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Abstract 

This paper presents a methodology for quantitatively establishing the discriminative power 

of iris biometric data. It is difficult, however, to establish that any biometric modality is 

capable of distinguishing every person because the classification task has an extremely large 

and unspecified number of classes. The purpose of this study is to investigate various 

combinations of features, distance measures, and classifiers to find the best combination for 

determining the individuality of the iris biometric. Based on this review, a proposed 

methodology is used to establish a measure of discrimination that is statistically inferable. To 

establish the inherent distinctness of the classes, i.e., to validate individuality, we transform 

the many class problem into a dichotomy by using a distance measure between two samples 

of the same class and between those of two different classes. Various features, distance 

measures, and classifiers are reviewed and evaluated. For feature extraction I compare 

simple binary and multi-level dimensional wavelet features. For distance measures I examine 

scalar distances, feature vector distances, and histogram distances. Especially, I compare 

conventional binary feature distance measures and evaluate their performance.   Finally, for 

the classifiers I compare Bayes decision rule, nearest neighbor, artificial neural network, 

and support vector machines. The experiment of the eleven different combinations is 

performed.  The best one uses multi-level 2D wavelet features, the histogram distance, and a 

support vector machine classifier. 
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Chapter 1  

Introduction 

I consider the task of establishing the distinctiveness of each individual in a population when 

there is a set of measurements that have an inherent variability for each individual. This task 

of establishing individuality can be thought of as showing the distinctiveness of the 

individual classes with a very small error rate in discrimination. The problem is important in 

many biometric and forensic science applications such as writer, face, fingerprint, speaker, or 

bite mark identification. All these applications face the problem of scientifically establishing 

individuality, which is motivated by court rulings [1].  

Establishing a measure of uniqueness for a particular biometric is a challenging problem. A 

very small error rate of a certain performance evaluation of a biometric model can be a 

candidate for a measure of individuality. There are two important models in biometrics: 

identification (polychotomy, one-of-many decision) and verification (dichotomy, binary 

decision) [2~5]. It has been argued that the verification model is clearly more suitable than 

the identification model for establishing the individuality of a biometric [3]. Consider the 

many-class problem where the number of classes (individuals) is too large to be completely 

observed, such as the population of a country. Most biometric identification problems fall 

under the aegis of the many-class problem. Although classification techniques that assume a 

fixed number of classes are not particularly useful for establishing individuality in many 

class problems, some studies nevertheless use the identification model and present a 

confusion matrix [6~12]. 

To establish the inherent distinctness of the classes, i.e., to validate individuality, we 

transform the many class problem into a dichotomy by using a distance measure between two 

samples of the same class and between samples of two different classes. This model allows 

the inferential classification of patterns without having to observe all the classes. It is a 
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method for measuring the reliability of classification of all classes based on information 

obtained from a small sample of classes drawn from the class population. In this model, two 

patterns are categorized into one of only two classes; they are either from the same class or 

from the two different classes. Given two biometric data samples, the distance between the 

two samples is first computed. This distance measure is used as data to be classified as 

positive (intra-variation, within person or identity) or negative (inter-variation, between 

different people or non-identity). In [3, 4], the individuality of handwriting using the distance 

statistics was shown. In this paper, I generalize the results to the iris biometric domain. 

Pankanti, et al., also showed this model to establish the individuality of fingerprints [13]. 

Hence, the problem of iris biometric individuality is as follows. Given two iris samples, the 

feature distance between the two samples is classified as intra-person (identity) or inter-

person (non-identity).  We use the terms intra-person distance and inter-person distance. Two 

types of errors, False Accept Rate (FAR) and False Reject Rate (FRR), are inferable to 

testing sets and even to the entire population. 

The proposed model has the additional advantage that it allows the use of multiple 

heterogeneous features, whereas most pattern recognition techniques require that the features 

be homogeneous [14]. Both continuous and non-continuous features have been studied 

widely in the areas of pattern recognition [14], machine learning [15], and feature selection 

[16]. In Liu and Motoda's version of the hierarchy of feature types [16], only elementary 

feature types were considered: discrete ordinal and nominal, continuous, and complex. 

Features observed in real applications, however, often have more complicated feature types 

such as histograms, strings, etc. By taking distance measures, we are able to integrate various 

types of features into one useful for many forensic science and biometric authentication 

problems. Thus, the proposed dichotomy model integrates multiple features types into feature 

distance scalar values [17]. 
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The purpose of this paper is to investigate various combinations of features, distance 

measures, and classifiers to find the best combination for determining the individuality of the 

iris biometric. For feature extractions, I compare simple binary and multi-level 2D wavelet 

features. For distance measures, I examine scalar distances (such as Hamming and 

Euclidean), feature vector distances, and histogram distances. Finally, for the classifiers, I 

compare Bayes decision rule, nearest neighbor, artificial neural network, and support vector 

machines. Among the eleven different combinations tested, the best model uses the multi-

level 2D wavelet feature, histogram distance, and a support vector machine classifier. 

The remainder of the paper is organized as follows: Chapter 2 illustrates the dichotomy 

model which is a statistically inferable approach to establishing the individuality of a 

biometric. Chapter 3 compares this model with the polychotomy model in terms of statistical 

inferability.  Chapter 4 explains the general procedures for the experiment. Chapter 5 

presents the various features and distance measures explored for iris authentication. Chapter 

6 examines the definitions of conventional binary feature distance measures and evaluates 

their performance. Chapter 7 compares the experimental results of various classifiers using 

different combinations of features and distance measures. Finally, Chapter 8 draws some 

conclusions [18].  
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Chapter 2  

Dichotomy Model 

The multi-category classification problem, or Polychotomizer, is stated as follows. There are 

m exemplars of each of n people (n = very large). Given a biometric exemplar, x, of an 

unknown person, the task is to determine whether x belongs to any of the n subjects and if so, 

to identify the person. As the number of classes is enormously large and almost infinite, I 

shall demonstrate that this problem is seemingly insurmountable. To circumvent this problem, 

I propose a dichotomy model that can handle the many class problem. I show how to 

transform a large polychotomy problem into a simple dichotomy problem, a classification 

problem that places a pattern in one of only two categories.  

 

2.1. Dichotomy Transformation 

To illustrate the transformation process, suppose there are three people, . Each person 

provides three biometric data samples with two features extracted per sample.  Figure 1 (a) 

plots the biometric samples for the three people, where the features are real-values. To 

transform this feature space into a distance vector space for real valued features, I take the 

vector of distances of every feature between samples by the same person and categorize it as 

an intra-person distance denoted by 

},,{ 321 PPP

⊕xr . Similarly, inter-person distance distances are 

obtained by measuring the distances between two different persons' biometric samples, 

denoted by . Θxr
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Figure 1. Transformation from (a) Feature domain to (b) Feature distance domain 

 

I use subscripts of the positive ⊕ and negative ∅ symbols as the nomenclature for all 

variables of intra-person distance and inter-person distance, respectively. Let 
ijd
r  denote a 

feature vector corresponding to the ith person's jth
Θxr biometric sample, then x⊕

r  and  are 

obtained as follows:  

| |   where 1  to ,  and  , 1  to ,          (1)

| |   where , 1  to ,      and  , 1  to     (2)
ij ik

ij kl

x d d i n j k m j k

x d d i k n i k j l m
⊕

Θ

= − = = ≠

= − = ≠ =

r rr

r rr  

where n is the number of people, and m is the number of biometric samples per person. Note 

that the result of the dichotomy transformation is not a scalar value but a vector of distances. 

Figure 1 (b) represents the transformed plot.  The original feature space is transformed to a 

feature distance space. For example, an intra-person distance, W (within), and an inter-

person distance, B (between), in Figure 1 (a), correspond to the points W and B in the feature 
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distance space in Figure 1 (b), respectively. Thus, there are only two categories: intra-person 

distance and inter-person distance in the feature distance space.   

 

ΘΘ = xn r
⊕⊕ = xn rLet  and , the sizes of inter- and intra-person distance classes, accordingly.   

 

Fact 1  If n people provide m biometric samples each, there are  positive data 

samples,  

n
m

n ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⊕ 2

2
)1( −

××=Θ
nnmmn  negative samples, and  samples in total.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

mn

Proof:  is straight-forward. To count the inter-person distance data, we can 

enumerate them as 

n
m

n ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⊕ 2

)1())2(())1(( ××+−××+−×× mmnmmnmm L . For the first person, there are 

 number of other people's biometric data and he or she has m data. For the second 

person, there are  number of other people's biometric data that are not counted yet. 

Therefore,

))1(( −× nm

))2(( −× nm

2
)1(1

1

−
××=××= ∑ −

=Θ
nnmmimmn n

i
. Now, ( )! ( )( 1)

2 ( 2)!2 2
mn mn mn mnn n

mn⊕ Θ

⎛ ⎞ −
+ = = =⎜ ⎟ −⎝ ⎠

       

2( 1) ( 1)
2 2

m m n nn m n n⊕ Θ
− −

= + = +                      ▌ 

For example, for the handwriting data collection of [4, 5] 1000 people (statistically 

representative of the U.S. population) provided exactly three samples each. 

Hence, , , and there are 4,498,500 in total.  4,495,500=Θn3000=⊕n

 

Most statistical testing requires that the observed data be statistically independent.  The 

distance data is, however, not statistically independent: one obvious reason being the triangle 

inequality of three distance samples of the same person. This caveat should not be ignored. 

One immediate solution is to choose randomly a smaller sample from a large sample 
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obviating the triangle inequality. One can, for example, partition  samples into 

disjoint subsets of 500 each to guarantee no triangle inequality problem.  

3000=⊕n

 

In the dichotomy model, we formally state the problem as follows: given two randomly 

selected biometric samples, the problem is to determine whether the two exemplars belong to 

the same person. Figure 2 depicts the whole process using the dichotomy transformation. Let 

 be the ith feature of jth biometric data.  j
if

 

First, features are extracted from both biometric data x and y:  and 

. Then, each feature distance is computed: .  In 

equations (1) and (2), 

},,,{ 21
x

d
xx fff L

},,,{ 21
y

d
yy fff L )},(,),(),,({ 2211

y
d

x
d

yxyx ffffff δδδ L

δ is the absolute difference between two real values.  However, the 

features need not be real valued and could be any form such as nominal, strings, histograms, 

etc. Depending on the feature type, suitable distance measures are associated, e.g., 

approximate string matching distance for string type features. Thus, the previous equations 

can be rewritten as follows: 

( ) where 1 to ,  and , 1 to ,       (3)

( )  where , 1 to ,   and  , 1 to   (4)
ij ik

ij kl

x d d i n j k m j k

x d d i k n i k j l m

δ

δ
⊕

Θ

= − = = ≠

= − = ≠ =

r rr

r rr  

δwhere  varies depending on feature types [17]. In all, the dichotomizer takes this feature 

distance vector as the input, and outputs the decision, i.e., “same person” or “different 

people.” 

 13



Same/different  people

Distance computations

),...,,( 21
x

d
xx fff ),...,,( 21

y
d

yy fff

),( 11
yx ffδ ),( 22

yx ffδ ),( y
d

x
d ffδ

Dichotomizer

Scalar distance
measure

Feature extraction

),...,,( 21
x

d
xx fff ),...,,( 21

y
d

yy fff

Feature extraction

Bayes decision
Same/different  people

(a) Parametric Verification (b) Dichotomy Transformation
FRRFAR

∅

⊕

 

Figure 2. dichotomy transformation process 

A good descriptive way to represent the relationship between two populations (classes) is to 

calculate the overlap between the two distributions. Figure 3 illustrates the two distributions 

assuming that they are normal. Although this assumption is invalid, we can use it to describe 

the behavior of two populations figuratively without loss of generality. Assuming that we are 

using a Bayes optimal classifier with equal prior probabilities, type I error (FRR) occurs 

when the same person's biometric data are identified as coming from different people, and 

type II error (FAR) occurs when the biometric data provided by two different people are 

identified as coming from the same person as shown in Figure 3 (a).   

Pr  ( ( ) | )      (5)

Pr  ( ( ) | )      (6)
ij kl

ij kl

FRR dichotomizer d d T i k

FAR dichotomizer d d T i k

= − ≥ =

= − < ≠

r r

r r  

Let X
)  denote the distance x position where two distributions intersect. As shown in Figure 3 

(a), FRR is the right-side area of the positive distributions where the decision bound is XT
)

= . 

 14



Suppose one must make a crisp decision and choose the intersection as a classification 

boundary.  Then, FRR is the probability of error that one classifies two biometric data as 

different people even though they belong to a same person. FAR is the left-side area of the 

negative distributions, i.e., the probability of error that one classifies two biometric data as 

coming from the same person even though they belong to two different people. 

As is apparent from Figure 3, the intra-person distance distribution is clustered toward the 

origin, whereas the inter-person distance distribution is scattered and away from the origin. 

Utilizing the fact that the intra-person distance is smaller, I design the dichotomizer to 

establish the decision boundary between the intra and inter-person distances. 
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Figure 3. (a) Type I and II errors (b) 3-D Space Distribution. 
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Chapter 3  

Comparison: Polychotomy vs. Dichotomy 

I now compare the dichotomy model with the polychotomy model in terms of accuracy and 

statistical inference. Consider the multiple-class problem where the number of classes is 

small, and one can observe many instances of each class. To show the individuality of the 

classes statistically, one can cluster the instances into classes and infer the separation to the 

entire population. It is an easy and valid method to establish the individuality as long as a 

substantial number of instances for each class are observable.  Now, consider the many class 

problem where the number of classes is too large to be observed, such as the population of a 

country. Many pattern identification problems, and most of the forensic science applications 

mentioned above, fall under the aegis of many class problems. Although classification 

techniques that assume a fixed number of classes are not appropriate for establishing 

individuality in many class problems, most of the existing studies use the identification 

model and present the confusion matrix [6~12]. 

The definition of inferential statistics is to measure the reliability of individuality for the 

entire population based on information obtained from a sample drawn from the population. I 

claim that the identification model is not statistically inferable for many class problems. In 

this model, to draw valid conclusions, one must observe samples from every single person, 

which is clearly impossible. For instance, consider handwritten alphabets and the task of 

validating the individuality of alphabet shapes. If one observes instances of only the alphabet 

characters {A, B, C} and draws the conclusion that all alphabet characters are distinct, this is 

invalid because not all classes have been observed, and, for example, there maybe 

indistinguishable version of italic I and l.  Without knowing the geometrical distributions of 

the unseen classes (populations), one cannot draw the statistical inference; true error of the 
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entire population cannot be inferred from the error estimate of the sample population because 

there are unseen classes (the rest of the population, e.g. U.S. or other country populations). 

One immediate and obvious drawback of the dichotomy model is that it may fail to detect the 

difference between, for example,  and  that do not differ greatly in feature distance 

space even though they are different geometrically in the original feature space as shown in 

Figure 4. 

1P 2P

 

 

Figure 4. Comparison between (a) feature domain (polychotomy) perfectly classifiable and (b) feature 

distance domain (dichotomy) possibly not dichotomizable. 

It is desirable if all the distances between data of the same class (person) in the feature 

domain belong to the within-class-distance class in the feature distance domain.  Similarly, 

we would like all distances between two different classes in the feature domain to belong to 

the between-class-distance class in the feature distance domain.  Unfortunately, this is not 

always the case; perfectly clustered class in the original feature domain may not be perfectly 

dichotomized in the feature distance domain. The comparison in the dichotomy model is 

relative to a population and is crucially affected by the choice and diversity of the population.  

The broader the spread of the feature distributions among members of the population, the less 
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we learn about detecting real differences between individuals who do not differ greatly. 

However, our experimental results show that these extreme cases are rare. 

The objective is to validate the individuality of biometric data statistically, but not to detect 

the difference of particular instances. I are attempting to infer the individuality of the entire 

population based on the individuality of a sample of n people, where n is much less than the 

population. I claim that the dichotomy model is a sound and valid inferential statistics 

approach.  

By definition, inferential statistics measures the reliability of individuality of the entire 

population based on information obtained from a sample drawn from the population. I 

explain the justification of the dichotomy model using inferential statistics.  

 

Feature Distance Domain (Dichotomy) 

Feature Domain (Polychotomy)
(a) (b) (c) 

(f) (e)(d) 

 

Figure 5.  Statistical Inference in Polychotomy and Dichotomy: (a) all classes in feature domain, (b) partial 

classes and a classifier in feature domain, (c) the other classes, (d) entire population in feature distance 

domain, (e) a sample representative to the population in feature distance domain, (f) another sample 

representative to the population in feature distance domain. 

 19



Suppose that we use the polychotomy model to validate the individuality of biometric data. 

In this model, a population consists of the biometric data of every person in the population. 

To draw a valid conclusion, therefore, one must observe samples from every single person, 

which is impossible.  If we observe only 1,000 people (classes/populations), drawing a 

statistically inferential conclusion is invalid because there are unseen classes. One cannot 

draw the statistical inference; true error of the entire population cannot be inferred from the 

error estimate of the sample population of 1000 because there are unseen classes (the rest of 

the population). 

Figure 5 (a)-(c) illustrates this issue.  Suppose there are only 6 people in the universe (a), and 

we observe the biometric data of three people (1, 4, and 5) (b) because we assume that 

observing all people is difficult. Although one can successfully discriminate among the three 

people using a pattern classification or machine learning technique, the learned 

polychotomizer is not suitable for the other classes, as shown in (c). Clearly, the 

polychotomy model is not statistically inferable. 

Transforming the US population class-classification problem into a two class problem helps 

us overcome this issue, as shown in Figure 5 (d)-(f), where (d) and (e) are the dichotomy 

transformed plots of (b) and (c), respectively. There are only two populations, and we can 

acquire sufficient instances of each class or population. Since every new instance also maps 

onto these two classes, the distribution of the sample population can be used to infer the 

distribution of the entire population. Although we might do better by detecting real 

differences between individuals who do not differ greatly in the polychotomy model, the 

statistical inference is of primary interest and the dichotomy model is a sound and valid 

inferential statistical model whereas the polychotomy one is not. As we shall see later in 

section 5, as borne out by our training and testing results, only 3% of the data was 

misclassified. Since misclassification error can be attributed to a number of factors such as 
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feature selection in addition to “masking”. “Masking” likely occurred in an even smaller 

percentage. In all, inferring the error probability of the entire population through the 

dichotomizer model is more useful than detecting real differences between individuals who 

do not differ greatly from the sample population in the polychotomy model.  

I further support our claim that the polychotomy (identification) model is not statistically 

inferable one.  When the number of classes increases, the error rate increases. In other words, 

the error rate counted in the polychotomy model based on only n people (classes), increases 

dramatically as the entire population increases, as shown in Figure 6, and therefore, it is not 

possible to make inferences regarding the entire population [19].  

 

Figure 6. Generalizability of Iris identification 

 

We have a trade-off between tractability and accuracy. Since sampling a sufficiently large 

sample from each individual person is intractable, we transform the feature domain into the 
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feature-distance domain where we can obtain large samples for both classes. By using this 

transformation, the problem becomes a tractable inferential statistics problem, although we 

might get lower accuracy. However, if the number of classes is sufficiently small that it is 

possible to obtain samples for each class, then one may use the polychotomizer to validate 

the individuality of classes.  

 

Nevertheless, one cannot exclude the dichotomizer even in small, multiple-class 

classification problems. On one hand, the polychotomizer may be better if the features are in 

a vector form of homogeneous scalar values since techniques in pattern recognition typically 

require that features be homogeneous. On the other hand, however, the solution proposed 

overcomes the non-homogeneity of features since feature distances are nothing but scalar 

values. Various heterogeneous features and distance measures used are discussed in [17] and 

in the following section. Hence, the proposed dichotomy model provides two advantages: it 

is statistically inferable and it allows non-homogeneous features. 
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Chapter 4  

Experimental Procedures 

In order to extend the proposed method to establish the discriminative power of biometric 

modalities, I first give an outline of the procedure and describe each step. 

The procedure to establish the discriminative power of a given biometric measure is as 

follows: 

1 Data acquisition  

1.1 Recruit a sufficient number of subjects to represent the population 

1.2 Collect multiple biometric data from each subject 

2 Feature extraction and Dichotomy Transformation  

2.1 Extract features using image or signal processing techniques 

2.2 Apply suitable distance measures for features  

3 Hypothesis testing 

3.1 Design pattern classification (dichotomy) 

3.2 Validate the results 

 

The first step 1.1, recruiting a sufficient number of subjects to represent the population is 

crucial in order to infer the results to the entire population. The basis for collecting samples 

from the population to represent a certain nation or universe comes from the sampling 

strategy suggested in the field of experimental design [20-21]. The two populations of 

interest are the intra and inter person variations.  In order to obtain the representative samples 

of these two populations, we perform sampling based on standard properties: randomness, 

sample size, and representation. Randomly selecting a large number of subjects from the 

representative population provides representative samples of the two populations: intra and 

inter person classes.  
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Step 1.2, collecting multiple biometric data from each subject, is necessary to obtain the intra 

person distance data.  At least three samples per subject are recommended.  

 

In step 2, the proposed dichotomy transformation model requires first the extraction of 

features and then the application of suitable distance measures. Various image or signal 

processing techniques can be used to extract features from a given modality. Depending on 

the feature measurement type, suitable distance measures, e.g., Euclidean, dot-product, string 

matching, histogram matching, etc, can be used to transform the feature space into the 

feature-distance space.  

 

The final step 3 is hypothesis testing. Once the two-class data, i.e., intra and inter person 

distances, are computed, various pattern classifiers may be used to perform the dichotomy. 

Separate intra and inter person distance data are used to validate the results. The two-class 

error rate is used as the measure of individuality. Estimating the error probability is one of 

the simplest problems in statistical inference [21-22] and performance evaluation [15].  

The error probability estimation for the forensic and biometric data individuality problem is 

depicted in Figure 7.  
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Figure 7. Error Evaluation Experimental Setup. 

A large number of subjects, n, are chosen for the experiment and they provide m biometric 

data each. There are two populations of interest and they are the intra person distance (or 

simply intra) and inter person distance (or simply inter).  A sample of intra is obtained from 

pairing two biometric data samples provided by a same person. A sample of inter is obtained 

from pairing biometric samples provided by two different subjects. A dichotomy classifier is 

designed using the training and validation sample sets.  The error probability is measured 

using the testing sample sets.  There are two errors for each population as discussed earlier. 

The s-error is the error probability that the system classifies the two samples as a member of 

intra although they were provided by two different subjects, while the d-error is the error 

probability that the system classifies the two samples as a member of inter even though they 

were provided by one subject. Sample error means are denoted as sX dX and  for s-error 

and d-error, respectively. They are often known as point estimates of the population error 

means,  and .  sμ dμ
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A classification system is trained using training sets intra 1 and inter 1 with two validation 

sets intra 2 and inter 2. The system is tested using the remaining multiple testing sets.   

 

 and In addition to the point estimates, we are interested in confidence intervals for sμ dμ .  

They are intervals within which we have reason to believe that the true population means, sμ  

and , lie assuming they are normal.  The formula for the α−1dμ  level confidence interval 

for  is: sμ

[ ]

[ ] (8)                   
)1(

1;2/1                                              

(7)                              /1;2/1      for  interval confidence 2

n
XX

nzX

nsntX

ss
s

sss

−
−−±≈

−−±≈

α

αμ
 

Because n is quite large, one can use either Student's t distribution or the normal table to 

compute the confidence interval. Although the population variance  is unknown [18], one 

can assume that  for a large n. Thus, the normal table is often used in evaluating 

performance [15]. I use both, and choose the one that gives the tighter bound for the sake of 

higher precision. In both cases, 

2
sσ

22
ss s≈σ

5)1( >− pnp  and thus one can use either the normal table or 

the t-table.   

 

The normality assumption on the error distribution is a sine-qua-non in the analysis. The 

error probability follows a binomial distribution. A Binomial distribution gives the 

probability of observing r errors in a sample of n independent instances. A discrete binomial 

distribution function is then 

(9)                                                                )1(
)!(!

!)( 4−−
−

= nr pp
rnr

nrP  

The expected, or mean value of X is 
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[ ] (10)                                                                                             npXE =  

The variance of X is 

(11)                                                                               )1()( pnpXVar −=  

For sufficiently large values of n the binomial distribution is closely approximated by a 

Normal distribution with the same mean and variance.   

 ),(NDerror -d   and    ),(NDerror -s 
22

nn
d

d
s

s
σ

μ
σ

μ  

Most statisticians recommend using the Normal approximation only when   [15].  5)1( ≥− pnp

 

ss X=μ dd X=μ sXIn the final step for the hypothesis testing, claim that  and  where  and 

dX  are error estimates using intra 3 and inter 3 sample sets. Given the results, we can 

perform the hypotheses test on the means.  

(13)                                                         :H                     :H

(12)                                                          :H                      :H
2
A

2
0

1
A

1
0

dddd

ssss

XX

XX

≠=

≠=

μμ

μμ
 

I would like to validate the hypotheses using the other test sets. From intra 4 and inter 4, we 

obtain new sample means, 'sX 'dXand . From the equation (8), we obtain the critical regions 

for the means. If 'sX  falls within the acceptance regions, accept the null hypothesis and 

similarly, if 

1
0H

'dX  falls under the acceptance regions, accept the null hypothesis . 

Otherwise, reject them.  

2
0H
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Chapter 5 

Feature Extraction and Distance Measures 

The dichotomy model requires the extraction of features and the use of suitable distance 

measures. In this section, I review the features and distance measures previously used for iris 

authentication, a subset of which I investigate and compare in this study. 

 

First, I consider the iriscode [20], which is a 256 binary feature extracted by applying a 2D 

Gabor wavelet filter. In [23], the Hamming distance in eqn (14) was used for the model in 

Figure 1 (a). 

yxyxyx ffffff •+•=∂
''),( (14)  

 

Second, multi-level 2D wavelet features have been widely used [24-27]. The hierarchical 

wavelet transform decomposes the original iris image into a set of frequency windows having 

narrower bandwidths in the lower frequency region [24]. Decomposing images with the 

wavelet transform yields a multi-resolution from detailed images to approximation images in 

each level. As shown in Figure 8, LH, HL, and HH represent detailed images for horizontal, 

vertical, and diagonal orientation, respectively, in one-level. Sub-image LL corresponds to an 

approximation image that is further decomposed, resulting in a two-level wavelet 

decomposition. The result of a three-level decomposition is shown in the lower-left portion 

of Figure 8. 
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IRIS part extraction

Daubechies Wavelet for an IRIS image
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Figure 8. Three-level wavelet transform. 

 

L. Ma et al. tried to extract more distinctive statistical features by using a filtering process 

[24]. G. Kee et al. presented a tree-structured wavelet transform in order to obtain means and 

standard deviations, which are used as iris feature sets [25]. Mallat suggested that statistics 

obtained from wavelet decomposition are sufficient for presenting texture difference [26]. 

 

I use the 2D Daubechies wavelet transform technique to extract features from an iris image 

as folows. Each iris image is decomposed into 3 levels and each sub-image is divided into 

2x2 windows, which results in 12 different sub-images. For each-sub image, mean and 

variance values are calculated. As a result, 24 numeric feature values are extracted. One can 

use the Euclidean distance between two vectors in eqn (15) for the Figure 1 (a) model. One 

can also use the absolute vector difference measure in eqn (16) for the Figure 1 (b) model. 
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Note that the result of the eqn (15) is a scalar value whereas that of the eqn (16) is a d-

dimensional feature distance vector.  

 ∑
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Third, instead of extracting mean and variance values for each sub-image, I utilize 12 linear 

type histograms as feature sets as previously proposed [27]. For each sub-image, the linear 

type of histogram is obtained as a feature from each decomposed sub image. x
if and  are 

ordinal histograms not simple numeric scalar values. There are numerous histogram distance 

measures [29] and I consider the two popular ones: eqn (17) shows the Euclidean distance 

and eqn (18) the histogram edit distance [28, 29].  Note that the histogram distance measure 

is applied to each of the 12 histogram features per iris image, resulting in a 12 dimensional 

feature distance vector. 
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Chapter 6 

Binary Feature Distance Measures 

In this section, I extend my study on distance measures for the binary features. I present 

definitions of conventional binary feature distance measures and evaluate their performance 

with proposed classificatiosn model [31].  

6.1. Basic Binary Similarity Measures 

Let x, y, and z be binary feature vectors of fixed length d, and let ix  denote the ith feature 

value which is either 0 or 1. One of the most popular measures in comparing two fixed-

length bit patterns is the Hamming distance in eqn (19), which is the count of the bits that 

differ in the two patterns [33]. It is a simple geometrical  distance, also known as 

Manhattan or city block distance, applied to d-dimensional binary space. 

1L

(19) 
Hamming
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Hamming Hamming
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=
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∑

∑

y  

 

tx y xThe term  denotes the positive matches, i.e., the number of 1 bits that match between  

and . The term y tyx  is the negative matches, i.e., the number of 0 matching bits. The terms 

tx y tx y and  denote the number of bit mismatches – the first where pattern x has 1 and 

pattern y has 0, and the second where pattern x has 0 and pattern y has 1.  
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Fact 1. The Hamming distance has been shown to be metric [14].  

 

While the Hamming distance is the number of bits differing in the two patterns, the 

Hamming similarity is the number of identical bits in the two patterns. Sokal and Michener 

normalized the Hamming similarity as in eqn (20) [34], and an alternative normalized 

Hamming similarity is given by Rogers and Tanimoto in eqn (21) [35].  

Sokal-Michener ( , )
t tx y x yS x y

d
+

= (20)  

Rogers-Tanimoto ( , )
2 2

t t

t t t t

x y x yS x y
x y x y x y x

+
=

+ + +
(21) 

y
 

 

 

tx yThe term is the inner product of two vectors, which yields a scalar, and it is sometimes 

called the scalar product or dot product. It can be converted to a distance by subtracting it 

from d, and this distance is clearly non-metric because of the reflexivity violation; 

 ifinner-product ( , ) 0D x y =  x y= and | | | |x y d= = and , otherwise.  inner-product ( , ) 0D x y >

Fact 2. Nonnegativity, symmetry, and triangle inequality are trivial and preserved in the 

inner product [36]. 
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A normalized inner product is given in eqn (23) [14] and various alternative normalizations 

in eqns (24~27) [37-39, 42]. 

normalized-inner-product ( , )
t t

t t

x y x yS x y
x y x xy y

= =  (23) 

Russell-Rao ( , )
tx yS x y
d

= (24)  

Jaccard-Needham ( , )
t

tt t

x yS x y
yx y x y x

=
+ +

 (25) 

Dice ( , )
2

t

tt t

x yS x y
yx y x y x

=
+ +

 (26) 

Kulzinsky ( , )
t

tt

x yS x y
yx y x

=
+

 (27) 

The Jaccard, Dice, and Kulzinsky similarity measures differ in their ranges: the Jaccard 

measure ranges from 0 to 1, the Dice measure from 0 to ½, and the Kulzinsky measure from 

0 to ∞. Eqns (25~27) can be generalized to eqn (28) which for 0σ =  becomes the Kulzinsky 

coefficient, for  the Jaccard coefficient, and for  the Dice coefficient.  1σ = 2σ =

Generalized Jaccard ( , )
t

tt t

x yS x y
yx y x y xσ

=
+ +

 (28) 

 

Another popular distance measure between binary feature vectors is the Tanimoto metric 

defined in eqn (29) [14] where xn  and  are the numbers of 1 bits in x and y, respectively, 

and 

yn

tx y,x yn  is .  
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The Tanimoto coefficient [14], defined in eqn (30), is another variation of the normalized 

inner product which is frequently encountered in the fields of information retrieval and 

biological taxonomy. 

( , )
t

Tanimoto t t t

x yS x y
x x y y x y

=
+ −

 (30) 

 

Most similarity measures are variations either of Hamming or of the inner-product. Generally, 

the former ones treat the presence, tx y , and the absence, tx y , of features equally while the 

later take only the presence, tx y , into account and exclude tx y . The decision to include or 

exclude the tx y  term is a difficult and contentious one [42, 43]. Prior to 1950 when the 

Hamming distance was introduced, the use of inner-product based similarity coefficients 

flourished. Sokal and Michener made a good argument to include the negative matches [34, 

42, 43] but they used equal weights for both positive and negative matches. 

 

tyx  term, eqn (31), where Hence, we propose a new measure with variable credit for the σ  

is the contribution factor, and 0 σ≤ ∞ . We call it the azzoo similarity measure because we 

can alter the credit for the zero-zero matches relative to that for the one-one matches (azzoo = 

alter zero zero one one).s 
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,  becomes the inner product, and for azzooSNote that for 0σ = 1σ = , the Hamming similarity 

measure. Although  requires finding the optimal azzooS σ  factor, the experimental results in 

later sections show that it outperforms both the Hamming and inner-product similarity 

measures.  

 

00 11S −Originally, the half-credit similarity,  was used in an offline handwriting recognition 

system [44] and it is the same as  with azzooS 0.5σ = . It gives full credit to features present in 

both patterns, tx y , half credit to those not present in either pattern, tyx , and no credit to 

those present in only one of the patterns, tx y tx y and , as defined in eqn (32) [44, 45, 46] 

and here we generalized the half-credit similarity to .  azzooS

 

The range of  is 

00 11( , )
2

t
t x yS x y x y− = + (32)  

[ ]0,dazzooS  if 0 1σ≤ ≤  and [ ]0, dσ  if . Assuming 0 11σ > σ≤ ≤ ,  can 

be converted to a distance measure for metric property testing, eqn (33).  

azzooS

( )( , ) ( , ) t t
azzoo azzooD x y d S x y d x y x yσ= − = − +  (33) 
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Nonnegativity and symmetry are trivial and preserved. Reflexivity is violated, however, because 

 iff( , ) 0azzooD x y =   and | | | |x y x y= = d= and ( , ) 0azzooD x y ≠  otherwise. Similarly, 

if ( , )azzooS x y = d x y= and| | | |x y d= =  and 00 11( , )d S x y dσ −≤ < x y=  and | |x d<if .  

Theorem 1. The triangle inequality property is valid for , i.e., ( , )azzooD x y

( , )  ( , ) ( , )azzoo azzoo azzooD x y D y z D x z+ ≥ . 

Proof 

                                      by Fact 1                        line 1
( )+ ( ) ( )     by Fact 2      line 2

Now, evaluate ( , )  ( , ) ( , ).
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inner-product inner-product( , ) ( , ) ( , )t t
azzooS x y x y x y S x y S x yσ σ= + = +Similarly,  since , the 

properties of the azzoo similarity measure are similar to those of the inner-product measure. 

 

Other popular similarity measures utilize coefficients of correlation and have been used 

frequently in both psychology and ecology studies [42]. The correlation similarity measure is 

given in eqn (34) and Yule and Kendall [40] suggested a similar coefficient given in eqn (35). 

correlation
)( )( )( )(

t t t t

t t t t tt t t
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Yule

t t t t

t t t t

x y x y x y x yS
x y x y x y x y

× − ×
=

× + ×
 (35) 

While Hamming based similarity measures are additive forms of the positive and negative 

matches, the correlation based measures are multiplicative forms. Nonetheless, contribution 
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factors of positive and negative matches are considered equally important in correlation 

based similarity measures as well as Hamming based ones. 
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Figure 9. A chronological table for binary vector similarity measures. 

Historically, all the measures enumerated above have had great value in their respective 

fields. Figure 9 shows a chronological table for binary feature vector similarity measures in 

which these conventional measures are categorized into three major groups: inner-product, 

Hamming, and correlation based groups.  

 

6.2. Binary Similarity Measures with Weights 

To further improve their discrimination capability, weights can be applied to distance or 

similarity measures [44] and optimized using techniques such as genetic algorithms [47, 48]. 

When features have numeric values, a scaling problem arises. In order to mitigate this 

problem, one can combine the nonlinear accuracy weighting with the Minkowski distance 

concept as shown in eqn (36) where  is the probability of being correct when only 

feature i is used [41, 42].  

( / )P C i
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When features are binary, one can still generalize eqn (36) to eqn (37) by setting  and 
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The weighted Hamming distance has been applied to numerous applications such as image 

template matching [49, 50] and object recognition [50]. The weighted Hamming distance 

provides an improvement over the simple Hamming distance for discriminating between 

similar images [49, 50]. This distance measure gives greater importance to error pixels which 

appear in close proximity to other error pixels. Error pixels which appear close together tend 

to correspond to structurally meaningful features. In [51], a slightly different weighted 

Hamming distance was introduced to optimize the distance measure for object detection by 

adding a null weight, .  Similarly, the inner product similarity measure can be optimized 

by applying weights as shown in eqn (38).  

0w

weighted-inner-product
1

( , )
d

i i i
i

S x y
=

= ∑  (38) 

 

Here, we claim that the performance can be further improved by optimizing the similarity 

measure rather than distance measure. Since the Hamming distance is the number of 

mismatches, the weights are applied to the mismatched bits, whereas in a similarity measure 
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the weights are applied to the matching bits. As discussed in the earlier section, there are two 

kinds of matches: positive and negative matches. Although the Hamming similarity can be 

improved by applying the equal weights are applied to both positive and negative matches, 

we claim that if different weights are applied, the performance is further improved, and the 

proposed weighted 00-11 similarity measure is given in eqn (39).  

00 11
1 1

( , )
d d

weighed i i i i i i
i i

S x y w x y w− − ⊕ Θ
= =

= +∑ ∑ x y
(39) 

 

 

Note that if w and are identical, wΘ 00 11 weighted-hammingweighedS S− − = 0wΘ = and if , 

.  

⊕

00 11 weighted-inner-productweighedS S− − =

 

There are twice as many coefficients to optimize in this new similarity measure than in the 

weighted Hamming or inner product similarity measures. This is a multi-dimensional, space 

optimization problem, and one can use a genetic algorithm to determine the weights from 

training data. A genetic algorithm can be a general optimization method that searches a large 

space of candidate objects to find one that performs near optimal according to the fitness 

function [46, 47]. Genetic algorithms offer a number of advantages: they search from a set of 

solutions rather than from a single one, they are not derivative-based, and they explore and 

exploit the parameter space. For the weight adaptive model, we create a numerical 

optimization model that depends on a set of weights. 

 

6.3. Evaluation for the Binary Feature Distance Measures 

The iris biometric verification models were trained on 500 distance or similarity values 

obtained from the intra- and inter-class sets. These scalar values form distributions and the 
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mean and variance can be computed for each distribution. Assuming normal distributions, 

one can easily find the Bayes decision threshold. For testing, each scalar distance value is 

classified into the intra or inter person class by comparing to the threshold value. Figure 10 

depicts the intra and inter similarity distributions using various similarity measures and Table 

1 shows the comparative results of the overall performances. Finally, Figure 11 shows the 

performance as a function of the contribution factor, σ , and highlights the relative 

performance of the inner product, Hamming, and azzoo measures. The with azzooS

1.175σ = yields the best performance. 
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Figure 10. Intra and inter distance distributions for the various similarity measures. 

Table 1. Performance evaluation of the similarity measures on the iris database. 
Data 1 Data 2 Data 3 Data 4 Total 

Method FAR FRR Rate FAR FRR Rate FAR FRR Rate FAR FRR Rate Rate
azzoo 5.0   4.4   95.3 6.4   3.2   95.2 7.6   3.2   94.6 4.4   3.8   95.9 95. 
normalized I.P. 4.8   4.8   95.2 6.0   4.4   94.8 7.4   3.6   94.5 5.0   4.4   95.3 95. 
SokalMichener 5.0   4.8   95.1 6.4   3.6   95.0 7.8   3.2   94.5 4.6   3.8   95.8 95. 
RogersTanmoto 5.0   4.8   95.1 6.4   3.6   95.0 7.8   3.2   94.5 4.6   3.8   95.8 95. 
RussellRao 12.8 12.2 87.5 11.8 10.4 88.9 11.4 8.6   90.0 11.2 10.4 89.2 88. 
JaccardNeedham 4.8   4.8   95.2 6.2   4.2   94.8 7.4   3.6   94.5 5.0   4.0   95.5 95. 
Dice 4.8   4.8   95.2 6.0   4.2   94.9 7.4   3.6   94.5 5.0   4.4   95.3 95. 
Kulzinsky 6.8   3.8   94.7 7.4   3.0   94.8 9.0   2.6   94.2 6.4   3.4   95.1 94. 
Tanimoto 4.8   4.8   95.2 6.2   4.2   94.8 7.4   3.6   94.5 5.0   4.0   95.5 95. 
correlation 5.4   4.6   95.0 6.4   3.8   94.9 7.8   3.2   94.5 4.2   3.6   96.1 95. 
Yule 4.8   4.8   95.2 5.6   4.8   94.8 7.8   3.0   94.6 4.0   3.8   96.1 95. 
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Figure 11. Performance vs. the contribution factor σ . 
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Chapter 7 

Comparative Experimental Results 

In this section, I compare the experimental results obtained by using several classifiers with a 

variety of different features and distance measures. From the iris biometric image database 

[25], I selected 10 left bare eye samples of 52 subjects.  

 

IRIS database[25] consists of subject demographic data and features obtained from an IRIS 

sample. . From 60 subjects, 800 IRIS images are taken. Each subject provided 10 exemplars.  

Thus, the IRIS database consists of two entities: subject data and IRIS feature data. Figure 12. 

shows a few exemplars from the IRIS database. Age range is from 19 to 36. Iris images 

distinguish left or right eyes and whether the subject wears glasses or lens. For the 

experiment, 10 left bare eye samples of 52 subjects are used [27].  

 

Bare eyes With Glasses With Lens

 
Figure 12.  Samples from the IRIS database. 

 

 In order to test the described models, two sets of samples are required: intra-class distance 

and inter-class distance sets. The intra-class distance sample is acquired by randomly 
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selecting two iris data from the same subject while the inter-class distance sample is obtained 

by randomly selecting two iris data from two different subjects.  I prepared three sets of inter 

and intra distance data for training and three independent ones for testing, each of size 1000 

(500 intra-class and 500 inter-class pairs).  

Table 2. Eleven different models 

 Features Distance Classifier 

1 Iriscode (Binary) Hamming eq (7) Bayes decision 

Wavelet means & 
variances 2 Euclidean eq (8) Bayes decision 

Wavelet means & 
variances 3 Vector difference eq (9) Nearest Neighbor 

Wavelet means & 
variances 4 Vector difference eq (9) ANN 

Wavelet means & 
variances 5 Vector difference eq (9) SVM 

6 Wavelet histo Euclid  eq (10) Nearest Neighbor 

7 Wavelet histo Euclid  eq (10) ANN 

8 Wavelet histo Euclid  eq (10) SVM 

9 Wavelet histo Edit dist eq (11) Nearest Neighbor 

10 Wavelet histo Edit dist eq (11) ANN 

11 Wavelet histo Edit dist eq (11) SVM 

 
 

As shown in Table 2, I examined eleven different models. Models 1 and 2 use the parametric 

verification model of Figure 1 (a), and the remaining models use the dichotomy 

transformation model of Figure 1 (b).   

 

The parametric method models 1 and 2 were trained on 500 scalar distance values obtained 

from the intra- and inter-class sets. These scalar distance values form distributions and the 
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mean and variance can be computed for each distribution. Assuming normal distributions, 

one can easily find the Bayes decision threshold. For testing, each scalar distance value is 

classified into the intra- or inter-distance class by comparing to the threshold value as 

depicted in Figure 3 (a). 

Table 3. Parametric model evaluation results:  

1000 sample pairs per test. 

Model Sets FRR FAR Performance 
Training 19.0% 21.5% 79.8% 

Test 1 10.2% 4.6% 92.6% 
Test 2 12.0% 3.2% 92.4% 

1 iriscode + Hamming 
eqn (7) 

Test 3 10.4% 3.2% 93.2% 
Training 13.5% 23.2% 81.7% 
Test 1 4.2% 25.6% 85.1% 
Test 2 5.6% 23% 85.7% 

2  Wavelet means & 
variances + Euclidean 
eqn (8) 

Test 3 4.6% 24.2% 85.6% 

 

Table 3 shows the error rates and overall performance values for models 1 and 2. Two 

observations can be drawn from these results. First, the results of the traditional parametric 

model using the scalar distance measure in Figure 2 (a) are disappointing compared to those 

of the other model in Figure 2 (b). The reason is that multivariate distance analysis is clearly 

better than a single scalar distance analysis. The other observation is that the FRR in the 

testing sets are much smaller than those in the training set, suggesting that the two 

distributions are not normal. 

 

Models 3-11 used the dichotomy transformation to obtain 500 samples of d-dimensional 

feature distance vectors for intra- and inter-class sets.  Regardless of the types of features, the 

feature distance vectors are all numeric values when proper distance measures are applied. 

Thus, the feature distance vectors become inputs to the dichotomizer as shown in Figure 1 (b). 
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I tested three well-known classifiers [14] as the dichotomizer: nearest neighbor, artificial 

neural network (ANN), and support vector machine (SVM).  

 

I selected the artificial neural network for a dichotomizer because it is equivalent to 

multivariate statistical analysis. There is a wealth of literature regarding a close relationship 

between neural networks and the techniques of statistical analysis, especially multivariate 

statistical analysis, which involves many variables [14, 30]. I selected the support vector 

machine because it has gained considerable popularity recently and has become state-of-the-

art [32].  

 

Table 4. Dichotomy model performance results: 

1000 independent sample pairs per test. 

  Wavelet 
means & 
variances 
(Models 

3-5) 

Wavelet 
histogram 
+ eqn (10) 

Wavelet 
histograms 
+ eqn (11) 

 (Models 6-
8) 

(Models 9-
11) 

Test 1 90.5 81.0 89.9 
Test 2 90.8 80.6 92.6 Nearest 

Neighbor Test 3 91.0 81.3 92.0 
Training 95.8 90.9 99.2 
Test 1 94.8 82.4 96.1 Artificial 

Test 2 96.7 83.8 96.9 Neural 
Network 

Test 3 95.6 82.5 96.7 
98.8 Training 97.6 88.9 

Test 1 96.2 85.7 97.9 Support 

Test 2 97.5 86.3 98.5 Vector 
Machine 

97.9 Test 3 96.7 86.8 

 

Table 4 shows performances of models 3-11. In general, support vector machines outperform 

artificial neural networks which, in turn, outperform nearest neighbor classifiers. The best 
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performing SVM model was the one using the 2D three-level wavelet histogram features 

with the histogram edit distance in eqn (11).    
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Chapter 8 

Conclusions 

In this paper, I considered the problem of establishing iris individuality.  I first argued that 

the quantitative error rate measure for the biometric identification model is not appropriate 

for the measure of establishing biometric individuality since the error rate cannot be inferable 

to the entire population. I also argued that FRR and FAR from the biometric verification 

model are adequate measures that are inferable to the entire population. I performed the 

evaluation of conventional binary feature distance measures. I examined eleven biometric 

verification models for the problem of establishing iris individuality. 

 

To establish the discriminative power of the individuality of the iris biometric, I used a 52-

subject iris image database. I transformed the many-class problem into a dichotomy problem 

by using distances between two samples of the same class and between two samples of 

different classes.  I examined eleven ways of implementing a dichotomy model by selecting 

different combinations of features, distance measures, and classifiers. Of these eleven models, 

I found that the combination of multi-level 2D wavelet features, histogram distances, and a 

support vector machine classifier yielded the best overall correctness of 98%. 
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