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Abstract 

This study establishes the individuality of voice, using the discriminative power of 

biometric data quantitatively. The task of establishing voice modality to discriminate 

every person is difficult because there are a large number of classes for the entire 

population. The paper proposes a methodology that is statistically inferable. A many 

class problem is transformed into a dichotomy by using distances between measurements 

of intra and inter-person classes. This establishes a thorough distinction of classes and 

thereby validates distinct individuality. This model remains statistically inferable even 

when it does not observe all the classes.  
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Chapter 1 
 
Introduction 

The task considered is that of establishing the individuality of the voice of each 

individual in a population. This task of establishing individuality is the same as showing 

the distinctiveness of classes with a very small error rate in discrimination. Individuality 

in handwriting has been shown in [26]. This paper proposes to give a validation of the 

methodology used in [26] for individuality in voice, and also to generalize the results to 

other domains. The same model has been recently shown to establish individuality in 

fingerprints [18]. 

 

Motivation 

Speech recognition is the field of computer science that deals with designing computer 

systems that can recognize spoken words. Although handwriting, fingerprints, face, etc 

have been recognized as distinct per individual and used for verification purposes, the 

voice of the speaker has not been used with this model. Current voice recognition 

systems are based on the polychotomy principle that has a distinct disadvantage of being 

statistically non-inferential and thereby requiring many more observable instances of the 

same class in the training data. This paper proposes to show the individuality of voice by 

dichotomy, which has the advantage of being statistically inferential. 

 

Individuality 

The task of showing individuality is the same as showing the distinctiveness of the 

classes with a very small error rate in discrimination. 
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Statistical Inference 

Statistical inference infers a conclusion about the population of interest from a sample. If 

the error rate of the random sample set the same as the error in the universe, the 

procedure is said to be statistically inferential. Inferential statistics is the measure of 

reliability of individuality about the entire population based on data obtained from a 

sample drawn out of that population. 

 

Problem statement 

Two audio inputs will be taken from speakers and used for the biometric determination of 

speaker individuality by determining whether the two inputs come from the same person 

or from different people. 

 

Hypotheses 

1. The individuality of the speaker can be shown when the speech is normal. 

2.   The individuality of the speaker can be shown when the speech is disguised. 
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1.1 Basic definitions 

The human speech conveys different types of information. The primary type is the 

meaning or words, which speaker tries to pass to the listener. But the other types that are 

also included in the speech are information about language being spoken, speaker 

emotions, gender and identity of the speaker. The goal of automatic speaker recognition 

is to extract, characterize and recognize the information about speaker identity [21]. 

Speaker recognition is usually divided into two different branches, speaker verification 

and speaker identification. Speaker verification task is to verify the claimed identity of 

person from his voice [3,16]. This process involves only binary decision about claimed 

identity. 

 
1.2 Applications 

Practical applications for automatic speaker identification are obviously various kinds of 

security systems. Human voice can serve as a key for any security objects, and it is not so 

easy in general to lose or forget it. Human voice can also be used to prove identity during 

access to any physical facilities by storing speaker model in a small chip, which can be 

used as an access tag, and used instead of a pin code. Another important application for 

speaker identification is to monitor people by their voices. For instance, it is useful in 

information retrieval by speaker indexing of some recorded debates or news, and then 

retrieving speech only for interesting speakers. It can also be used to monitor criminals in 

common places by identifying them by voices. In fact, all these examples are actually 

examples of real time systems.  
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1.3 Thesis Description 

Nowadays, speaker verification is not anymore just a theory. Applications based on it are 

widely used around the word and found their appropriate places in the industry. But even 

though a lot of work has already done in this field [3,5,11], it is still not a solved problem. 

The research in the area of speaker verification still continues and at present there are a 

few basic techniques that have shown their effectiveness in practice and called “classical” 

by scientists. The goal of this work is to make general overview of these techniques and 

then propose a new approach for binary decision making for speaker verification 

purposes.  

To give a better understanding, we start from the very beginning. In Chapter_2, we study 

the fundamentals of digital signal processing theory used in speaker verification, and 

model of biometric characteristics of human speech production organs. This model will 

serve us as a basis for techniques described in the next chapters. In Chapter 3, we study 

the popular method for the extraction of the speaker characteristics from speech signal. In 

Chapter 4, we discuss classifications and ways for modeling of extracted characteristics 

and methods, used to calculate the dissimilarity value between unknown speech sample 

and the stored speaker models. In Chapter 5, we discuss the approaches used for the 

verification problem. In Chapter 6, we evaluate the proposed approach with experiments 

and showcase the results of the experiment. Finally, we finish this work by giving short 

discussion and conclusions in Chapter 7. 
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Chapter 2 

Verification Background 

In this chapter we discuss theoretical background for speaker verification. We start from 

the digital signal processing theory. Then we move to the anatomy of human voice 

production organs and discuss the basic properties of the human speech production 

mechanism and techniques for its modeling. This model will be used in the next chapter 

when we will discuss techniques for the extraction of the speaker characteristics from the 

speech signal. 

 
2.1 DSP Fundamentals 

According to its abbreviation, Digital Signal Processing (DSP) is a part of computer 

science, which operates with special kind of data – signals. In most cases, these signals 

are obtained from various sensors, such as microphone or camera. DSP is the 

mathematics, mixed with the algorithms and special techniques used to manipulate with 

these signals, converted to the digital form [24]. 

 

2.1.1 Basic Definitions 

By signal we mean here a relation of how one parameter is related to another parameter. 

One of these parameters is called independent parameter (usually it is time), and the 

other one is called dependent, and represents what we are measuring. Since both of these 

parameters belong to the continuous range of values, we call such signal continuous 

signal. When continuous signal is passed through an Analog-To-Digital converter (ADC) 

it is said to be discrete or digitized signal. Conversion works in the following way: every 

time period, which occurs with frequency, called sampling frequency, signal value is 
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taken and quantized, by selecting an appropriate value from the range of possible values. 

This range is called quantization precision, and usually represented as an amount of bits 

available to store signal value. Based on the sampling theorem, proved by Nyquist in 

1940 [24], digital signal can contain frequency components only up to one half of the 

sampling rate. Generally, continuous signals are what we have in nature while discrete 

signals exist mostly inside computers. Signals that use time as the independent parameter 

are said to be in the time domain, while signals that use frequency as the independent 

parameter are said to be in the frequency domain.  

One of the important definitions used in DSP is the definition of linear system. By system 

we mean here any process that produces output signal in a response on a given input 

signal. A system is called linear if it satisfies the following three properties: homogeneity, 

additivity and shift invariance [24]. Homogeneity of a system means that change in the 

input signal amplitude corresponds to the change in the output signal. Additivity means 

that the output of the sum of two signals results in the sum of the two corresponding 

outputs. And finally, shift invariance means that any shift in the input signal will result in 

the same shift in the output signal [5,19,24].  

 

2.1.2 Convolution 

An impulse is a signal composed of all zeros except one non-zero point. Every signal can 

be decomposed into a group of impulses, each of them then passed through a linear 

system and the resulting output components are synthesized or added together [24]. The 

resulting signal is exactly the same as obtained by passing the original signal through the 

system.  
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Every impulse can be represented as a shifted and scaled delta function, which is a 

normalized impulse, that is, sample number zero has a value of one and all other samples 

have a value of zero. When the delta function is passed through a linear system, its output 

is called impulse response. If two systems are different they will have different impulse 

responses. According to the properties of linear systems every impulse passed through it 

will result in the scaled and shifted impulse response and scaling and shifting of the input 

are identical to the scaling and shifting of the output [19,24]. It means that knowing 

systems impulse response we know everything about the system [5,19,24].  

Convolution is a formal mathematical operation, which is used to describe relationship 

between three signals of interest: input and output signals, and the impulse response of 

the system. It is usually said that the output signal is the input signal convolved with the 

system’s impulse response. Mathematical equation of convolution for discrete signals is 

represented in the following (convolution is denoted as a star): 

 

(2.1)

 
Where y [i] is the output discrete signal, x [i] is the input discrete signal and h [j] is M 

samples long system’s impulse response flipped left-for-right. Index I goes through the 

size of the output signal. Mathematics behind the convolution does not restrict how long 

the impulse response is. It only says that the size of the output signal is the size of the 

input signal plus the size of the impulse response minus one. 
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Convolution is very important concept in DSP. Based on the properties of linear systems 

it provides the way of combining two signals to form a third signal. A lot of mathematics 

behind the DSP is based on the convolution. In detail it is described in [5,19,24]. 

 
2.1.3 Discrete Fourier Transform 

Fourier transform belongs to the family of linear transforms widely used in DSP based on 

decomposing signal into sinusoids (sine and cosine waves). Usually in DSP we use the 

Discrete Fourier Transform (DFT), a special kind of Fourier transform used to deal with 

aperiodic discrete signals [24]. Actually there are an infinite number of ways how signal 

can be decomposed but sinusoids are selected because of their sinusoidal fidelity that 

means that sinusoidal input to the linear system will produce sinusoidal output, only the 

amplitude and phase may change, frequency and shape remain the same [24]. 

Discrete Fourier Transform changes an N point input signal into two N/2+1 point output 

signals. The output signals represent the amplitudes of the sine and cosine components 

scaled in a special way that is represented by the equations: 

 

(2.2) 

 
Where, Ck are N/2+1 cosine functions and Sk are N/2+1 sine functions, index k runs 

from zero to N/2. These functions are called basis functions. Actually zero samples in 

resulting signals are amplitudes for zero frequency waves, first samples for waves which 

make one complete cycle in N points, second for waves which make two cycles and so 

on. Signal represented in such a way is called to be in frequency domain and obtained 
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coefficients are called spectral coefficients or spectrum. Frequency domain contains 

exactly the same information as the time domain and every discrete signal can be moved 

back to the time domain, using operation called Inverse Discrete Fourier Transform 

(IDFT). Because of this fact, the DFT is also called Forward DFT [24]. Schematically 

DFT is represented in Figure 2.1. 

 
Figure 2.1 Discrete Fourier Transform 

 
The amplitudes for cosine waves are also called real part (denoted as Re[k]) and for sine 

waves are called imaginary part (denoted as Im[k]). This representation of frequency 

domain is called rectangular notation. Alternatively, the frequency domain can be 

expressed in the polar notation. In this form, real and imaginary parts are replaced by 

magnitudes (denoted as Mag[k]) and phases (denoted as Phase[k]) respectively [24]. The 

equations for conversion from rectangular notation to the polar notation are as follows: 
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(2.3) 

 
There are two main reasons why DFT became so popular in DSP. First is Fast Fourier 

Transform (FFT) algorithm [24], developed by Cooley and Tukey in 1965, which opened 

a new era in DSP because of the efficiency of the FFT algorithm. The second reason is 

the convolution theorem [24], which states that convolution in time domain is a 

multiplication in frequency domain and vice versa. This makes possible to use high-speed 

convolution algorithm, which convolves two signals by passing them through the Fast 

Fourier Transform, multiplying and using Inverse Fourier Transform computing 

convolved signal. More details about Fourier Transform can be found in [5,19,24]. 

 
2.1.4 Filters 

By filter we mean here a method to manipulate with signals defined as a linear system. 

There are two main uses for filters: signal separation and signal restoration. Signal 

separation is needed when the signal was interfered with the other not useful signals or 

noise. Signal restoration is needed when the signal was distorted for example due to the 

transform through a long wire or bad quality recording. There are two main types of 

filters: analog and digital. Analog filters are cheap and have a large dynamic range in 

frequency and amplitude. However, digital filters can achieve thousands better 

performance [24]. 
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Easiest way to implement a digital filter is to convolve the input signal with the filters 

impulse response. Based on the length of its impulse responses, filters are usually divided 

into Infinite Impulse Response (IIR) filters and Finite Impulse Response (FIR) filters. 

There are also few types of responses: step response and frequency response. Each of 

these responses can be used to completely define filter. Step response is the output signal 

of the filter when input is a step function, which is defined as a transition from one level 

of signal to another. This type of responses can be used to define filters, which are able to 

divide signal into regions with similar characteristics. The frequency response can be 

found by taking discrete Fourier transform of the impulse response. It can be useful to 

define filters, which are able to block undesirable frequencies in input signals or separate 

one band of frequencies from another, such as high-pass, band-pass and band-reject 

filters.  

Digital filter theory is important in speaker identification, since it allows by a given 

signal to analyze origin of it or in this case the unknown speaker. There are also few 

minor uses for filters like a noise removal or other types of filtering to achieve better 

results in signal analyzing. More details about filter design and implementation can be 

found in [5,19,24]. 

 
2.2 Human Speech Production Model 

The ability to speak is the most important way for humans to communicate between each 

other. Speech conveys various kind of information, which is essentially the meaning of 

information speaking person, wants to impart, individual information representing 

speaker and also some emotional filling. Speech production begins with the initial 

formalization of the idea which speaker wants to impart to the listener. Then speaker 
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converts this idea into the appropriate order of words and phrases according to the 

language. Finally, his brain produces motor nerve commands, which move the vocal 

organs in an appropriate way [9]. Understanding of how human produce sounds forms the 

basis of speaker verification.  

 
2.2.1 Anatomy 

The sound is an acoustic pressure formed of compressions and rarefactions of air 

molecules that originate from movements of human anatomical structures [11]. Most 

important components of the human speech production system are the lungs (source of 

air during speech), trachea (windpipe), larynx or its most important part vocal cords 

(organ of voice production), nasal cavity (nose), soft palate or velum (allows passage of 

air through the nasal cavity), hard palate (enables consonant articulation), tongue, teeth 

and lips. All these components, called articulators by speech scientists, move to different 

positions to produce various sounds. Based on their production, speech sounds can also 

be divided into consonants and voiced and unvoiced vowels [5,11]. 

From the technical point of view, it is more useful to think about speech production 

system in terms of an acoustic filtering operation that affect the air going from the lungs. 

There are three main cavities that comprise the main acoustic filter. According to [5] they 

are nasal, oral and pharyngeal cavities. The articulators are responsible for changing the 

properties of the system and form its output. Combination of these cavities and 

articulators is called vocal tract. Its simplified acoustic model is represented in Figure2.2. 
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Figure 2.2 Vocal tract model 

 
Speech production can be divided into three stages: first stage is the sound source 

production, second stage is the articulation by vocal tract, and the third stage is sound 

radiation or propagation from the lips and/or nostrils [9]. A voiced sound is generated by 

vibratory motion of the vocal cords powered by the airflow generated by expiration. The 

frequency of oscillation of vocal cords is called the fundamental frequency. Another type 

of sounds - unvoiced sound is produced by turbulent airflow passing through a narrow 

constriction in the vocal tract [3,5].  

In a speaker recognition task, we are interested in the physical properties of human vocal 

tract. In general it is assumed that vocal tract carries most of the speaker related 

information [3,5,11,20]. However, all parts of human vocal tract described above can 

serve as speaker dependent characteristics [3,5,20]. Starting from the size and power of 

lungs, length and flexibility of trachea and ending by the size, shape and other physical 

characteristics of tongue, teeth and lips. Such characteristics are called physical 
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distinguishing factors. Another aspects of speech production that could be useful in 

discriminating between speakers are called learned factors, which include speaking rate, 

dialect, and prosodic effects [3].  

 

2.2.2 Vocal Model 

In order to develop an automatic speaker identification system, we should construct 

reasonable model of human speech production system. Having such a model, we can 

extract its properties from the signal and, using them, we can decide whether or not two 

signals belong to the same model and as a result to the same speaker.  

Modeling process is usually divided into two parts: the excitation (or source) modeling 

and the vocal tract modeling [5]. This approach is based on the assumption of 

independence of the source and the vocal tract models [3,5]. Let us look first at the 

continuous-time vocal tract model called multitube lossless model [5], which is based on 

the fact that production of speech is characterized by changing the vocal tract shape. 

Because the formalization of such a time-varying vocal-tract shape model is quite 

complex, in practice it is simplified to the series of concatenated lossless acoustic tubes 

with varying cross-sectional areas [5], as shown in Figure 2.3. 

This model consists of a sequence of tubes with cross-sectional areas Ak and lengths Lk. 

In practice the lengths of tubes assumed to be equal [5]. If a large amount of short tubes 

is used, then we can approach to the continuously varying cross-sectional area, but at the 

cost of more complex model. Tract model serves as a transition to the more general 

discrete-time model, also known as source-filter model, which is shown in Figure 2.4 [5]. 
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Figure 2. 3 Multitube lossless model 

 
In this model, the voice source is either a periodic pulse stream or uncorrelated white 

noise, or a combination of these. This assumption is based on the evidence from human 

anatomy that all types of sounds, which can be produced by humans, are divided into 

three general categories: voiced, unvoiced and combination of these two (2.2.1). Voiced 

signals can be modeled as a basic or fundamental frequency signal filtered by the vocal 

tract and unvoiced as a white noise also filtered by the vocal tract. Here E(z) Represents 

the excitation function, H(z) represents the transfer function, and s(n) is the output of the 

whole speech production system [5].  

Finally, we can think about vocal tract as a digital filter, which affects source signal and 

about produced sound output as a filter output. Then based on the digital filter theory 

we can extract the parameters of the system from its output.  
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Figure 2.4 Source-filter model 

 
The issues described in this chapter serve as a basis for developing speaker identification 

techniques described in the next chapter. More details about speech production system 

modeling can be found in [3,5,11,20]. 
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Chapter 3 
 
Feature Extraction 

In this chapter we discuss the most widely used way of extracting speaker discriminative 

characteristics from speech signal. 

 
3.1 Introduction 

The acoustic speech signal contains different kind of information about speaker. This 

includes “high-level” properties such as dialect, context, speaking style, emotional state 

of speaker and many others [16]. A great amount of work has been already done in trying 

to develop identification algorithms based on the methods used by humans to identify 

speaker. But these efforts are mostly impractical because of their complexity and 

difficulty in measuring the speaker discriminative properties used by humans [16]. More 

useful approach is based on the “low-level” properties of the speech signal such as pitch 

(fundamental frequency of the vocal cord vibrations), intensity, formant frequencies and 

their bandwidths, spectral correlations, short-time spectrum and others [1]. 

From the automatic speaker recognition task point of view, it is useful to think about 

speech signal as a sequence of features that characterize both the speaker as well as the 

speech. It is an important step in recognition process to extract sufficient information for 

good discrimination in a form and size, which is amenable for effective modeling [10]. 

The amount of data, generated during the speech production, is quite large while the 

essential characteristics of the speech process change relatively slowly and therefore, they 

require less data. According to these matters feature extraction is a process of reducing 

data while retaining speaker discriminative information [5,10]. 
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Based on the issues described above, we can define requirements that should be taken 

into account during selection of the appropriate speech signal characteristics or features 

[26,16]: 

• discriminate between speakers while being tolerant of intra-speaker variabilities 

• easy to measure 

• stable over time 

• occur naturally and frequently in speech 

• change little from one speaking environment to another 

• not be susceptible to mimicry. 

Practically, it is not possible to meet all of these criteria and there will be always a trade-

off between them, based on what is more important in the particular case. The speech 

wave is usually analyzed based on spectral features. There are two reasons for it. First is 

that the speech wave is reproducible by summing the sinusoidal waves with slowly 

changing amplitudes and phases. Second is that the critical features for perceiving speech 

by humans ear are mainly included in the magnitude information and the phase 

information is not usually playing a key role [9]. 

 
3.2 Short-Term Analysis 

Because of its nature, the speech signal is a slowly varying signal or quasi-stationary. It 

means that when speech is examined over a sufficiently short period of time (20-30 

milliseconds) it has quite stable acoustic characteristics [5]. It leads to the useful concept 

of describing human speech signal, called “short-term analysis”, where only a portion of 

the signal is used to extract signal features at one time. It works in the following way: 

predefined length window (usually 20-30 milliseconds) is moved along the signal with an 
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overlapping (usually 30-50% of the window length) between the adjacent frames. 

Overlapping is needed to avoid losing of information. Parts of the signal formed in such a 

way are called frames. In order to prevent an abrupt change at the end points of the 

frame, it is usually multiplied by a window function. The operation of dividing signal into 

short intervals is called windowing and such segments are called windowed frames (or 

sometime just frames). There are several window functions used in speaker recognition 

area [9], but the most popular is Hamming window function, which is described by 

the following equation: 

 

(3.1) 

where N is the size of the window or frame. A set of features extracted from one frame is 

called feature vector. Overall overview of the short-term analysis approach is represented 

in Figure 3.1. 

More details about feature selection and extraction can be found in [1,5,9,10,16,20, 26]. 
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Figure 3.1 Short-Term Analysis 
 
3.3 Cepstrum 

According to the issues described in the subchapter (2.2.2), the speech signal s(n) can be 

represented as a “quickly varying” source signal e(n) convolved with the “slowly 

varying” impulse response h(n) of the vocal tract represented as a linear filter [5]. We 

have access only to the output (speech signal) and it is often desirable to eliminate one of 

the components. Separation of the source and the filter parameters from the mixed output 

is in general difficult problem when these components are combined using not linear 

operation, but there are various techniques appropriate for components combined 

linearly. The cepstrum is representation of the signal where these two components are 
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resolved into two additive parts [5]. It is computed by taking the inverse DFT of the 

logarithm of the magnitude spectrum of the frame. This is represented in the following 

equation: 

(3.2)

 
 
Some explanation of the algorithm is therefore needed. By moving to the frequency 

domain we are changing from the convolution to the multiplication. Then by taking 

logarithm we are moving from the multiplication to the addition. That is desired division 

into additive components. Then we can apply linear operator inverse DFT, knowing that 

the transform will operate individually on these two parts and knowing what Fourier 

transform will do with quickly varying and slowly varying parts. Namely it will put them 

into different, hopefully separate parts in new, also called quefrency axis [5]. Let us look 

at the speech magnitude spectrum in Figure 3.2 [5]. 

 
Figure 3.2 Speech magnitude spectrum 

 
From the Figure 3.2 we can see that the speech magnitude spectrum is combined from 

slow and quickly varying parts. But there is still one problem: multiplication is not a 
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linear operation. We can solve it by taking logarithm from the multiplication as described 

earlier. Finally, let us look at the result of the inverse DFT in Figure 3.3 [5]. 

 

Figure 3.3 Cepstrum 
 
From this figure we can see that two components are clearly distinctive now. Cepstrum is 

explained in more details in [5,10,20]. 

 
3.4 Mel-Frequency Cepstrum Coefficients 

Mel-frequency cepstrum coefficients (MFCC) are well known features used to describe 

speech signal. They are based on the known evidence that the information carried by low-

frequency components of the speech signal is phonetically more important for humans 

than carried by high-frequency components [5]. Technique of computing MFCC is based 

on the short-term analysis, and thus from each frame a MFCC vector is computed. 

MFCC extraction is similar to the cepstrum calculation except that one special step is 

inserted, namely the frequency axis is warped according to the mel-scale. Summing up, 

the process of extracting MFCC from continuous speech is illustrated in Figure 3.4. 



 26

 
Figure 3.4 Computing of mel-cepstrum 

 
 

As described above, to place more emphasize on the low frequencies one special step 

before inverse DFT in calculation of cepstrum is inserted, namely mel-scaling. A “mel” is 

a unit of special measure or scale of perceived pitch of a tone [5]. It does not correspond 

linearly to the normal frequency; indeed it is approximately linear below 1 kHz and 

logarithmic above [5]. This approach is based on the psychophysical studies of human 

perception of the frequency content of sounds [5,20]. One useful way to create mel-

spectrum is to use a filter bank, one filter for each desired mel-frequency component. 

Every filter in this bank has triangular band pass frequency response. Such filters 

compute the average spectrum around each center frequency with increasing bandwidths, 

as displayed in Figure 3.5.  

This filter bank is applied in frequency domain and therefore, it simply amounts to taking 

these triangular filters on the spectrum. In practice the last step of taking inverse DFT is 

replaced by taking discrete cosine transform (DCT) for computational efficiency. 
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Figure 3.5 Triangular filters used to compute mel-cepstrum 
 
The number of resulting mel-frequency cepstrum coefficients is practically chosen 

relatively low, in the order of 12 to 20 coefficients. The zeroth coefficient is usually 

dropped out because it represents the average logenergy of the frame and carries only a 

little speaker specific information.  

 
3.5 MFCC Features 

• Compact – The same information can be represented with fewer parameters. 

High-order cepstra can be discarded since they represent high-frequency 

variations in log-spectrum. 
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• Uncorrelated – The cepstral coefficients are approximately uncorrelated. In fact, 

for Speech signals, DCT (Discrete Cosine Transform is an approximation that 

makes it uncorrelated) 

• Gain Independent – Only the zeroth cepstral value (a function of power) is 

dependent on energy (power) of the signal 

 

3.6 Conclusion 

Cepstrum representation of the speech signal has shown to be useful in practice. 

However, it is not without drawbacks. The main disadvantage of the cepstrum is that it is 

quite sensitive to the environment and noise [5]. Therefore, in practice speech signal is 

usually preprocessed to achieve more precise representation. This process usually 

includes noise removal [5,23] and pre-emphasis [5,28]. One approach for separating 

speaker information and environment can be found in [23]. More details about cepstrum 

and other feature extraction methods can be found in [1,5,9,11,10,20,21,22,26]. 
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Chapter 4 

Classification and Modeling 

In this chapter we discuss techniques for modeling of features extracted from the speech 

signal, and methods, which are allowing computing dissimilarity between speech 

samples.  

4.1 Introduction 

In the previous chapter we were discussing so called measurement step in the speaker 

identification where a set of speaker discriminative characteristics is extracted from the 

speech signal. In this chapter, we go through the next step called classification, which is a 

decision making process of determining the author of a given speech signal based on the 

previously stored or learned information [1]. The methods used in classification could be 

categorized as Geometric, Topological and probabilistic. The three methods are best 

illustrated when the test and reference patterns are viewed as points in a multi-

dimensional space. The methods are explained with an example in a 2-dimensional space 

as in Fig 4.1 
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Figure 4.1  2-dimensional space of training vectors 

Geometric method divides space into regions (with each class in one region) with 

boundaries. These boundaries are defined by Linear Discriminant Functions. In Fig.2 T 

is classified as R1, because it lies on the same side of the linear discriminant function 

(LDF) as R1.  

In topological method, one, or more points in the space represent each class. The distance 

between the test vector point and each class is determined and the test vector is assigned 

to the class with the shortest distance. T is classified as R1 because the distance form T to 

R1 is less than distance to R2. 

In probabilistic method a probability density function is defined for each point in the 

space. The test pattern is assigned to the class, which has the greatest PDF at that point. T 
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is classified as R1 because the probability density function PDF1 at T is greater than 

PDF2. 

4.2 Nearest Neighbour 

As the name suggests the test pattern is assigned to the nearest reference pattern in an 

verification/Identification problem. Hence this is a topological method. In verification, 

the distance between the test vector and the speaker vector is determined and if it is 

within a threshold then the claim is verified; else it is rejected [15] 

 

4.3 Vector Quantization 

Vector quantization (VQ) is a process of mapping vectors from a vector space to a finite 

number of regions in that space. These regions are called clusters and represented by 

their central vectors or centroids. A set of centroids, which represents the whole vector 

space, is called a codebook. In speaker identification, VQ is applied on the set of feature 

vectors extracted from the speech sample and as a result, the speaker codebook is 

generated. Such codebook has a significantly smaller size than extracted vector set and 

referred as a speaker model. Actually, there is some disagreement in the literature about 

approach used in VQ. Some authors [3] consider it as a template matching approach 

because VQ ignores all temporal variations and simply uses global averages (centroids). 

Other authors [13,16] consider it as a stochastic or probabilistic method, because VQ uses 

centroids to estimate the modes of a probability distribution [10]. Theoretically it is 

possible that every cluster, defined by its centroid, models particular component of the 

speech. But practically, however, VQ creates unrealistically clusters with rigid 

boundaries in a sense that every vector belongs to one and only one cluster. 
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Mathematically a VQ task is defined as follows: given a set of feature vectors, find a 

partitioning of the feature vector space into the predefined 30 number of regions, which 

do not overlap with each other and added together form the whole feature vector space. 

Every vector inside such region is represented by the corresponding centroid [25]. The 

process of VQ for two speakers is represented in Figure 4.2. 

 
Figure 4.2 Vector quantization of two speakers 

 
 
There are two important design issues in VQ: the method for generating the codebook 

and codebook size [12]. Known clustering algorithms for codebook generation are [12]: 

• Generalized Lloyd algorithm (GLA), 

• Self-organizing maps (SOM), 

• Pairwise nearest neighbor (PNN), 

• Iterative splitting technique (SPLIT), 
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• Randomized local search (RLS). 

According to [12], iterative splitting technique [7] should be used when the running time 

is important but RLS [8] is simpler to implement and generates better codebooks in the 

case of speaker identification task. Codebook size is a trade-off between running time and 

identification accuracy. With large size, identification accuracy is high but at the cost of 

running time and vice versa [12]. Experimental result obtained in [12] is that saturation 

point choice is 64 vectors in codebook. The quantization distortion (quality of 

quantization) is usually computed as the sum of squared distances between vector and its 

representative (centroid) [8]. The well-known distance measures are Euclidean, city block 

distance, weighted Euclidean and Mahalanobis [3,17]. They are represented in the 

following equations: 

(4.1)

 

where x and y are multi-dimensional feature vectors and D is a weighting matrix [3,17]. 

When D is a covariance matrix weighted Euclidean distance also called Mahalanobis 

distance [3,17]. A set of observation was made in [17] concerning the choice of distance 

for speaker identification task. Their conclusion is that weighted Euclidean distance 
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where D is a diagonal matrix and consists of diagonal elements of covariance matrix is 

more appropriate, in a sense that it provides more accurate identification result. The 

reason for such result is that because of their nature not all components in feature vectors 

are equally important [4] and weighted distance might give more precise result.  

During the matching a matching score is computed between extracted feature vectors and 

every speaker codebook enrolled in the system. Commonly it is done as a partitioning 

extracted feature vectors, using centroids from speaker codebook, and calculating 

matching score as a quantization distortion. Another choice for matching score is mean 

squared error (MSE), which is computed as the sum of the squared distances between 

the vector and nearest centroid divided by number of vectors extracted from the speech 

sample. MSE formula is represented in the following: 

 

(4.2)

 
where X is a set of N extracted feature vectors, C is a speaker codebook, xi  

are feature vectors, ci are codebook centroids and d is any of distance functions. 

However, these methods are not adapted to the speaker identification. More realistic 

approaches are proposed in [13], which are based on the assigning of weights to the code 

vectors according to their discrimination power or the correlations between speaker 

models in the database. 
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4.4 Decision 

The next step after computing of matching scores for every speaker model enrolled in the 

system is the process of assigning the exact classification mark for the input speech. This 

process depends on the selected matching and modeling algorithms. In template 

matching, decision is based on the computed distances, whereas in stochastic matching it 

is based on the computed probabilities. This process is represented in Figure 4.3. 

 

Figure 4.3 Decision process 
 
Practically, decision process is not so simple and for example for so called open-set 

identification problem the answer might be that input speech signal does not belong to 

any of the enrolled speaker models. More details about decision process can be found in 

[3,10]. 

 
4.5 Alternatives and Conclusions 

The issues described in this chapter actually fall into the more general topic, namely 

pattern recognition, which aims to classify object of interest into one of a number of 
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classes [27]. Therefore, the methods applicable for pattern recognition are applicable for 

speaker identification as well. Nearest Neighbor and VQ are the most well studied 

techniques for speaker verification. Both of these methods aim to produce reasonable 

model for high accuracy verification. However, VQ works mostly as a quantifier rather 

than modeler and therefore, in practice it produces reduced number of feature vectors 

rather than speaker model [6].  

 

4.7 Remarks 

In chapters 2,4,4 we were discussing about general techniques used in speaker 

verification area. These methods serve as a basis for future investigations and ideas 

behind them still lead researchers to the new discoveries. Nowadays it is obvious that it is 

possible to recognize speakers from their voices using computers, at least under 

laboratory environments and within small speaker populations. Nowadays research in 

speaker verification area is mostly concentrated on the developing fast and robust 

algorithms, which can work in difficult, from the identification task point of view, 

conditions, such as in noise or using poor environments. The motivation for future work 

is driven by practical and economical applications of automatic speaker recognition. In 

the next chapters we judge these basic techniques from the real-time speaker 

identification task point of view and also propose few solutions for this kind of 

identification problems.  



 37

Chapter 5 
 
Approaches 

In this Chapter we shall see in brief the approaches that are employed in the process of 

speaker verification. 

 

5.1 Polychotomy 

Consider a multiple class problem with a small number of classes where one can observe 

many instances of each class.  This is an easy and a valid procedure, but is limited to 

classes that have substantial number of instances available. However, without knowing 

the geometrical distribution of the unseen classes (populations), the true error of the 

entire population (universe) cannot be drawn from the error estimate of the sample 

population. Hence this approach remains statistically non-inferential. Details of this 

approach are found in [14] 
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Figure 5.1 Polychotmy, Multiple class Problem. Statistically non-inferential 

 
5.2 Dichotomy 

Consider a many class problem where the number of classes is too large to be observed.  

The classification technique as mentioned in the previous paragraph cannot be applied to 

establish individuality because the number of classes is too large or unspecified. Many 

pattern identification problems especially in forensic sciences for establishing 

individuality fall under this category of many class problems. 

The Identification Model is claimed to be not statistically inferable for a many class 

problem. In a many class problem, a population is all the biometric data samples of each 

person and is a very large or unspecified number. Samples from every single individual 

must be observed so that a conclusion could be drawn. This is a tedious and usually an 

impossible task. To draw statistical inference, the knowledge of the geometry of the 
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unseen classes is a basic requirement. Since there are unseen classes, the error estimate of 

a sample population cannot infer the true error estimate of the entire population. 

The alternative approach to be taken is that of transforming the many class problem, into 

a dichotomy by taking the “distance” two samples of the same class and those of two 

different classes [4]. This model allows inferential classification although there is no 

requirement for all the classes to be observed. In this model, two patterns are categorized 

into only one of the two classes; they either belongs to the same class or are from two 

different classes.  

Given two biometric data samples, the distance between the two samples is computed 

first. This distance value is used as data to be classified as positive or negative. Positive 

value of distance is intra-variation, within a person or identity and negative value is inter-

variation, between different people or non-identity. 

 

Figure 5.2 Dichotomy for a particular Speaker X 
 

Details of this approach are found in [26,18,4] 
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Chapter 6 
 
Experiment 

In this Chapter, we discuss in detail the experiment that we performed using the 

Dichotomy Approach as discussed in [5.2]. The Experiment involved collecting voice 

data from subjects, Segmentation of collected data, Visual representation of collected 

data, Feature Extraction, Nearest Neighbor Experiment results, Artificial Neural Network 

Experiment Results. 

 

6.1 Data Collection 

Speech samples were collected from 10 subjects. Each subject was asked to repeat the 

utterance “MY NAME IS …” 10 times normally and 5 times in a disguised manner. In 

total there are therefore 100 samples of normal speech and 50 samples of disguised 

speech. The speech samples were collected over a standard microphone (Cyber Acoustics 

OEM AC-200 Stereo Speech Headset and Microphone) attached to a PC (Dell 

DimensionTM 2400, with a Pentium IV Processor and 256MB Ram) running the Windows 

XP Operating System. The software used to collect the speech is “Sound Recorder” 

(Microsoft Sound Recorder), which comes as the part of the aforesaid Operating System. 

A database of the speakers and the speech samples was implemented in MySQL- an open 

source Relational Database Managements System. The database included two tables, one 

for holding information about the speaker and one for holding information about the 

sample provided. The Entity Relationship Diagram is as shown in Figure 6.1. 
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TblSpeaker 

Attribute Type (size) 

SPEAKER_ID Int (11) (primary) 

NAME Varchar (50) 

DOB Date 

SEX Char (1) 
  

TblSample 

Attribute Type (size) 

SAMPLE_ID Int (11) (primary) 

SPEAKER_ID Int (11) (foreign) 

FILE_NAME Varchar (255) 

DISGUISED_FLAG Char (1) 

DISGUISED_MEANS Char (1) 

QUALITY Char (1) 
  

Figure 6.1 ERD of the Speech Data 

 

where, in the tblSample, FILE_NAME attribute contains the entire path and the name of 

the sample wave file, DISGUISED_FLAG attribute when set means that the sample is a 

disguised sample and the DISGUISED_MEANS attribute gives information about the 

manner in which the speaker tried to disguise the voice.  

The speakers used one of the following standard means to disguise their samples. 

• Increase in Pitch 

• Decrease in Pitch 

• Talk at a different speed 

• Spoke far away from the microphone 

• Induced an accent in the sample 
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6.2 Segmentation 

The segmentation problem was to isolate that part of the speech utterance, which is 

common to all of the collected samples. The common portion was from the beginning of 

the utterance, the start of the [9] sound of “My”, to the end of the high-frequency [28] 

sound in the word “is” before the person’s name. Hence, the segmented part of the speech 

consisted of just the phrase “My name is” which was common to all of the speech 

samples collected. 

 

6.2.1 Tools used for Segmentation 

The tool used was Free Wave Editor (Editionv3.0, Code-it Software), a freeware 

application downloaded from the internet [29]. The entire package was downloaded as a 

zip file, unzipped and installed on a PC. The way to launch the Wave Editor Application 

was to open Free Wave Editor, the executable program. The advantage of using this 

application was that one could view the waveform in both the time, as Time Waveform, as 

well as in the frequency domain as Spectrograph. The Spectrograph provides a much 

better view for manual segmentation of the waveform because it clearly shows the 

different bands that indicate the start of the utterance as well as the high frequency [28] 

sound produced by “is” in the input sample sentence “My name is”. The Application 

window is shown in Figure 6.2. 
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Figure 6.2 Free Wave Editor Window 

 
The application has an open command that opens a dialogue box to take the input .wav 

file for segmentation (Figure 6.2) An example loaded .wav file, in the Time domain is as 

shown in Figure 6.3. 

 

Figure 6.3. Free Wave Editor with a loaded waveform in time domain 
 
 
The Spectrograph view of the same loaded file can be obtained by changing the view 

settings. The spectrographic view is shown in Fig. 6.4 
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Figure 6.4. Free Wave Editor showing the Waveform in Frequency Domain 

(Spectrograph) 
 
Segmentation takes place by left clicking at the start of the phrase to get a dotted yellow 

line and right clicking at the end of the word “is” to get a shaded blue area between the 

lines ( Figure 6.5). These lines can be adjusted after playing the selected portion to get the 

required segmentation before saving the selected part as a separate .wav file. 

 

Figure 6.5 Free Wave Editor showing the Segmented Portion of the Waveform 
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The front and the back boundaries can be adjusted by listening to that part of the 

waveform by using the play button. Once the segmentation is completed, the segmented 

part of the .wav file can be saved as shown in Figure 6.6. 

 

Figure 6.6. Free Wave Editor saving the Segmented waveform as a separate file 
 
Now the selected region is saved as a new file and the process of segmentation is 

complete. The new file is saved in the appropriate place and its location is changed in the 

database. This file has the required part of the wave sample, i.e. “My name is”, which is 

common to all the samples. These Segmented new files are used as input for Feature 

Extraction. 

 
6.3 Visualization of Spectrographs 

The Spectrographs provide a very nice visualization of the audio data. Visualization is 

important as the human eye has a much higher recognition of pattern. Also the 

Spectrographs can be easily printed on a sheet of paper and easily viewed. The Figure 6.7 

shows the 10 audio samples, collected from 3 different subjects. 
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Figure 6.7. Spectrographs of the samples collected from three different speakers 
 
From the visualization, it is clearly visible that the Female Subjects have higher pitch as 

against the male subject.  

Samples of Speaker 1 
(Female) 

Sample of Speaker 2 
(Female) 

Sample of Speaker 3 
(Male) 
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6.4 Variable length of the audio data. 

One of the key issues that exist in any speaker related experiment is, there is a clearly 

marked difference in the time taken for the utterance of a sentence, even when repeated 

the same subject. Figure 6.8 shows two samples of same utterance (“MY NAME IS”) 

collected from the same subject and the different time taken by two samples. 

 
 

 
 

Figure 6.8 Two samples of same speaker for same utterance taking different time 
 
 
6.5 Normalization 

We performed two different normalizations to compensate for the variable length of the 

speech data. The first was to take the Means and Variances along the entire x-axis to 

arrive at a fixed number of feature points in the feature extraction. The second was to 

groups the similar utterances of phonemes into 7 groups. The input utterance (“My Name 

is ”) was divided to seven phonemes that form the utterance. The division is tabulated 

below in Figure 6.9. Figure 6.10 shows the Spectrograph divided to 7 parts according to 

the utterance of the Phonemes. 
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MY NAME IS 
m ai n ae m i z 

Figure 6.9 Table showing the Phonemes in the utterance 

 

 

Figure 6.10 Spectrograph broken into 7 parts based on Phonemes 

 
6.6 Feature Extraction 

In our experiments, we used feature vectors composed from 12 lowest mel-frequency 

cepstral coefficients (MFCC) computed using 40 mel-spaced filters. 13 of the filters were 

spaced linearly at 133.33 Hz between central frequencies and 27 filters placed 

logarithmically, separated by a factor of 1.0711703 in frequency. The 0-th coefficient 

was excluded, because it carries a little of speaker specific information. Analysis frame 

was windowed by 30 milliseconds Hamming window with 10 milliseconds overlapping. 

The signal was pre-emphasized by the filter H(z)=1-0.97·z-1 and silence frame were 

removed before the feature extraction. All sample durations in these experiments refer to 

the silence-removed speech. Figure 6.11 shows the filter placements. 
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Figure 6.11 Filter placements 

The following figure 6.12 shows the frequency response of the forty filters. 

 

Figure 6.12 Frequency Response of the forty filters used in the experiment. 

The features were extracted using the Speech Processing Toolbox written in Matlab for 

.wav files.[2] 
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6.7 Feature Vector Analysis 

There were fixed number of frequency bands, 13 of them representing the 13 Cepstral 

Coefficients obtained from MFCC toolbox. The number of time bands were varying, 

since the hamming window was of fixed size and due to the varying lengths of the voice 

samples, the time bands were varying for each sample. 

 

6.7.1 Normalization 

Two different normalizations were performed on the obtained features and the results of 

both have been reported.  

 

6.7.1.1 Normalization, 26 features 

The entire wave file was normalized by time domain by taking the means and variances 

along each of the frequency bands. Since there were 13 frequency bands, this 

normalization resulted in 13 means and 13 variances per sample, leading to 26 features in 

all per sample. 

 

6.7.1.2 Normalization, 91 Features 

Each input wave file was divided into 7 parts as shown in Figure 6.10 and 13 bands were 

obtained for each of these 7 parts. Taking only the means across each of the 13 bands for 

all 7 parts results in 91 features per sample as shown in the equation 6.1 

13 bands * 7 parts = 91 Features (6.1) 
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6.7.1.3 Normalization, 84 Features 

The 1st Cepstra is removed from the analysis as it contains a powerful Energy 

Component. This results in 12 frequency bands and 7 parts according to phonemes for 

each file amounting to 84 features as shown in the equation 6.2 

12 bands * 7 parts = 84 Features (6.2) 

 

 
6.7.2 Distance Computation 

Each of the 10 subjects in consideration gave 10 voice samples each. All of these 100 

samples have been run through segmentation and MFCC extraction phase. 

 

6.7.2.1 Nearest Neighbor 

The 10 samples from each speaker were divided into 2 parts of 5 each. One part was used 

as training set to calculate the mean Eucledian distance for the subject. The other part of 

5 was used to test the closeness of the Eucledian Distance of each sample to the mean. 

This experiment was performed on all of the normalizations mentioned in [5.7.1.1, 

6.7.1.2 and 6.7.1.3] 

 

6.7.2.3 Dichotmizer 

Artificial Neural Network was used because it is equivalent to multivariate statistical 

Analysis. Samples of both classes are divided into groups of 225 in size. One pair set is 

used as training set and the other set is used as a validation set and the third is used as 

testing set. 
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Using the feature distance values, the Artificial Neural Network is trained using a back-

propagation algorithm. All the MFCC features are generated from the voice samples as 

discussed earlier and the distance values between two voice samples x and y for each 

feature are fed into the Artificial Neural Network. 

The Equation 6.4 shows the computes the distance obtained. The figure 6.13 shows the 

Artificial Neural Network used. 

 

Figure 6.13 Artificial Neural Network used for 26 features 

 

The absolute distance between features of a sample with all the other samples of the same 

subject (intra-class distance) and with all the other samples of other subjects (inter-class 

distance) was calculated 

 (10*9)/2   =45 intra class distance per subject 
      45 * 10 = 450 intra class distances for 10 subjects (6.2) 

A total of 450 intra-class distances and 4500 inter-class distances were obtained. These 

were divided into groups of 225 each. So there were 2 groups of 225 intra-class distances, 

one for training and one for testing purposes and 20 groups of 225 inter-class distances. 
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6.8 Results 

Two basics experiments (Nearest neighbor and Dichotmizer) were performed on different 

normalizations. The table 6.1 shows the results of Nearest Neighbor Experiment 

Normalized Features Error Accuracy 
26 Features 32% 68% 
91 Features 25% 75% 
84 Features 17% 83% 

Table 6.1 Results of Nearest neighbor Experiment 

 

Table 6.2 shows the results of the Dichotomizer ANN Experiment results 

Normalized 
Features 

Hidden 
Units Type I Error Type II Error Accuracy 

26 Features 10 3% 20% 77% 
91 Features 32 0% 11% 89% 
84 Features 28 0% 6% 94% 

Table 6.2 Results of Dichotomizer Experiment 

 

Four samples were removed from the data due to quality issues and the 84 Feature 

experiment was conducted for Dichotmizer ANN and the results obtained as shown in 

table 6.3. The reasons for removal included poor recording quality of samples and unduly 

long duration of the sample over other samples collected from the same subject. 

Normalized Features Type I Error Type II Error Accuracy 
84 Features 0% 2% 98% 

Table 6.3 Results of Dichotomizer Experiment with four bad quality samples 

removed 

6.9 Conclusion 

A methodology for establishing the discriminative power of biometric with respect to 

speech data has been described. A multiple category problem is viewed as a two-category 

problem by defining the distance and taking those values as positive and negative data. 
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This paradigm shift from polychotomizer to dichotomizer makes individuality problem a 

simple one. An experiment to show the individuality of voice by collecting samples from 

people was performed. Given two randomly selected voice samples, we can determine 

whether the same person spoke the two samples or not. A measure of confidence is 

associated with individuality. Using 26 feature distance values, we trained an Artificial 

neural network and obtained 77% overall correctness. The overall correctness reached a 

98% when used with 84 features and removing the input with bad quality data. Recruiting 

a large number of subjects representative of the population is crucial in order to infer the 

results to the entire population. Collecting multiple biometric data from each subject is 

necessary to obtain the intra person distance data. Various signal-processing techniques 

are used to extract features from a given modality. Depending on feature measurement 

type, suitable distance measures are used to transform the feature space into feature 

distance space.  
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Chapter 7 

This chapter consists of future work to be done and the list of references 

 

Future Work 

The results obtained from this experiment can be improved by performing various 

different measures on the extracted features. One of the different ways to perform a 

different distance measure is to divide the spectrograph into a fixed number of columns in 

the time domain and calculating the average of those features to obtain distance 

measures. The other distant measures could be to programmatically calculate the average 

of features according to the occurrence of the standard syllables, 9 that are present in the 

collected sample and run the training and testing procedures again. 

We have also recorded 5 disguised samples from each subject and along with the means 

each subject used for each of the disguised sample. Experiments could be conducted to 

verify the speaker with the disguised as well as regular samples. 
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