
1

CocoaFIBS

A Mac OS 10 Client for the FIBS Backgammon Server

CS Master’s Thesis

Adam Gerson

Pace University

December 29, 2004

http://homepage.mac.com/agerson/cocoafibs/

2

Outline

 1Introduction

 1.1 Overview
 1.2 Needs Analysis
 1.3 Background Summary
 1.4 CocoaFIBS Summary
 1.5 Challenges
 1.6 Comparison Summary

 2 Background
 2.1 The Game
 2.2 FIBS

 2.2.1 FIBS Research & Literature
 2.3 The Cocoa Framework and Objective-C Language

 2.3.1 Cocoa / Obj-C Research & Literature
2.4 Other Tools

 3 CocoaFIBS
 3.1 FIBS CLIP Protocol
 3.2 Code Structure
 3.3 GUI Structure & Design
 3.3.1 The Login Window
 3.3.2 The Game Window
 3.3.3 The User List Drawer
 3.3.4 The Game Window
 3.3.5 The Toolbar
 3.3.6 The Chat Tab Panel

 4 Comparisons
 4.1 Java
 4.2 Mac OS 9

 5 Conclusion
 5.1 Release Plans
 5.2 Future Work

 6 References
 7 Appendix

7.1 Source Code Documentation
8 Included CD
 8.1 CocoaFIBS Alpha v0.2 Application Executable (Mac OS 10.3)
 8.2 Thesis Documentation (PDF)

 8.3 Source Code Documentation (RTF)
 8.4 Source Code (TXT)

3

1. Introduction

The goal of this project is to design, release, and maintain a freeware client

application for the First Internet Backgammon Server(FIBS) that runs natively in Mac OS

X. This project involves the exploration of the FIBS Client Protocol, the Objective-C

language, the Cocoa Frameworks, Mac OS X development tools, user interface and

graphic design, coordinating alpha and beta testing, socket programming, and the Model-

View-Controller paradigm.

FIBS is a backgammon server that has been around for twelve years and has

supported Macintosh users since the day it opened its doors. It has been nearly four years

since the release of Mac OS 10.0 and no native client exists to connect to the FIBS server

from a Macintosh. All Mac users connect with a Java Applet, Java Application or

emulated Mac OS 9 client. This tool will serve as a valuable contribution to the FIBS

community.

Mac OS 10 uses Objective-C as its main development language and a series of

GUI frameworks called Cocoa. Objective-C is an object oriented ANSI C superset. The

free development environment that ships with Mac OS X called XCode and the

Objective-C / Cocoa combination offer a developer a rich experience. The secondary goal

of this project was to learn and explorer these tools.

4

The design of this tool will leverage the power of the Model-View-Controller

paradigm and the Apple Aqua user interface controls. Aqua is Apple’s code-name for

Mac OS 10’s GUI elements. This tool consists of over 14 custom classes and 2 classes

written by others. They are a combination of sockets, GUI controllers, model objects, and

custom drawn views. Attempts were made at every turn to leverage the beauty and power

of the Mac.

The core philosophy of this application is minimalist. FIBS Clients have the

potential to be bloated. This combined with Mac OS 10’s precedent for aesthetics are the

impotence for a minimalist design. With the exception of the login window, the

application is contained within a single window. The game board, a animated user list,

tool bar, and three chat and console views are all elegantly contained within a single

customizable window. The user list can be hidden and the toolbar can be customized.

This allows the user to save space and have only the necessary buttons in front of them at

any one time. The FIBS server is a telnet server. This application interprets user

interaction and sends commands to the server. In return all commands sent by the server

are shown in the GUI.

The prime challenge of writing this application was a complete lack of experience

developing Macintosh applications. To develop this application I had to learn Objective-

C, Cocoa and XCode . The messaging syntax of Objective-C is maddening to someone

who has grown up on Java. For instance, here is an example of an Objective-C method

call and a similar call in Java syntax:

5

[userListWindowData objectForKey:@"client"]; Objective-C

userListWindowData.objectForKey("client"); Java

An example of Objective-C Vs. Java messaging syntax.

The next challenge was to understand the FIBS Client Protocol. My experience

with the server has only been as the user of a GUI client application. Both The FIBS

Client Protocol and Objective-C are well documented on the web.

The next step in the project is to compare my client with existing clients. My

client had the virtue of running natively, but many of these client have been in

development for years and had some impressive features. The strongest plus of my

application is its simple single-window design.

The final challenge is to release and test and re-release the client into the actual

community. I have found a great many willing users as alpha testers and people willing to

donate their graphic design time.

6

2. Background

When I was a senior in high school my pregnant math teacher, Erika Batiuo, was

forced to leave in the middle of the year because of unforeseen complications with her

pregnancy. My school was apparently unable to find a suitable replacement. For the

remainder of the year, which amounted to almost an entire semester, our math class was

taught by the biology teacher. Robert Costello, though a wise man and passionate

scientist, did not have the ready knowledge to carry on our calculus curriculum. He

decided to share with us his one pseudo-mathematical passion: Backgammon. He first

taught us the rules of the game, then we moved on to basic strategy, probability, and

ended the year with a ladder tournament from which I was eliminated in the second to

last round.

After graduating from high school, my friends and I continued to play, read about,

and learn the game the Turkish call “Shesh-Besh” which means 6-5 in English. After

getting to college in 1997 I taught some friends and discovered Yahoo Games, a site

where people can play multi-player board games online. However, the browser-based

Java interface of Yahoo Backgammon was slow and clunky. Discovering the FIBS server

and the active user-community that participated in it was a very exciting event for me. I

had a native Mac OS 9 GUI client running on my laptop and endless chat rooms of

mentors eager to discus strategy, food, and politics. I have been playing on FIBS ever

since.

7

2.1 The Game

Backgammon is a game of both skill and luck. The luck factor is derived from the

use of two, six-sided dice. Games involving dice appear to have developed independently

in all cultures of the world. The ancestors of Backgammon date back almost five

thousand years to ancient Mesopotamia in what is present day Iraq. Backgammon’s

history appears to indicate that it is the oldest known board game in Human history. The

modern version of the game appeared sometime in England during the 17th Century. The

goal of the game is to use strategy and the luck of the dice to move all of your pieces

around, and off, the board before you opponent.1

2.2 FIBS

People have been playing backgammon on computers since the earliest days of

computer gaming. The first computer that could play Backgammon at the “Expert Level”

used neural networks and was named TD-Gammon. This program was developed by Dr.

Gerald Tesauro of IBM. 2 The appropriately named First Internet Backgammon

Server(FIBS), was the first online backgammon community and remains free to this day.

FIBS was created by Andreas Schneider and opened its doors on July 19, 1992. The first

members of FIBS used a simple telnet client to connect, play and chat. In 1994, Windows

and Macintosh graphical clients were released by independent members of the FIBS

community. All graphical FIBS clients are essentially interpreting and sending telnet

commands in response to user actions. The ongoing maintenance of the server was

abandoned by its creator, but is now maintained and developed by volunteers. The source

code for the server is not open source. 3

8

2.2.1 FIBS Research & Literature

To write a graphical FIBS client one must have a robust understanding of the

telnet commands and response types used by the server. The FIBS Command Reference

is intended for telnet end-users and provides a detailed description of all commands

understood by the FIBS server. The FIBS Client Protocol Detailed Specification is a

reference intended for programmers who are writing graphical interfaces to the FIBS

server. This document not only provides a detailed description of the commands, but also

includes breakdowns and examples of all server responses to commands and their

arguments. The formal specification is at version 1.008 and was last updated in 1997. The

specifications for the FIBS CLIent Protocol (CLIP) differ slightly from the end-user FIBS

Command Reference. Clients can log into the telnet server with a special syntax that

returns CLIP formatted responses for parsing as opposed to ones intended for a human to

view with their eyes.

My research for understanding the FIBS Client Protocol consisted of reading

these documents in detail, playing telnet games logged in as both a user and as a “client”,

and downloading the various other graphical clients available for other operating systems.

2.3 The Cocoa Framework and Objective-C Language

Objective-C is a object oriented superset of ANSI C. Its infix syntax is similar to

Smalltalk-80 and nothing like C++ or Java. Objective-C was written in the 1980’s by

9

Brad Cox while at the StepStone corporation. In 1988 it was adopted by the virgining

NeXTstep platform as its development environment. It was made a part of the GNU gcc

compiler in 1992. Objective-C’s future was not looking extremely bright until two major

events took place. These events were Steve Jobs return to Apple Computer and NEXT’s

sale to Apple. Sometime in the late 1990’s it was decided that the next major evolution of

Apple’s Macintosh Operating System would be based on NeXTstep. Thus, Objective-C is

now used as the primary development language for MacOS X applications, though most

of the Mac OS X Operating System itself is written in C. Objective-C is also the language

for the GNUstep project on Linux. Objective-C is distinguished from C++ and Java by its

weak typing and runtime features. 4

 Cocoa is a set of object-oriented frameworks for the development of Mac OS X-

only native applications. Cocoa is also used to build the stunning Aqua user interfaces

expected by Mac users. Cocoa also draws its history from NeXTStep. Cocoa is

implemented in Objective-C. However Cocoa frameworks can be used by a variety of

different languages. “Cocoa applications can make use of core functionality contained in

traditional C and C++ libraries brought forward from legacy application environments. It

also provides Java interfaces to permit a high performance, full featured Java

development environment tailored to Mac OS X specifically.”5 This robustness was

extremely useful during the development of CocoaFIBS.

10

2.3.1 Cocoa / Objective-C Research & Liturature

Learning development on MacOS X was a multi-stepped process. This process

consisted of reading three books: Cocoa Programming (Anguish, 2003), Cocoa

Programming For Mac OS X (Hillegass, 2004), and Learning Cocoa with Objective-C

(Davidson, 2002). These books took me through simple tutorials, example projects, and

general philosophy and served as a foundation for my trip to The Big Nerd Ranch.

“Gone are the days of dull…training. Big Nerd Ranch offers intensive,
head-down computer programming courses taught by experts in a retreat
environment. Classroom, accommodations, and dining all take place
within the same building, freeing you to learn, code, and discuss with your
programming peers and instructors. At Big Nerd Ranch, we take care of
the details; your only job is to learn.”6

Spending five days at The Big Nerd Ranch in the backwoods on Atlanta, GA with

Aaron Hillegass was an overwhelming experience of learning, natural seclusion

and a torrent of information.

On the first day of the class Aaron pronounces, “There’s a lot to learn.

Today will be like drinking from an open fire hydrant. It will be messy and your

face is going to get wet. You’ll probably feel lost and exhausted and you may

even hate me by the end of the day. But the next day will be better and, by the end

of the week, you’ll be building Cocoa apps effortlessly.” 7 This week of intense

training and discussion prepared me for my first major Macintosh project: The

development of my FIBS client which I will call CocoaFIBS.

11

2.4 Other Tools

 There are many other clients for the FIBS server. FIBS/W, the first Windows client

was released in 1994 by Robin Davies and is no longer maintained. The first Macintosh

client, also released in 1994, was MacFIBS by Paul D. Ferguson. MacFIBS was

originally written for MacOS 7, and updates were maintained through MacOS 8 and 9.

Paul still supports MacFIBS, but has no plans to release an OS X compatible version. He

now works for a company that develops commercial backgammon clients for a pay

server. Over the years clients for almost ever major operating system have been

developed. Windows user have a choice of three different clients, 3DFiBs, CFFIBS, and

RealFibs. Linux user can choose from bacKgammon or KBackgammon. Cell phones and

palmtops can run MobileFIBS and FibsCE. JavaFIBS is available as both a Browser

based client and as an executable .jar file. User’s of any OS with a telnet client can, of

course, always connect the old fashioned way. No native Mac OS X client exists for the

FIBS server. Mac OS X users represent a fraction of the FIBS community and no one has

yet committed the time and skill required to develop a Mac client.

12

3. CocoaFIBS

3.1 FIBS CLIP Protocol

The FIBS CLIP Protocol is an attempt to make client-server communication more

understandable for interfacing programs. It requires a special login syntax that tells the

server it is going to communicate with a program rather then a human being. A CLIP

message consists of a single line of ASCII text terminated by carriage return / line Feed.

CLIP messages are the most basic form of client communications with the FIBS server.

“The CLIP or FIBS CLIent Protocol is an effort to make the FIBS server a
little more friendly for client programs to interface with. FIBS was
originally designed for use with a straight telnet session with a command
line like interface. When you login in CLIP mode the main differences
from the telnet mode [Standard Log In] are: There is no ">" prompt. You
get the various CLIP messages documented…instead of their logical
counterparts in telnet mode. All the clip commands start with a number.
Most of them will occur asynchronously and not always as a direct result
of sending a command.”8

The commands sent by the server in CLIP mode are prefixed with an unique id code and

are easily parsed by any program capable of reading and interpreting character delimited

strings. The CLIP expects the behavior layout in the formal telnet protocol

specification(RFC 854). The author of the CLIP Specification summarizes the relevant

information.

“The most important aspect of this is that FIBS insists that a new line is
always indicated by sending (or receiving) both a carriage return (CR=13)
and a line feed character (LF=10). Following the conventions of the C
programming language I'll refer to CR as \r and to LF as \n. FIBS also
tries to be a good RFC 854 Network Virtual Terminal (NVT), ie it tries to
be as dumb as possible. It won't send back characters it receives and it
won't do any line editing (don't send a backspace character and expect
FIBS to handle it). The telnet protocol allows clients and servers to start
with the assumption that the server is a dumb NVT and negotiate
advanced terminal capabilities. Those are sent as three byte sequences
IAC XX YY, where IAC is always the byte 255 (hex $FF) and XX and

13

YY are bytes describing the option being negotiated. You might encounter
a few of those during the login procedure when FIBS tries to convince the
telnet client not to show the password on the screen. Just ignore any 3 byte
sequence starting with IAC. Apart from the login sequence FIBS will
never send any other 3 byte telnet sequences unless you provoke it and
send one yourself (in which case the answer sequence, if any, means 'leave
me alone').” 9

This excerpt for the from the CLIP Specification shows a typical example of a

CLIP message description. The number 1 represents the line prefix number that

corresponds to the “CLIP Welcome”. The three parameters it returns are: Name – Your

login name, Last Login – The last time you logged in. The date is measured in the

number of seconds since the Unix Epoch (January 1 1970 00:00:00 GMT), Last Host –

The IP address or hostname associated with the last login.

3.2 CODE STRUCTURE

The code used in CF adopts the Model-View-Controller design pattern. The MVC

paradigm looks at the big picture when designing an application. A well designed MVC

programmer will define all objects as either model objects, view objects, or controller

14

objects. This provides a clear separation between objects and makes objects more

reusable and flexible.

Model objects represent data. They contain a complete set of relevant data for the

object they are modeling as well as getter and setter methods to manipulate that data.

Ideally a model object is completely encapsulated and knows nothing about the view

object. This enables model objects to be re-used with any number of different views.

View objects display information to the user. Often they are displaying data from

a model object. In fact, they should contain specific knowledge on how to get and edit

data from the model objects. View objects are less reusable and contain more custom

code written specifically for a given model.

Controller objects are the glue that bring model and view objects together.

Actions that take place in the view are handled by methods in the controller which in turn

updates or gets some data from the model. Controller objects are rarely reusable and are

often application specific.

15

3.3 Graphical User Interface Structure & Design

The CF Graphical User Interface was designed in accordance with The Apple Human

Interface Guidelines. This document outlines the specific guidelines for designing a user

interface in compliance with Mac OS X standards for esthetics and functionality. The

overarching principals and goals of The Apple Human Interface Guidelines are:

• Users will learn your application faster if the interface looks and behaves like

applications they’re already familiar with.

• Users can accomplish their tasks quickly, because well-designed applications

don’t get in the user’s way.

• Users with special needs will find your product more accessible.

• Your application will have the same modern, elegant appearance as other Mac OS

X applications.

• Your application will be easier to document, because an intuitive interface and

standard behaviors don’t require as much explanation.

• Customer support calls will be reduced (for the reasons cited above).

• Your application will be easier to localize, because Apple has worked through

many localization issues in the Aqua design process.

• Media reviews of your product will be more positive; reviewers easily target

software that doesn’t look or behave the way “true” Macintosh applications do.10

16

This concept is reinforced by Joel Spolsky in his book User Interface Design For

Programmers, where he succinctly states “A user interface is well-designed when the

program behaves exactly how the user thought it would.”11

3.3.1 The Login Window

The goal of the login window is to be simple, elegant, modern, and clean. No

instructions are necessary. All feedback is intended to be visual. The user enters their

username and password and clicks the “Connect” button. During the login processes the

button and the two text fields disable preventing user interaction. An animated progress

indicator spins until login is complete. If there is an error during login a message is

displayed to the user, the controls enable, and the user may try and log in again.

The CocoaFIBS Login Window at

application launch time.

The CocoaFIBS Login Window
after the user clicks “Connect”

The CocoaFIBS Login Window

after an error.

17

3.3.2 The Game Window
After a successful login the login window automatically hides and the game

window shows. This is the main window of the application and most clearly

demonstrated the all-in-one unified design of CocoaFIBS. The four major types of

information and interaction, toolbar, game play, user information, and chat, are displayed

in modular sections on this window.

A screen shot from the CocoaFIBS Main Window

18

3.3.3 The User List Drawer
The list of connected users and their attributes is displayed in a Mac OS X

window called a drawer. “A drawer is a special type of window that can slide out from

[either] side of a window.”12 The drawer is toggled by a button in the toolbar or by a

menu item in the “View” menu. Inside of the drawer is a field for setting the desired

game length. This value is sent to a prospective player when inviting them to play a

game. There is also a pop up button for sorting the list of users.

Some cells from the table of users

The list of users is stored in a table with custom drawn cells. Each cell contains

information about an individual user. The colored “bubble” in the top left hand corner of

each cell represents status.

Green = ready to play
Yellow = playing a game
Red = not ready to play

The cells contain the name of the player, more detail on their status, their rating,

experience, and an icon representing their operating system.

19

A single cell from the table of users

When the player right-clicks on a cell they get a pop up menu that offers them the choice

to invite the user to a match, resume a saved match, or chat with the user.

An example of selecting a user and right-clicking on the cell.

3.3.4 The Game Window

The game window at the start of a new match.

20

To start a new match you may invite a user or accept the invitation of a user. The

game board consists on the chips which during your turn can be dragged to and from

triangles. Clicking on the dice ends your turn and clicking on the doubling cube offers a

double to your opponent. The two players names, the score of the game, and the pip

count are kept at the bottom of the window. System and error messages regarding the

game are displayed in red at the top of the window. In-game choices appear in the form

of an animated sheet that slides down from the top of the window.

A sheet in the game window request feedback from the player.

3.3.5 The Toolbar
The toolbar at the top of the game window enables quick and customizable access

to some common game options.

Ready – Toggles the players ready to play status from ready to not ready.
Players – Hides and shows the user list drawer.
Refresh – Get a new board from the server and acts as an undo button for moves.
Toggle Greedy – Toggles the use of “greedy play” a feature where the server moves for
you.
Toggle Double - Toggles the use of auto-rolling
Resign n (normal) –You'll lose the number of points on the cube.
Resign g (gammon) - You'll lose twice the number of points on the cube.
Resign b (backgammon) - You'll lose three times the number of points on the cube.

21

The location and presence of any toolbar items is customizable. The toolbar can

also be hidden to save space. Other view options include the ability to use smaller icons,

icons only, or text only.

The game window with the toolbar showing.

The game window with the toolbar hidden.

The customize toolbar sheet.

22

3.3.6 The Chat Tab Panel

The chat tab panel located at the bottom of the screen encapsulates the 4 major

types of interactive communication. Public chat forums, private one-on-one chat, in game

chat, and console communication can all be access from one small area.

The chat tab panel show an example of “public chat”.

23

4. Comparisons

4.1 JavaFIBS Application

JavaFIBS is the quintessential Java application. Using it gives one the feeling that

they have left their own operating system universe only to enter a bizarre parallel

dimension. Sun’s Java GUI, which was designed by the same people who brought us The

OpenWindows project, is ugly and confusing. The first major problem with using a Java

Application is that the GUI is different from the one you are used to. Well written

operating systems are designed so that as the user learns the “metaphors” and standards

of the OS they become more proficient and productive. As stated in the Apple Human

Interface Guidelines “Users will learn your application faster if the interface looks and

behaves like applications they’re already familiar with.” Launching JavaFIBS breaks this

connection and forces the user to not only learn a new Application, but to learn a new OS

as well.

The second problem with the Java GUI is that it is ugly. The widgets that

comprise the GUI such as buttons, scroll bars, lists, and dialogue boxes, look like they

belong in 1989. They lack the modern look and feel that users have come to expect. In

fact, they resemble the GUI of the X-Window system written in 1984. I do not intend to

show any disrespect to Java. The concept of portable code being able to run anywhere is

marvelous. However, it is just not there yet in its ability to compete with applications

written natively for the hardware they were intended to run on.

24

Thus, JavaFIBS starts it endeavor with a handicap. Its written in Java. CocoaFIBS

attempts to include as much content as possible within a single window. JavaFIBS shares

this characteristic. However, JavaFIBS has so much content whizzing past the user at any

time that it is hard to focus on any single element. In fact, the main window takes up too

much space on the screen. JavaFIBS also presents a lot of its feedback in text form, as

opposed to CocoaFIBS which uses a combination of text, coloring, and icons. “…users

hate reading, and will avoid it unless they absolutely cannot accomplish their task.”13

CocoaFIBS offers almost every screen that JavaFIBS does in half the space.

Granted JavaFIBS does allow the user to customize the size of every subsection of every

window. However, most novice user interface users don’t even understand this. Yet, even

with customization it is hard to cajole JavaFIBS into a visual pleasing and efficient

layout. The JavaFIBS window is divided into seven sections. The players/board screen,

the private chat screen, the public chat screen, the system/friends/villains screen, the

invitation screen, the toolbar and the menus.

The players/board screen works well, but initially provides too much information.

This screen presents the user with a tab that lets them switch between the board and a list

of users. Since the only purpose of the user list is too invite people to play a game then

there is no reason why one would need access to these two screens at once. However, the

idea of a backgammon application without a backgammon board showing at all time

leaves a blandness to the visual experience of the application. CocoaFIBS ever present

backgammon board is pleasant and the problem of the user list taking u p space is solved

25

by the hideable drawer that CocoaFIBS employs. The user list in JavaFIBS presents way

too much information for an initial screen. Column headers such as gender, country,

email and interesting, but belong in a “more info” screen somewhere, and are not

necessary for choosing an opponent. The user list in CocoaFIBS is exponentially smaller

and provides only the essential information such as name, status, ranking, experience, and

operating system. Both programs allow the user to sort the list by a variety of criteria.

In general the chat section takes up way to much space in an application window

that is already to big. That chat font is not anti-aliased and the colors are drab not indicate

the status of chat as easily is in CocoaFIBS which does use font anti-aliasing.

Another section is devoted to a tab-panel that lets the user switch between system

output, a friends list and a villains list. Aside from the fact that these three screens have

nothing to do with each other, they are not a very prevalent part of the game. In fact, most

user’s have no interest in system messages at all. Yet, this screen has the same central

prominence as the game board itself. In CocoaFIBS system messages are available in two

intuitive way. Important system messages are displayed in red above the game board. If

the user would like to view all commands and messages returned from the server there is

a separate tab in the chat section of the main window. Though the ability to mark users as

friends or enemies is ingenious, devoting a separate space from them is not. The game

already has a list of players. Simple color coding or icons in the existing user list could

easily denote this status.

26

Java FIBS devotes an entire section to a list of all invitations received,

CocoaFIBS uses a dismissible dialogue box. One a user receives an invitation to play

there are only two decisions; accept the invitation or decline the invitation. After that

there is no need to keep the information around when screen real estate is a factor.

Both CocoaFIBS and JavaFIBS employee a toolbar of buttons at the top of the

screen. However, CocoaFIBS toolbar is customizable and hidable while JavaFIBS offers

neither of these options. The icons JavaFIBS uses are non-descriptive and confusing,

Waiting for the mouseOver tooltips, which CocoaFIBS also has, is the only way to know

what the buttons do.

A JavaFIBS button that toggles the showing and hiding of commands sent to the
server.

Another problem with JavaFIBS, or any Java application for that matter, is the “in

application” menu bar.

“When you want to point to the File menu…you have a target about half
an inch wide and a quarter of an inch high to acquire. You must move and
position the mouse fairly precisely in both the vertical and the horizontal
dimensions. But on a Macintosh, you can slam the mouse up to the top of
the screen, without regard to how high you slam it, and it will stop at the
physical edge of the screen - the correct vertical position for using the
menu. So, effectively, you have a target that is still half an inch wide, but a
mile high. Now you only need to worry about positioning the cursor
horizontally, not vertically, so the task of clicking on a menu item is that
much easier.”14

JavaFIBS is a well written program. Some, but not all, of its flaws lie inherently with

Java. JavaFIBS ability to let users swap custom boards, its ability to mark friends,

stability, and its robust preferences make it s very fine client. However, compared to

27

CocoaFIBS it just does not hold up as a visually pleasing and intuitive application for

Mac OS x.

The JavaFIBS Application

28

4.2 MacFIBS
 MacFIBS is the original Macintosh FIBS client. Unfortunately, this program only

runs on Mac OS X. Apple’s Mac OS 9, which like Windows, contained years of what

professor Joseph Bergin likes to call “code smell”. “It is just a bit of code that doesn’t

seem right to you, not because it is necessarily a bug, but because you know you can do

better if you think a bit harder. Code with consequences. A more extreme definition

would be a pet "accident" on the living room rug. You can still live with it, but life would

be much better if you get rid of it.” Code smell is the result of years of older code from

previous versions being re-used. Since Apple re-wrote the Macintosh Operating System

from the ground up, all older applications would not run natively. To accommodate users

in the limbo stage of switching, Apple developed “Classic” an emulator similar to

Microsoft’s Virtual PC that emulates Mac OS 9 inside of Mac OS X. The drawbacks of

software emulation are well known. Emulated software will always run slower and with

less compatibility in general with code written natively.

MacFIBS’ other major drawback besides running in emulation is the amount of

windows that it uses. CocoaFIBS combines the game window, private chat, public chat,

game chat, console window, and player list into a single window. MacFIBS uses five

different windows to accomplish the display of the same information. This is not entirely

due to poor design. A huge paradigm shift took place in the Mac OS development world

during the transition from OS 9 to OS X. Better and more elegant window management

became a core tenet of the Aqua User Interface. Sheets, drawers, tabs and streamlined

29

windows all contributed to this revolution. With the exception of these two drawbacks

MacFIBS is an extremely robust and well written client.

The MacFIBS Application

30

5. Conclusion

5.1 Release Plans

 CocoaFIBS is currently in Alpha Release status. A select group of real FIBS users

have been helping me to trouble shoot, debug, and recommend changes for the

application. Feedback and enthusiasm have been very high. “Keep up the great work...

it's a service to all mankind” (Jason Hall, jason@jasonjhall.com). “Oh, please, oh please,

can I help test Cocoa. I confess I am not computer saavy, but I'm determined to avoid

java at all costs. I adore MacFibs and am excited about a [Mac OS X] alternative. Can I,

can I, please?” (feklhr@earthlink.net). I will keep CocoaFIBS in alpha release for another

month. This process will enable me to continue to get feedback and suggestions as well

as debugging.

5.2 Future Work

After my thesis is complete, I plan to continue development and support of this

project. I will set up a web page, conduct public beta testing and plan to have a public

release by mid 2005.

31

6. References
1. Backgammon Book by Oswald Jacoby
2. http://www.wordiq.com/definition/Backgammon Computer Backgammon
3. http://www.fibs.com/guide.html#history
4. http://www.dekorte.com/Objective-C/
5. http://developer.apple.com/cocoa/
6. http://www.bignerdranch.com/
7. http://macedition.com/feat/feat_bnr_20020424.php
8. http://www.fibs.com/fibs_interface.html
9. IBID
10. http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/
11. http://www.joelonsoftware.com/uibook/fog0000000249.html
12. http://developer.apple.com/documentation/Cocoa/Conceptual/Drawers/index.html#//apple_ref/doc

/uid/10000001i
13. http://www.joelonsoftware.com/uibook/chapters/fog0000000063.html
14. http://www.joelonsoftware.com/uibook/chapters/fog0000000063.html

