
Data Mining
Practical Machine Learning Tools and Techniques

Slides for Chapter 4 of Data Mining by I. H. Witten and E. Frank

2Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Algorithms: The basic methods

● Inferring rudimentary rules
● Statistical modeling
● Constructing decision trees
● Constructing rules
● Association rule learning
● Linear models
● Instance­based learning
● Clustering

3Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Simplicity first

● Simple algorithms often work very well!
● There are many kinds of simple structure, eg:

♦ One attribute does all the work
♦ All attributes contribute equally & independently
♦ A weighted linear combination might do
♦ Instance­based: use a few prototypes
♦ Use simple logical rules

● Success of method depends on the domain

4Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Inferring rudimentary rules

● 1R: learns a 1­level decision tree
♦ I.e., rules that all test one particular attribute

● Basic version
♦ One branch for each value
♦ Each branch assigns most frequent class
♦ Error rate: proportion of instances that don’t

belong to the majority class of their
corresponding branch

♦ Choose attribute with lowest error rate

(assumes nominal attributes)

5Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Pseudo­code for 1R

For each attribute,

For each value of the attribute, make a rule as follows:

count how often each class appears

find the most frequent class

make the rule assign that class to this attribute-value

Calculate the error rate of the rules

Choose the rules with the smallest error rate

● Note: “missing” is treated as a separate attribute
value

6Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Evaluating the weather attributes

3/ 6True → No*

5/ 142/ 8False → YesWindy

1/ 7Normal → Yes

4/ 143/ 7High → NoHumidity

5/ 14

4/ 14

Total
errors

1/ 4Cool → Yes

2/ 6Mild → Yes

2/ 4Hot → No*Temp

2/ 5Rainy → Yes

0/ 4Overcast → Yes

2/ 5Sunny → NoOutlook

ErrorsRulesAttribute

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

* indicates a tie

7Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Dealing with numeric attributes

● Discretize numeric attributes
● Divide each attribute’s range into intervals

♦ Sort instances according to attribute’s values
♦ Place breakpoints where class changes (majority class)
♦ This minimizes the total error

● Example: temperature from weather data
 64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

……………

YesFalse8075Rainy

YesFalse8683Overcast

NoTrue9080Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook

8Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The problem of overfitting

● This procedure is very sensitive to noise
♦ One instance with an incorrect class label will

probably produce a separate interval
● Also: time stamp attribute will have zero errors
● Simple solution:

enforce minimum number of instances in
majority class per interval

● Example (with min = 3):
64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes | No No Yes Yes Yes | No Yes Yes No

9Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

With overfitting avoidance

● Resulting rule set:

0/ 1> 95.5 → Yes

3/ 6True → No*

5/ 142/ 8False → YesWindy

2/ 6> 82.5 and ≤ 95.5 → No

3/ 141/ 7≤ 82.5 → YesHumidity

5/ 14

4/ 14

Total errors

2/ 4> 77.5 → No*

3/ 10≤ 77.5 → YesTemperature

2/ 5Rainy → Yes

0/ 4Overcast → Yes

2/ 5Sunny → NoOutlook

ErrorsRulesAttribute

10Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Discussion of 1R

● 1R was described in a paper by Holte (1993)
♦ Contains an experimental evaluation on 16 datasets

(using cross­validation so that results were
representative of performance on future data)

♦ Minimum number of instances was set to 6 after
some experimentation

♦ 1R’s simple rules performed not much worse than
much more complex decision trees

● Simplicity first pays off!

Very Simple Clas s ification Rules Perform Well on Most
Commonly Used Datas ets
Robert C. Holte, Com puter Science Departm en t , Univers ity of Ot tawa

11Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Discussion of 1R: Hyperpipes
● Another simple technique: build one rule

for each class
♦ Each rule is a conjunction of tests, one for

each attribute
♦ For numeric attributes: test checks whether

instance's value is inside an interval
● Interval given by minimum and maximum

observed in training data

♦ For nominal attributes: test checks whether
value is one of a subset of attribute values

● Subset given by all possible values observed in
training data

♦ Class with most matching tests is predicted

12Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Statistical modeling

● “Opposite” of 1R: use all the attributes
● Two assumptions: Attributes are

♦ equally important
♦ statistically independent (given the class value)

● I.e., knowing the value of one attribute says nothing
about the value of another (if the class is known)

● Independence assumption is never correct!
● But … this scheme works well in practice

13Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Probabilities for weather data

 5/
14

5

No

9/
14

9

Yes

Play

3/ 5

2/ 5

3

2

No

3/ 9

6/ 9

3

6

Yes

True

False

True

False

Windy

1/ 5

4/ 5

1

4

NoYesNoYesNoYes

6/ 9

3/ 9

6

3

Normal

High

Normal

High

Humidity

1/ 5

2/ 5

2/ 5

1

2

2

3/ 9

4/ 9

2/ 9

3

4

2

Cool2/ 53/ 9Rainy

Mild

Hot

Cool

Mild

Hot

Temperature

0/ 54/ 9Overcast

3/ 52/ 9Sunny

23Rainy

04Overcast

32Sunny

Outlook

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

14Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

5/
14

5

No

9/
14

9

Yes

Play

3/ 5

2/ 5

3

2

No

3/ 9

6/ 9

3

6

Yes

True

False

True

False

Windy

1/ 5

4/ 5

1

4

NoYesNoYesNoYes

6/ 9

3/ 9

6

3

Normal

High

Normal

High

Humidity

1/ 5

2/ 5

2/ 5

1

2

2

3/ 9

4/ 9

2/ 9

3

4

2

Cool2/ 53/ 9Rainy

Mild

Hot

Cool

Mild

Hot

Temperature

0/ 54/ 9Overcast

3/ 52/ 9Sunny

23Rainy

04Overcast

32Sunny

Outlook

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook● A new day:

Likelihood of the two classes

For “yes” = 2/ 9 × 3/ 9 × 3/ 9 × 3/ 9 × 9/ 14 = 0.0053

For “no” = 3/ 5 × 1/ 5 × 4/ 5 × 3/ 5 × 5/ 14 = 0.0206

Conversion into a probability by normalization:

P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205

P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

Probabilities for weather data

15Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Bayes’s rule
●Probability of event H given evidence E:

●A priori probability of H :
● Probability of event before evidence is seen

●A posteriori probability of H :
● Probability of event after evidence is seen

Thomas Bay es
Born: 17 02 in London, England
Died: 17 61 in Tunbridge Wells , Kent, England

Pr [H∣E]=
Pr [E∣H]Pr [H]

Pr [E]

Pr [H]

Pr [H∣E]

16Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Naïve Bayes for classification

● Classification learning: what’s the
probability of the class given an instance?

♦ Evidence E = instance
♦ Event H = class value for instance

● Naïve assumption: evidence splits into parts
(i.e. attributes) that are independent

Pr [H∣E]=
Pr [E1∣H]Pr [E2∣H]Pr [En∣H]Pr [H]

Pr [E]

17Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Weather data example

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook Evidence E

Probability of
class “yes”

Pr [yes∣E]=Pr [Outlook=Sunny∣yes]
×Pr [Temperature=Cool∣yes]
×Pr [Humidity=High∣yes]
×Pr [Windy=True∣yes]

×Pr [yes]
Pr [E]

=

2
9
×3

9
×3

9
×3

9
× 9

14
Pr [E]

18Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The “zero­frequency problem”

● What if an attribute value doesn’t occur with every
class value?
(e.g. “Humidity = high” for class “yes”)

♦ Probability will be zero!
♦ A posteriori probability will also be zero!

(No matter how likely the other values are!)
● Remedy: add 1 to the count for every attribute

value­class combination (Laplace estimator)
● Result: probabilities will never be zero!

(also: stabilizes probability estimates)

Pr [Humidity=High∣yes]=0
Pr [yes∣E]=0

19Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Modified probability estimates

● In some cases adding a constant different
from 1 might be more appropriate

● Example: attribute outlook for class yes

● Weights don’t need to be equal
(but they must sum to 1)

Sunny Overcast Rainy

2/3
9

4/3
9

3/3
9

2p1

9
4p2

9
3p3

9

20Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Missing values

● Training: instance is not included in frequency
count for attribute value­class combination

● Classification: attribute will be omitted from
calculation

● Example:
?TrueHighCool?

PlayWindyHumidit
y

Temp.Outlook

Likelihood of “yes” = 3/ 9 × 3/ 9 × 3/ 9 × 9/ 14 = 0.0238

Likelihood of “no” = 1/ 5 × 4/ 5 × 3/ 5 × 5/ 14 = 0.0343

P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%

21Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Numeric attributes
● Usual assumption: attributes have a

normal or Gaussian probability
distribution (given the class)

● The probability density function for the
normal distribution is defined by two
parameters:
● Sample mean µ

● Standard deviation σ

● Then the density function f(x) is

=1
n∑i=1

n

xi

= 1
n−1∑i=1

n

x i−2

f x= 1

2
e

−
x−2

22

22Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Statistics for weather data

● Example density value:

5/
14

5

No

9/
14

9

Yes

Play

3/ 5

2/ 5

3

2

No

3/ 9

6/ 9

3

6

Yes

True

False

True

False

Windy

σ = 9.7

µ = 86

95, …

90, 91,

70, 85,

NoYesNoYesNoYes

σ = 10.2

µ = 79

80, …

70, 75,

65, 70,

Humidity

σ = 7.9

µ = 75

85, …

72,80,

65,71,

σ = 6.2

µ = 73

72, …

69, 70,

64, 68,

2/ 53/ 9Rainy

Temperature

0/ 54/ 9Overcast

3/ 52/ 9Sunny

23Rainy

04Overcast

32Sunny

Outlook

f temperature=66∣yes= 1

26.2
e

−
66−732

2⋅6.22

=0.0340

23Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Classifying a new day

● A new day:

● Missing values during training are not
included in calculation of mean and
standard deviation

?true9066Sunny

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” = 2/ 9 × 0.0340 × 0.0221 × 3/ 9 × 9/ 14 = 0.000036

Likelihood of “no” = 3/ 5 × 0.0221 × 0.0381 × 3/ 5 × 5/ 14 = 0.000108

P(“yes”) = 0.000036 / (0.000036 + 0. 000108) = 25%

P(“no”) = 0.000108 / (0.000036 + 0. 000108) = 75%

24Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Probability densities

● Relationship between probability and
density:

● But: this doesn’t change calculation of a
posteriori probabilities because ε cancels out

● Exact relationship:

Pr [c−

2
xc


2
]≈×f c

Pr [axb]=∫
a

b

f tdt

25Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Multinomial naïve Bayes I
● Version of naïve Bayes used for document

classification using bag of words model
● n

1
,n

2
, ... , n

k
: number of times word i occurs in

document
● P

1
,P

2
, ... , P

k
: probability of obtaining word i when

sampling from documents in class H
● Probability of observing document E given class H

(based on multinomial distribution):

● Ignores probability of generating a document of the
right length (prob. assumed constant for each class)

Pr [E∣H]≈N!×∏
i=1

k Pi
ni

ni!

26Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Multinomial naïve Bayes II

● Suppose dictionary has two words, yellow and blue
● Suppose Pr[yellow | H] = 75% and Pr[blue | H] = 25%
● Suppose E is the document “blue yellow blue”
● Probability of observing document:

Suppose there is another class H' that has
Pr[yellow | H'] = 75% and Pr[yellow | H'] = 25%:

● Need to take prior probability of class into account to
make final classification

● Factorials don't actually need to be computed
● Underflows can be prevented by using logarithms

Pr [{blue yellow blue}∣H]≈3!×0.751

1! ×0.252

2! = 9
64≈0.14

Pr [{blue yellow blue}∣H']≈3!× 0.11

1! ×
0.92

2! =0.24

27Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Naïve Bayes: discussion

● Naïve Bayes works surprisingly well (even if
independence assumption is clearly violated)

● Why? Because classification doesn’t require
accurate probability estimates as long as maximum
probability is assigned to correct class

● However: adding too many redundant attributes
will cause problems (e.g. identical attributes)

● Note also: many numeric attributes are not
normally distributed (→ kernel density estimators)

28Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Constructing decision trees

● Strategy: top down
Recursive divide­and­conquer fashion

♦ First: select attribute for root node
Create branch for each possible attribute value

♦ Then: split instances into subsets
One for each branch extending from the node

♦ Finally: repeat recursively for each branch,
using only instances that reach the branch

● Stop if all instances have the same class

29Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Which attribute to select?

30Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Which attribute to select?

31Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Criterion for attribute selection

● Which is the best attribute?
♦ Want to get the smallest tree
♦ Heuristic: choose the attribute that produces the

“purest” nodes
● Popular impurity criterion: information gain

♦ Information gain increases with the average
purity of the subsets

● Strategy: choose attribute that gives greatest
information gain

32Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Computing information

● Measure information in bits
♦ Given a probability distribution, the info

required to predict an event is the
distribution’s entropy

♦ Entropy gives the information required in bits
(can involve fractions of bits!)

● Formula for computing the entropy:

entropy p1,p2,... ,pn=−p1 logp1−p2 logp2 ...−pn log pn

33Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example: attribute Outlook

● Outlook = Sunny :

● Outlook = Overcast :

● Outlook = Rainy :

● Expected information for attribute:

Note: this
is normally
undefined.

info[2,3]=entropy 2/5,3 /5=−2/5log 2/5−3/5log 3/5=0.971bits

info[4,0]=entropy 1,0=−1log 1−0log0=0bits

info[2,3]=entropy 3/5,2 /5=−3/5log 3/5−2/5log 2/5=0.971bits

info[3,2], [4,0], [3,2]=5/14×0.9714/14×05/14×0.971=0.693bits

34Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Computing information gain

● Information gain: information before splitting –
information after splitting

● Information gain for attributes from weather data:

gain(Outlook) = 0.247 bits
gain(Temperature) = 0.029 bits
gain(Humidity) = 0.152 bits
gain(Windy) = 0.048 bits

gain(Outlook) = info([9,5]) – info([2,3],[4,0],[3,2])
= 0.940 – 0.693
= 0.247 bits

35Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Continuing to split

gain(Temperature) = 0.571 bits
gain(Humidity) = 0.971 bits
gain(Windy) = 0.020 bits

36Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Final decision tree

● Note: not all leaves need to be pure; sometimes
identical instances have different classes

⇒ Splitting stops when data can’t be split any further

37Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Wishlist for a purity measure

● Properties we require from a purity measure:
♦ When node is pure, measure should be zero
♦ When impurity is maximal (i.e. all classes equally

likely), measure should be maximal
♦ Measure should obey multistage property (i.e.

decisions can be made in several stages):

● Entropy is the only function that satisfies all
three properties!

measure [2,3,4]=measure [2,7]7/9×measure [3,4]

38Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Properties of the entropy

● The multistage property:

● Simplification of computation:

● Note: instead of maximizing info gain we
could just minimize information

entropy p,q,r=entropy p,qrqr×entropy  q
qr , r

qr 

info[2,3,4]=−2/9×log 2/9−3/9×log3/9−4/9×log 4/9

=[−2×log2−3×log3−4×log49×log9]/9

39Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Highly­branching attributes

● Problematic: attributes with a large number
of values (extreme case: ID code)

● Subsets are more likely to be pure if there is
a large number of values

⇒ Information gain is biased towards choosing
attributes with a large number of values

⇒ This may result in overfitting (selection of an
attribute that is non­optimal for prediction)

● Another problem: fragmentation

40Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Weather data with ID code

N

M

L

K

J

I

H

G

F

E

D

C

B

A

ID code

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidit
y

Temp.Outlook

41Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Tree stump for ID code attribute

● Entropy of split:

⇒ Information gain is maximal for ID code
(namely 0.940 bits)

infoID code=info[0,1]info[0,1]...info[0,1]=0bits

42Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Gain ratio

● Gain ratio: a modification of the information gain
that reduces its bias

● Gain ratio takes number and size of branches into
account when choosing an attribute

♦ It corrects the information gain by taking the intrinsic
information of a split into account

● Intrinsic information: entropy of distribution of
instances into branches (i.e. how much info do we
need to tell which branch an instance belongs to)

43Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Computing the gain ratio

● Example: intrinsic information for ID code

● Value of attribute decreases as intrinsic
information gets larger

● Definition of gain ratio:

● Example:

info[1,1,...,1]=14×−1/14×log 1/14=3.807bits

gain_ratioattribute=gain attribute
intrinsic_infoattribute

gain_ratio ID code=0.940bits
3.807bits=0.246

44Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Gain ratios for weather data

0.019Gain ratio: 0.029/ 1.5570.157Gain ratio: 0.247/ 1.577

1.557Split info: info([4,6,4])1.577 Split info: info([5,4,5])

0.029Gain: 0.940- 0.911 0.247 Gain: 0.940- 0.693

0.911Info:0.693Info:

TemperatureOutlook

0.049Gain ratio: 0.048/ 0.9850.152Gain ratio: 0.152/ 1

0.985Split info: info([8,6])1.000 Split info: info([7,7])

0.048Gain: 0.940- 0.892 0.152Gain: 0.940- 0.788

0.892Info:0.788Info:

WindyHumidity

45Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

More on the gain ratio

● “Outlook” still comes out top
● However: “ID code” has greater gain ratio

♦ Standard fix: ad hoc test to prevent splitting on that
type of attribute

● Problem with gain ratio: it may overcompensate
♦ May choose an attribute just because its intrinsic

information is very low
♦ Standard fix: only consider attributes with greater

than average information gain

46Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Discussion

● Top­down induction of decision trees: ID3,
algorithm developed by Ross Quinlan

♦ Gain ratio just one modification of this basic
algorithm

♦ ⇒ C4.5: deals with numeric attributes, missing
values, noisy data

● Similar approach: CART
● There are many other attribute selection

criteria!
(But little difference in accuracy of result)

47Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Covering algorithms

● Convert decision tree into a rule set
♦ Straightforward, but rule set overly complex
♦ More effective conversions are not trivial

● Instead, can generate rule set directly
♦ for each class in turn find rule set that covers

all instances in it
(excluding instances not in the class)

● Called a covering approach:
♦ at each stage a rule is identified that “covers”

some of the instances

48Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example: generating a rule

If x > 1.2
then class = a

If x > 1.2 and y > 2.6
then class = a

If true
then class = a

● Possible rule set for class “b”:

● Could add more rules, get “perfect” rule set

If x ≤ 1.2 then class = b
If x > 1.2 and y ≤ 2.6 then class = b

49Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Rules vs. trees

Corresponding decision tree:
(produces exactly the same
 predictions)

● But: rule sets can be more perspicuous when
decision trees suffer from replicated subtrees

● Also: in multiclass situations, covering algorithm
concentrates on one class at a time whereas
decision tree learner takes all classes into account

50Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Simple covering algorithm

● Generates a rule by adding tests that maximize
rule’s accuracy

● Similar to situation in decision trees: problem
of selecting an attribute to split on

♦ But: decision tree inducer maximizes overall purity
● Each new test reduces

rule’s coverage:

51Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Selecting a test

● Goal: maximize accuracy
♦ t total number of instances covered by rule
♦ p positive examples of the class covered by rule
♦ t – p number of errors made by rule
⇒ Select test that maximizes the ratio p/t

● We are finished when p/t = 1 or the set of
instances can’t be split any further

52Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example: contact lens data

● Rule we seek:
● Possible tests:

4/12Tear production rate = Normal

0/12Tear production rate = Reduced

4/12Astigmatism = yes

0/12Astigmatism = no

1/12Spectacle prescription = Hypermetrope

3/12Spectacle prescription = Myope

1/8Age = Presbyopic

1/8Age = Pre-presbyopic

2/8Age = Young

If ?
 then recommendation = hard

53Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Modified rule and resulting data

● Rule with best test added:

● Instances covered by modified rule:

NoneReducedYesHypermetropePre- presbyopic
NoneNormalYesHypermetropePre- presbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre- presbyopic
NoneReducedYesMyopePre- presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung

Recommended
lenses

Tear production
rate

AstigmatismSpectacle
prescript ion

Age

If astigmatism = yes
 then recommendation = hard

54Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Further refinement

● Current state:

● Possible tests:

4/6Tear production rate = Normal

0/6Tear production rate = Reduced

1/6Spectacle prescription = Hypermetrope

3/6Spectacle prescription = Myope

1/4Age = Presbyopic

1/4Age = Pre-presbyopic

2/4Age = Young

If astigmatism = yes
 and ?
 then recommendation = hard

55Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Modified rule and resulting data

● Rule with best test added:

● Instances covered by modified rule:

NoneNormalYesHypermetropePre- presbyopic
HardNormalYesMyopePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre- presbyopic
hardNormalYesHypermetropeYoung
HardNormalYesMyopeYoung

Recommended
lenses

Tear product ion
rate

AstigmatismSpectacle
prescript ion

Age

If astigmatism = yes
 and tear production rate = normal
 then recommendation = hard

56Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Further refinement

● Current state:

● Possible tests:

● Tie between the first and the fourth test
♦ We choose the one with greater coverage

1/3Spectacle prescription = Hypermetrope

3/3Spectacle prescription = Myope

1/2Age = Presbyopic

1/2Age = Pre-presbyopic

2/2Age = Young

If astigmatism = yes
 and tear production rate = normal
 and ?
then recommendation = hard

57Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The result

● Final rule:

● Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

● These two rules cover all “hard lenses”:
♦ Process is repeated with other two classes

If astigmatism = yes
and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

58Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Pseudo­code for PRISM

For each class C

 Initialize E to the instance set

 While E contains instances in class C

 Create a rule R with an empty left-hand side that predicts class C

 Until R is perfect (or there are no more attributes to use) do

 For each attribute A not mentioned in R, and each value v,

 Consider adding the condition A = v to the left-hand side of R

 Select A and v to maximize the accuracy p/t

 (break ties by choosing the condition with the largest p)

 Add A = v to R

 Remove the instances covered by R from E

59Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Rules vs. decision lists

● PRISM with outer loop removed generates a
decision list for one class

♦ Subsequent rules are designed for rules that are not
covered by previous rules

♦ But: order doesn’t matter because all rules predict the
same class

● Outer loop considers all classes separately
♦ No order dependence implied

● Problems: overlapping rules, default rule required

60Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Separate and conquer

● Methods like PRISM (for dealing with one
class) are separate­and­conquer algorithms:

♦ First, identify a useful rule
♦ Then, separate out all the instances it covers
♦ Finally, “conquer” the remaining instances

● Difference to divide­and­conquer methods:
♦ Subset covered by rule doesn’t need to be

explored any further

61Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Mining association rules

● Naïve method for finding association rules:
♦ Use separate­and­conquer method
♦ Treat every possible combination of attribute

values as a separate class
● Two problems:

♦ Computational complexity
♦ Resulting number of rules (which would have to be

pruned on the basis of support and confidence)
● But: we can look for high support rules directly!

62Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Item sets

● Support: number of instances correctly covered
by association rule

♦ The same as the number of instances covered by all
tests in the rule (LHS and RHS!)

● Item: one test/attribute­value pair
● Item set : all items occurring in a rule
● Goal: only rules that exceed pre­defined support

⇒ Do it by finding all item sets with the given
minimum support and generating rules from them!

63Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Weather data

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

64Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Item sets for weather data

…………

Outlook = Rainy
Temperature = Mild
Windy = False
Play = Yes (2)

Outlook = Sunny
Humidity = High
Windy = False (2)

Outlook = Sunny
Humidity = High (3)

Temperature = Cool
(4)

Outlook = Sunny
Temperature = Hot
Humidity = High
Play = No (2)

Outlook = Sunny
Temperature = Hot
Humidity = High (2)

Outlook = Sunny
Temperature = Hot (2)

Outlook = Sunny (5)

Four- item setsThree- item setsTwo- item setsOne- item sets

● In total: 12 one­item sets, 47 two­item sets, 39
three­item sets, 6 four­item sets and 0 five­
item sets (with minimum support of two)

65Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Generating rules from an item set

● Once all item sets with minimum support have
been generated, we can turn them into rules

● Example:

● Seven (2N­1) potential rules:

Humidity = Normal, Windy = False, Play = Yes (4)

4/4

4/6

4/6

4/7

4/8

4/9

4/12

If Humidity = Normal and Windy = False then Play = Yes

If Humidity = Normal and Play = Yes then Windy = False

If Windy = False and Play = Yes then Humidity = Normal

If Humidity = Normal then Windy = False and Play = Yes

If Windy = False then Humidity = Normal and Play = Yes

If Play = Yes then Humidity = Normal and Windy = False

If True then Humidity = Normal and Windy = False
and Play = Yes

66Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Rules for weather data

● Rules with support > 1 and confidence = 100%:

● In total:
 3 rules with support four
 5 with support three
50 with support two

100%2⇒ Humidity=HighOutlook=Sunny Temperature=Hot58

............

100%3⇒ Humidity=NormalTemperature=Cold Play=Yes4

100%4⇒ Play=YesOutlook=Overcast3

100%4⇒ Humidity=NormalTemperature=Cool2

100%4⇒ Play=YesHumidity=Normal Windy=False1

Association rule Conf.Sup.

67Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example rules from the same set

● Item set:

● Resulting rules (all with 100% confidence):

due to the following “frequent” item sets:

Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

Temperature = Cool, Windy = False ⇒ Humidity = Normal, Play = Yes
Temperature = Cool, Windy = False, Humidity = Normal ⇒ Play = Yes
Temperature = Cool, Windy = False, Play = Yes ⇒ Humidity = Normal

Temperature = Cool, Windy = False (2)

Temperature = Cool, Humidity = Normal, Windy = False (2)

Temperature = Cool, Windy = False, Play = Yes (2)

68Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Generating item sets efficiently

● How can we efficiently find all frequent item sets?
● Finding one­item sets easy
● Idea: use one­item sets to generate two­item sets,

two­item sets to generate three­item sets, …
♦ If (A B) is frequent item set, then (A) and (B) have to be

frequent item sets as well!
♦ In general: if X is frequent k­item set, then all (k­1)­

item subsets of X are also frequent
⇒ Compute k­item set by merging (k­1)­item sets

69Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example

● Given: five three­item sets
(A B C), (A B D), (A C D), (A C E), (B C D)

● Lexicographically ordered!

● Candidate four­item sets:

(A B C D) OK because of (B C D)

(A C D E) Not OK because of (C D E)

● Final check by counting instances in
dataset!

● (k –1)­item sets are stored in hash table

70Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Generating rules efficiently

● We are looking for all high­confidence rules
♦ Support of antecedent obtained from hash table
♦ But: brute­force method is (2N­1)

● Better way: building (c + 1)­consequent rules
from c­consequent ones

♦ Observation: (c + 1)­consequent rule can only hold
if all corresponding c­consequent rules also hold

● Resulting algorithm similar to procedure for
large item sets

71Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example

● 1­consequent rules:

● Corresponding 2­consequent rule:

● Final check of antecedent against hash table!

If Windy = False and Play = No
then Outlook = Sunny and Humidity = High (2/2)

If Outlook = Sunny and Windy = False and Play = No
then Humidity = High (2/2)

If Humidity = High and Windy = False and Play = No
then Outlook = Sunny (2/2)

72Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Association rules: discussion

● Above method makes one pass through the data
for each different size item set

♦ Other possibility: generate (k+2)­item sets just after
(k+1)­item sets have been generated

♦ Result: more (k+2)­item sets than necessary will be
considered but less passes through the data

♦ Makes sense if data too large for main memory
● Practical issue: generating a certain number of

rules (e.g. by incrementally reducing min. support)

73Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Other issues

● Standard ARFF format very inefficient for typical
market basket data

♦ Attributes represent items in a basket and most
items are usually missing

♦ Data should be represented in sparse format
● Instances are also called transactions
● Confidence is not necessarily the best measure

♦ Example: milk occurs in almost every supermarket
transaction

♦ Other measures have been devised (e.g. lift)

74Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Linear models: linear regression

● Work most naturally with numeric attributes
● Standard technique for numeric prediction

♦ Outcome is linear combination of attributes

● Weights are calculated from the training data
● Predicted value for first training instance a(1)

(assuming each instance is extended with a constant attribute with value 1)

x=w0w1a1w2a2...wk ak

w0a0
1w1a1

1w2a2
1...wkak

1=∑ j=0
k w ja j

1

75Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Minimizing the squared error

● Choose k +1 coefficients to minimize the
squared error on the training data

● Squared error:
●

● Derive coefficients using standard matrix
operations

● Can be done if there are more instances than
attributes (roughly speaking)

● Minimizing the absolute error is more difficult

∑i=1
n xi−∑ j=0

k w ja j
i 2

76Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Classification

● Any regression technique can be used for
classification

♦ Training: perform a regression for each class, setting
the output to 1 for training instances that belong to
class, and 0 for those that don’t

♦ Prediction: predict class corresponding to model
with largest output value (membership value)

● For linear regression this is known as multi­
response linear regression

● Problem: membership values are not in [0,1]
range, so aren't proper probability estimates

77Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Linear models: logistic regression

● Builds a linear model for a transformed
target variable

● Assume we have two classes
● Logistic regression replaces the target

by this target

● Logit transformation maps [0,1] to (­∞ , +∞)

P[1∣a1,a2, ,ak]

log  P[1∣a1,a2, ,ak]
1−P[1∣a1,a2,,ak]



78Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Logit transformation

● Resulting model:

Pr [1∣a1,a2,... ,ak]=
1

1e−w0−w1a1−...−wkak

79Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example logistic regression model

● Model with w
0
 = 0.5 and w

1
 = 1:

● Parameters are found from training data
using maximum likelihood

80Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Maximum likelihood

● Aim: maximize probability of training data
wrt parameters

● Can use logarithms of probabilities and
maximize log­likelihood of model:

where the x(i) are either 0 or 1
● Weights w

i
 need to be chosen to maximize

log­likelihood (relatively simple method:
iteratively re­weighted least squares)

∑i=1
n 1−xilog1−Pr [1∣a1

i,a2
i ,... ,ak

 i]
xilogPr [1∣a1

 i ,a2
i,... ,ak

i]

81Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Multiple classes

● Can perform logistic regression
independently for each class
(like multi­response linear regression)

● Problem: probability estimates for different
classes won't sum to one

● Better: train coupled models by
maximizing likelihood over all classes

● Alternative that often works well in
practice: pairwise classification

82Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Pairwise classification

● Idea: build model for each pair of classes,
using only training data from those classes

● Problem? Have to solve k(k­1)/2
classification problems for k­class problem

● Turns out not to be a problem in many
cases because training sets become small:

♦ Assume data evenly distributed, i.e. 2n/k per
learning problem for n instances in total

♦ Suppose learning algorithm is linear in n
♦ Then runtime of pairwise classification is

proportional to (k(k­1)/2)×(2n/k) = (k­1)n

83Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Linear models are hyperplanes

● Decision boundary for two­class logistic
regression is where probability equals 0.5:

which occurs when
● Thus logistic regression can only separate

data that can be separated by a hyperplane
● Multi­response has the same problem.

Class 1 is assigned if:

Pr [1∣a1,a2, ... ,ak]=1/1exp−w0−w1a1−...−wk ak=0.5

−w0−w1a1−...−wk ak=0

w0
1w1

1a1...wk
1akw0

2w1
2a1...wk

2ak

⇔w0
1−w0

2w1
1−w1

2a1...wk
1−wk

2 ak0

84Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Linear models: the perceptron

● Don't actually need probability estimates if all we
want to do is classification

● Different approach: learn separating hyperplane
● Assumption: data is linearly separable
● Algorithm for learning separating hyperplane:

perceptron learning rule
● Hyperplane:

where we again assume that there is a constant
attribute with value 1 (bias)

● If sum is greater than zero we predict the first
class, otherwise the second class

0=w0a0w1a1w2a2...wkak

85Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The algorithm
Set all weights to zero

Until all instances in the training data are classified correctly

 For each instance I in the training data

 If I is classified incorrectly by the perceptron

 If I belongs to the first class add it to the weight vector

 else subtract it from the weight vector

● Why does this work?
Consider situation where instance a pertaining to
the first class has been added:

This means output for a has increased by:

This number is always positive, thus the hyperplane
has moved into the correct direction (and we can
show output decreases for instances of other class)

w0a0a0w1a1a1w2a2a2...wkakak

a0a0a1a1a2a2...akak

86Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Perceptron as a neural network

Input
layer

Output
layer

87Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Linear models: Winnow

● Another mistake­driven algorithm for
finding a separating hyperplane

♦ Assumes binary data (i.e. attribute values are
either zero or one)

● Difference: multiplicative updates instead
of additive updates

♦ Weights are multiplied by a user­specified
parameter α> 1 (or its inverse)

● Another difference: user­specified threshold
parameter θ

♦ Predict first class if w0a0w1a1w2a2...wkak

88Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The algorithm

● Winnow is very effective in homing in on relevant
features (it is attribute efficient)

● Can also be used in an on­line setting in which
new instances arrive continuously
(like the perceptron algorithm)

while some instances are misclassified

 for each instance a in the training data

 classify a using the current weights

 if the predicted class is incorrect

 if a belongs to the first class

 for each a
i
 that is 1, multiply w

i
 by alpha

 (if a
i
 is 0, leave w

i
 unchanged)

 otherwise

 for each a
i
 that is 1, divide w

i
 by alpha

 (if a
i
 is 0, leave w

i
 unchanged)

89Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Balanced Winnow
● Winnow doesn't allow negative weights and this

can be a drawback in some applications
● Balanced Winnow maintains two weight vectors,

one for each class:

● Instance is classified as belonging to the first class
(of two classes) if: w0

−w0
− a0w1

−w2
− a1...wk

−wk
− ak

while some instances are misclassified

 for each instance a in the training data

 classify a using the current weights

 if the predicted class is incorrect

 if a belongs to the first class

 for each a
i
 that is 1, multiply w

i

+ by alpha and divide w
i

- by alpha

 (if a
i
 is 0, leave w

i

+ and w
i

- unchanged)

 otherwise

 for each a
i
 that is 1, multiply w

i

- by alpha and divide w
i

+ by alpha

 (if a
i
 is 0, leave w

i

+ and w
i

- unchanged)

90Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Instance­based learning

● Distance function defines what’s learned
● Most instance­based schemes use

Euclidean distance:

a(1) and a(2): two instances with k attributes
● Taking the square root is not required when

comparing distances
● Other popular metric: city­block metric

● Adds differences without squaring them

a1
1−a1

22a2
1−a2

22...ak
1−ak

22

91Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Normalization and other issues

● Different attributes are measured on different
scales ⇒ need to be normalized:

vi : the actual value of attribute i
● Nominal attributes: distance either 0 or 1
● Common policy for missing values: assumed to be

maximally distant (given normalized attributes)

ai=
v i−min vi

max vi−min vi

92Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Finding nearest neighbors efficiently

● Simplest way of finding nearest neighbour: linear
scan of the data

♦ Classification takes time proportional to the product
of the number of instances in training and test sets

● Nearest­neighbor search can be done more
efficiently using appropriate data structures

● We will discuss two methods that represent
training data in a tree structure:

 kD­trees and ball trees

93Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

kD­tree example

94Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Using kD­trees: example

95Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

More on kD­trees
● Complexity depends on depth of tree, given by

logarithm of number of nodes
● Amount of backtracking required depends on

quality of tree (“square” vs. “skinny” nodes)
● How to build a good tree? Need to find good

split point and split direction
♦ Split direction: direction with greatest variance
♦ Split point: median value along that direction

● Using value closest to mean (rather than
median) can be better if data is skewed

● Can apply this recursively

96Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Building trees incrementally

● Big advantage of instance­based learning:
classifier can be updated incrementally

♦ Just add new training instance!
● Can we do the same with kD­trees?
● Heuristic strategy:

♦ Find leaf node containing new instance
♦ Place instance into leaf if leaf is empty
♦ Otherwise, split leaf according to the longest

dimension (to preserve squareness)
● Tree should be re­built occasionally (i.e. if

depth grows to twice the optimum depth)

97Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Ball trees

● Problem in kD­trees: corners
● Observation: no need to make sure that

regions don't overlap
● Can use balls (hyperspheres) instead of

hyperrectangles
♦ A ball tree organizes the data into a tree of k­

dimensional hyperspheres
♦ Normally allows for a better fit to the data and

thus more efficient search

98Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Ball tree example

99Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Using ball trees

● Nearest­neighbor search is done using the
same backtracking strategy as in kD­trees

● Ball can be ruled out from consideration if:
distance from target to ball's center exceeds
ball's radius plus current upper bound

100Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Building ball trees

● Ball trees are built top down (like kD­trees)
● Don't have to continue until leaf balls

contain just two points: can enforce
minimum occupancy (same in kD­trees)

● Basic problem: splitting a ball into two
● Simple (linear­time) split selection strategy:

♦ Choose point farthest from ball's center
♦ Choose second point farthest from first one
♦ Assign each point to these two points
♦ Compute cluster centers and radii based on the

two subsets to get two balls

101Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Discussion of nearest­neighbor learning

● Often very accurate
● Assumes all attributes are equally important

● Remedy: attribute selection or weights
● Possible remedies against noisy instances:

● Take a majority vote over the k nearest neighbors
● Removing noisy instances from dataset (difficult!)

● Statisticians have used k­NN since early 1950s
● If n → ∞ and k/n → 0, error approaches minimum

● kD­trees become inefficient when number of
attributes is too large (approximately > 10)

● Ball trees (which are instances of metric trees)
work well in higher­dimensional spaces

102Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

More discussion

● Instead of storing all training instances,
compress them into regions

● Example: hyperpipes (from discussion of 1R)
● Another simple technique (Voting Feature

Intervals):
♦ Construct intervals for each attribute

● Discretize numeric attributes
● Treat each value of a nominal attribute as an “interval”

♦ Count number of times class occurs in interval
♦ Prediction is generated by letting intervals vote

(those that contain the test instance)

103Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

● Clustering techniques apply when there is
no class to be predicted

● Aim: divide instances into “natural” groups
● As we've seen clusters can be:

♦ disjoint vs. overlapping
♦ deterministic vs. probabilistic
♦ flat vs. hierarchical

● We'll look at a classic clustering algorithm
called k­means

♦ k­means clusters are disjoint, deterministic,
and flat

Clustering

104Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The k­means algorithm

To cluster data into k groups:
(k is predefined)

1. Choose k cluster centers
♦ e.g. at random

2. Assign instances to clusters
♦ based on distance to cluster centers

3. Compute centroids of clusters
4. Go to step 1

♦ until convergence

105Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Discussion
● Algorithm minimizes squared distance to

cluster centers
● Result can vary significantly

♦ based on initial choice of seeds
● Can get trapped in local minimum

♦ Example:

● To increase chance of finding global optimum:
restart with different random seeds

● Can we applied recursively with k = 2

instances

initial
cluster
centres

106Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Faster distance calculations

● Can we use kD­trees or ball trees to speed
up the process? Yes:

♦ First, build tree, which remains static, for all
the data points

♦ At each node, store number of instances and
sum of all instances

♦ In each iteration, descend tree and find out
which cluster each node belongs to

● Can stop descending as soon as we find out that a
node belongs entirely to a particular cluster

● Use statistics stored at the nodes to compute new
cluster centers

107Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example

108Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Comments on basic methods

● Bayes’ rule stems from his “Essay towards solving
a problem in the doctrine of chances” (1763)

♦ Difficult bit in general: estimating prior probabilities
(easy in the case of naïve Bayes)

● Extension of naïve Bayes: Bayesian networks
(which we'll discuss later)

● Algorithm for association rules is called APRIORI
● Minsky and Papert (1969) showed that linear

classifiers have limitations, e.g. can’t learn XOR
♦ But: combinations of them can (→ multi­layer neural

nets, which we'll discuss later)

