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Algorithms: The basic methods

● Inferring rudimentary rules
● Statistical modeling
● Constructing decision trees
● Constructing rules
● Association rule learning
● Linear models
● Instance­based learning
● Clustering
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Simplicity first

● Simple algorithms often work very well! 
● There are many kinds of simple structure, eg:

♦ One attribute does all the work
♦ All attributes contribute equally & independently
♦ A weighted linear combination might do
♦ Instance­based: use a few prototypes
♦ Use simple logical rules

● Success of method depends on the domain
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Inferring rudimentary rules

● 1R: learns a 1­level decision tree
♦ I.e., rules that all test one particular attribute

● Basic version
♦ One branch for each value
♦ Each branch assigns most frequent class
♦ Error rate: proportion of instances that don’t 

belong to the majority class of their 
corresponding branch

♦ Choose attribute with lowest error rate

(assumes nominal attributes)
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Pseudo­code for 1R

For each attribute,

For each value of the attribute, make a rule as follows:

count how often each class appears

find the most frequent class

make the rule assign that class to this attribute-value

Calculate the error rate of the rules

Choose the rules with the smallest error rate

● Note: “missing” is treated as a separate attribute 
value
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Evaluating the weather attributes

3/ 6True → No*

5/ 142/ 8False → YesWindy

1/ 7Normal → Yes

4/ 143/ 7High →  NoHumidity

5/ 14

4/ 14

Total 
errors

1/ 4Cool →  Yes

2/ 6Mild →  Yes

2/ 4Hot → No*Temp

2/ 5Rainy → Yes

0/ 4Overcast → Yes

2/ 5Sunny → NoOutlook

ErrorsRulesAttribute 

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot  Overcast 

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

*  indicates a tie
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Dealing with numeric attributes

● Discretize numeric attributes
● Divide each attribute’s range into intervals

♦ Sort instances according to attribute’s values
♦ Place breakpoints where class changes (majority class)
♦ This minimizes the total error

● Example: temperature from weather data
 64       65       68     69    70       71   72   72       75    75        80      81      83        85
Yes | No | Yes  Yes Yes | No  No Yes | Yes Yes | No | Yes  Yes |  No

……………

YesFalse8075Rainy

YesFalse8683Overcast 

NoTrue9080Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook
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The problem of overfitting

● This procedure is very sensitive to noise
♦ One instance with an incorrect class label will 

probably produce a separate interval
● Also: time stamp attribute will have zero errors
● Simple solution:

enforce minimum number of instances in 
majority class per interval

● Example (with min = 3):
64        65       68     69    70       71   72   72       75    75        80      81       83       85
Yes | No | Yes  Yes Yes | No  No Yes | Yes Yes | No | Yes  Yes |  No

64        65       68     69    70       71   72   72       75     75       80      81       83       85
Yes   No   Yes  Yes Yes | No  No Yes   Yes Yes | No   Yes  Yes    No
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With overfitting avoidance

● Resulting rule set:

0/ 1>  95.5 → Yes

3/ 6True → No*

5/ 142/ 8False → YesWindy

2/ 6>  82.5 and ≤ 95.5 → No

3/ 141/ 7≤ 82.5 →  YesHumidity

5/ 14

4/ 14

Total errors

2/ 4>  77.5 →  No*

3/ 10≤ 77.5  → YesTemperature

2/ 5Rainy → Yes

0/ 4Overcast → Yes

2/ 5Sunny → NoOutlook

ErrorsRulesAttribute 
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Discussion of 1R

● 1R was described in a paper by Holte (1993)
♦ Contains an experimental evaluation on 16 datasets 

(using cross­validation so that results were 
representative of performance on future data)

♦ Minimum number of instances was set to 6 after 
some experimentation

♦ 1R’s simple rules performed not much worse than 
much more complex decision trees

● Simplicity first pays off! 

Very  Simple Clas s ification Rules  Perform Well on Most 
Commonly  Used Datas ets
Robert  C. Holte, Com puter  Science Departm en t , Univers ity of Ot tawa
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Discussion of 1R: Hyperpipes
● Another simple technique: build one rule 

for each class
♦ Each rule is a conjunction of tests, one for 

each attribute
♦ For numeric attributes: test checks whether 

instance's value is inside an interval
● Interval given by minimum and maximum 

observed in training data

♦ For nominal attributes: test checks whether 
value is one of a subset of attribute values

● Subset given by all possible values observed in 
training data

♦ Class with most matching tests is predicted
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Statistical modeling

● “Opposite” of 1R: use all the attributes
● Two assumptions: Attributes are

♦ equally important
♦ statistically independent (given the class value)

● I.e., knowing the value of one attribute says nothing 
about the value of another (if the class is known)

● Independence assumption is never correct!
● But … this scheme works well in practice
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Probabilities for weather data
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0/ 54/ 9Overcast

3/ 52/ 9Sunny

23Rainy

04Overcast
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?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook● A new day:

Likelihood of the two classes

For “yes” =  2/ 9 × 3/ 9 × 3/ 9 ×  3/ 9 × 9/ 14 =  0.0053

For “no” =  3/ 5 × 1/ 5 × 4/ 5 × 3/ 5 × 5/ 14 =  0.0206

Conversion into a probability by normalization:

P(“yes”) =  0.0053 /  (0.0053 +  0.0206) =  0.205

P(“no”) =  0.0206 /  (0.0053 +  0.0206) =  0.795

Probabilities for weather data
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Bayes’s rule
●Probability of event H given evidence E:
    

●A priori probability of H :
● Probability of event before evidence is seen

●A posteriori probability of H :
● Probability of event after evidence is seen

Thomas  Bay es
Born: 17 02  in London, England
Died: 17 61  in Tunbridge  Wells , Kent, England

Pr [H∣E]=
Pr [E∣H]Pr [H]

Pr [E]

Pr [H]

Pr [H∣E]
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Naïve Bayes for classification

● Classification learning: what’s the 
probability of the class given an instance? 

♦ Evidence E = instance
♦ Event H = class value for instance

● Naïve assumption: evidence splits into parts 
(i.e. attributes) that are independent

Pr [H∣E]=
Pr [E1∣H]Pr [E2∣H]Pr [En∣H]Pr [H]

Pr [E]
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Weather data example

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook Evidence E

Probability of
class “yes”

Pr [yes∣E]=Pr [Outlook=Sunny∣yes]
×Pr [Temperature=Cool∣yes]
×Pr [Humidity=High∣yes]
×Pr [Windy=True∣yes]

×Pr [yes]
Pr [E]

=

2
9
×3

9
×3

9
×3

9
× 9

14
Pr [E]
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The “zero­frequency problem”

● What if an attribute value doesn’t occur with every 
class value?
(e.g. “Humidity = high” for class “yes”)

♦ Probability will be zero!
♦ A posteriori probability will also be zero!

(No matter how likely the other values are!) 
● Remedy: add 1 to the count for every attribute 

value­class combination (Laplace estimator)
● Result: probabilities will never be zero!

(also: stabilizes probability estimates)

Pr [Humidity=High∣yes]=0
Pr [yes∣E]=0
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Modified probability estimates

● In some cases adding a constant different 
from 1 might be more appropriate

● Example: attribute outlook for class yes

● Weights don’t need to be equal 
(but they must sum to 1)

Sunny Overcast Rainy

2/3
9

4/3
9

3/3
9

2p1

9
4p2

9
3p3

9
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Missing values

● Training: instance is not included in frequency 
count for attribute value­class combination

● Classification: attribute will be omitted from 
calculation

● Example:
?TrueHighCool?

PlayWindyHumidit
y

Temp.Outlook

Likelihood of “yes” =  3/ 9 × 3/ 9 ×  3/ 9 × 9/ 14 =  0.0238

Likelihood of “no” =  1/ 5 × 4/ 5 × 3/ 5 × 5/ 14 =  0.0343

P(“yes”) =  0.0238 /  (0.0238 +  0.0343) =  41%

P(“no”) =  0.0343 /  (0.0238 +  0.0343) =  59%
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Numeric attributes
● Usual assumption: attributes have a 

normal or Gaussian probability 
distribution (given the class)

● The probability density function for the 
normal distribution is defined by two 
parameters:
● Sample mean µ 

● Standard deviation σ

● Then the density function f(x) is 

=1
n∑i=1

n

xi

= 1
n−1∑i=1

n

x i−2

f x= 1

2
e

−
x−2

22
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Statistics for weather data

● Example density value:
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72,80,
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64, 68,

2/ 53/ 9Rainy

Temperature

0/ 54/ 9Overcast

3/ 52/ 9Sunny

23Rainy

04Overcast

32Sunny

Outlook

f temperature=66∣yes= 1

26.2
e

−
66−732

2⋅6.22

=0.0340



23Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Classifying a new day

● A new day:

● Missing values during training are not 
included in calculation of mean and 
standard deviation

?true9066Sunny

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” =  2/ 9 × 0.0340 × 0.0221 × 3/ 9 × 9/ 14 =  0.000036

Likelihood of “no”  =  3/ 5 × 0.0221 × 0.0381 × 3/ 5 × 5/ 14 =  0.000108

P(“yes”) =  0.000036 /  (0.000036 +  0. 000108) =  25%

P(“no”)  =  0.000108 /  (0.000036 +  0. 000108) =  75%
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Probability densities

● Relationship between probability and 
density:

● But: this doesn’t change calculation of a 
posteriori probabilities because ε  cancels out

● Exact relationship:

Pr [c−

2
xc


2
]≈×f c

Pr [axb]=∫
a

b

f tdt
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Multinomial naïve Bayes I
● Version of naïve Bayes used for document 

classification using bag of words model
● n

1
,n

2
, ... , n

k
: number of times word i occurs in 

document
● P

1
,P

2
, ... , P

k
: probability of obtaining word i when 

sampling from documents in class H
● Probability of observing document E given class H 

(based on multinomial distribution):

● Ignores probability of generating a document of the 
right length (prob. assumed constant for each class)

Pr [E∣H]≈N!×∏
i=1

k Pi
ni

ni!
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Multinomial naïve Bayes II

● Suppose dictionary has two words, yellow and blue
● Suppose Pr[yellow | H] = 75% and Pr[blue | H] = 25%
● Suppose E is the document “blue yellow blue”
● Probability of observing document:

Suppose there is another class H' that has 
Pr[yellow | H'] = 75% and Pr[yellow | H'] = 25%:

● Need to take prior probability of class into account to 
make final classification

● Factorials don't actually need to be computed
● Underflows can be prevented by using logarithms

Pr [{blue yellow blue}∣H]≈3!×0.751

1! ×0.252

2! = 9
64≈0.14

Pr [{blue yellow blue}∣H']≈3!× 0.11

1! ×
0.92

2! =0.24
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Naïve Bayes: discussion

● Naïve Bayes works surprisingly well (even if 
independence assumption is clearly violated)

● Why? Because classification doesn’t require 
accurate probability estimates as long as maximum 
probability is assigned to correct class

● However: adding too many redundant attributes 
will cause problems (e.g. identical attributes)

● Note also: many numeric attributes are not 
normally distributed (→  kernel density estimators)
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Constructing decision trees

● Strategy: top down
Recursive divide­and­conquer fashion

♦ First: select attribute for root node
Create branch for each possible attribute value

♦ Then: split instances into subsets
One for each branch extending from the node

♦ Finally: repeat recursively for each branch, 
using only instances that reach the branch

● Stop if all instances have the same class
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Which attribute to select?
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Which attribute to select?
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Criterion for attribute selection

● Which is the best attribute?
♦ Want to get the smallest tree
♦ Heuristic: choose the attribute that produces the 

“purest” nodes
● Popular impurity criterion: information gain

♦ Information gain increases with the average 
purity of the subsets

● Strategy: choose attribute that gives greatest 
information gain
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Computing information

● Measure information in bits
♦ Given a probability distribution, the info 

required to predict an event is the 
distribution’s entropy

♦ Entropy gives the information required in bits
(can involve fractions of bits!)

● Formula for computing the entropy:

entropy p1,p2,... ,pn=−p1 logp1−p2 logp2 ...−pn log pn
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Example: attribute Outlook 

● Outlook = Sunny :

● Outlook = Overcast :

● Outlook = Rainy :

● Expected information for attribute:

Note: this
is normally
undefined.

info[2,3]=entropy 2/5,3 /5=−2/5log 2/5−3/5log 3/5=0.971bits

info[4,0]=entropy 1,0=−1log 1−0log0=0bits

info[2,3]=entropy 3/5,2 /5=−3/5log 3/5−2/5log 2/5=0.971bits

info[3,2], [4,0], [3,2]=5/14×0.9714/14×05/14×0.971=0.693bits
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Computing information gain

● Information gain: information before splitting – 
information after splitting

● Information gain for attributes from weather data:

gain(Outlook )       =  0.247 bits
gain(Temperature )  =  0.029 bits
gain(Humidity )       =  0.152 bits
gain(Windy )       =  0.048 bits

gain(Outlook ) =  info([9,5]) – info([2,3],[4,0],[3,2])
=  0.940 – 0.693
=  0.247 bits
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Continuing to split

gain(Temperature ) =  0.571 bits
gain(Humidity )       =  0.971 bits
gain(Windy )       =  0.020 bits
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Final decision tree

● Note: not all leaves need to be pure; sometimes 
identical instances have different classes

⇒   Splitting stops when data can’t be split any further
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Wishlist for a purity measure

● Properties we require from a purity measure:
♦ When node is pure, measure should be zero
♦ When impurity is maximal (i.e. all classes equally 

likely), measure should be maximal
♦ Measure should obey multistage property (i.e. 

decisions can be made in several stages):

● Entropy is the only function that satisfies all 
three properties!

measure [2,3,4 ]=measure [2,7 ]7/9×measure [3,4 ]
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Properties of the entropy

● The multistage property:

● Simplification of computation:

● Note: instead of maximizing info gain we 
could just minimize information

entropy p,q,r=entropy p,qrqr×entropy  q
qr , r

qr 

info[2,3,4]=−2/9×log 2/9−3/9×log3/9−4/9×log 4/9

=[−2×log2−3×log3−4×log49×log9]/9
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Highly­branching attributes

● Problematic: attributes with a large number 
of values (extreme case: ID code)

● Subsets are more likely to be pure if there is 
a large number of values

⇒ Information gain is biased towards choosing 
attributes with a large number of values

⇒ This may result in overfitting (selection of an 
attribute that is non­optimal for prediction)

● Another problem: fragmentation
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Weather data with ID code

N

M

L

K

J

I

H

G

F

E

D

C

B

A

ID code

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot  Overcast 

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidit
y

Temp.Outlook
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Tree stump for ID code attribute

● Entropy of split:

⇒ Information gain is maximal for ID code 
(namely 0.940 bits)

infoID code=info[0,1]info[0,1]...info[0,1]=0bits
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Gain ratio

● Gain ratio: a modification of the information gain 
that reduces its bias

● Gain ratio takes number and size of branches into 
account when choosing an attribute

♦ It corrects the information gain by taking the intrinsic 
information of a split into account

● Intrinsic information: entropy of distribution of 
instances into branches (i.e. how much info do we 
need to tell which branch an instance belongs to)
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Computing the gain ratio

● Example: intrinsic information for ID code

● Value of attribute decreases as intrinsic 
information gets larger

● Definition of gain ratio:

● Example:

info[1,1,...,1]=14×−1/14×log 1/14=3.807bits

gain_ratioattribute=gain attribute
intrinsic_infoattribute

gain_ratio ID code=0.940bits
3.807bits=0.246
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Gain ratios for weather data

0.019Gain ratio: 0.029/ 1.5570.157Gain ratio: 0.247/ 1.577

1.557Split info: info([4,6,4])1.577  Split info: info([5,4,5])

0.029Gain: 0.940- 0.911 0.247 Gain: 0.940- 0.693

0.911Info:0.693Info:

TemperatureOutlook

0.049Gain ratio: 0.048/ 0.9850.152Gain ratio: 0.152/ 1

0.985Split info: info([8,6])1.000  Split info: info([7,7])

0.048Gain: 0.940- 0.892 0.152Gain: 0.940- 0.788

0.892Info:0.788Info:

WindyHumidity
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More on the gain ratio

● “Outlook” still comes out top
● However: “ID code” has greater gain ratio

♦ Standard fix: ad hoc test to prevent splitting on that 
type of attribute

● Problem with gain ratio: it may overcompensate
♦ May choose an attribute just because its intrinsic 

information is very low
♦ Standard fix: only consider attributes with greater 

than average information gain
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Discussion

● Top­down induction of decision trees: ID3, 
algorithm developed by Ross Quinlan

♦ Gain ratio just one modification of this basic 
algorithm

♦ ⇒   C4.5: deals with numeric attributes, missing 
values, noisy data

● Similar approach: CART
● There are many other attribute selection 

criteria!
(But little difference in accuracy of result)
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Covering algorithms

● Convert decision tree into a rule set
♦ Straightforward, but rule set overly complex
♦ More effective conversions are not trivial

● Instead, can generate rule set directly
♦ for each class in turn find rule set that covers 

all instances in it
(excluding instances not in the class)

● Called a covering approach:
♦ at each stage a rule is identified that “covers” 

some of the instances
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Example: generating a rule

If x > 1.2
then class = a

If x > 1.2 and y > 2.6
then class = a

If true
then class = a

● Possible rule set for class “b”:

● Could add more rules, get “perfect” rule set

If x ≤ 1.2 then class = b
If x > 1.2 and y ≤ 2.6 then class = b
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Rules vs. trees

Corresponding decision tree:
(produces exactly the same
  predictions)

● But: rule sets can be more perspicuous when 
decision trees suffer from replicated subtrees

● Also: in multiclass situations, covering algorithm 
concentrates on one class at a time whereas 
decision tree learner takes all classes into account



50Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Simple covering algorithm

● Generates a rule by adding tests that maximize 
rule’s accuracy

● Similar to situation in decision trees: problem 
of selecting an attribute to split on

♦ But: decision tree inducer maximizes overall purity
● Each new test reduces

rule’s coverage:
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Selecting a test

● Goal: maximize accuracy
♦ t  total number of instances covered by rule
♦ p positive examples of the class covered by rule
♦ t – p number of errors made by rule
⇒ Select test that maximizes the ratio p/t

● We are finished when p/t = 1 or the set of 
instances can’t be split any further
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Example: contact lens data

● Rule we seek:
● Possible tests:

4/12Tear production rate = Normal

0/12Tear production rate = Reduced

4/12Astigmatism = yes

0/12Astigmatism = no

1/12Spectacle prescription = Hypermetrope

3/12Spectacle prescription = Myope

1/8Age = Presbyopic

1/8Age = Pre-presbyopic

2/8Age = Young

If ?
    then recommendation = hard
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Modified rule and resulting data

● Rule with best test added:

● Instances covered by modified rule:

NoneReducedYesHypermetropePre- presbyopic 
NoneNormalYesHypermetropePre- presbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre- presbyopic
NoneReducedYesMyopePre- presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung 

Recommended 
lenses

Tear production 
rate

AstigmatismSpectacle 
prescript ion

Age

If astigmatism = yes 
    then recommendation = hard
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Further refinement

● Current state:

● Possible tests:

4/6Tear production rate = Normal

0/6Tear production rate = Reduced

1/6Spectacle prescription = Hypermetrope

3/6Spectacle prescription = Myope

1/4Age = Presbyopic

1/4Age = Pre-presbyopic

2/4Age = Young

If astigmatism = yes
    and ? 
  then recommendation = hard
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Modified rule and resulting data

● Rule with best test added:

● Instances covered by modified rule:

NoneNormalYesHypermetropePre- presbyopic
HardNormalYesMyopePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre- presbyopic
hardNormalYesHypermetropeYoung
HardNormalYesMyopeYoung

Recommended 
lenses

Tear product ion 
rate

AstigmatismSpectacle 
prescript ion

Age

If astigmatism = yes
    and tear production rate = normal 
  then recommendation = hard



56Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Further refinement

● Current state:

● Possible tests:

● Tie between the first and the fourth test
♦ We choose the one with greater coverage

1/3Spectacle prescription = Hypermetrope

3/3Spectacle prescription = Myope

1/2Age = Presbyopic

1/2Age = Pre-presbyopic

2/2Age = Young

If astigmatism = yes 
  and tear production rate = normal
  and ?
then recommendation = hard
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The result

● Final rule:

● Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

● These two rules cover all “hard lenses”:
♦ Process is repeated with other two classes

If astigmatism = yes
and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard
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Pseudo­code for PRISM

For each class C

  Initialize E to the instance set

  While E contains instances in class C

    Create a rule R with an empty left-hand side that predicts class C

    Until R is perfect (or there are no more attributes to use) do

      For each attribute A not mentioned in R, and each value v,

        Consider adding the condition A = v to the left-hand side of R

        Select A and v to maximize the accuracy p/t

          (break ties by choosing the condition with the largest p)

      Add A = v to R

    Remove the instances covered by R from E 
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Rules vs. decision lists

● PRISM with outer loop removed generates a 
decision list for one class

♦ Subsequent rules are designed for rules that are not 
covered by previous rules

♦ But: order doesn’t matter because all rules predict the 
same class

● Outer loop considers all classes separately
♦ No order dependence implied

● Problems: overlapping rules, default rule required
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Separate and conquer

● Methods like PRISM (for dealing with one 
class) are separate­and­conquer algorithms:

♦ First, identify a useful rule
♦ Then, separate out all the instances it covers
♦ Finally, “conquer” the remaining instances

● Difference to divide­and­conquer methods:
♦ Subset covered by rule doesn’t need to be 

explored any further
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Mining association rules

● Naïve method for finding association rules:
♦ Use separate­and­conquer method
♦ Treat every possible combination of attribute 

values as a separate class
● Two problems:

♦ Computational complexity
♦ Resulting number of rules (which would have to be 

pruned on the basis of support and confidence)
● But: we can look for high support rules directly!
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Item sets

● Support: number of instances correctly covered 
by association rule

♦ The same as the number of instances covered by all 
tests in the rule (LHS and RHS!)

● Item: one test/attribute­value pair
● Item set : all items occurring in a rule
● Goal: only rules that exceed pre­defined support

⇒   Do it by finding all item sets with the given 
minimum support and generating rules from them!
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Weather data

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot  Overcast 

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook
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Item sets for weather data

…………

Outlook =  Rainy
Temperature =  Mild
Windy =  False
Play =  Yes (2)

Outlook =  Sunny
Humidity =  High
Windy =  False (2)

Outlook =  Sunny
Humidity =  High (3)

Temperature =  Cool 
(4)

Outlook =  Sunny
Temperature =  Hot
Humidity =  High
Play =  No (2)

Outlook =  Sunny
Temperature =  Hot
Humidity =  High (2)

Outlook =  Sunny
Temperature =  Hot (2)

Outlook =  Sunny (5)

Four- item setsThree- item setsTwo- item setsOne- item sets

● In total: 12 one­item sets, 47 two­item sets, 39 
three­item sets, 6 four­item sets and 0 five­
item sets (with minimum support of two)



65Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Generating rules from an item set

● Once all item sets with minimum support have 
been generated, we can turn them into rules

● Example:

● Seven (2N­1) potential rules:

Humidity = Normal, Windy = False, Play = Yes (4)

4/4

4/6

4/6

4/7

4/8

4/9

4/12

If Humidity = Normal and Windy = False then Play = Yes

If Humidity = Normal and Play = Yes then Windy = False

If Windy = False and Play = Yes then Humidity = Normal

If Humidity = Normal then Windy = False and Play = Yes

If Windy = False then Humidity = Normal and Play = Yes

If Play = Yes then Humidity = Normal and Windy = False

If True then Humidity = Normal and Windy = False 
and Play = Yes
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Rules for weather data

● Rules with support > 1 and confidence = 100%:

● In total:
  3 rules with support four
  5 with support three
50 with support two

100%2⇒ Humidity=HighOutlook=Sunny Temperature=Hot58

............

100%3⇒ Humidity=NormalTemperature=Cold Play=Yes4

100%4⇒ Play=YesOutlook=Overcast3

100%4⇒ Humidity=NormalTemperature=Cool2

100%4⇒ Play=YesHumidity=Normal Windy=False1

Association rule Conf.Sup.
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Example rules from the same set

● Item set:

● Resulting rules (all with 100% confidence):

due to the following “frequent” item sets:

Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

Temperature = Cool, Windy = False ⇒ Humidity = Normal, Play = Yes
Temperature = Cool, Windy = False, Humidity = Normal ⇒ Play = Yes
Temperature = Cool, Windy = False, Play = Yes ⇒ Humidity = Normal

Temperature = Cool, Windy = False                     (2)

Temperature = Cool, Humidity = Normal, Windy = False  (2)

Temperature = Cool, Windy = False, Play = Yes         (2)
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Generating item sets efficiently

● How can we efficiently find all frequent item sets?
● Finding one­item sets easy
● Idea: use one­item sets to generate two­item sets, 

two­item sets to generate three­item sets, …
♦ If (A B) is frequent item set, then (A) and (B) have to be 

frequent item sets as well!
♦ In general: if X is frequent k­item set, then all (k­1)­

item subsets of X are also frequent
⇒   Compute k­item set by merging (k­1)­item sets
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Example

● Given: five three­item sets
(A B C), (A B D), (A C D), (A C E), (B C D)

● Lexicographically ordered!

● Candidate four­item sets:

(A B C D)  OK because of (B C D)

(A C D E)       Not OK because of (C D E)

● Final check by counting instances in 
dataset!

● (k –1)­item sets are stored in hash table
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Generating rules efficiently

● We are looking for all high­confidence rules
♦ Support of antecedent obtained from hash table
♦ But: brute­force method is (2N­1) 

● Better way: building (c + 1)­consequent rules 
from c­consequent ones

♦ Observation: (c + 1)­consequent rule can only hold 
if all corresponding c­consequent rules also hold 

● Resulting algorithm similar to procedure for 
large item sets
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Example

● 1­consequent rules:

● Corresponding 2­consequent rule:

● Final check of antecedent against hash table!

If Windy = False and Play = No
then Outlook = Sunny and Humidity = High (2/2)

If Outlook = Sunny and Windy = False and Play = No 
then Humidity = High (2/2)

If Humidity = High and Windy = False and Play = No
then Outlook = Sunny (2/2)
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Association rules: discussion

● Above method makes one pass through the data 
for each different size item set

♦ Other possibility: generate (k+2)­item sets just after 
(k+1)­item sets have been generated

♦ Result: more (k+2)­item sets than necessary will be 
considered but less passes through the data

♦ Makes sense if data too large for main memory
● Practical issue: generating a certain number of 

rules (e.g. by incrementally reducing min. support)
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Other issues

● Standard ARFF format very inefficient for typical 
market basket data

♦ Attributes represent items in a basket and most 
items are usually missing

♦ Data should be represented in sparse format
● Instances are also called transactions
● Confidence is not necessarily the best measure

♦ Example: milk occurs in almost every supermarket 
transaction

♦ Other measures have been devised (e.g. lift) 
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Linear models: linear regression

● Work most naturally with numeric attributes
● Standard technique for numeric prediction

♦ Outcome is linear combination of attributes

● Weights are calculated from the training data
● Predicted value for first training instance a(1)

(assuming each instance is extended with a constant attribute with value 1)

x=w0w1a1w2a2...wk ak

w0a0
1w1a1

1w2a2
1...wkak

1=∑ j=0
k w ja j

1
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Minimizing the squared error

● Choose k +1 coefficients to minimize the 
squared error on the training data

● Squared error:
●

● Derive coefficients using standard matrix 
operations

● Can be done if there are more instances than 
attributes (roughly speaking)

● Minimizing the absolute error is more difficult

∑i=1
n xi−∑ j=0

k w ja j
i 2
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Classification

● Any regression technique can be used for 
classification

♦ Training: perform a regression for each class, setting 
the output to 1 for training instances that belong to 
class, and 0 for those that don’t

♦ Prediction: predict class corresponding to model 
with largest output value (membership value)

● For linear regression this is known as multi­
response linear regression

● Problem: membership values are not in [0,1] 
range, so aren't proper probability estimates
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Linear models: logistic regression

● Builds a linear model for a transformed 
target variable

● Assume we have two classes
● Logistic regression replaces the target

by this target

● Logit transformation maps [0,1] to (­∞ , +∞ )

P[1∣a1,a2, .... ,ak ]

log  P[1∣a1,a2, .... ,ak ]
1−P[1∣a1,a2, ....,ak]


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Logit transformation

● Resulting model: 

Pr [1∣a1,a2,... ,ak ]=
1

1e−w0−w1a1−...−wkak
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Example logistic regression model

● Model with w
0
 = 0.5 and w

1
 = 1: 

● Parameters are found from training data 
using maximum likelihood
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Maximum likelihood

● Aim: maximize probability of training data 
wrt parameters

● Can use logarithms of probabilities and 
maximize log­likelihood of model:

where the x(i) are either 0 or 1
● Weights w

i
 need to be chosen to maximize 

log­likelihood (relatively simple method: 
iteratively re­weighted least squares) 

∑i=1
n 1−xilog1−Pr [1∣a1

i,a2
i ,... ,ak

 i]
xilogPr [1∣a1

 i ,a2
i,... ,ak

i]
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Multiple classes

● Can perform logistic regression 
independently for each class 
(like multi­response linear regression)

● Problem: probability estimates for different 
classes won't sum to one

● Better: train coupled models by 
maximizing likelihood over all classes

● Alternative that often works well in 
practice: pairwise classification
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Pairwise classification

● Idea: build model for each pair of classes, 
using only training data from those classes

● Problem? Have to solve k(k­1)/2 
classification problems for k­class problem

● Turns out not to be a problem in many 
cases because training sets become small:

♦ Assume data evenly distributed, i.e. 2n/k per 
learning problem for n instances in total

♦ Suppose learning algorithm is linear in n
♦ Then runtime of pairwise classification is 

proportional to (k(k­1)/2)×(2n/k) = (k­1)n
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Linear models are hyperplanes

● Decision boundary for two­class logistic 
regression is where probability equals 0.5:

which occurs when
● Thus logistic regression can only separate 

data that can be separated by a hyperplane
● Multi­response has the same problem.

Class 1 is assigned if:

Pr [1∣a1,a2, ... ,ak ]=1/1exp−w0−w1a1−...−wk ak=0.5

−w0−w1a1−...−wk ak=0

w0
1w1

1a1...wk
1akw0

2w1
2a1...wk

2ak

⇔w0
1−w0

2w1
1−w1

2a1...wk
1−wk

2 ak0
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Linear models: the perceptron

● Don't actually need probability estimates if all we 
want to do is classification

● Different approach: learn separating hyperplane
● Assumption: data is linearly separable
● Algorithm for learning separating hyperplane: 

perceptron learning rule
● Hyperplane: 

where we again assume that there is a constant 
attribute with value 1 (bias)

● If sum is greater than zero we predict the first 
class, otherwise the second class

0=w0a0w1a1w2a2...wkak
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The algorithm
Set all weights to zero

Until all instances in the training data are classified correctly

  For each instance I in the training data

    If I is classified incorrectly by the perceptron

      If I belongs to the first class add it to the weight vector

      else subtract it from the weight vector

● Why does this work?
Consider situation where instance a pertaining to 
the first class has been added:

This means output for a has increased by:

This number is always positive, thus the hyperplane 
has moved into the correct direction (and we can 
show output decreases for instances of other class)

w0a0a0w1a1a1w2a2a2...wkakak

a0a0a1a1a2a2...akak
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Perceptron as a neural network

Input
layer

Output
layer
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Linear models: Winnow

● Another mistake­driven algorithm for 
finding a separating hyperplane

♦ Assumes binary data (i.e. attribute values are 
either zero or one)

● Difference: multiplicative updates instead 
of additive updates

♦ Weights are multiplied by a user­specified 
parameter α> 1 (or its inverse)

● Another difference: user­specified threshold 
parameter θ  

♦ Predict first class if w0a0w1a1w2a2...wkak
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The algorithm

● Winnow is very effective in homing in on relevant 
features (it is attribute efficient)

● Can also be used in an on­line setting in which 
new instances arrive continuously 
(like the perceptron algorithm)

while some instances are misclassified

  for each instance a in the training data

    classify a using the current weights

    if the predicted class is incorrect

      if a belongs to the first class

        for each a
i
 that is 1, multiply w

i
 by alpha

        (if a
i
 is 0, leave w

i
 unchanged)

      otherwise

        for each a
i
 that is 1, divide w

i
 by alpha

        (if a
i
 is 0, leave w

i
 unchanged)
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Balanced Winnow
● Winnow doesn't allow negative weights and this 

can be a drawback in some applications
● Balanced Winnow maintains two weight vectors, 

one for each class:

● Instance is classified as belonging to the first class 
(of two classes) if: w0

−w0
− a0w1

−w2
− a1...wk

−wk
− ak

while some instances are misclassified

  for each instance a in the training data

    classify a using the current weights

    if the predicted class is incorrect

      if a belongs to the first class

        for each a
i
 that is 1, multiply w

i

+ by alpha and divide w
i

- by alpha

          (if a
i
 is 0, leave w

i

+ and w
i

- unchanged)

      otherwise

        for each a
i
 that is 1, multiply w

i

- by alpha and divide w
i

+ by alpha

          (if a
i
 is 0, leave w

i

+ and w
i

- unchanged)
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Instance­based learning

● Distance function defines what’s learned
● Most instance­based schemes use 

Euclidean distance:

a(1) and a(2): two instances with k attributes
● Taking the square root is not required when 

comparing distances
● Other popular metric: city­block metric

● Adds differences without squaring them 

a1
1−a1

22a2
1−a2

22...ak
1−ak

22



91Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Normalization and other issues

● Different attributes are measured on different 
scales ⇒  need to be normalized:

vi : the actual value of attribute i
● Nominal attributes: distance either 0 or 1
● Common policy for missing values: assumed to be 

maximally distant (given normalized attributes)

ai=
v i−min vi

max vi−min vi
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Finding nearest neighbors efficiently

● Simplest way of finding nearest neighbour: linear 
scan of the data

♦ Classification takes time proportional to the product 
of the number of instances in training and test sets

● Nearest­neighbor search can be done more 
efficiently using appropriate data structures

● We will discuss two methods that represent 
training data in a tree structure:

                  kD­trees and ball trees
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kD­tree example
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Using kD­trees: example
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More on kD­trees
● Complexity depends on depth of tree, given by 

logarithm of number of nodes
● Amount of backtracking required depends on 

quality of tree (“square” vs. “skinny” nodes)
● How to build a good tree? Need to find good 

split point and split direction
♦ Split direction: direction with greatest variance
♦ Split point: median value along that direction

● Using value closest to mean (rather than 
median) can be better if data is skewed

● Can apply this recursively
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Building trees incrementally

● Big advantage of instance­based learning: 
classifier can be updated incrementally

♦ Just add new training instance!
● Can we do the same with kD­trees?
● Heuristic strategy:

♦ Find leaf node containing new instance
♦ Place instance into leaf if leaf is empty
♦ Otherwise, split leaf according to the longest 

dimension (to preserve squareness)
● Tree should be re­built occasionally (i.e. if 

depth grows to twice the optimum depth)
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Ball trees

● Problem in kD­trees: corners
● Observation: no need to make sure that 

regions don't overlap 
● Can use balls (hyperspheres) instead of 

hyperrectangles
♦ A ball tree organizes the data into a tree of k­

dimensional hyperspheres
♦ Normally allows for a better fit to the data and 

thus more efficient search
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Ball tree example
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Using ball trees

● Nearest­neighbor search is done using the 
same backtracking strategy as in kD­trees

● Ball can be ruled out from consideration if: 
distance from target to ball's center exceeds 
ball's radius plus current upper bound 
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Building ball trees

● Ball trees are built top down (like kD­trees)
● Don't have to continue until leaf balls 

contain just two points: can enforce 
minimum occupancy (same in kD­trees)

● Basic problem: splitting a ball into two
● Simple (linear­time) split selection strategy:

♦ Choose point farthest from ball's center
♦ Choose second point farthest from first one
♦ Assign each point to these two points
♦ Compute cluster centers and radii based on the 

two subsets to get two balls
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Discussion of nearest­neighbor learning

● Often very accurate
● Assumes all attributes are equally important

● Remedy: attribute selection or weights
● Possible remedies against noisy instances:

● Take a majority vote over the k nearest neighbors
● Removing noisy instances from dataset (difficult!)

● Statisticians have used k­NN since early 1950s
● If n →   ∞ and k/n →   0, error approaches minimum

● kD­trees become inefficient when number of 
attributes is too large (approximately > 10)

● Ball trees (which are instances of metric trees) 
work well in higher­dimensional spaces
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More discussion

● Instead of storing all training instances, 
compress them into regions

● Example: hyperpipes (from discussion of 1R)
● Another simple technique (Voting Feature 

Intervals): 
♦ Construct intervals for each attribute

● Discretize numeric attributes
● Treat each value of a nominal attribute as an “interval”

♦ Count number of times class occurs in interval
♦ Prediction is generated by letting intervals vote 

(those that contain the test instance)



103Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

● Clustering techniques apply when there is 
no class to be predicted

● Aim: divide instances into “natural” groups
● As we've seen clusters can be:

♦ disjoint vs. overlapping
♦ deterministic vs. probabilistic
♦ flat vs. hierarchical

● We'll look at a classic clustering algorithm 
called k­means

♦ k­means clusters are disjoint, deterministic, 
and flat

Clustering
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The k­means algorithm

To cluster data into k groups: 
(k is predefined)

1. Choose k cluster centers
♦ e.g. at random

2. Assign instances to clusters
♦ based on distance to cluster centers

3. Compute centroids of clusters
4. Go to step 1

♦ until convergence
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Discussion
● Algorithm minimizes squared distance to 

cluster centers
● Result can vary significantly

♦ based on initial choice of seeds
● Can get trapped in local minimum

♦ Example:

● To increase chance of finding global optimum: 
restart with different random seeds

● Can we applied recursively with k = 2

instances

initial 
cluster 
centres



106Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Faster distance calculations

● Can we use kD­trees or ball trees to speed 
up the process? Yes:

♦ First, build tree, which remains static, for all 
the data points

♦ At each node, store number of instances and 
sum of all instances

♦ In each iteration, descend tree and find out 
which cluster each node belongs to

● Can stop descending as soon as we find out that a 
node belongs entirely to a particular cluster

● Use statistics stored at the nodes to compute new 
cluster centers
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Example
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Comments on basic methods

● Bayes’ rule stems from his “Essay towards solving 
a problem in the doctrine of chances” (1763)

♦ Difficult bit in general: estimating prior probabilities 
(easy in the case of naïve Bayes)

● Extension of naïve Bayes: Bayesian networks 
(which we'll discuss later)

● Algorithm for association rules is called APRIORI
● Minsky and Papert (1969) showed that linear 

classifiers have limitations, e.g. can’t learn XOR
♦ But: combinations of them can (→   multi­layer neural 

nets, which we'll discuss later)


