

PACE UNIVERSITY

Thesis
Master of Science in Computer Science

Client-Server Applications in Java

by
Jasmine J. Ahuja

Advisor

Dr. Howard Blum

December 1997

 CONTENTS

1. Introduction

2. Overview of Concepts

2.1 Distributed Applications
2.2 The Java Language
2.3 World Wide Web
2.4 Client-Server

3. Java vs. C++

4. Communication between Client and Server using sockets and Java Server

application
4.1 Client as Java Application (Non Web)
4.2 Client as Web Browser (using Telnet Applet)
4.3 Client as Web Browser (using Java Applet)

5. Sample Applications

Client as Java Application (Non Web)
Client as Web Browser (using Telnet Applet)
Client as Web Browser (using Java Applet)

6. Some other methods of communication between Client and Server

5.1 CGI Scripts
5.2 Remote Method Invocation

7. Miscellaneous Concerns

8. Recommendations for future studies

9. Bibliography

Appendix
A. Code for Version 1- Client as a Java Application

A.1 Client
A.2 Server

B. Code for Version 2- Client as a Web Browser (Telnet Applet)
 B.1 Client
 B.2 Server
C. Code for Version 3- Client as a Web Browser (Java Applet)

 C.1 Client
 C.2 Server

 1

Client-Server Applications in Java

1. Introduction

During the first two decades of their existence, computer systems were highly centralized. A computer was
usually placed within a large room and the information to be processed had to be taken to it . This had two
major flaws, a) the concept of a single large computer doing all the work and b) the idea of users bringing
work to the computer instead of bringing the computer to the user.

This was followed by ‘stand alone PCs’ where the complete application had to be loaded on to a single
machine. Each user had his/her own copy of the software. The major problems were a) sharing
information and b) redundancy.

These two concepts are now being balanced by a new concept called computer networks. In computer
networking a large number of separate but interconnected computers work together. An application that
requires two or more computers on the network is called a network application. The client–server model is
a standard model for network applications. A server is a process that is waiting to be contacted by a client
process so that the server can do something for it. A client is a process that sends a request to the server.
The idea behind a network application is to offload some utilities like the Graphical User Interface (GUI)
and in some cases, some processing, from the server to the client. As a result the GUI can be elaborate, thus
making the application more user friendly. The other issues involved in client-servers are inter-process
communication, security, maintenance and requirement for special software to run the client.

In a ‘conventional’ client–server model, a copy of the client process lies on every client machine and the
client sends a request to the server through a socket to the port that the server is listening on. This model is
popular as it offers improved graphical user interface. However, it has the following
disadvantages: a) a copy of the client process has to be installed on every user’s machine and b) any
modification or update to the client process needs to be distributed and installed on every client machine.

In a new, modified view, there is no preinstalled client on the client machine. The client process is loaded
onto the client machine each and every time the user initiates a request through his/her web browser using
the server’s URL/IP address. This ‘web oriented view’ does not require the user to have a special software
to run the application. Moreover maintenance is much easier. The server’s administrator can ensure that
the users always download the latest version of the client.

In this paper, attempt has been made to study the basic issues and requirements for design and development
of web oriented client-server applications and to examine the Java language in the context of these
requirements. This paper especially concentrates on the inter-process communication and the user
interface.

The paper starts with an overview of concepts commonly used in networking. It goes on to discuss
communications using sockets in detail and three alternative Java based examples of client-server
implementation. The first example is a conventional client-server in which the client as well as the server
are applications. The second example is web based, where the client is the web browser and the server is an
application and they use HTML and a Telnet applet to communicate. The third example is also web based,
but uses a Java applet along with the HTML. The paper also discusses other methods of communication
like Remote Method Invocation and CGI scripts in brief. Finally a discussion on applet security is followed
by ideas for further studies in this field.

 2

2. Overview of Concepts

2.1 Distributed Applications

The term distributed applications, is used for applications that require two or more autonomous computers
or processes to cooperate in order to run them. Thus, the distributed system considered in this paper,
involves three resources, processing, data and user interface. Both processing and data can be distributed
over many computers. The user interface is usually local to the user so that the graphical interface, which
consumes high bandwidth, does not have to be transmitted from one location to another.

 A Typical Distributed Application Scenario

In distributed computing, the computer network is used to support the execution of program units, called
processes, that cooperate with one another to work towards a common goal. This approach has become
popular due to a number of developments like:
ü Increase in the number of personal computers
ü Low cost of establishing computer networks with the advancement of technology
ü Computer manufacturers now offer networking software as a part of the basic operating system
ü Computer networks are now an established way of disseminating information

2.2 The Java Language [22]

Java is a new programming language invented by Sun Microsystems. Sun’s goal was to allow programmers
to create one copy of a program that users could run on almost any computer and operating system. This
capability was designed to make Java a vital component of programmability on the Web.

Workstation
Client

Server

Modem

Internet/LAN

 3

The Java Language (contd.)

Programs written in Java are translated into their own native architecture, in a format called bytecodes. In
order to run a Java program, the user needs another program that can interpret the Java program and
provide it with the environment and services it needs. The software layer, the Java Virtual Machine (JVM),
makes just about any hardware and software platform look the same to the Java program. In effect, a JVM
is a device driver for Java programs. Running a Java program with a JVM is currently slower than running
an equivalent C program, but JVM technology is improving at a rapid pace.

Java does not support pointers to memory and so Java programs cannot corrupt a computer’s memory. It
also ensures all array and string references are within each item’s bound. It performs automatic garbage
collection, which frees up unused memory, so Java programs cannot leak resources.

Java’s potential of platform-independent bytecodes and a language designed to go hand in hand with the
Internet is enormous. However, it is still a new language and has not been tested on very large projects
where applications can migrate over many platforms. It is only when its tools are tested thoroughly will
businesses be willing to adopt it as ‘the’ programming language of the future.

2.3 World Wide Web [15]

The World Wide Web can be briefly described as a global, interactive, dynamic, cross-platform,
distributed, graphical hypertext information system that runs over the Internet. The primary concept behind
the World Wide Web is hypertext – i.e. instead of reading text in a rigid, linear structure (e.g. a book), the
user can easily skip from one point to another using available links. The Web is not limited to any one kind
of machine, it can be accessed using an application called a browser like Netscape’s Navigator. It is
successful in providing so much information because information is distributed globally across thousands
of sites. The users do not have to install anything, they can go to a particular site to view information and
when they are done their system reclaims the disk space. Information on the Web can be updated any time
as it is contained on the site that published it and thus is accessible to the administrator of the site.

No single entity “owns” the World Wide Web. Given the enormous number of independent sites that
supply information to the Web, it is impossible for any single organization to set rules or guidelines. There
is however, a World Wide Web (W3) Consortium, based at MIT (USA) and INRIA (Europe). The
Consortium is a congregation of individuals and organizations interested in supporting and defining the
languages and protocols that make the Web (HTTP, HTML etc). The W3 Consortium also provides
products (browsers, server and so on) that are freely available to anyone who wants to use them.

2.4 Client-Server

The client–server model is a standard model for network applications. A server is a process that is
continuously running and waiting to be contacted by a client process. A client process initiates contact with
the server by connecting to it at a specified port.

 4

Client–Server (contd.)

The following is a typical scenario:

a) The server process is started on a computer system. It initializes itself and then waits for a client

process to contact it with a service request.
b) The client process, usually started on another system, is connected to the server’s system over a

network. The client process sends a request across the network to the server requesting service of
some form, e.g. reading or writing a file on the server’s system.

c) When the server finishes processing the request, it waits for the next client request to arrive.

Client-Server Environment

The server can be divided into two types:

a) When a client’s request can be handled by the server in a short amount of time, the server process

handles the request itself. This sequential or non-concurrent server handles one client request at a time
e.g. returning the time -of-day to the client.

b) When the amount of time to service a client depends on the client, e.g. a bank ATM where the user

may take his/her own time to enter information or make a transaction, the server handles it in a
concurrent fashion. Concurrent servers invoke another process (a child process) to handle each client
request, so that the parent server process can go back to waiting for the next client request. This server
requires an operating system that allows multiple processes to run at the same time.

In a majority of applications, the client handles most of the user interface but may also take over a part of
the processing from the server in some cases.

Client

Server

Internet/LAN

Client

Modem

Client

Client

Modem

Client

Workstation
Client

 5

3. Java vs. C++

Java is similar to C++ to some degree, which carries the benefit of it being familiar to many programmers.
This section describes some features of Java relevant to the topic and points out where the language
diverges from its ancestor C++.

Syntax
Java was designed to resemble C++, probably the most commonly used language today, in order to make
the system more comprehensible.

Object-Oriented
Java is an object oriented programming language i.e. focus is on data in the application and methods that
manipulate that data, rather than strictly on procedures. The object-oriented facilities of Java are essentially
those of C++, with extensions from Objective C for more dynamic method resolution.

Network-Oriented
Java’s net class, which is a part of the java package, makes networking easier in Java than in C++. Sample
code for setting up a simple server to listen on a port in C++ and Java is shown below:

C++ ->

#include <socket.h>

main() /* a non-concurrent stream server */
{ int sockfd, newsockfd, clilen;
 struct sockaddr_in cli_addr, serv_addr;
 if ((sockfd = socket(AF_INET,SOCK_STREAM,0)) < 0)
 error("server: cannot open socket");
 bzero((char *)&serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port =htons(SERV_TCP_PORT);
 if(bind(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0)
 error("server: cannot bind address");
 listen(sockfd, 5);
 for(;;) {
 clilen = sizeof(cli_addr);
 newsockfd = accept(sockfd, (struct sockaddr *)&cli_addr, &clilen);
 if (newsockfd < 0)
 error("server: cannot accept connection");
 str_echo(newsockfd); /* serve a client */
 close(newsockfd);
 }
}

Java->

import java.net.*;

public static void main(String[] args)

 6

Java vs. C++ (contd.)

{ public void runServer()

{ ServerSocket server;
 Socket connection;
 try {
 server = new ServerSocket(port, number of users);
 for(;;)
 { connection = server.accept();
 display.setText("Connection received...\n");
 // Serve the client
 display.appendText("\nClosing socket.\n");
 connection.close();
 }
 }catch (IOException e) { e.printStackTrace(); }
 }

}

To be fair, this C++ code uses a larger number of parameters and statements because it is more general,
allowing selection of a number of protocol suites, TCP/IP being one. Furthermore, within the TCP/IP suite
either connection oriented TCP or connectionless UDP may be selected. The Java library however, has
separate classes specializing in UDP (e.g. DatagramSocket, DatagramPacket) and TCP (e.g. ServerSocket,
Socket).

Secure
Java is intended for use in networked/distributed environments. Towards that end, a lot of emphasis has
been placed on security. Java enables the construction of virus-free, tamper-free systems. The
authentication techniques are based on public-key encryption. Changes to the semantics of pointers make it
impossible for applications to forge access to data structures or to access private data in objects that they do
not have access to. This closes the door on most activities of viruses.

Portable
Being architecture neutral plays a major role in being portable. Unlike C and C++, there are no
"implementation dependent" aspects of the specification. The sizes of the primitive data types are specified,
as is the behavior of arithmetic on them. For example, "int" always means a signed two's complement 32
bit integer. Making these choices is feasible in this day and age because essentially all CPUs share these
characteristics. The Java system itself is quite portable. The compiler is written in Java and the runtime is
written in ANSI C with a clean portability boundary. The portability boundary is essentially a POSIX
subset.

Interpreted
Unlike the C++ compiler, the Java compiler generates bytecodes which are translated at runtime to native
machine instructions (interpreted). The Java interpreter can execute Java bytecodes directly on any machine
to which the interpreter and run-time system have been ported.

Transmitting Structures (Object Serialization) [4, page 483][13, page 39]

Object serialization, a new feature in Sun’s Java Development Kit version 1.1 (JDK1.1), is the ability to
write the complete state of an object to an output stream, and then recreate that object at some later time by
reading its serialized state from an input stream. Object serialization is of interest because it is common to
read and write complex data in networking. An object can be serialized by passing it to the writeObject()
method of the ObjectOutputStream class. Similarly, an object can be created from a serialized object

 7

Java vs. C++ (contd.)

stream by calling the readObject() method of the ObjectInputStream class and casting it to its correct type.
Both these object stream types are part of the java.io package. Code required for sending an object from the
client to a concurrent server is as follows:

In the Client
import java.io.*;
import java.net.*;

public class AtmApplet extends Applet
{ ---
 initialization, networking etc.

 int dacct = 111; // hard coded data values for this example
 int dpin = 1111;
 double dbal = 0.0;
 DataObject dob = new DataObject(dacct, dpin, dbal);

 ObjectOutputStream outter;
 ObjectInputStream inner;
 try {
 outter = new ObjectOutputStream(client.getOutputStream());
 inner = new ObjectInputStream(client.getInputStream());

 // sending data to Server
 outter.writeObject(dob);
 client.close();
 } catch (IOException e) { System.out.println(e);}
 }

class DataObject implements Serializable
{ public DataObject(int a, int p, double b)
 { dacct = a;
 dpin = p;
 dbal = b;
 }

 private int dacct, dpin;
 private double dbal;
}

The server
import java.io.*;
import java.net.*;

class Server
{ public static void main(String[] args)
 { ---
 NET INFORMATION
 }
}
class ServerHandler extends Thread
{ ObjectOutputStream outter;

 8

 ObjectInputStream inner;

Java vs. C++ (contd.)

 public void run()
 { try
 { outter = new ObjectOutputStream(incoming_socket.getOutputStream());
 inner = new ObjectInputStream(incoming_socket.getInputStream());
 DataObject sdo = (DataObject)inner.readObject();
 } catch {catch(Exception e) {System.out.println(e);}}
 }
}

class DataObject imp lements Serializable
{ public DataObject(int a, int p, double b)
 { dacct = a;
 dpin = p;
 dbal = b;
 }
 private int dacct, dpin;
 private double dbal;
}

In C++, objects can be input and output using operator overloading. For object input, the stream-extraction
operator >> is overloaded for the appropriate istream classes and for object output, the stream-extraction
operator << is overloaded for the appropriate ostream classes. In each case, only the object’s data members
are input or output in a form meaningful for objects of that particular abstract data type. When object data
members are output, the object’s type information is lost in a way. However, if the program that is going to
read this data knows what object type it corresponds to, then the data is simply read into objects of that
type.

Some other features of C++ and Java are described in the table below.

Feature Java C++
Program exit value Main() must be declared a void

i.e. a value cannot be returned
with a return statement. The only
way to do so is to call
System.exit()

Main() can return a value

Global variables Are not allowed-every field or
method is associated with classes
and referred to by its fully
qualified name. This care is taken
to avoid conflicts

Are allowed

Filenames Source file should have the same
name as the public class in it

No such rule

Comments Three kinds i.e.
/* */ block comment
// single line comment
/** */ java doc comment
The java doc comment is
specially processed by the
javadoc program to produce
simple online documentation

Two kinds
/* */ block comment
// single line comment

 9

Feature Java C++
Header files Does not have header files or

function prototypes. A single
Java™ object file serves as the
interface definition and
implementation for a class

Declaration of member data and
functions can be made in separate files

Primitive data types - Has specific byte and boolean
 types apart from the standard C
 types.
- All variables have guaranteed
 default values i.e. boolean =
 false, byte = 0, int = 0
- Boolean values are not integers
- All integral types are signed

- Does not have byte and boolean types

- An un-initialized local variable
 usually has garbage as its value

- Boolean values are integers
- Integral types may be signed or
 unsigned

Creating Objects Declaring a variable to hold an
object does not create an object,
objects are created using the new
Keyword

C++ uses the new keyword to create
objects dynamically

Accessing Objects Fields in an object are accessed by
using the dot notation

Fields are accessed using the dot
notation as well as -> or pointer
notation (when pointer are used)

Garbage collection There is no delete() or free() in
Java - use is made of a technique
called garbage collection to
automatically detect objects or
arrays no longer being used and to
free them

Use of delete made to de-reference
variables or objects created dynamically
i.e. created using the new keyword

Strings Strings are instances of the
java.lang.String class. They are
treated as primitive types – i.e. the
String object is automatically
created when a double quoted
constant is seen. An operator +
operates on String for
concatenation

Strings are null terminated character
arrays

Synchronized statement Java provides the synchronized
statement to protect multiple
threads from modifying objects
simultaneously. Methods and
objects can also be synchronized

Does not provide for a synchronized
statement.

Exception Handling Java requires that any method that
can cause an exception(error) to
occur must either catch it using the
try/catch/finally statement or
specify the type of exception with
a throws clause in the method
declaration

C++ has exception handling but it is not
mandatory

Local variable declaration Forward referencing allowed Forward referencing not allowed

Java vs. C++ (contd.)

 10

4. Communication between Client and Server using sockets

Sockets were an innovation of Berkeley UNIX, version 4.3 BSD [2, page 11]. They allow the programmer
to treat a network connection as another stream that bytes can be written onto or read from. Historically,
sockets are an extension of one of UNIX’s ideas: that all I/O should look like file I/O to the programmers,
whether they are working with a keyboard, a graphic display, a regular file, or a network connection.
Sockets shield the programmer from low-level details of the network, like media types, packet sizes, packet
retransmission, network addresses and more. A socket can perform the following basic operations:

• Connect to a remote machine
• Send data
• Receive data
• Close a connection
• Bind to a port
• Listen for incoming data
• Accept connections from remote machines on the bound port

Assuming that we are using TCP for a connection oriented implementation, Java has two related classes
that are required i.e. the Socket class and the ServerSocket class. The socket class is used by both the
client and the server and has methods that correspond to the first four of these operations. The last three
are only needed by the server and are implemented by the ServerSocket class. [6, page 149]

Using sockets, communication can be established between the client and server in the following ways:

 In all the cases mentioned below, the server can make use of a database to retrieve or save data.

4.1 Server application – Client application (Conventional method)

In this method, both the server and the client is a Java application. The client application has to be
loaded onto the client’s machine. The server can be concurrent i.e. serve more than one client at a time.
The server and database lie on the server machine. The major disadvantage of this method, as already
stated earlier, is that the software for the client has to be physically present on the client machine and the
client machine has to have the Java interpreter to run it. If any changes are made to the client application,
it has to be redistributed to the clients.

A sample application using this method is attached (Appendix A)

Client Server

Client Application Server Application User

 1. User starts
 client

 2. Client contacts
 server

 3. Server sends
 reply

4. Client displays
 result to user

User

 11

4.2 Server application – Client web browser (using HTML and telnet)

In this method, the server is a Java application and the client is a web browser like Netscape navigator. The
user enters the URL/IP address of the server and is connected to HTTP daemon (HTTPD) web server on
the server machine that loads the HTML file onto the client’s machine. This file provides part of the GUI
and connects to the concurrent Java server using Java’s telnet applet. The advantage here is that the client’s
machine only needs a web browser to be able to connect to the server. Moreover, any changes to the client
can be made easily as the actual program lies on the server machine itself and is easily accessible by the
administrator.

A sample application is attached (Appendix B)

Client Server

Web browser

HTTPD
 User

 1. User enters
 URL

 2. Browser
 contacts HTTDP

User

 3. HTTPD transfers
 the HTML with the

 embedded applet to
 the client machine

HTML + Telnet Applet
Server Application 4. Telnet Applet

 establishes connection
 with the server

 5. Server serves the client
 User

 6. Client displays the
result

 12

4.3 Server application – Client web browser (using HTML and Java applet)

In this method the server is a Java application and the client is a Web browser like Netscape Navigator. The
user enters the URL/IP address of the concurrent server and the HTTPD web browser loads the HTML file
that has the Java applet embedded in it. The HTML file here is just a vehicle to transport the applet. The
applet provides the complete GUI and opens a TCP/IP socket connection to the server on a designated port.
The server may also be connected to a database (use of JDBC/ODBC bridge was made when implementing
this method, this technique can also be used in the other methods described earlier)

Also JDBC allows use of any ODBC database by the server i.e. anyone providing the server service can use
their existing database if it is ODBC complaint.

The advantage here is that the GUI is more user friendly. The applet allows restricted and relevant use only,
an important security issue.

A sample application is attached (Appendix C)

Client Server

Web browser

HTTPD
 User

 1. User enters
 URL

 2. Browser
 contacts HTTDP

User

 3. HTTPD transfers
 the HTML with the

 embedded applet to
 the client machine

HTML + Java Applet Server Application
 4. Java Applet

 establishes connection
 with the server

 5. Server serves the client User
 6. Client displays the

result

 13

5. Sample Applications

The following applications describe the different methods in which communication can be established
between a client and server. These three versions follow the same basic concept, connection is established
between the client and server using sockets and information is passed to and from them based on logic of
the program. In all three versions, the server is a Java Application.

Version 1 Client Java Application

In this simple program the client application uses the features of the java.net package to
establishes a TCP/IP connection using sockets on a specified port with the server. The client
and server open input and output streams over the socket using Java’s java.io package. The
client sends a message to the server and the server acknowledges the message and closes the
socket. (See Appendix A for program code.)

Version 2 Client HTML file, telnet applet and text database file

This application involves an HTML program i.e. the bankatm.html. The user downloads the
html file on his/her machine by using a web browser and giving the IP address of the machine
where the concurrent server is running. The html establishes a TCP/IP connection with the
server on a specified port using the telnet applet. The html file then sends requests like
balance inquiry, request for deposit/withdrawal to the server using the output stream (java.io
package). The server receives the request through its input stream, processes it and displays
the result using its output stream. Once the user is finished he/she breaks connection by
disconnecting. The server is also connected to a database file (a flat text file in this case). (See
Appendix B for program code)

Version 3 Client HTML file, Java Applet and MS Access database file (using JDBC)

This application involves a Java ATM applet and an HTML file. The user downloads the
HTML file which has the java applet embedded in it, on his/her machine using a web browser
and giving the IP address of the machine where the concurrent server is running. The applet
starts executing and establishes TCP/IP socket connection with the server on a specified port
using the java.net package. The applet then sends requests like balance inquiry to the server
using the output stream (Java.io package). The server receives the request through its input
stream, processes it and sends the result back to the client using its output stream. Once the
user is finished, the socket connection between the client and server is closed. In this version,
the server is connected to a database file (an MS Access file in this case) using the
JDBC/ODBC driver. (See Appendix C for program code)

 14

6. Some other methods of Communication between Client and Server

6.1 CGI Scripts [4, page 573]

A CGI script is a simple protocol that can be used to communicate between HTML forms and a program. A
CGI script can be written in any language that can read STDIN, write to STDOUT, and read environment
variables, i.e. virtually any programming language, including C, Perl, or even shell scripting.

In CGI scripting, a user fills out an HTML form and sends the text in the text fields and the setting of the
check boxes and radio buttons to a CGI script on the server by clicking on the Submit button. CGI scripts
are programs that reside on the server computer. Usually, there are many CGI scripts on a server. The
HTML tag of the Submit button specifies the script to use to process that particular form. The HTTPD on
the server launches the CGI script and feeds it the form data. The CGI script processes the form data and
sends another HTML page back to the web browser who then displays the response page. CGI can be
written in Java. This script is an application though and not an applet and will have to be launched by the
HTTPD web server whenever a client submits a query naming that script as the processing agent.

Data Flow during execution of a CGI script [4]

Client Server

Web browser

+

HTML

HTTPD
Server

 User

 1. User enters
 URL

 2. Browser
 contacts HTTDP

User

 3. HTTPD transfers
 the HTML file to

 the client machine

 5.Client sends form data
 to HTTPD server 6. Server

 starts
 script

 User
 9. Client displays the

result

 User
 4. HTML form

 displayed to
 User who

 fills the form

 8. HTTPD Server sends
 reply page

 7.Script
 produces

 reply page

CGI
Script

 15

6.2 Remote Method Invocation [4, page 645][6, page 347]

The central concept in the Java remote object implementation is the remote method invocation or RMI.
Code on the client computer invokes a method on an object on the server. To do so, it actually calls a
regular Java method that is encapsulated in a surrogate object called a stub that resides on the client only.
The stub takes the parameters used in the remote method and packages them up as a block of bytes. This
packaging uses a device-independent encoding for each parameter e.g. numbers are always sent in big-
endian format. The process of encoding the parameters into a format that is suitable for transporting them
across the net is called parameter marshalling. The stub method builds an information block and then sends
this information to the server. On the server side, there is a skeleton object that makes sense out of the
information contained in the packet and passes that information to the actual object executing the remote
method. It then captures the return value or exception of the call on the method, marshals that value and
sends it back to the stub. The stub unmarshals the return value or exception from the server. This becomes
the return value of the remote method call. Or, if the remote method threw an exception, the stub re-throws
it in the process space of the caller. This process is largely transparent for the programmer. Also, remote
objects look and feel the same as local objects. The syntax for a remote call is the same as for a local call.

Thus, for example, a client seeking product information can query a warehouse object on the server. It calls
a remote method find which has one parameter, the request form object. The find method returns an object
to the client, the product information object. This can be depicted as follows:

Invoking a remote method on a server object [4]

The purpose behind RMI is to make all the implementation details transparent to the programmer so that
remote objects and methods work just like the local objects and methods.

Client

Request form

Product Info Server

Warehousefind

Parameter

result

 16

7. Miscellaneous Concerns

Applet Security

Web browsers like Netscape allow applets to read and write data only on the host that serves the applet [4,
pg. 589] i.e. it will let the applet connect only to sockets on the computer from which the applet came. The
write restriction prevents applets from planting viruses or altering important files on the local computer.
The read restriction does not allow applets to browse files on the local computer for sensitive information,
such as credit card numbers, open a socket connection to the applet host, and write the information back.

8. Recommendation for future Studies.

1. Implementing a client server using RMI. Communication between the client and server using RMI

is relatively new but is fast gaining popularity as an alternative to sockets. A study could be done
to explore this concept and its advantages over the sockets.

2. Security issues with applets: When using the web, security is a big issue. A user may open a web

page and interact with an applet that does something useful and be completely unaware of what
that applet does in other threads. It would be interesting to study how web browsers restrict
applets in terms of reading and writing only to/from the originating host. References for further
study in applet security can include http://java.sun.com/sfaq/, http://www.javasoft.com and Core
Java™ 2nd and 3rd Editions.

 17

9. Bibliography

1) Laura Lemay
 Web Publishing with HTML, Sams net, 1995

2) W. Richard Stevens
 UNIX Network Programming, Prentice Hall, 1990

3) David Flanagan

Java in a Nutshell, Second Edition O’Reilly and Associates, Inc, 1997

4) Gary Cornell, Cay S. Horstmann
Core Java, Second Edition, Prentice Hall, 1997

5) Gary Cornell, Cay S. Horstmann
Core Java, Third Edition, Volume 1, Prentice Hall, 1997

6) Elliotte Rusty Harold
Java Network Programming, O’Reilly and Associates, Inc, 1997

7) Laura Lemay. Charles L Perkins
Teach yourself Java in 21 days, Sams net, 1996

8) Robert Orfali, Dan Harkey, Jeri Edwards
The Essential Client/Server Survival Guide, Second Edition, Wiley Computer Publishing, 1996

9) Windows Magazine, Nov 1997

10) H.M Deitel, P.J. Deitel

Java, How to Program, Prentice Hall, 1997

11) Ken Arnold & James Gosling

The Java programming Language, Addison Wesley, 1996

12) Stephen R. Davis
Learn Java Now, Microsoft Press, 1996

13) Prashant Sridharan
Advanced Java Networking, Prentice Hall, 1997

14) H.M. Deitel , P.J. Deitel

C++ How to Program, Prentice Hall, 1994

15) http://www.w3.org/. w3 consortium’s home address

16) http://java.sun.com Java documentation

17) http://www.gamelan.com Java program examples

18) http://www.javauniverse.com JDK tutorials

 18

19) http://lulasrv.lulala.org/internet/cgi_tests CGI script

20) http://www.javasoft.com Java Tutorial

21) http://sol.pace.edu/java Java examples

22) http://java.sun.com/docs/white/langenv Java Language

 19

Appendix

A Code for Version 1 Java™ Application Client (JDK 1.0)

A.1 Client
A.2 Server

B Code for Version 2 Telnet Applet Client (JDK 1.0)
 B.1 Client
 B.2 Server

C Code for Version 3 Java™ Applet Client (JDK 1.1)
 C.1 Client
 C.2 Server

 1

 Client Version 1

// Set up a Client that will read information sent
// from a Server and display the information.
import java.io.*;
import java.net.*;
import java.awt.*;

public class Client extends Frame {
 TextArea display;

 public Client()
{
 super("Client");
 display = new TextArea(20, 10);
 add("Center", display);
 resize(300, 150);
 show();
 }

 public void runClient()
 {
 Socket client;
 OutputStream output;
 InputStream input;

 try {
 client = new Socket(“172.17.52.149”, 5000); // IP address and Port Number
 display.appendText("Created Socket\n");

 output = client.getOutputStream();
 input = client.getInputStream();
 display.appendText("Sending Data .. Hello World\n");
 String s = new String("Hello World \n");

 for (int i = 0; i < s.length(); i++)
 output.write((int) s.charAt(i));

 display.appendText("\n Received from Server:\n \t");
 char c;

 while((c = (char) input.read()) != '\n')
 display.appendText(String.valueOf(c));

 display.appendText("\nTransmission Complete\n");
 client.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 2

 public boolean handleEvent(Event e)
 {
 if (e.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 System.exit(0);
 }

 return super.handleEvent(e);
 }

 public static void main(String args[])
 {
 Client c = new Client();

 c.runClient();
 }
}

 1

Server Version 1

// Set up a Server that will receive a connection
// from a client, send a string to the client,
// and close the connection.
import java.io.*;
import java.net.*;
import java.awt.*;

public class Server extends Frame {
 TextArea display;

 public Server()
 { super("Server");
 display = new TextArea(20, 5);
 add("Center", display);
 resize(300, 150);
 show();
 }

 public void runServer()
 { ServerSocket server;
 Socket connection;
 PrintStream output;
 DataInputStream input;

 try {
 server = new ServerSocket(5000, 100); // Open ServerSocket
 connection = server.accept(); // Wait for connection
 display.setText("Connection received...\n");
 output = new PrintStream(connection.getOutputStream()); // Set up IO streams
 input = new DataInputStream(connection.getInputStream());
 String serv = new String("Connection successful\n\n");
 String c;
 System.out.println("steps 1");
 c = input.readLine();
 System.out.println(c);
 display.appendText(c);
 System.out.println("steps 1");
 display.appendText("\n Receiving data Hello!\n\n");
 // The next two lines receive data from client
 System.out.println("steps 1");
 for(int i = 0; i < serv.length(); i++) {
 output.write((int) serv.charAt(i)); display.appendText("\n Sent data.\n");
 }
 System.out.println("steps 3");
 display.appendText("\nClosing socket.\n");
 connection.close();
 }
 catch (IOException e) {

 e.printStackTrace();
 }
 }

 2

 public boolean handleEvent(Event e)
 { if (e.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 System.exit(0);
 }
 return super.handleEvent(e);
 }

 public static void main(String args[])
 {
 Server s = new Server();

 s.runServer();
 }

}

 1

Client Version 2

<HTML>
<HEAD>
<TITLE>BANK ATM</TITLE>
</HEAD>

<BODY Background="" BGColor=#0000ff Text=#ffffff Link=#0000ff VLink=#400080 ALink=#80ffff>
<center>
<h2>BOHIEM BANK ATM 97'</h2>

<APPLET CODE="appWrapper.class" align = right WIDTH=100% HEIGHT=280>
 <PARAM NAME=applet VALUE= "telnet">

 <!-- applet initialization: address and port -->
// Sending the IP address and port number of the server to the telnet applet as a parameter
 <PARAM NAME=address VALUE=172.17.52.149>
 <PARAM NAME=port VALUE="8888">
 <PARAM NAME=font VALUE="Courier">
 <PARAM NAME=fontsize VALUE="28">
 // Creating the GUI
 <!-- modules: #1 is a buttonbar--->
 <PARAM NAME=module#1 VALUE="ButtonBar">
 <PARAM NAME=1#Button VALUE="connect|\$connect()">
 <PARAM NAME=2#Button VALUE="disconnect|\$disconnect()">
 <PARAM NAME=3#Button VALUE="Detach/Delete Window|\$detach()">
 <PARAM NAME=4#Button VALUE="SUBMIT:|\@send@\r\n">
 <PARAM NAME=5#Input VALUE="send#20|testing">

 <!---- NEW BUTTONS FOR CODE OF BANK ATM 97 ------>
 <PARAM NAME=6#Button VALUE="DEPOSIT:|\D\r\n">
 <PARAM NAME=7#Button VALUE="WITHDRAW:|\W\r\n">
 <PARAM NAME=8#Button VALUE="BALANCE:|\B\r\n">
<!--<PARAM NAME=9#Button VALUE="VERIFY:|\V\r\n"> -->

 <!-- modules: #3 is a scripting module -->
 <PARAM NAME=module#3 VALUE="Script">
 <PARAM NAME=script VALUE="login:|ahuja">

 <!-- make sure, non-java-capable browser get a message: -->

 Your Browser seems to have no Java
 support. Please get a new browser or enable Java to see this applet!

</APPLET>
<!-- End of applet code -->
<table width=100% bgcolor="aaaaab"><tr><td>
</td></tr></table>
<!-- <form action="http://172.17.52.149:8888" method="post"> -->
<!-- <input type="text" size=18><input type="submit" value="Bank account number"> -->
 </form>

</BODY>

</HTML>

 1

Server Version 2

import java.io.*;
import java.net.*;

class ServerHandler extends Thread // Enabling threading
{
 Socket incoming;
 int counter;

 ServerHandler (Socket i, int c)
 { incoming = i; counter = c; }

 public void run()
 { try
 { DataInputStream in = new DataInputStream(incoming.getInputStream()); // Creating IO Streams
 PrintStream out = new PrintStream(incoming.getOutputStream());
 int prod;
 int check = 0;
 String mgrpass = new String("admin");
 int done = 0;
 while (done == 0)
 { out.println("Connected to BOHIEM Bank..\r");
 out.println(" ---------------------------------------\ r");
 out.println(" | WELCOME |\r");
 out.println(" ---------------------------------------\ r");
 out.println(" \r\r\ r");
// if ((str.compareTo("Br")) || (str.compareTo("Dr")) || (str.compareTo("Wr")))
// {
 out.println(" \rEnter Account No.: \ r");
 String AcctNo = in.readLine();
// }
 done = 2;
 while (done == 2)
 { out.println(" \rEnter Password: \r");
 String Password = in.readLine();
 done = 1;
 while(done == 1)
 { out.println
 (" \r\nUsing your mouse click on the transaction type on the top right of the screen\r");
 String str = in.readLine();
 check = 0;
 //******************** BALANCE **********************
 if ((str.compareTo("Br")) == 0)
 { out.println("Looking For " + AcctNo + "\r");
 String SEARCHFOUND = new String(searchInfo(AcctNo, Password));
 if (SEARCHFOUND.compareTo("WRONG PASSWORD")== 0)
 { out.println(SEARCHFOUND + "...ENTER AGAIN\r\n");
 done = 2;
 }
 else if (SEARCHFOUND.compareTo("ACCOUNT NOT FOUND...") == 0)
 { out.println(SEARCHFOUND + "\r\n");
 done = 0;
 }
 else
 out.println("Your balance is $" + SEARCHFOUND + "\r\n");

 2

 }
 //********************** DEPOSIT ********************
 if ((str.compareTo("Dr")) == 0)
 { out.println(" Enter Deposit Amount: $\r");
 String Depamt = in.readLine();
 double dep = new Double(Depamt).doubleValue();
 out.println("Looking For " + AcctNo + "\r");
 String Acctbal = new String(searchInfo(AcctNo, Password));
 if (Acctbal.compareTo("WRONG PASSWORD")== 0)
 { out.println(Acctbal + "...ENTER AGAIN\r\n");
 done = 2;
 }
 e lse if (Acctbal.compareTo("ACCOUNT NOT FOUND...") == 0)
 { out.println(Acctbal + "\r\n");
 done = 0;
 }
 else
 { double bal = new Double(Acctbal).doubleValue();
 bal += dep;
 String newbal = String.valueOf(bal);
 String Result = new String(replBal(AcctNo, Password, newbal));
 out.println(Result + "\r\n" + "Deposited $" + Depamt + "\r\n");
 }
 }
 //************************ WITHDRAWAL ********************
 if ((str.compareTo("Wr")) == 0)
 { out.println(" Enter Amount to Withdraw : $\r");
 String Withdamt = in.readLine();
 double withd = new Double(Withdamt).doubleValue();
 out.println("Looking For " + AcctNo + "\r");
 String Acctbal = new String(searchInfo(AcctNo, Password));
 if (Acctbal.compareTo("WRONG PASSWORD")== 0)
 { out.println(Acctbal + "...ENTER AGAIN\r\n");
 done = 2;
 }
 else if(Acctbal.compareTo("ACCOUNT NOT FOUND...") == 0)
 { out.println(Acctbal + "\r\n");
 done = 0;
 }
 else
 { double bal = new Double(Acctbal).doubleValue();
 bal -= withd;
 if (bal > 0.00)
 { String newbal = String.valueOf(bal);
 String Result = new String(replBal(AcctNo, Password, newbal));
 out.println(Result + "\r\n" + "Withdrew $" + Withdamt + "\r\n");
 }
 else
 { out.println("Insufficient Funds \r\n");
 }
 }
 }
 //************************* ADD NEW ACCOUNTS ***************
 if ((str.compareTo("Ar")) == 0)
 { if(Password.compareTo(mgrpass) == 0)
 { out.println("Please Enter the Following Data: \r");

 3

 out.println("Enter Account No. \r");
 String ADDacctnum = in.readLine();
 out.println("Enter password (3 to 7 letters only)\r");
 String ADDpass = in.readLine();
 out.println("Enter Opening Balance \r");
 String ADDbalance = in.readLine();
 String ADDeveryTHING = new String(ADDacctnum + "\r\n" + ADDpass +
 "\r\n" + ADDbalance + "\r\n");
 out.println(ADDeveryTHING + "\rAccount is added to database\r\n");
 setInfo(ADDeveryTHING);
 }
 else
 out.println("WRONG PASSWORD..\r\n");
 }
 //******************** SEARCH EXISTING ACCOUNTS **************
 if ((str.compareTo("Sr")) == 0)
 { if(Password.compareTo(mgrpass) == 0)
 { out.println(" \rEnter Account No. to Search For: \r");
 String SearchString = in.readLine();
 out.println("Looking For " + SearchString + "\r");
 String SFOUND = new String(searchMgrInfo(SearchString));
 out.println(SFOUND + "\r\n");
 }
 else
 out.println("WRONG PASSWORD..\r\n");
 }
 //******************** PRINT EXISTING ACCOUNTS **************
 if ((str.compareTo("Pr")) == 0)
 { if(Password.compareTo(mgrpass) == 0)
 { out.println("\r");
 printAccts(out);
 }
 else
 out.println("WRONG PASSWORD..\r\n");
 }

 }// end of while done == 1
 }// end of while done == 2
 }// end of while done == 0
 } // end of try
 catch (Exception e)
 { System.out.println("");
 }
 }// end of main

 //******************************* METHODS ********************************
 //******************* SEARCH (ATM METHOD)
 public static String searchInfo(String a, String p)
 { int match=0;
 int x = 0;
 try
 { RandomAccessFile in = // Opening a text file in Read-Write Mode
 new RandomAccessFile("account.dat", "rw") ;

 while (in.getFilePointer() < in.length())
 { String accttemp = in.readLine();

 4

 int templen = accttemp.length();
 String acct = new String
 (accttemp.substring(0,templen-1));
 String accounts = new String("\rAccount : "+acct);
 String passwords = new String("");
 String balances = new String("");
 if (acct.compareTo(a) == 0)
 { String passtemp = in.readLine();
 int passlen = passtemp.length();
 String pass = new String(passtemp.substring(0,passlen-1));
 passwords = ("\rPassword : "+ pass);
 if (pass.compareTo(p) == 0)
 { match = 1;
 String balancetemp = in.readLine();
 int ballen = balancetemp.length();
 String balance = new String(balancetemp.substring(0,ballen-1));
 balances = balance;
 }
 else
 { return("WRONG PASSWORD");
 }
 }

 if (match >= 1)
 { // RETURNS ALL INFO IN FORM OF A STRING
 String info = new String(balances + "\n");
 return info;
 } // END OF IF MATCH <<<-------------
 else
 { // DON't DO ANYTHING
 } // end of else return search string NOT FOUND
 } // <<<------- end of while inFile Pointer------->>>

 in.close();
 return ("ACCOUNT NOT FOUND...");
 } catch(Exception e)
 {return("error reading from file\n\r");}
 }

 //****************** DEPOSIT/WITHDRAWAL (ATM METHOD)
 public static String replBal(String a, String p, String b)
 { int match=0;
 int x = 0;
 try
 { RandomAccessFile in =
 new RandomAccessFile("account.dat", "rw") ;

 while (in.getFilePointer() < in.length())
 { String accttemp = in.readLine();
 int templen = accttemp.length();
 String acct = new String
 (accttemp.substring(0,templen-1));
 String accounts = new String("\rAccount : "+acct);
 String passwords = new String("");
 String balances = new String("");
 if (acct.compareTo(a) == 0)

 5

 { String passtemp = in.readLine();
 int passlen = passtemp.length();
 String pass = new String(passtemp.substring(0,passlen-1));
 passwords = ("\rPassword : "+ pass);
 if (pass.compareTo(p) == 0)
 { match = 1;
 in.writeBytes(b);
 }
 else
 { return("Wrong password");
 }
 }

 if (match >= 1)
 { // RETURNS ALL INFO IN FORM OF A STRING
 String info = new String("Transaction Complete");
 return info;
 } // END OF IF MATCH <<<-------------
 else
 { // DON't DO ANYTHING
 } // end of else return search string NOT FOUND
 } // <<<------- end of while inFile Pointer------->>>

 in.close();
 return ("Account NOT FOUND...\r\n");
 } catch(Exception e)
 {return("error reading from file\n\r");}
 }

 //*********************** ADD NEW RECORDS (MANAGER METHOD)
 public static void setInfo(String s)
 { int x = 0;
 try
 { RandomAccessFile in = new RandomAccessFile("account.dat", "rw");
 while (in.getFilePointer() < in.length())
 { String cardtemp = in.readLine();
 }
 in.writeBytes(s); // Writing to the file
 in.close();
 }catch(Exception e){;}
 }

 //****************************** SEARCH (MANAGER METHOD)
 public static String searchMgrInfo(String a)
 { int match=0;
 int x = 0;
 try
 { RandomAccessFile in = new RandomAccessFile("account.dat", "rw");
 while (in.getFilePointer() < in.length())
 { String accttemp = in.readLine();
 int templen = accttemp.length();
 String acct = new String (accttemp.substring(0,templen-1));
 String accounts = new String("\rACCOUNT : "+acct);
 String passwords = new String("");
 String balances = new String("");

 6

 if (acct.compareTo(a) == 0)
 { match = 1;
 String passtemp = in.readLine();
 int passlen = passtemp.length();
 String pass = new String(passtemp.substring(0,passlen-1));
 passwords = ("\rPASSWORD : "+ pass);
 String balancetemp = in.readLine();
 int ballen = balancetemp.length();
 String balance = new String(balancetemp.substring(0,ballen-1));
 balances = new String("\rBALANCE = $" + balance);
 }
 if (match >= 1)
 { // RETURNS ALL INFO IN FORM OF A STRING
 String info = new String(accounts + "\n" + passwords + "\n" +
 balances + "\n");
 return info;
 } // END OF IF MATCH <<<-------------
 else
 { // DON't DO ANYTHING
 } // end of else return search string NOT FOUND
 } // <<<------- end of while inFile Pointer------->>>
 in.close();
 return ("ACCOUNT NOT FOUND...");
 }
 catch(Exception e) {return("error reading from file\n\r");}
 }
 //****************************** PRINT RECORDS (MANAGER METHOD)
 public void printAccts(PrintStream o)
 { int x = 0;
 try
 { RandomAccessFile in = new RandomAccessFile("account.dat", "r");
 int i = 0;
 o.println("Acct Password Balance \r\n");
 while (in.getFilePointer() < in.length()-2)
 { String accttemp = in.readLine();
 String passtemp = in.readLine();
 String baltemp = in.readLine();
 String printinfo = new String(accttemp.trim() + "\t" + passtemp.trim() + "\t\t" +
 baltemp.trim() + "\r\n");
 o.println(printinfo);
 i++;
 }
 in.close();
 }catch(Exception e){;}
 }
} // end of class ##########################

class Server
{
 public static void main(String[] args)
 { int i=1;
 try
 { ServerSocket s = new ServerSocket(8888);
 for(;;)
 { Socket incoming = s.accept();
 new ServerHandler(incoming, i).start();

 7

 i++;
 }
 } catch (Exception e)
 { System.out.println(e);
 }

 }

}

 1

Client Version 3

// Set up a Client that will read information sent
// from a Server and display the information.
import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;

public class AtmApplet extends Applet implements ActionListener // Client is a Java applet
{
 public final static int port = 8888;
 public final static String hostname = "172.17.52.149"; // Setting up connection with the Server
 TextArea display;
 TextField tf = new TextField("", 4);
 TextField tf1 = new TextField("", 4);

 public void init()
 {
 setLayout(new BorderLayout()); // Building up the GUI
 display = new TextArea(4, 30);
 display.setEditable(false);
 add("South", display);

 Panel p = new Panel();
 p.setLayout(new FlowLayout());
 Button B = new Button("Done");
 B.addActionListener(this);
 p.add(B);

 add("North", p);

 Panel p1 = new Panel();
 p1.setLayout(new FlowLayout());
 p1.add(new Label("Enter Account No.")); // Accept request from the User
 p1.add(tf);
 p1.add(new Label("Enter PIN"));
 p1.add(tf1);
 add("Center", p1);
 }

public void actionPerformed(ActionEvent evt)
{ String arg = evt.getActionCommand();

 if(arg.equals("Done"))
 { Socket client;
 String acc = tf.getText();
 String pi = tf1.getText();
 String s = new String(acc + ' ' + pi + '\n');
 BufferedReader in;
 PrintWriter out;

 2

 try
 {
 client = new Socket(hostname,port);
 in = new BufferedReader(new InputStreamReader(client.getInputStream()));
 out = new PrintWriter(client.getOutputStream(), true);

 // sending data to Server
 out.println(s);

 // receiving data from server
 String c;
 c = in.readLine();
 display.appendText (c);
 display.appendText ("\n");
 client.close();
 } catch (IOException e) { System.out.println("NO");}
 }
 }
}

 1

Server Version 3

import java.io.*;
import java.net.*;
import java.sql.*;
import java.util.*;

class Server
{ public static void main(String[] args)
 { int i = 1;
 Statement stmt;

 try
 { ServerSocket serversock = new ServerSocket(8888); // Set up server socket

 // Connecting to the database (JDBC)
 String url = "jdbc:odbc:atmtest";
 String user = "";
 String password = "";
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // force loading of driver
 Connection con = DriverManager.getConnection(url, user, password);
 stmt = con.createStatement();

 for(;;)
 { Socket incoming_socket = serversock.accept();
 new ServerHandler(incoming_socket, i, stmt, con).start();
 i++;
 }
 } catch(Exception e) {System.out.println(e);}
 }
}

class ServerHandler extends Thread // Threading
{ Socket incoming_socket;
 int counter, ctr;
 Statement stmt;
 Connection con;
 int acct_temp;
 int pin_temp;
 BufferedReader in;
 PrintWriter out;
 String temp;
 float bal_temp;

 ServerHandler (Socket i, int c, Statement s, Connection co)
 { incoming_socket = i;
 counter = c;
 stmt = s;
 con = co;
 }

 public void run()
 { try
 { in = new BufferedReader(new InputStreamReader(incoming_socket.getInputStream()));
 out = new PrintWriter(incoming_socket.getOutputStream(), true);

 2

 int acct_num_length = 4;

 String input = in.readLine();

 System.out.println(input);
 acct_temp = java.lang.Integer.parseInt(input.substring(0,4));
 System.out.println("account number is " + acct_temp);
 pin_temp = java.lang.Integer.parseInt(input.substring(5,input.length()));
 System.out.println("PIN " + pin_temp);
 } catch(Exception e) {System.out.println(e);}

 try
 {
 String searchquery = "SELECT BALANCE " + //SQL Statements to connect to the database
 "FROM ATM.ATMTABLE " +
 "WHERE ACCOUNT_NO = ? AND PIN = ? ";
 searchquerystmt = con.prepareStatement(searchquery);
 searchquerystmt.setInt(1, acct_temp);
 searchquerystmt.setInt(2, pin_temp);
 ResultSet rs = searchquerystmt.executeQuery();
 while (rs.next())
 { //System.out.println(rs.getString(1)+ ", " + rs.getFloat(2));

 // WRITE BACK TO CLIENT
 temp = new String("Your balance is $" + rs.getFloat("BALANCE")+ '\n');
 System.out.println(temp);

 out.println(temp);
 }

 } catch(Exception e) {System.out.println(e);}
 }
 private PreparedStatement searchquerystmt;
}

