of several language
processing capabilities into a robotic interaction environ-
ment. Based on the Soar cognitive modeling architecture,
it assures a unified treatment of several layers of language:
lexical, syntactic, semantic, and discourse. We also describe
how we have added speech input and output capabilities.
Sample implementation scenarios are presented, along with
notes about ongoing and future work. The overall purpose
of this work is to instantiate a single approach to cognition,
perception, real-time action, language and learning, perhaps
the single most distinguishing aspect of our project.
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1. INTRODUCTION

This paper introduces the natural language interaction frame-
work used within the ADAPT (Adaptive Dynamics and Ac-
tive Perception for Thought) cognitive architecture for robo-
tics research. ADAPT integrates three principal theories:
the Soar cognitive modeling architecture for cognition [26],
the Robot Schemas formal model of sensorimotor activity
[22], and an algebraic theory for decomposing and reformu-
lating percepts, plans, and problem solving strategies [2].
At the present time an initial implementation of ADAPT
has been achieved using a Pioneer P2 robot equipped with
stereo color vision, microphone and speakers, sonars and
touch sensors.

Soar! is an agent-based modeling theory and system that
supports hierarchical goal-directed reasoning and learning

*(Produces the permission block, copyright information and
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within a traditional operator-based framework. It has been
applied to a wide range of human modeling, interactive, and
autonomous applications including robotic control. Besides
being used for basic robot-based cognition, the Soar archi-
tecture also provides the foundation for natural language
(NL) processing capabilities, and so we focus on this aspect
of the infrastructure here; other views of the system are de-
scribed elsewhere [3, 5, 4].

ADAPT is being developed by groups at three sites: Ford-
ham University, Pace University, and Brigham Young Uni-
versity. A recent development in ADAPT, and one topic
of this paper, is the BYU group’s integration of the NL
component with the robot’s speech recognition and speech
production software. The result is that the robot can listen
to a person speak, generate an appropriate response using a
discourse model, and respond to the person in spoken lan-
guage. The following discussion sketches how the robotic
agent hears, processes, and responds to such utterances.

First an overview of the linguistic processing modalities is
presented, followed by a description of how interactive sce-
narios unfold. We conclude with a discussion of ongoing
work and implications for the approach used in ADAPT.

2. INTERACTION COMPONENTS

Soar’s approach views complex cognitive processes and be-
haviors as decomposable into sequences of operators that
perform lower-level specific tasks. When permitted by re-
sources, task demands and time, an agent might be able
to sequence many different kinds of operators together—
including language and non-language ones—thus providing
a highly reactive, interruptible, interleavable real-time lan-
guage capability [25]. In human/robotics communication
these properties are crucial [6].

Our NL system has been previously integrated in other Soar-
based task modeling situations involving such agent contexts
as the NASA test director (check this citation) [24], and
intelligent forces in combat situations [28].

The NL component processes each word individually and

performs the following operations in order to understand
the input text:

e lexical access (which retrieves morphological, syntac-



tic, and semantic information for each word from its
lexicon) [20, 29]

e syntactic model construction (linking together pieces
of an X-bar parse tree) [18]

e semantic model construction (fusing together pieces of
a lexical-conceptual structure) [21]

e discourse model construction (extracting global coher-

ence from individual utterances) [10, 27, 11]

Each of these functions is performed either deliberately (by
subgoaling and via the implementation of several types of
lower-level operators) or recognitionally (if pre-existing op-
erators have already been acquired via the system’s machine
learning capability). Three types of structure resulting from
the utterance will be important for subsequent processing:
the X-bar model of syntax, the LCS model of semantics, and
the discourse model. The depth and breadth of the interface
between these structures and the robot’s incoming percepts
and outgoing actions are being explored during the project.

It is important to note that the language capabilities just
mentioned and further explained below are all assured within
one framework, not the concatenation of several specialized
modules. All of these language capabilities are thus highly
integrated with each other. Furthermore, the underlying
Soar theory is also used in more general aspects of robotic
cognition, so a tighter integration of cognition and percep-
tion with the language capabilities is also possible in this
framework. While this nexus has yet to be fully explored,
we show here some of the preliminary results.

Though other robotic systems have also achieved varying de-
grees integration with NL components (e.g. [15, 30, 23]), our
approach is fundamentally different. Existing architectures
consist of separate components that have been connected:
for example a planner, a reactive component, a vision com-
ponent, and perhaps several different NL components for
parsing, generation, and dialogue processing. These compo-
nents usually derive from different assumptions and method-
ologies, and the connections between components only as-
sure mutual availability of results. Deeper integration is
evasive: how the architecture sees bears no relation to how
it solves problems or how it uses language. Our belief is that
we are likely to achieve sophisticated robot performance in
unstructured environments by building a unified architec-
ture in which problem solving, perception, real-time action,
use of NL and learning are based on a single representa-
tional structure and a single approach to problem solving.
Our approach, then, is to build a unified cognitive robot ar-
chitecture. The language component described in this paper
serves as an example of ADAPT’s overall functioning.

2.1 Utterance comprehension

The agent processes incoming sentences in a completely in-
cremental fashion. Words enter the system one at a time,
and their presentation rate can be controlled. They are
placed into a decay-prone buffer from which they will disap-
pear if not attended to in a timely fashion. A lexical access
operator fires when a word is selected for attention; this op-
erator retrieves all phonological, morphological, syntactic,

semantic, and lexical features relevant for that word. Rele-
vant properties are supplied from system-internal resources
and external repositories (e.g. WordNet [9]).

Once a word is attended to, it can be integrated into the con-
tinually unfolding syntactic parse tree, or utterance model,
describing the structure of the utterance. The standard
X-bar representation formalism drives operator-based con-
struction of the syntactic model.

As the syntactic model is being built up, a corresponding se-
mantic model is also incrementally formulated. It expresses
concepts and their relationships according to the Lexical
Conceptual Semantics (LCS) formalism [13]. Semantic con-
struction operators assure that the associations are mean-
ingful, appropriate, and consistent with the syntactic model.

Though beyond the scope of this paper, it should be noted
that the system is capable of learning strategies for pro-
cessing the incoming material and leveraging it in approx-
imately similar circumstances in the future. All levels of
processing (i.e. lexical, syntactic, and semantic) can thus
be “chunked up” as experience accumulates. This helps as-
sure highly optimized, near real-time reactivity for language
processing. Another feature of the parsing system is that
when momentary ambiguities arise and the system commits
to one interpretation that later proves to be incorrect, the
system can perform limited repair of the structure, thus re-
covering from temporary “garden paths” [18].

2.2 Utterance generation

As outlined above, utterance comprehension involves pro-
cessing an input stream of words through lexical, syntactic,
and semantic levels of processing. On the other hand, ut-
terance generation comnstitutes the reverse of this process:
the agent formulates a sentence from semantic content us-
ing the same type of linguistic structures. Once a seman-
tic LCS model has been selected or formulated, the agent
traverses the network, incrementally selecting nodes to pro-
cess. Processing each concept involves converting it to a
lexical form (usually a word) and then adding the word to
an ongoing X-bar syntactic model. Crucially, the same syn-
tactic construction operators can be used for generation as
for comprehension, so bootstrapping is possible across these
modalities [19].

One possible strategy—a conservative one—for generating
the output utterance sentence is to traverse the syntactic
model when it is completed, collecting the lexical content
from all the leaf nodes and linearizing them into a sentence.
This is the default strategy for generation, assuring that
the model is grammatically correct and complete before the
agent “says” its content. Of course other, more incremental,
strategies are also possible; the risk is that, if structures
must be reformulated, dysfluencies will arise in the output
utterance as repairs are carried out.

2.3 Utterance dialogue processing

Once the agent has comprehended an utterance, dialogue
processing must occur in order to generate a response. Dia-
logue processing is the step between comprehending an ut-
terance, and formulating a response to that utterance. Dif-
ferent approaches to managing this step—processing dia-
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Figure 1: Processing for dialogue plan recognition 1(a) and plan generation 1(b), based on [11].

logue in computer/human interactions—have been explored,
each revealing advantages and disadvantages [27].

Finite-state machines (FSM) seem most popular when the
domain and scope of a dialogue is limited and well-defined.

Template-based models introduce more flexibility in a compu-

ter-human conversation, but are still suited for small-scope,
task-oriented problems [17, 32]. Belief-desire-intention (BDI)
architectures [14, 12] and dialogue planning systems [1] were
introduced to help explain why the computer system might
react in a certain way; these models are generally intended
for larger-scope dialogues. The ADAPT system uses a meth-
od of dialogue planning, termed discourse “recipes” [11], in
order to take advantage of semantic information, context,
and learning.

The dialogue management technique ADAPT leverages is
a plan-based approach, managing models of discourse ref-
erents and participants. It maintains a model of given in-
formation (a common ground), and new information. The
system uses a model of conversational strategies, or plans,
as well as speech or dialogue acts. Using the same operator-
based approach to learning as the rest of the system, it
can learn dialogue recipes from previously compiled plans.
ADAPT also takes the same general approach in motion
planning, constructing a 3D world model of its environment,
and then exploring alternatives within that model to select
an action, and chunking the result.

To recognize a dialogue plan, the dialogue component com-
bines the syntactic and semantic features of the utterance
(from comprehension) with the agent’s conversational record
to create the hearer’s model of the speaker (HMOS). The
hearer in this case is the robot; the speaker is the human.
Figure 1(a) illustrates this discourse comprehension process.
The language agent takes the HMOS and attempts to match
it against possible dialogue moves (dialogue acts) and dia-

logue plans that the human may be intending to accom-
plish with the interaction. This creates the language agent’s
model of the discourse context (including the human user)
and updates its conversational record.

Using the context—private beliefs, private desires, the agent’s
model of the human’s goals, and the updated conversational
record—the language agent attempts to generate a dialogue
plan, as illustrated in 1(b), to respond to the human. Based
on the context, the language agent tries to determine if
there is a discourse recipe, or a previously learned plan,
that matches the current context. If there is not a match
already, the agent compiles a new dialogue plan to generate
a response. This new plan can then be learned through a
compilation procedure to create a discourse recipe for fu-
ture use. The discourse recipe is what the language agent
uses to create dialogue acts, which will then go through the
utterance generation process to send a response to the user.

2.4 Speech integration

A more recent development in the system is to extend its ca-
pabilities to allow for speech-based interaction, rather than
requiring incoming words to have a textual form. This allows
the human interlocutor to escape mouse-based and keyboard
input, using instead the more natural spoken modality for
interacting with the robot.

For speech input we have developed an implementation of
the SPHINX [16, 8] automatic speech recognition (ASR)
system (version 4)2. It is designed to reside on the robot’s
Linux platform.

Though the system is capable of recognizing speaker-independent,

domain-independent speech using a general language model,
we have chosen to develop and encode our own context-free

2See cmusphinx.sourceforge.net for more information.



grammar of possible domain-specific utterances. This helps
improve recognition accuracy.

When the human speaks into a high-quality microphone,
the robot “hears” the signal and processes it through an
onboard Sphinx server system. The output is a word-based
textual transcription of the utterance, which is then passed
word-by-word over a socket to the language agent (which for
now is off-board). These words then enter the system and
undergo comprehension processing as outlined above.
203: O A230 (access word: 'rebecca’ Spkr: user)
The system also includes a text-to-speech (TTS) synthe- 219: O 0576 |ink(is.v--conp-->rebecca. n)
sis system built on the Festival toolkit®>. A client/server

architecture was developed so that the robot could run a 235 O @92 try-operator(fuse(is.v-stative--internal-->rebecca. n-person)
Festival server onboard, connected with the system’s speak- 242 QGBS0 (check check-synt ax)

ers. As utterances are generated by the language agent as *+ Soar ears you say: Over

explained above, they are sent—again over sockets—to the 243: 0 C648 (check adj acency)

robot’s TTS server along with a few parameters to specify

voice gender, intonation, etc. The utterance is then output 246 Q0647 fuse(is. v-stative--internal -->rebecca. n- per son)

over the onboard speaker. . ) .
P ¥** Soar recogni zed discourse content: long-self-identifier ***

As described above, the current implementation uses a tex- 255: 0 0106 (conp- - move)

tual, word-based representation of speech input and output *¥** Spar conprehended di scourse nove
for communication between agents. This is a temporary sim- move: sel f-introduction
plification; the ASR engine is capable of delivering a speech speaker v

addr essee: S14

lattice representing several recognition hypotheses, and we content type: speaker-i dentifier

are in the process of allowing it to be directly represented in

the language agent’s hierarchically structured input mem- 257; O A326 (access word: 'over' spkr: user)
ory. This will eventually allow a closer modeling of speech 215: 0 0432 (enpty-op)
perception, which is not crucial at this stage of the research. 279: O 0#41 (u-construct or 152)

285: O 0446 (s-constructor154)

Another temporary simplification mentioned above is that 288 Q' OI54 try-oper ator (|1 k(- Cont ext - >0ver. | - per tai ny)
the speech ASR and TTS components run on the robot, 289: 0. 0455 | nk(-- cont ext -- >0ver . | - pertai ny)
whereas the language agent is run on an offboard controller.
Though in theory the language agent can also run onboard, 311 O 0185 (comp-d-move)
for the moment we are not doing so, instead running it off- " Soar conprehEQded discourse move
board along with some other robot controller functions. SE\eIZker' $T -turn
addressee:  Sl4
3. SCENARIOS content type: end-turn

313: O 0488 (conp-rel ease-turn)

To illustrate the modularity and generality of the processing 314 Q0890 (1 earn-di scourse)

mechanisms outlined above, we have implemented two kinds 316 O 0191 (d-pl an-construct or 157)

of interactive scenarios. The first is a typical speech-based 318 0 0493 (acquire-turn)

HCI setting, and the other where two computer agents in- 319: O 0492 (achi eve-d-goal )
320: 0 0495 (release-turn)

t t th h 1 .
erac rough fanguage 322; O 0496 (return-d-plan)

323 O 0491 (d-plan-constructor157)
3.1 Human-robot interaction 324: Q6600 (I cs-choose)
The HCI scenario, though not yet integrated directly with *335:500 05|10 Essl ect-se{mggg
the robot, presents an interaction between a human and the ar Selected concep

language agent. . . .
Figure 2: Trace of discourse processing (comprehen-

sion and generation) after understanding a sentence

In this scenario, the human is able to use the microphone as .
and before generating a response.

described previously to send an utterance to the robot, and
the robot sends the response to speakers so the human can
hear it.

A partial trace of processing for a typical interaction is given
in Figure 2. It shows operator firings while the robot is hear-
ing the user say “My name is Rebecca. Over”. In this situ-
ation we have a two-utterance turn, and the trace picks up
in decision cycle 203 where operator A230 performs lexical

See www.cstr.ed.ac.uk/projects/festival/ for more informa-
tion.



access on the word “Rebecca”; prior operators have already
processed the previous words; we have omitted in the fig-
ure operators not consequential to the discussion at hand.
In cycle 219 operator C576 links the noun “Rebecca” into
the syntactic model in the complement position of the verb
“is”, and then in cycle 235 operator 0392 initiates planning
for semantic model construction by fusing the corresponding
person concept into the internal argument slot of the stative
verb interpretation of the verb “be”.

Between cycles 242 (where operator C650 checks syntax to
license the proposed semantic attachment) and 243 (where
operator C648 checks linear ordering of the words), the robot
perceives the incoming word “Over”. Note that this unnat-
ural signal for the user’s dialogue move is a temporary sim-
plification to avoid endpointing in the ASR system and is in-
herited from earlier versions of the system which were based
on cockpit communications, where the overt turn termina-
tor was mandatory. In cycle 246 operator C647 performs
the planned successful semantic model attachment.

In cycle 255 operator O406 shows that the system realizes
that a discourse move has just been completed. It recognizes
the move as a self-introduction speech act on the part of the
human (Y1), and that the system (S14) was the intended
recipient. The move’s content type is to identify the speaker.

In cycle 257 operator A326 attends to the word “over” and
performs little syntax and semantics since the word is es-
sentially a standalone item. Crucially, though, cycle 311
involves another comprehended discourse move, and “Over”
is intepreted as a turn-ending signal from the human to the
system. In cycle 313 operator O488 recognizes that the turn
has been terminated and releases initiative from the speaker.
This concludes the discourse comprehension phase.

Next, the system initiates learning a discourse plan to re-
spond. It first plans to acquire a turn, then formulates a
plan to achieve its discourse goal, and then plans to release
the turn. In cycle 322 the discourse plan for execution is
returned, which is then executed in the next cycle.

At this point the discourse generation plan has been com-
pleted, and the system begins to generate a response (in
this case its own self-identifying utterance directed at the
human). Cycle 324 invoves choosing part of the LCS to be-
gin constructing the target sentence’s syntactic model. The
last cycle shown selects that object for lexical and syntactic
generation as explained in section 2.2. Further cycles not
shown here perform the remaining complex stages of gener-
ating and saying the utterance in question.

Figure 3(a) outlines the complete communication cycle de-
tailed above. A video demonstrating this process has also
been created, showing roundtrip communication between a
human user and the language agent on a separate computer.

3.2 Agent-agent interaction

The system is also capable of supporting agent-agent inter-
actions, though we have not yet actually instantiated this
type of dialogue on robots—just as software agents. In this
type of scenario an agent formulates and activates a plan
to communicate some information to another agent. The

appropriate type of discourse act is chosen, the prelinguistic
concepts are selected, and the semantic LCS is constructed.
It is then mapped to a syntactic structure, and a sentence
is generated from the leaf nodes. The words are sent to
another agent where they enter the input buffer®.

The second agent comprehends the input utterance by ac-
cessing each word, building the syntactic model, and build-
ing a corresponding semantic model. A discourse recipe is
inferred from the content, and the second agent formulates
a plan to respond. In one scenario we have demonstrated,
for example, the agent is driven by a goal to “better” its
counterpart, responding to an utterance by displaying one-
upmanship using relevant conversational strategies. For ex-
ample, if it is told by the other agent “I have a nice car.” the
agent will respond with “I have a better car.” The second
agent assembles a discourse plan for its response, constructs
an LCS from the individual concepts selected, and gener-
ates its own output syntactic model. The leaf nodes are
converted to a sentence, which it then sends back to the
first agent over a socket.

The first agent then processes the other’s utterance, plans a
response, generates an utterance, sends it to the other agent,
and the cycle continues (see Figure 3(b)).

4. FUTURE WORK AND CONCLUSIONS

The framework is in place; now we need to add more ba-
sic components to the store of ingredients needed to gener-
ate the discourse recipes. At the present time the interac-
tions are rather simplistic. We are working on introducing
more flexibility into the communication process by allowing
a greater number of multi-utterance dialogue turns. An-
other area being extended is the library of dialogue plans.
As evidenced earlier, most of the low-level plans existing
in the system were inherited from work done for other do-
mains, so some of the existing plans are not applicable to
the robotics domain. There are block-world dialogues and
route-based instruction corpora [7] elsewhere which would
likely be more applicable; we should be able to leverage ex-
ternal work to build up our repository.

For example, a useful type of dialogue plan we would like to
add to the system is clarifications. Task-based ambiguities
could be resolved by employing a dialogue plan to clarify
an instruction. For instance, if the robot were given the
command to “pick up the block from the table”, but two
blocks were on the table, the robot could use the clarification
plans to inform the interlocutor that two blocks are on the
table. This would enable the robot to explicitly address the
task-based ambiguity via natural language, and ask further
questions to determine which of the two blocks it should
pick up.

One of the benefits of our framework is that perception and
language can be expressed in the same operators, making
it easier to translate visual cues to language cues, and vice
versa. Color then holds more meaning in an utterance, into-

“For now the communication is text-based across sockets; we
have not yet implemented—but could—a scenario where the
first agent “speaks” to the second one via speech synthesis,
which would thus require the agent-addressee to perform
speech recognition on the incoming utterance.
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Figure 3: Processing during interaction in the HCI scenario 3(a), and during the two-agent scenario 3(b)

with dotted arrows showing future functionality.

nation in speech puts emphasis on things in the real world
instead of just on words in isolation, deixis presumes that
information on which object is “the object” is already in
the common ground, etc. As we integrate the language sys-
tem with the robot itself, we have the opportunity to more
tightly associate percepts with language to leverage this po-
tential advantage.

Evaluation of dialogue systems is an issue of current research
in the literature [31]. Several viable techniques have been
proposed and discussed, but without a standard in evalu-
ation, it is still difficult to measure improvements and to
compare systems.

Despite the work in progress, we have achieved interesting
results already. We have integrated the language compo-
nent within the same cognitive model that serves the other
robotic functions; lexical, syntactic, semantic, and discourse
processing are within the same operator-based framework as
the rest of ADAPT. The speech integration we demonstrate
is versatile, able to support both human-robot interaction
as well as agent-agent interaction.
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