CocoaFIBS
A Mac OS 10 Client for the FIBS Backgammon Server

CS Master’s Thesis

Adam Gerson
Pace University
December 29, 2004

http://homepage.mac.com/agerson/cocoafibs/

Outline

IIntroduction
1.1 Overview
1.2 Needs Analysis
1.3 Background Summary
1.4 CocoaFIBS Summary
1.5 Challenges
1.6 Comparison Summary
2 Background
2.1 The Game
2.2 FIBS
2.2.1 FIBS Research & Literature
2.3 The Cocoa Framework and Objective-C Language
2.3.1 Cocoa/ Obj-C Research & Literature
2.4 Other Tools
3 CocoaFIBS
3.1 FIBS CLIP Protocol
3.2 Code Structure
3.3 GUI Structure & Design
3.3.1 The Login Window
3.3.2 The Game Window
3.3.3 The User List Drawer
3.3.4 The Game Window
3.3.5 The Toolbar
3.3.6 The Chat Tab Panel
4 Comparisons
4.1 Java
4.2 Mac OS 9
5 Conclusion
5.1 Release Plans
5.2 Future Work
6 References
7 Appendix
7.1 Source Code Documentation
8 Included CD
8.1 CocoaFIBS Alpha v0.2 Application Executable (Mac OS 10.3)
8.2 Thesis Documentation (PDF)
8.3 Source Code Documentation (RTF)
8.4 Source Code (TXT)

1. Introduction

The goal of this project is to design, release, and maintain a freeware client
application for the First Internet Backgammon Server(FIBS) that runs natively in Mac OS
X. This project involves the exploration of the FIBS Client Protocol, the Objective-C
language, the Cocoa Frameworks, Mac OS X development tools, user interface and
graphic design, coordinating alpha and beta testing, socket programming, and the Model-

View-Controller paradigm.

FIBS is a backgammon server that has been around for twelve years and has
supported Macintosh users since the day it opened its doors. It has been nearly four years
since the release of Mac OS 10.0 and no native client exists to connect to the FIBS server
from a Macintosh. All Mac users connect with a Java Applet, Java Application or
emulated Mac OS 9 client. This tool will serve as a valuable contribution to the FIBS

community.

Mac OS 10 uses Objective-C as its main development language and a series of
GUI frameworks called Cocoa. Objective-C is an object oriented ANSI C superset. The
free development environment that ships with Mac OS X called XCode and the
Objective-C / Cocoa combination offer a developer a rich experience. The secondary goal

of this project was to learn and explorer these tools.

The design of this tool will leverage the power of the Model-View-Controller
paradigm and the Apple Aqua user interface controls. Aqua is Apple’s code-name for
Mac OS 10’s GUI elements. This tool consists of over 14 custom classes and 2 classes
written by others. They are a combination of sockets, GUI controllers, model objects, and
custom drawn views. Attempts were made at every turn to leverage the beauty and power

of the Mac.

The core philosophy of this application is minimalist. FIBS Clients have the
potential to be bloated. This combined with Mac OS 10’s precedent for aesthetics are the
impotence for a minimalist design. With the exception of the login window, the
application is contained within a single window. The game board, a animated user list,
tool bar, and three chat and console views are all elegantly contained within a single
customizable window. The user list can be hidden and the toolbar can be customized.
This allows the user to save space and have only the necessary buttons in front of them at
any one time. The FIBS server is a telnet server. This application interprets user
interaction and sends commands to the server. In return all commands sent by the server

are shown in the GUI.

The prime challenge of writing this application was a complete lack of experience
developing Macintosh applications. To develop this application I had to learn Objective-
C, Cocoa and XCode . The messaging syntax of Objective-C is maddening to someone
who has grown up on Java. For instance, here is an example of an Objective-C method

call and a similar call in Java syntax:

[userListWindowData objectForKey:(@"client"]; Objective-C

userListWindowData.objectForKey("client"); Java
An example of Objective-C Vs. Java messaging syntax.

The next challenge was to understand the FIBS Client Protocol. My experience
with the server has only been as the user of a GUI client application. Both The FIBS

Client Protocol and Objective-C are well documented on the web.

The next step in the project is to compare my client with existing clients. My
client had the virtue of running natively, but many of these client have been in
development for years and had some impressive features. The strongest plus of my

application is its simple single-window design.

The final challenge is to release and test and re-release the client into the actual
community. I have found a great many willing users as alpha testers and people willing to

donate their graphic design time.

2. Background

When [was a senior in high school my pregnant math teacher, Erika Batiuo, was
forced to leave in the middle of the year because of unforeseen complications with her
pregnancy. My school was apparently unable to find a suitable replacement. For the
remainder of the year, which amounted to almost an entire semester, our math class was
taught by the biology teacher. Robert Costello, though a wise man and passionate
scientist, did not have the ready knowledge to carry on our calculus curriculum. He
decided to share with us his one pseudo-mathematical passion: Backgammon. He first
taught us the rules of the game, then we moved on to basic strategy, probability, and
ended the year with a ladder tournament from which I was eliminated in the second to

last round.

After graduating from high school, my friends and I continued to play, read about,
and learn the game the Turkish call “Shesh-Besh” which means 6-5 in English. After
getting to college in 1997 I taught some friends and discovered Yahoo Games, a site
where people can play multi-player board games online. However, the browser-based
Java interface of Yahoo Backgammon was slow and clunky. Discovering the FIBS server
and the active user-community that participated in it was a very exciting event for me. I
had a native Mac OS 9 GUI client running on my laptop and endless chat rooms of
mentors eager to discus strategy, food, and politics. I have been playing on FIBS ever

since.

2.1 The Game

Backgammon is a game of both skill and luck. The luck factor is derived from the
use of two, six-sided dice. Games involving dice appear to have developed independently
in all cultures of the world. The ancestors of Backgammon date back almost five
thousand years to ancient Mesopotamia in what is present day Iraq. Backgammon’s
history appears to indicate that it is the oldest known board game in Human history. The
modern version of the game appeared sometime in England during the 17th Century. The
goal of the game is to use strategy and the luck of the dice to move all of your pieces

around, and off, the board before you opponent.'

2.2 FIBS

People have been playing backgammon on computers since the earliest days of
computer gaming. The first computer that could play Backgammon at the “Expert Level”
used neural networks and was named TD-Gammon. This program was developed by Dr.
Gerald Tesauro of IBM. * The appropriately named First Internet Backgammon
Server(FIBS), was the first online backgammon community and remains free to this day.
FIBS was created by Andreas Schneider and opened its doors on July 19, 1992. The first
members of FIBS used a simple telnet client to connect, play and chat. In 1994, Windows
and Macintosh graphical clients were released by independent members of the FIBS
community. All graphical FIBS clients are essentially interpreting and sending telnet
commands in response to user actions. The ongoing maintenance of the server was
abandoned by its creator, but is now maintained and developed by volunteers. The source

. 3
code for the server is not open source.

2.2.1 FIBS Research & Literature

To write a graphical FIBS client one must have a robust understanding of the

telnet commands and response types used by the server. The FIBS Command Reference

is intended for telnet end-users and provides a detailed description of all commands

understood by the FIBS server. The FIBS Client Protocol Detailed Specification is a

reference intended for programmers who are writing graphical interfaces to the FIBS
server. This document not only provides a detailed description of the commands, but also
includes breakdowns and examples of all server responses to commands and their
arguments. The formal specification is at version 1.008 and was last updated in 1997. The
specifications for the FIBS CLIent Protocol (CLIP) differ slightly from the end-user FIBS

Command Reference. Clients can log into the telnet server with a special syntax that

returns CLIP formatted responses for parsing as opposed to ones intended for a human to

view with their eyes.

My research for understanding the FIBS Client Protocol consisted of reading
these documents in detail, playing telnet games logged in as both a user and as a “client”,

and downloading the various other graphical clients available for other operating systems.

2.3 The Cocoa Framework and Objective-C Language

Objective-C is a object oriented superset of ANSI C. Its infix syntax is similar to

Smalltalk-80 and nothing like C++ or Java. Objective-C was written in the 1980°s by

Brad Cox while at the StepStone corporation. In 1988 it was adopted by the virgining
NeXTstep platform as its development environment. It was made a part of the GNU gcc
compiler in 1992. Objective-C’s future was not looking extremely bright until two major
events took place. These events were Steve Jobs return to Apple Computer and NEXT’s
sale to Apple. Sometime in the late 1990’s it was decided that the next major evolution of
Apple’s Macintosh Operating System would be based on NeXTstep. Thus, Objective-C is
now used as the primary development language for MacOS X applications, though most
of the Mac OS X Operating System itself is written in C. Objective-C is also the language
for the GNUstep project on Linux. Objective-C is distinguished from C++ and Java by its

weak typing and runtime features. *

Cocoa is a set of object-oriented frameworks for the development of Mac OS X-
only native applications. Cocoa is also used to build the stunning Aqua user interfaces
expected by Mac users. Cocoa also draws its history from NeXTStep. Cocoa is
implemented in Objective-C. However Cocoa frameworks can be used by a variety of
different languages. “Cocoa applications can make use of core functionality contained in
traditional C and C++ libraries brought forward from legacy application environments. It
also provides Java interfaces to permit a high performance, full featured Java
development environment tailored to Mac OS X specifically.”” This robustness was

extremely useful during the development of CocoaFIBS.

10

2.3.1 Cocoa/ Objective-C Research & Liturature

Learning development on MacOS X was a multi-stepped process. This process

consisted of reading three books: Cocoa Programming (Anguish, 2003), Cocoa

Programming For Mac OS X (Hillegass, 2004), and Learning Cocoa with Objective-C

(Davidson, 2002). These books took me through simple tutorials, example projects, and

general philosophy and served as a foundation for my trip to The Big Nerd Ranch.
“Gone are the days of dull...training. Big Nerd Ranch offers intensive,
head-down computer programming courses taught by experts in a retreat
environment. Classroom, accommodations, and dining all take place
within the same building, freeing you to learn, code, and discuss with your
programming peers and instructors. At Big Nerd Ranch, we take care of
the details; your only job is to learn.”

Spending five days at The Big Nerd Ranch in the backwoods on Atlanta, GA with

Aaron Hillegass was an overwhelming experience of learning, natural seclusion

and a torrent of information.

On the first day of the class Aaron pronounces, “There’s a lot to learn.
Today will be like drinking from an open fire hydrant. It will be messy and your
face is going to get wet. You’ll probably feel lost and exhausted and you may
even hate me by the end of the day. But the next day will be better and, by the end
of the week, you’ll be building Cocoa apps effortlessly.” ' This week of intense
training and discussion prepared me for my first major Macintosh project: The

development of my FIBS client which I will call CocoaFIBS.

11

2.4 Other Tools

There are many other clients for the FIBS server. FIBS/W, the first Windows client
was released in 1994 by Robin Davies and is no longer maintained. The first Macintosh
client, also released in 1994, was MacFIBS by Paul D. Ferguson. MacFIBS was
originally written for MacOS 7, and updates were maintained through MacOS 8 and 9.
Paul still supports MacFIBS, but has no plans to release an OS X compatible version. He
now works for a company that develops commercial backgammon clients for a pay
server. Over the years clients for almost ever major operating system have been
developed. Windows user have a choice of three different clients, 3DFiBs, CFFIBS, and
RealFibs. Linux user can choose from bacKgammon or KBackgammon. Cell phones and
palmtops can run MobileFIBS and FibsCE. JavaFIBS is available as both a Browser
based client and as an executable .jar file. User’s of any OS with a telnet client can, of
course, always connect the old fashioned way. No native Mac OS X client exists for the
FIBS server. Mac OS X users represent a fraction of the FIBS community and no one has

yet committed the time and skill required to develop a Mac client.

12

3. CocoaFIBS

3.1 FIBS CLIP Protocol

The FIBS CLIP Protocol is an attempt to make client-server communication more
understandable for interfacing programs. It requires a special login syntax that tells the
server it is going to communicate with a program rather then a human being. A CLIP
message consists of a single line of ASCII text terminated by carriage return / line Feed.
CLIP messages are the most basic form of client communications with the FIBS server.

“The CLIP or FIBS CLIent Protocol is an effort to make the FIBS server a
little more friendly for client programs to interface with. FIBS was
originally designed for use with a straight telnet session with a command
line like interface. When you login in CLIP mode the main differences
from the telnet mode [Standard Log In] are: There is no ">" prompt. You
get the various CLIP messages documented...instead of their logical
counterparts in telnet mode. All the clip commands start with a number.
Most of them will occur asynchronously and not always as a direct result
of sending a command.””
The commands sent by the server in CLIP mode are prefixed with an unique id code and

are easily parsed by any program capable of reading and interpreting character delimited
strings. The CLIP expects the behavior layout in the formal telnet protocol
specification(RFC 854). The author of the CLIP Specification summarizes the relevant
information.

“The most important aspect of this is that FIBS insists that a new line is
always indicated by sending (or receiving) both a carriage return (CR=13)
and a line feed character (LF=10). Following the conventions of the C
programming language I'll refer to CR as \r and to LF as \n. FIBS also
tries to be a good RFC 854 Network Virtual Terminal (NVT), ie it tries to
be as dumb as possible. It won't send back characters it receives and it
won't do any line editing (don't send a backspace character and expect
FIBS to handle it). The telnet protocol allows clients and servers to start
with the assumption that the server is a dumb NVT and negotiate
advanced terminal capabilities. Those are sent as three byte sequences
IAC XX YY, where IAC is always the byte 255 (hex $FF) and XX and

13

YY are bytes describing the option being negotiated. You might encounter
a few of those during the login procedure when FIBS tries to convince the
telnet client not to show the password on the screen. Just ignore any 3 byte
sequence starting with IAC. Apart from the login sequence FIBS will
never send any other 3 byte telnet sequences unless you provoke it and
send one yourself (in which case the answer sequence, if any, means 'leave
me alone').””’

This excerpt for the from the CLIP Specification shows a typical example of a
CLIP message description. The number 1 represents the line prefix number that
corresponds to the “CLIP Welcome”. The three parameters it returns are: Name — Your
login name, Last Login — The last time you logged in. The date is measured in the

number of seconds since the Unix Epoch (January 1 1970 00:00:00 GMT), Last Host —

The IP address or hostname associated with the last login.

CLIP Welcome

Synopsis:
1 name last_login last_ host
Example:
1 myself 1041253132 192.168.1.308
This is the very first line you'll see after a successful standard login in client mode. This is the only time you will see this message.

SR Ne

name: The login name you just logged in as.
last_login: The time of the last login given in seconds since 00:00:00 UTC on January 1, 1970.
last_host: The hostor IP address the last login came from.

3.2 CODE STRUCTURE

The code used in CF adopts the Model-View-Controller design pattern. The MVC
paradigm looks at the big picture when designing an application. A well designed MVC

programmer will define all objects as either model objects, view objects, or controller

14

objects. This provides a clear separation between objects and makes objects more

reusable and flexible.

Model objects represent data. They contain a complete set of relevant data for the
object they are modeling as well as getter and setter methods to manipulate that data.
Ideally a model object is completely encapsulated and knows nothing about the view

object. This enables model objects to be re-used with any number of different views.

View objects display information to the user. Often they are displaying data from
a model object. In fact, they should contain specific knowledge on how to get and edit
data from the model objects. View objects are less reusable and contain more custom

code written specifically for a given model.

Controller objects are the glue that bring model and view objects together.
Actions that take place in the view are handled by methods in the controller which in turn
updates or gets some data from the model. Controller objects are rarely reusable and are

often application specific.

15

3.3 Graphical User Interface Structure & Design

The CF Graphical User Interface was designed in accordance with The Apple Human
Interface Guidelines. This document outlines the specific guidelines for designing a user
interface in compliance with Mac OS X standards for esthetics and functionality. The

overarching principals and goals of The Apple Human Interface Guidelines are:

e Users will learn your application faster if the interface looks and behaves like

applications they’re already familiar with.

¢ Users can accomplish their tasks quickly, because well-designed applications

don’t get in the user’s way.
e Users with special needs will find your product more accessible.

* Your application will have the same modern, elegant appearance as other Mac OS

X applications.

* Your application will be easier to document, because an intuitive interface and

standard behaviors don’t require as much explanation.
¢ Customer support calls will be reduced (for the reasons cited above).

* Your application will be easier to localize, because Apple has worked through

many localization issues in the Aqua design process.

* Media reviews of your product will be more positive; reviewers easily target

software that doesn’t look or behave the way “true” Macintosh applications do.'°

16

This concept is reinforced by Joel Spolsky in his book User Interface Design For

Programmers, where he succinctly states “A user interface is well-designed when the

program behaves exactly how the user thought it would.”"'

3.3.1 The Login Window

The goal of the login window is to be simple, elegant, modern, and clean. No

instructions are necessary. All feedback is intended to be visual. The user enters their

username and password and clicks the “Connect” button. During the login processes the

button and the two text fields disable preventing user interaction. An animated progress

indicator spins until login is complete. If there is an error during login a message is

displayed to the user, the controls enable, and the user may try and log in again.

FIBS Login

User Name:

Password:

The CocoaFIBS Login Window at
application launch time.

FIBS Login

User Name: juser

Password: pinn

The CocoaFIBS Login Window
after the user clicks “Connect”

© O FIBS Login

Login failed. Please try again.

User Name: pin

Password: pinn

7

The CocoaFIBS Login Window
after an error.

17

3.3.2 The Game Window

After a successful login the login window automatically hides and the game
window shows. This is the main window of the application and most clearly
demonstrated the all-in-one unified design of CocoaFIBS. The four major types of
information and interaction, toolbar, game play, user information, and chat, are displayed

in modular sections on this window.

7

enon FIBS Game Window

N G B
g Bq] Q donzbot

Ready Toggle Double Toggle Greedy Players Resign N Resigng Resign B

Ready
Rating 1910.14 Exp 31239

ergoldiam

Ready
Rating 1631.87 Exp 4828

Honeygirl

Ready
Rating 1803.07 Exp 2236

tasta

Ready
Rating 1355.35 Exp 1162

bogustrumper

Ready
Rating 1386.84 Exp 3794

Resume Saved Match
Hornett

Ready .
Rating 1463.78 Exp 2180 Chat With

Buggs

Ready
Rating 1452.44 Exp 260

sackofjaweea

Ready
Rating 1780.52 Exp 15324

ParlorBot

Player 1 Player 2

Ready
Rating 2064.85 Exp 387639

%Nbﬁt(ﬁh&ﬁi Private Chat Console —
BOTKILLER

- Ready
[rollingfool] me here now Rating 1862.98 Exp 1280
[You] Afternoon

[maman_Eve] pon evening MonteCarlo
Playing rudecube
Rating 1915.10 Exp 582540

L O mann aduancad

Sort By Game Length

status 1

A screen shot from the CocoaFIBS Main Window

18

3.3.3 The User List Drawer
The list of connected users and their attributes is displayed in a Mac OS X

window called a drawer. “A drawer is a special type of window that can slide out from
[either] side of a window.”12 The drawer is toggled by a button in the toolbar or by a
menu item in the “View” menu. Inside of the drawer is a field for setting the desired
game length. This value is sent to a prospective player when inviting them to play a

game. There is also a pop up button for sorting the list of users.

¢ usta
Ready 4
Rating 1659.25 Exp 5352 =

© whackamole o
Playing MadGreek ay
Rating 1608.89 Exp 472

@® Wonko ¢
Not Ready =)
Rating 1544.85 Exp 69 —

® wyzzz ¢ !
Not Ready)
Rating 1532.61 Exp 6542 — ‘

O YinYangMan y.
Playing don ,—_‘)
Rating 1694.02 Exp 11391 —

Sort By Game Length

name 5 1

Some cells from the table of users

The list of users is stored in a table with custom drawn cells. Each cell contains
information about an individual user. The colored “bubble” in the top left hand corner of

each cell represents status.

Green = ready to play
Yellow = playing a game
Red = not ready to play

The cells contain the name of the player, more detail on their status, their rating,

experience, and an icon representing their operating system.

O tasta "

L]
Ready .' 7
Rating 1355.35 Exp 1162

A single cell from the table of users

19

When the player right-clicks on a cell they get a pop up menu that offers them the choice

to invite the user to a match, resume a saved match, or chat with the user.

® maria

= notverylucky
Not Ready
Rating 1685.84 Exp 2387

Invite to Match
Resume Saved Match

Not Ready

Rating 1700.89 Exp 5062 Chat With

An example of selecting a user and right-clicking on the cell.

3.3.4 The Game Window

Starting a new game with magicxz.

You

0 167 magicxz 0 167

The game window at the start of a new match.

20

To start a new match you may invite a user or accept the invitation of a user. The
game board consists on the chips which during your turn can be dragged to and from
triangles. Clicking on the dice ends your turn and clicking on the doubling cube offers a
double to your opponent. The two players names, the score of the game, and the pip
count are kept at the bottom of the window. System and error messages regarding the
game are displayed in red at the top of the window. In-game choices appear in the form

of an animated sheet that slides down from the top of the window.

FIBS Game Window —

G
magicxz has doubled

Resigng | //\ s

A sheet in the game window request feedback from the player.

3.3.5 The Toolbar
The toolbar at the top of the game window enables quick and customizable access

to some common game options.

Ready — Toggles the players ready to play status from ready to not ready.

Players — Hides and shows the user list drawer.

Refresh — Get a new board from the server and acts as an undo button for moves.
Toggle Greedy — Toggles the use of “greedy play” a feature where the server moves for
you.

Toggle Double - Toggles the use of auto-rolling

Resign n (normal) —You'll lose the number of points on the cube.

Resign g (gammon) - You'll lose twice the number of points on the cube.

Resign b (backgammon) - You'll lose three times the number of points on the cube.

21

The location and presence of any toolbar items is customizable. The toolbar can
also be hidden to save space. Other view options include the ability to use smaller icons,

icons only, or text only.

e 00 FIBS Game Window (=)

e Tl & g= ¢ v I°

Ready Players Refresh Toggle Greedy Toggle Double Resigng Resign N Resign B

The game window with the toolbar showing.
eoon FIBS Game Window (=)

The game window with the toolbar hidden.

060 FIBS Game Window
s} {] m Q &Y G N 8

Drag your favorite item into the toolbar...

G L Q B 8

Resign g Relsign N Toggle Greedy Toggle Double Resign B |
Change Status Players Refresh

...or drag the default set.

ot N wm |° @ 9

Resign g Resign N Toggle Greedy Toggle Double Resign B Ready Players Refresh

Show | Icon Only B # Use Small Size

The customize toolbar sheet.

22

3.3.6 The Chat Tab Panel

The chat tab panel located at the bottom of the screen encapsulates the 4 major
types of interactive communication. Public chat forums, private one-on-one chat, in game

chat, and console communication can all be access from one small area.

{ Public Chat | Private Chat Console

I P BEL AL

[dhosek] tell repbot ask parviz

[don] yeah, 113 is pretty amazing

[Jarrux] Wow!!

[wyzzz] hey jarrux

[mgnu_expertll] Looks like mibaleaba dropped me! Would someone else like to play?
[Jarrux] Hello Wyzz

[You] Hi All

The chat tab panel show an example of “public chat”.

23

4. Comparisons

4.1 JavaFIBS Application

JavaFIBS is the quintessential Java application. Using it gives one the feeling that
they have left their own operating system universe only to enter a bizarre parallel
dimension. Sun’s Java GUI, which was designed by the same people who brought us The
OpenWindows project, is ugly and confusing. The first major problem with using a Java
Application is that the GUI is different from the one you are used to. Well written
operating systems are designed so that as the user learns the “metaphors” and standards
of the OS they become more proficient and productive. As stated in the Apple Human
Interface Guidelines “Users will learn your application faster if the interface looks and
behaves like applications they’re already familiar with.” Launching JavaFIBS breaks this
connection and forces the user to not only learn a new Application, but to learn a new OS

as well.

The second problem with the Java GUI is that it is ugly. The widgets that
comprise the GUI such as buttons, scroll bars, lists, and dialogue boxes, look like they
belong in 1989. They lack the modern look and feel that users have come to expect. In
fact, they resemble the GUI of the X-Window system written in 1984. I do not intend to
show any disrespect to Java. The concept of portable code being able to run anywhere is
marvelous. However, it is just not there yet in its ability to compete with applications

written natively for the hardware they were intended to run on.

24

Thus, JavaFIBS starts it endeavor with a handicap. Its written in Java. CocoaFIBS
attempts to include as much content as possible within a single window. JavaFIBS shares
this characteristic. However, JavaFIBS has so much content whizzing past the user at any
time that it is hard to focus on any single element. In fact, the main window takes up too
much space on the screen. JavaFIBS also presents a lot of its feedback in text form, as
opposed to CocoaFIBS which uses a combination of text, coloring, and icons. “...users

hate reading, and will avoid it unless they absolutely cannot accomplish their task.”"’

CocoaFIBS offers almost every screen that JavaFIBS does in half the space.
Granted JavaFIBS does allow the user to customize the size of every subsection of every
window. However, most novice user interface users don’t even understand this. Yet, even
with customization it is hard to cajole JavaFIBS into a visual pleasing and efficient
layout. The JavaFIBS window is divided into seven sections. The players/board screen,
the private chat screen, the public chat screen, the system/friends/villains screen, the

invitation screen, the toolbar and the menus.

The players/board screen works well, but initially provides too much information.
This screen presents the user with a tab that lets them switch between the board and a list
of users. Since the only purpose of the user list is too invite people to play a game then
there is no reason why one would need access to these two screens at once. However, the
idea of a backgammon application without a backgammon board showing at all time
leaves a blandness to the visual experience of the application. CocoaFIBS ever present

backgammon board is pleasant and the problem of the user list taking u p space is solved

25

by the hideable drawer that CocoaFIBS employs. The user list in JavaFIBS presents way
too much information for an initial screen. Column headers such as gender, country,
email and interesting, but belong in a “more info” screen somewhere, and are not
necessary for choosing an opponent. The user list in CocoaFIBS is exponentially smaller
and provides only the essential information such as name, status, ranking, experience, and

operating system. Both programs allow the user to sort the list by a variety of criteria.

In general the chat section takes up way to much space in an application window
that is already to big. That chat font is not anti-aliased and the colors are drab not indicate

the status of chat as easily is in CocoaFIBS which does use font anti-aliasing.

Another section is devoted to a tab-panel that lets the user switch between system
output, a friends list and a villains list. Aside from the fact that these three screens have
nothing to do with each other, they are not a very prevalent part of the game. In fact, most
user’s have no interest in system messages at all. Yet, this screen has the same central
prominence as the game board itself. In CocoaFIBS system messages are available in two
intuitive way. Important system messages are displayed in red above the game board. If
the user would like to view all commands and messages returned from the server there is
a separate tab in the chat section of the main window. Though the ability to mark users as
friends or enemies is ingenious, devoting a separate space from them is not. The game
already has a list of players. Simple color coding or icons in the existing user list could

easily denote this status.

26

Java FIBS devotes an entire section to a list of all invitations received,
CocoaFIBS uses a dismissible dialogue box. One a user receives an invitation to play
there are only two decisions; accept the invitation or decline the invitation. After that

there is no need to keep the information around when screen real estate is a factor.

Both CocoaFIBS and JavaFIBS employee a toolbar of buttons at the top of the
screen. However, CocoaFIBS toolbar is customizable and hidable while JavaFIBS offers
neither of these options. The icons JavaFIBS uses are non-descriptive and confusing,
Waiting for the mouseOver tooltips, which CocoaFIBS also has, is the only way to know

what the buttons do.

[@.E A JavaFIBS button that toggles the showing and hiding of commands sent to the
! | Server.

Another problem with JavaFIBS, or any Java application for that matter, is the “in
application” menu bar.

“When you want to point to the File menu...you have a target about half
an inch wide and a quarter of an inch high to acquire. You must move and
position the mouse fairly precisely in both the vertical and the horizontal
dimensions. But on a Macintosh, you can slam the mouse up to the top of
the screen, without regard to how high you slam it, and it will stop at the
physical edge of the screen - the correct vertical position for using the
menu. So, effectively, you have a target that is still half an inch wide, but a
mile high. Now you only need to worry about positioning the cursor
horizontally, not vertically, so the task of clicking on a menu item is that
much easier.”"*

JavaFIBS is a well written program. Some, but not all, of its flaws lie inherently with

Java. JavaFIBS ability to let users swap custom boards, its ability to mark friends,

stability, and its robust preferences make it s very fine client. However, compared to

CocoaFIBS it just does not hold up as a visually pleasing and intuitive application for

Mac OS x.

866

JavaFIBs 2001

31 .

exquisite and gnomysTwo start a 7 point match.
brazilnut and cis start a 5 point match.
DudelLebowski shouts: yes, but that doesn't mean they agree with his policies
ts: national guard.
| maybe if yon aren't pro-susn vou get sent to Irag
a 3 point match against pocki 3-
¢ Next: Draft recall

: even the Pentagon fought him tooth and nail pre-Irag
watch.

s very against the war
yes and Kolg start a 5 point match.

no exit strate

Slearly ve'd be ocoupiers
Alexr and Dockx sban. & 3 goluk axtoix

learly it would last years
narongt wins a oy pull\t mateh against merimo 3o1 .
dinos wants to pl. L-poiat match vith you.
Tvpe ‘Join dinos: bo accep

Duderebowski shout clear]y thousands of wmiercms vould die
DudeLebowski shouts: eveyrone knew thi

fearmostly muslims, democrats, republicans
clothhead waves goodbye.
Zorba shouts: it's a little hard(\:lludne Kerry by his past years as US president
clothhead waves goodbye ag:
Bones shouts: kenyis no JFK arteror clinton
Zotha shouts: its easy to see that GW failed though.
hhenry shouts: dude itis a global world now
Zorba shouts: so..easy choice.
Zorba shouts: judge Kerry in 2008
Bones shouts: ouch.
DudeLebowski shouis: Yeah, weve basically opened up the region to be a major hotbed for Al Qaeda
NIHolympic shouts: kerry just showed up for the last 20 years in the senate; hes an empty suit
breadfruit shouts: the truth is most americans identify with gwb cos he's as dumb as they are
Bones shouts: take bitch hillary.
DiteLshowski Shouts suen more <o han when Husseinwas in power

The JavaFIBS Application

27

28

4.2 MacFIBS
MacFIBS is the original Macintosh FIBS client. Unfortunately, this program only

runs on Mac OS X. Apple’s Mac OS 9, which like Windows, contained years of what
professor Joseph Bergin likes to call “code smell”. “It is just a bit of code that doesn’t
seem right to you, not because it is necessarily a bug, but because you know you can do
better if you think a bit harder. Code with consequences. A more extreme definition
would be a pet "accident" on the living room rug. You can still live with it, but life would
be much better if you get rid of it.” Code smell is the result of years of older code from
previous versions being re-used. Since Apple re-wrote the Macintosh Operating System
from the ground up, all older applications would not run natively. To accommodate users
in the limbo stage of switching, Apple developed “Classic” an emulator similar to
Microsoft’s Virtual PC that emulates Mac OS 9 inside of Mac OS X. The drawbacks of
software emulation are well known. Emulated software will always run slower and with

less compatibility in general with code written natively.

MacFIBS’ other major drawback besides running in emulation is the amount of
windows that it uses. CocoaFIBS combines the game window, private chat, public chat,
game chat, console window, and player list into a single window. MacFIBS uses five
different windows to accomplish the display of the same information. This is not entirely
due to poor design. A huge paradigm shift took place in the Mac OS development world
during the transition from OS 9 to OS X. Better and more elegant window management

became a core tenet of the Aqua User Interface. Sheets, drawers, tabs and streamlined

29

windows all contributed to this revolution. With the exception of these two drawbacks

MacFIBS is an extremely robust and well written client.

3 File_Edit_Game Player_Window _Help

o

7:047M | [Macr1Bs 453

et
Vou tel kaimuse: | got your e

o il Koo The aveion b oy fet ot g esing?

Vo el Kaimuze it not resdy for 3 bta yet, the bata will b public o il
aimuse says 1 have done tht before

Vo tel Kaimuse- o0, | will 5o the App to you by email in 2P format
aimuse says - back n he mid 905 webtool days

o
aimuze <ays: how big n zip ormat?

Vou tell marman_Eve- yes, we are chatting thank you

maman_Eve sz |

mamman_Eve says: he is ohating with me

imuza zays 1 iz have s mao.com ernilsnd hey nove have 3 10 meq pper limit

o
ot e kot col Sk you

Vo tel Kaimuse: 1 am working out 3 major gameplay bug toniht, 1 willsend the version after 1 have

N:n gins o1 point natch sgainse rentecarte
o 6 155752 2053 1033533555 PCDOSDIG ipt.0l con DF852.2.300 -

S Hontacarto - - 1 0 z06s.50 Sa4zan 2 toadssaza - con
S 10 - - 10 1357.22 2050 3 1636543252 ACOBEDID. ipt.aol .com 3DF 82,2300 -

S Hontacarto 160 - 1 8 205550 Se4ean 6 toa4geazze - con
160 fontacorto - 1 0 1987.22 2658 8 1993045252 FEGBSDS. k.ot com SO 1852200 -

HontaCarla and NCD start o 1 paint match.
SRCD Hontelar Lo - & 157,22 255 B 1598643252 ACOOE010. ipt .ol .con 30F 8:2.2.300 -

7 revans revans logs in.
5 Fevs 0 1500, 2260 0 tosen2ri 60.190.24.13% 0 1952.2.500

D

s\rlﬂd sine a1 peint sstcn aoinet e

JLERAITS Public Chat

(Feiamese 30
ramin-£ve o el e Vickers wins a5 pomt maten aganet boarking o "

e sy hov fnd eser for v 5 Vit T o171 53 50008 5 109885000 Lzt ar5-4-60-056-150. st = -veriZon.net SOFI=2.2.308 zorie: o youdeng
iy s gl s S iy o 2o e the battle of fienliest FIESers begin o
maman 5 boardking - - 1 6 1833.84 15745 1 1095635764 pool-141-158-77-184.nad .east .ven izon.net SUF18:2.2.300 - 2ot ey P!
ou it i N -
o Youre not watohingor plain vickers vaves gosdbue.
You tell maman-Eve- - T yickars waves soedtue agoin.
mamanEv2 3275 wh i probablychattin t you igt v 5, vickers vickers 1092 U, | peinst na vere o i, it
aimuse say3-howy - e been foldyou as - cocoafies - set you email e bt testing it rty years sgo todsy,
o s ¥ ¥ d S mmecrat 1 0 1665.35 259 23 155a6S08S ROBIEOFS. pt. oL o Mock185.4.5.3 - e et s ey
ou el ksmase . thts or 5 gty 0 1419.56 193 5 1056579250 por 9420 cet2.cojanaicon F1552.2.90 - Pacom: i 2orts

breadruit: <ot p

Banes: they just

ok oura now refusing 1 play with someane.

e

Playing judical
[e for 4 ssconds

152980

47,55 554873 1005845492 hosi35-23 poo59183. interbusiness. £ Hack 1694.5.3-Unfeg -
Messages S fino - - 1 6 1673.97 4132 28 1958545536 15u27.ven be.ca Hack 185_4.5.3-Urfeg
Message for: [raman £ve]| S fino - - B0 167397 4132 2 1098645538 15uZ?.ven.be.ca Hack 185_4.5.3-Uneg —
Viessage from maman_Eve (s Sep 18 14:15:43 1938 GVD): my version she b5 sons v w0 et
ores L waten cgainat
ety T o Taas 85 14008 © 1695953187 51i-104-156.hemachoice.co.uk AKECTR1 -
I~ S zorie - - 1 @ 1398.80 6572 2 1998622667 syr-24-53-122-44. tucny.rr.com MacF |BS_4.5.3-UnReg —
H
S fino - nanisxpertil 8 0 1673.97 4132 14 1098045636 1su27.ven.be.ca Nack 185.4.5.3-Unkeg -
Players MacFIBs

107
e State Ratiog | Bxperience | B0 | covation
ainur Playing zumwinke| 1556.91 6288) ppp-227-169.24-151 libero.it
stestater Playingcrackmonkey 148845 265 dsk1-2s0pbtentelnet
s Playingorlo tssios s 4 vemeorz
baria Plying il T80 = iz
Soarding Resty tes5e 19746 M) poor141-150-T7- 184 mad stvarizon el
bonehesd Plying samirah ism0es zz2ie
Bones ot resty 150000 0 B es-s5-141-252-min-01 ovalgenet
Bonke Plying casis 145350 270 d66-185-134-1 12schsis esnet
seasinat Plying BANLLE 153574 4 consesuviruscomir @ bartski
breadfruit Playing rich 165028 4904 @) ACBAECS4.ipt.aol.com
BANUE Plyngbrazinut 156157 75 B 01 g pppont statss
PlyingBooke 151020 IR K ——
cell Playing matit 186235 15670 A 1CustiZ 01200 deu da et
anartes Playing 1110 12065 1306) 82-69-16-203 el senook Rating
Chestan Playing Qverner 15215 o6 4 p2iS-10stoner
calin_bro Playing DeadMoney 152967 1037 ‘epo1-bagu3-4-0-cust96 bagu cable.ntl.com Fonmection
crctar ik oty 1esm0s 36195 B user-1 s smindspring.com

In3p,revans, showTlakes, Crsoker_uack, zume ke, gad, Bl Clent

Outs gy, viker, wesky, hs,rkent, bk, et Ppcont Thorp Keinman el
e Y

[Settings
Dleusey

Experience: 38

Host: £5.17.254.161
Losation: £5.117.254.181

Oos
Oeiing

epper it o tnd o1y ?

r—=
Match Calculator

Experince.
Rating
win

. command.txt

Game History.

John Kerry Grandpa
Endorcement

LV ERm LR EEFEe all <

The MacFIBS Application

30

5. Conclusion

5.1 Release Plans

CocoaFIBS is currently in Alpha Release status. A select group of real FIBS users
have been helping me to trouble shoot, debug, and recommend changes for the
application. Feedback and enthusiasm have been very high. “Keep up the great work...
it's a service to all mankind” (Jason Hall, jason@jasonjhall.com). “Oh, please, oh please,
can I help test Cocoa. I confess I am not computer saavy, but I'm determined to avoid
java at all costs. I adore MacFibs and am excited about a [Mac OS X] alternative. Can I,

can I, please?” (feklhr@earthlink.net). I will keep CocoaFIBS in alpha release for another

month. This process will enable me to continue to get feedback and suggestions as well

as debugging.

5.2 Future Work

After my thesis is complete, I plan to continue development and support of this
project. I will set up a web page, conduct public beta testing and plan to have a public

release by mid 2005.

31

6. References

A SRR ol o e

Backgammon Book by Oswald Jacoby
http://www.wordiq.com/definition/Backgammon Computer Backgammon
http://www.fibs.com/guide.html#history
http://www.dekorte.com/Objective-C/

http://developer.apple.com/cocoa/

http://www.bignerdranch.com/
http://macedition.com/feat/feat bnr 20020424.php
http://www.fibs.com/fibs_interface.html

IBID

. http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/
. http://www.joelonsoftware.com/uibook/fog0000000249.html
. http://developer.apple.com/documentation/Cocoa/Conceptual/Drawers/index.html#//apple_ref/doc

/uid/100000011

. http://www.joelonsoftware.com/uibook/chapters/fog0000000063.html
. http://www.joelonsoftware.com/uibook/chapters/fog0000000063.html

