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Abstract—The overall goal of this study was to determine
whether the presence of Virtual Reality (VR) affects brain signal-
ing as measured with an electroencephalograph (EEG) because
this potentially could lead to a new way of accessing and utilizing
the EEG biometric. There has been previous Human-Computer
Interaction (HCI) and Brain-Computer Interface (BCI) research
using EEG to collect brain signals and Alibaba has a digital
marketplace that uses VR, but the brain signals relationship to
VR is under-researched. Our research required a detailed set-up
to capture valid EEG data and demonstrates the requirements
needed to accomplish this initial research stage. Surface EEG
signals were measured during a resting state, as well as an
active cognitive state both with and without VR. A comparison
of resting and active data samples will determine if the signal
behavior is unique to VR stimuli.

Index Terms—Virtual Reality, EEG, Cognitive, Brain-
Computer Interface, Biometric, Human-Computer Interaction,
Alibaba

I. INTRODUCTION

For security purposes, it is essential to be able to au-
thenticate that someone is who they claim to be [1]. There
are, however, vulnerabilities to security systems based on
user names and passwords or tokens (tokens are physical
security objects such as a smart card or secure ID) [1].
Passwords can be hacked, and tokens can be lost [1]. Biometric
authentication, such as fingerprint scanning, has become a
popular security alternative to user name and passwords for
security of mobile devices because of ease of use [2]. Table
I identifies types of biometrics and provides categorically
ranked columns to the right. The EEG rankings were added
to the table [3]. This table shows that DNA scores high
in several categories, including performance but low in the
categories of acceptance by users, while signatures score low
in performance but high in user acceptance [4]. But, like
passwords and security tokens, biometric data can also be
stolen. In 2015, the database containing the fingerprints of 5.6
million U.S. federal employees was breached [5]. The human
body has a limited number of biometrics such as retinas and
fingerprints [2] that once compromised remain permanently
compromised [6].

Brain-based biometric authentication has the potential to
change the way humans interact with their electronic equip-
ment, if computers can authenticate a user’s brain signals [7].
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TABLE I: Comparison of various biometric technologies with
ratings High (H), Medium (M) and Low (L) modified by
adding EEG to the original table [4]

The brain can provide an unlimited number of passwords [2]
and users would no longer need to enter one via a peripheral
device such as a touch screen, keypad or speech recognition
system. The process of biometric authentication is shown in
Figure 1 on page 2. The top of the figure shows EEG (and
possibly VR) biometric data being collected, extracted and
stored. The bottom of the figure shows a live scan using the
same parameters being compared to the stored biometric data
for verification. In this example, the verified data is sent to
storage to provide an audit trail and to business applications
[8]. In short, biometric authentication methods match an
individual’s genetic traits or behavioral characteristics with
data that have previously been captured, in the database or
on a token [9].

EEG signals are attractive for biometric authentication be-
cause they are nearly impossible to fake, are unique, and



Fig. 1: Biometric process [8].

can be obtained with a non-invasive surface scan. An EEG
signal detects the electronic field generated by the firing of
neurons in the brain. Advancements in EEG make it easy to
find repeatable and stable brain signal patterns that through
machine learning can be used for identity verification [1].
Referring to Figure 1, an EEG-based biometric can be set
by showing the individual three images [2]. If the EEG-based
biometric data is stolen, the biometric can be reset with another
three image biometric recording session [2]. Notably, every
brain responds differently to the same set of images [10].

Figure 2 shows a model of an online BCI as a closed
loop. An EEG collects signals, patterns and cognitive state
measurements, which are sent to a preprocessing stage where
machine learning is used to extract features and make a
classification. At this stage machine learning takes data, such
as biometric, cognitive states and behavior patterns, and output
a command translation, which is sent to the interface and back
to the user [11]. Feedback from an EEG-Based measurement
could be a biometric authentication. A potential application of
the current research might be with a company such as Alibaba
where shoppers select an item in a VR environment by looking
at it for a long enough time and the moving their head to
make transactions A BCI could be a brain-based password
that secures payment information stored on a VR headset to
prevent unauthorized purchases [2]. A BCI could be a brain-
based password that secures payment information stored on a
VR headset to prevent unauthorized purchases [2].

II. LITERATURE REVIEW

The lead researchers for this study have published research
on BCI and VR [11]. At their suggestion, existing datasets
[12] [13] were reviewed for this study.

The results from the EEG and VR relationship have been
shown to vary depending on the age of the person as it
relates to the development of the brain frontal cortex [14] and
could be used for biometric authentication. Specifically, the
development of the frontal cortex in relation to arousing and
non-interactive VR as measured by EEG and EEG + VR as
the brain continues to develop to adult status [14].

Existing research supports concepts of this study in that
assessing memory load using neural network pattern recog-
nition can be done successfully using EEG equipment [15].

Fig. 2: Model of the online BCI redrawn for this study [11].

Moreover, it has been found that EEG provides a non-muscular
chain that allows for the successful connection of BCIs to
the outside world [16]. A study by Gevins [15] examined
the working memory load during computer-based tasks with
EEG methods. A distinctive network pattern of computer-
based work was recognized by applying it to EEG spectral
features [15]. The study involved participants performing high,
moderate and low load working memory tasks and found more
than 80 percent of their test data, segments associated with a
moderate load could be discriminated from a high-load or low-
load data segments [15]. The researchers found that mental
effort increased with task difficulty and could be associated
with the cortical resources the brain allocated to the task at
hand [15].

A survey of signal processing algorithms conducted by
Bashashate [16] sought to find the key electronic brain signal
processing components in BCI, what signal processing algo-
rithms have been used in BCI, and which signal processing
techniques have received more attention, found that BCIs aim
at providing a non-muscular channel for sending commands to
the external world using the EEG activity or other electrophys-
iological measures of brain function [16]. Researchers noted
that the methods used to process brain signals are a strong
factor in the successful operation of a BCI system [16].

Brain signal biometrics could be used with other authen-
tication methods in a multi-factor authentication system. A
multi-factor biometric authenticating device generates error
correction by sampling multiple biometrics then generating
a secret encryption key for encrypting user data [17]. There
is already research into a continuous function gate to protect
users involving biometric methods such as thumbprint, voice
print, digital photos and other such stored identifiers [18].

Other research into biometrics has been done using EEG
to collect brain signals from 8-channels [7]. That research
showed visual stimuli collected using EEG can produce a high-
quality brain-based biometric for authentication [7]. VR is an
interactive computer-generated experience, often with audio
or visual stimuli. There are side effects to VR; for example,
driving simulations can result in motion sickness [19].



Our research using VR will utilize a state recognition factor.
Emotion recognition systems using brain and peripheral sig-
nals improve the results of EEG in the correlation dimension
[20]. Control over the cognitive state of the user using the
Cognitive Event-RElated Biometric REcognition (CEREBRE)
protocol allowed for very high accuracy for event-related
potential (ERP) biometric identification [10].

There is research-using EEG as a handicap aid and for
medical signaling [21]. A study [22] examining the VR
environment for evaluation of a daily living in brain injury
rehabilitation found that VR was a reliable method of col-
lecting information from persons that had experience with
a traumatic brain injury [22]. This suggest that brain-based
biometric authentication could also be utilized by persons with
injuries of the brain.

III. METHODOLOGY

Data collection and storage was designed in accordance
to IRB requirements [23] for human participants. Participant
data was coded to protect patient confidentiality and stored
securely. All researchers completed IRB required courses and
received Collaborative Institutional Training Initiative (CITI)
[24] Certification. The experiment was thoroughly explained
to, and informed consent obtained from, each participant.

Questionnaires were provided in order to garner basic demo-
graphic information (age, gender, handedness, vision [normal,
corrected to normal, or acceptable non-corrected], education
level). Additional questions were asked in order to identify
factors, which can affect neuronal activity in the brain and
may potentially produce outliers in the data. Participants were
asked to self-report (today, regularly, never, or yesterday)
on their consumption of alcohol, coffee, tea, tobacco, and
other drugs/medicines. They were also asked about having
attentional, neurologic, or psychiatric conditions, as well as
how many hours of sleep they had the night before, their
normal hours of sleep, and level of alertness (high, medium,
or low). Participants were also asked to consent to distribute
their physiological recordings for this research.

A. Participants

Sixteen people participated in this study (age range 20-35;
6 female, 10 male; 11 right-handed, 5 left-handed). All of the
participants had normal or corrected to normal vision (6 wear
glasses, 2 wear contacts) and a college degree (4 Bachelor,
11 Master, 1 PhD). Most participants drink coffee (4 today,
6 regularly, 4 regularly/today, 5 never, 3 occasionally/not
today, 1 yesterday), and more drink black or green tea (10
today/regularly, 3 occasionally/not today, 3 never). All were
well rested (mean of 6.7 hours of sleep the night before; mean
of 7.5 normal number of sleep hours). Participants reported
feeling alert during the experiment (7 high, 8 medium, 1 low).

B. Materials

This study used an OpenBCI EEG Ultracortex Mark head-
set. The Ultracortex is an open-source 3D-printable headset
intended to work with the OpenBCI system. Eight electrodes

provide eight channels on the OpenGUI screen. The headset
is capable of recording research grade brain activity (EEG).
The OpenBCI USB Dongle and WiFi shield communicate via
WiFi and Bluetooth with the RFDuino on the Cyton board.
The dongle establishes a serial connection with the on-board
FTDI computer chip to the OpenBCI GUI. Both the device and
the dongle need to be connected to the same WiFi network.
VeeR Cardboard is used to play a VR video.

OpenBCI GUI software was used for collecting data for
the VR and the non-VR condition. MNE-Python, NumPy, and
Pandas were utilized for analyzing the data with reprocessing
using machine learning techniques. Figure 3 shows an example
of live streaming data.

Fig. 3: OpenBCI Python GUI [25].

C. Experimental Procedure

The procedure was explained to each test participant, the
OpenBCI headset was placed on the participant’s head and
researchers confirmed that all 8-channel sensors were placed
properly so that there were no errors in the data collection
mechanism. Once comfortable, participants were instructed
to rest for 60 seconds, taking deep breaths for 30 seconds
with their eyes closed and for 30 seconds their eyes open.
After the resting period the participant was either given the
Google Cardboard for VR content or the content was provided
on a laptop for non-VR. In this experiment, The Pull video
was selected from the VeeR VR global VR/360 content
community website. The VR/non-VR session, content was
played for exactly two minutes with the same video and the
data streaming provided using the OpenBCI GUI application.
Figure 4 and Figure 5 show how the VR/non-VR sessions
were conducted. Once data streaming stopped, a text file was
generated containing the data of 8-channels in float (converted
from analog signals) along with time stamps in milliseconds
(ms). The difference between VR and non-VR is not apparent
just by looking at the text files as can be seen comparing Figure
6 to Figure 7. Both figures were collected for this study and



provide an example of why machine learning was required to
process the data.

Fig. 4: VR Experiment Session.

Fig. 5: Non-VR Experiment Session.

Fig. 6: EEG + VR data collection sample showing the index
number, the 8-channels and the time stamps.

Fig. 7: EEG + non-VR data collection sample from the same
participant.

D. Pre-processing

The data collected resulted in 32 text files (1 VR and 1
non-VR file per participant). Figure 8 is a custom work-
flow diagram created to show the stages of pre-processing
beginning with the data collected in RAW form. The RAW
channels are depicted in Figure 9. Three columns of auxiliary
data and a time-stamp column were removed leaving the
columns containing the 8-channel EEG signals of participants.

The data were then pre-processed. First, bad channels (i.e.
those not working properly) were removed using MNE (see
Figure 10 and Table II on page 5), as were artifacts from eye
and muscle movement.

A notch filter was applied to remove power line noise from
the data. The visualization of channels after applying notch

Fig. 8: Custom pre-processing work-flow.

Fig. 9: RAW Channel Visualization.



Fig. 10: Bad channel removal visualization for some partic-
ipants - 1st row for VR Session and 2nd row for a non-VR
Session.

TABLE II: Good channels (
√

) and bad channels (X) for all
participants

filter can be found in Figure 11. The data were then re-sampled
at 128Hz and the power spectral density of the re-sampled data
were plotted to get a better sense of frequency vs power. Figure
12 shows that channels have been re-sampled at 128Hz.

Next, a dual (low-pass and high-pass) bandpass filter was
used to attenuate the 4-45Hz frequency range, converting
signals to a low frequency resulting in the RAW data being
turned into pre-processed data. The power spectral density of
the processed data can be found in Figure 13.

Fig. 11: Applying a notch filter on RAW data to remove any
power line noise.

Fig. 12: Re-sampled channels to 128Hz.

Fig. 13: Applying a bandpass filter to attenuate signals in the
range of 4-45Hz.



IV. CONCLUSION

In conclusion, our research focused on data collection
methods, ensuring quality and consistency. Our research also
focused on pre-processing the data to make it ready for EEG
analysis. Every participant’s EEG channels are distinctive as
shown in Table II.

V. FUTURE WORK

If measurable differences are found in comparing the VR
and non-VR data collected in this study, then one possible
application to HCI and BCI development is to improve the
feasibility of using EEG-based authentication systems. Once
completed, this study’s machine learning analysis can be
compared to other EEG collections, such as the Dataset
For Emotion Analysis Using Physiological and Audiovisual
Signals (DEAP) [12] and the EEG Motor Movement/Imagery
Dataset [13].

Lack of sleep has been linked to the buildup of plaques in
the brain which is a pathologic hallmark of Alzheimer’s dis-
ease [26]. Another cause for the buildup of these Alzheimer’s
type plaques in the brain is cramming for exams [27]. Studies
using the same stimulus over time could be able to detect
detrimental brain changes before there are overt symptoms
[26].

Brain-based password research found that biometric authen-
tication could be done using as few as three EEG sensors
with an application of smart mobile head wear [2]. This uses
visual stimuli to produce reliable brain responses [6], with
unique features in the mobile headset to analyze those brain
responses [6]. This then divulges the biometric credential,
cancels the credential and resets a new brain password with
the mobile platform [6]. A lightweight headset such as this
which uses three sensors may find greater user acceptance [2]
than other high-performance biometrics. Thus, future research
might look to reduce the size while simultaneously increasing
the performance of biometric authenticating devices.

Our study uses inexpensive VR and software that offers a
mild VR experience. VR also known as augmented reality
(AR) primarily uses visual and sound as sensory stimuli. An
example of a more expensive VR product is the Looxid Labs
prototype LooxidVR which is being marketed as an EEG and
VR research tool [28]. The LooxidVR, shown in Figure 14,
is a 6-channel EEG-base headset that combines EEG, VR and
eye-tracking cameras (our research filters out eye movement as
unwanted noise) [28]. This offers an option for future research
involving a much more vivid user VR experience.

This new EEG-VR headset system has been engineered
specifically for research in areas such as pain relief and
dementia. It’s planned use is to test a BCI device in VR
before it is installed physically, to insure it is comfortable
and ergonomic. This brand new LooxidVR system is not yet
widely available but represents a potential future direction for
this research, such as developing brain-based passwords from
VR retail shopping [2] or to interact with avatars [30].

Fig. 14: LooxidVR headset system for EER-VR research.
[29].
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