EKA

o>
/é = Cre dlbllltyZEvaluating what’s been learned

Issues: training, testing, tuning

Predicting performance: confidence limits
Holdout, cross-validation, bootstrap
Comparing schemes: the t-test

Predicting probabilities: loss functions
Cost-sensitive measures

Evaluating numeric prediction

The Minimum Description Length principle

Data Mining

Practical Machine Learning Tools and Techniques

Slides for Chapter 5 of Data Miningby I. H. Witten and E. Frank

03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5) 1 03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5)

Evaluation: the key to success Issues in evaluation

* How predictive is the model we learned? « Statistical reliability of estimated differences in
« Error on the training data is nota good performance ( - significance tests)
indicator of performance on future data * Choice of performance measure:
+ Otherwise 1-NN would be the optimum classifier! + Number of correct classifications
* Simple solution that can be used if lots of + Accuracy of probability estimates
(labeled) data is available: + Error in numeric predictions
+ Splitdata into training and test set « Costs assigned to different types of errors
* However: (labeled) data is usually limited + Many practical applications involve costs

+ More sophisticated techniques need to be used
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o s . KA o s .
Training and testing I «é Training and testing II
* Natural performance measure for e Test set: independent instances that have played
classification problems: error rate no part in formation of classifier
+ Success: instance’s class is predicted correctly * Assumption: both training data and test data are
+ Error: instance’s class is predicted incorrectly representative samples of the underlying problem
+ Error rate: proportion of errors made over the * Test and training data may differ in nature
whole set of instances * Example: classifiers built using customer data from two
* Resubstitution error: error rate obtained different towns Aand B
from n—aining data + To estimate performance of classifier from town Ain completely
. . ) new town, test it on data from B
* Resubstitution error is (hopelessly)
optimistic!
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APV Note on parameter tuning
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24 Making the most of the data

« Itis important that the test data is not used in
any way to create the classifier

* Some learning schemes operate in two stages:
« Stage 1: build the basic structure
« Stage 2: optimize parameter settings

* The test data can’t be used for parameter tuning!
* Proper procedure uses three sets: training data,

validation data, and test data
« Validation data is used to optimize parameters
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¥ Predicting performance

* Assume the estimated error rate is 25%.
How close is this to the true error rate?
+ Depends on the amount of test data

* Prediction is just like tossing a (biased!) coin

» o«

+ “Head” is a “success”, “tail” is an “error”
* In statistics, a succession of independent
events like this is called a Bernoulli process

+ Statistical theory provides us with confidence
intervals for the true underlying proportion
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N
APV Mean and variance

* Mean and variance for a Bernoulli trial:
p, p(1-p)

* Expected success rate f=S/N

* Mean and variance for f: p, p 1-p)/ N

* For large enough N, f follows a Normal
distribution

* ¢% confidence interval [-z <X < z] for
random variable with 0 mean is given by:
Pr{-z<X<z]=c
* With a symmetric distribution:

Pr{-z<X<z]=1-2XPr{x>2z]
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¢ Once evaluation is complete, all the data
can be used to build the final classifier

¢ Generally, the larger the training data the
better the classifier (but returns diminish)

* The larger the test data the more accurate
the error estimate

¢ Holdoutprocedure: method of splitting
original data into training and test set

« Dilemma: ideally both training set and test set
should be large!
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't Confidence intervals

* We can say: p lies within a certain specified
interval with a certain specified confidence
* Example: S=750 successes in N=1000 trials
« Estimated success rate: 75%
« How close is this to true success rate p?
* Answer: with 80% confidence p (0[73.2,76.7]
¢ Another example: S=75 and N=100
« Estimated success rate: 75%
* With 80% confidence p 0 [69.1,80.1]
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&Fv= Confidence limits

« Confidence limits for the normal distribution with

0 mean and a variance of 1: [z B
0.1%) 3.09

0.5%) 2.58

1%| 2.33

5% 1.65

10%) 1.28

20%) 0.84

40%) 0.25

Pr{-1.65<X<1.65]=90%

« To use this we have to reduce our random variable f
to have 0 mean and unit variance
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Transforming f

e

Examples

* Transformed value for f: | ({'PW
vp(1-p:

(i.e. subtract the mean and divide by the standard deviation)

* Resulting equation: Pri-z<, ©
N

-p —
<zl=
p-mnSZI=C

* Solving for p:

p=(f+ L w2 =5t 2)I(1+7)

s f=75%, N=1000, c=80% (so that z=1.28):
Ppel0.732,0.767]
s f=75%, N=100, c=80% (so that z =1.28):

pel0.691,0.801]

* Note that normal distribution assumption is only
valid for large N (i.e. N> 100)

s f=75%, N=10, c=80% (so that z=1.28):

pel0.549,0.881]

(should be taken with a grain of salt)
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Holdout estimation

Repeated holdout method

* What to do if the amount of data is limited?
* The holdout method reserves a certain amount
for testing and uses the remainder for training
+ Usually: one third for testing, the rest for training
* Problem: the samples might not be
representative
+ Example: class might be missing in the test data
* Advanced version uses stratification

+ Ensures that each class is represented with
approximately equal proportions in both subsets

* Holdout estimate can be made more reliable by
repeating the process with different
subsamples

+ In each iteration, a certain proportion is randomly
selected for training (possibly with stratificiation)

+ The error rates on the different iterations are
averaged to yield an overall error rate

« This is called the repeated holdout method

« Still not optimum: the different test sets overlap

+ Can we prevent overlapping?
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APV Cross-validation

-
AP More on cross-validation

* Cross-validation avoids overlapping test sets
+ First step: split data into k subsets of equal size

+ Second step: use each subset in turn for testing,
the remainder for training

* Called k-fold cross-validation

« Often the subsets are stratified before the
cross-validation is performed

 The error estimates are averaged to yield an
overall error estimate

« Standard method for evaluation: stratified ten-
fold cross-validation
* Why ten?
+ Extensive experiments have shown that this is the
best choice to get an accurate estimate
+ There is also some theoretical evidence for this
« Stratification reduces the estimate’s variance
« Even better: repeated stratified cross-validation

+ E.g. ten-fold cross-validation is repeated ten times
and results are averaged (reduces the variance)
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Leave-One-Out cross-validation

* Leave-One-Out:
a particular form of cross-validation:

+ Set number of folds to number of training instances
+ Le., for ntraining instances, build classifier n times

* Makes best use of the data

* Involves no random subsampling

* Very computationally expensive
+ (exception: NN)
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The bootstrap

* CV uses sampling without replacement
« The same instance, once selected, can not be selected
again for a particular training/test set
» The bootstrap uses sampling with replacement to
form the training set
« Sample a dataset of ninstances n times with replacement
to form a new dataset of n instances
» Use this data as the training set

 Use the instances from the original
dataset that don’t occur in the new
training set for testing
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@" 2 Estimating error with the bootstrap

* The error estimate on the test data will be
very pessimistic
+ Trained on just ~63% of the instances
* Therefore, combine it with the
resubstitution error:
err=0.632 X €4 instances 7 0-368 X €xraining instances
* The resubstitution error gets less weight
than the error on the test data
* Repeat process several times with different
replacement samples; average the results

03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5) 23

@v X Leave-One-Out-CV and stratification

» Disadvantage of Leave-One-Out-CV:
stratification is not possible
+ It guarantees a non-stratified sample because
there is only one instance in the test set!
» Extreme example: random dataset split
equally into two classes
+ Bestinducer predicts majority class
+ 50% accuracy on fresh data
+ Leave-One-Out-CV estimate is 100% error!
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The 0.632 bootstrap

* Also called the 0.632 bootstrap

+ A particular instance has a probability of 1-1/n
of not being picked

+ Thus its probability of ending up in the test
data is:
(1—;)“~e‘1~0.368

+ This means the training data will contain
approximately 63.2% of the instances
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@ *fore on the bootstrap

* Probably the best way of estimating
performance for very small datasets
* However, it has some problems
+ Consider the random dataset from above

+ A perfect memorizer will achieve
0% resubstitution error and
~50% error on test data

+ Bootstrap estimate for this classifier:

err=0.632x50%+0.368x0%=31.6 %
+ True expected error: 50%
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f 2% Comparing data mining schemes

* Frequent question: which of two learning
schemes performs better?

* Note: this is domain dependent!
* Obvious way: compare 10-fold CV estimates
* Generally sufficient in applications (we don't
loose if the chosen method is not truly better)
* However, what about machine learning research?
+ Need to show convincingly that a particular
method works better
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GV Paired t-test

* In practice we have limited data and a limited
number of estimates for computing the mean

* Student’s t-test tells whether the means of two
samples are significantly different

* In our case the samples are cross-validation
estimates for different datasets from the domain

* Use a paired t-test because the individual samples
are paired

+ The same CV is applied twice

William Gosset

Born: 1876 in Canterbury; Died: 1937 in Beaconsfield, England

Obtained a post as a chemist in the Guinness brewery in Dublin in

1899. Invented the t-test to handle small samples for quality
control in brewing. Wrote under the name "Sudent".
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&"E"ﬁ‘ Student’s distribution

* With small samples (k < 100) the mean follows
Student’s distribution with k-1 degrees of freedom

* Confidence limits:

9 degrees of freedom normal
distribution

/ Pr[x>z] z Prx>z] z
. 0.1%| 4.30 0.1%| 3.09
Assuming 05%| 3.25 05%| 258
we have 1%| 2.82 1%| 233
10 estimates 5% 183 5% 165
10%| 138 10%| 1.28
20%| 0.88 20%| 0.84
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&F Comparing schemes 1T

* Want to show that scheme A is better than
scheme B in a particular domain
+ For a given amount of training data
+ On average, across all possible training sets
* Let's assume we have an infinite amount of
data from the domain:
+ Sample infinitely many dataset of specified size
+ Obtain cross-validation estimate on each
dataset for each scheme
+ Check if mean accuracy for scheme A is better
than mean accuracy for scheme B
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¥ Distribution of the means

e X,X,...x.and y, y, ... y, are the 2k samples for the k
different datasets

« m,and m, are the means

« With enough samples, the mean of a set of
independent samples is normally distributed

» Estimated variances of the means are
o 2/kand c)?/k

If g and p,are the true means then ™= *x ™~#r

s A Hy Volk Voilk
are approximately normally distributed with
mean 0, variance 1
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&"E"ﬁ‘ Distribution of the differences

eLetm,=m,—m,

« The difference of the means (m,) also has a
Student’s distribution with k-1 degrees of freedom

e Let 0,2 be the variance of the difference

 The standardized version of m, is called the ¢
statistic:

— m,
t= Vo¥k
*We use ¢ to perform the t-test
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24 Performing the test

.
AP Unpaired observations

« Fixa significance level

« [Ifadifference is significant at the a% level,
there is a (100-a )% chance that the true means differ

« Divide the significance level by two because the
test is two-tailed
« Le. the true difference can be +ve or —ve
« Look up the value for z that corresponds to a/2
« If t<—zor t 2z then the difference is significant

« Le. the null hypothesis (that the difference is zero)
can be rejected

o If the CV estimates are from different
datasets, they are no longer paired
(or maybe we used k -fold CV for one
scheme, and j -fold CV for the other one)

* Then we have to use an un paired t-test with
min(k, j) —1 degrees of freedom

* The t-statistic becomes:

L
k+j
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AWK Dependent estimates

F

¥ Predicting probabilities

* We assumed that we have enough data to create
several datasets of the desired size
* Need to re-use data if that's not the case
+ E.g. running cross-validations with different
randomizations on the same data
» Samples become dependent O insignificant
differences can become significant
* A heuristic test is the corrected resampled t-test:
+ Assume we use the repeated hold-out method,
with n, instances for training and n, for testing
+ New test statistic is:
m,

Y o2

t=

« Performance measure so far: success rate
* Also called 0-1 loss function:

0 if prediction is correct
07 O
1 if prediction is incorrect

i

* Most classifiers produces class probabilities

* Depending on the application, we might want to
check the accuracy of the probability estimates

* 0-1loss is not the right thing to use in those cases
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AFVE Quadratic loss function

@mﬂ(ﬁ Informational loss function

e p, ... p,are probability estimates for an instance

« cis the index of the instance’s actual class
e a,...a,=0,exceptfor a whichis 1

. dratic lossis:

: Quaderatic loss is: 2,-(17,-—aj)2:2j1=,;17§+(a—17,_-)2

« Want to minimize

. E(p-a)’

« Can show that this is minimized when p;= p;, the
true probabilities

The informational loss function is -log(p,),
where cis the index of the instance’s actual class

Number of bits required to communicate the
actual class

Let p," ... p; be the true class probabilities

Then the expected value for the loss function is:

_p; 10921)1 T _p; 1092pk
Justification: minimized when p;=p;

Difficulty: zero-frequency problem
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Discussion

* Which loss function to choose?

+ Both encourage honesty

+ Quaderatic loss function takes into account all
class probability estimates for an instance

+ Informational loss focuses only on the
probability estimate for the actual class

+ Quadratic loss is bounded: )

it can never exceed 2 1+X,p;

+ Informational loss can be infinite

Informational loss is related to MDL principle
[later]
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Counting the cost

* The confusion matrix:

Predicted class
Yes No
Actual class Yes True positive | False negative
No False positive | True negative

There are many other types of cost!
¢ E.g.: cost of collecting training data
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AF¥ Classification with costs

* Two cost matrices:

Predicted class Predicted class

a b

Actual yer a o |1 1
elass

ro Acual

class

* Success rate is replaced by average cost per
prediction

+ Cost is given by appropriate entry in the cost
matrix
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e

Counting the cost

« In practice, different types of classification
errors often incur different costs
* Examples:
+ Terrorist profiling
* “Nota terrorist” correct 99.99% of the time
+ Loan decisions
+ Oil-slick detection
+ Fault diagnosis
+ Promotional mailing
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Aside: the kappa statistic

« Two confusion matrices for a 3-class problem:
actual predictor (left) vs. random predictor (right)

Pectcca Prcacca
e
PR P PR PP
A i 3| o] e
Aty 0w s | @ Akl [ s ] 6 | e
w 0] n|w AEREIR.
el 120 5| 20 ot 120 0| 20

» Number of successes: sum of entries in
diagonal (D)

. . Dmmud’Dnndnm

« Kappa statistic: »o,_.,.o,.,.

measures relative improvement over random predictor
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o ., . . .
AFUE Cost-sensitive classification

* Can take costs into account when making
predictions
+ Basic idea: only predict high-cost class when
very confident about prediction
* Given: predicted class probabilities
+ Normally we just predict the most likely class

+ Here, we should make the prediction that
minimizes the expected cost
« Expected cost: dot product of vector of class
probabilities and appropriate column in cost matrix
« Choose column (class) that minimizes expected cost
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APV Cost-sensitive learning

/é;?

« So far we haven't taken costs into account at
training time

* Most learning schemes do not perform cost-
sensitive learning

» They generate the same classifier no matter what
costs are assigned to the different classes

« Example: standard decision tree learner
« Simple methods for cost-sensitive learning:
* Resampling of instances according to costs
* Weighting of instances according to costs
* Some schemes can take costs into account by
varying a parameter, e.g. naive Bayes

22 Lift charts
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« Inpractice, costs are rarely known

¢ Decisions are usually made by comparing
possible scenarios

¢ Example: promotional mailout to 1,000,000
households
« Mailto all; 0.1% respond (1000)

« Data mining tool identifies subset of 100,000

most promising, 0.4% of these respond (400)
40% of responses for 10% of cost may pay off

« Identify subset of 400,000 most promising,
0.2% respond (800)

¢ Alift chart allows a visual comparison

Generating a lift chart
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« Sort instances according to predicted probability
of being positive:

Predicted probability Actual class

1 0.95 Yes
2 0.93 Yes
3 0.93 No
4 0.88 Yes

¢ xaxis is sample size
yaxis is number of true positives
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ROC curves

* ROC curves are similar to lift charts
+ Stands for “receiver operating characteristic”
+ Used in signal detection to show tradeoff between
hit rate and false alarm rate over noisy channel
« Differences to lift chart:
+ yaxis shows percentage of true positives in
sample rather than absolute number
+ xaxis shows percentage of false positives in
sample rather than sample size
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A hypothetical lift chart

1000

800
Number of
respondents

o 205 40%

/

80%of responses
for 40%of cost

0% s0% 1005
ple size

40% of responses
for 10% of cost
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£ Asample ROC curve

100%

8O%
True
positives

60%

0 0% 0% 604 0% K0
False posirives

* Jagged curve—one set of test data

* Smooth curve—use cross-validation
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AFUES Cross-validation and ROC curves

* Simple method of getting a ROC curve using
cross-validation:
+ Collect probabilities for instances in test folds
+ Sort instances according to probabilities
* This method is implemented in WEKA
* However, this is just one possibility

+ Another possibility is to generate an ROC curve
for each fold and average them
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The convex hull

* Given two learning schemes we can achieve
any point on the convex hull!
¢ TP and FP rates for scheme 1: ¢, and f;
« TP and FP rates for scheme 2: t,and f,
¢ Ifscheme 1 is used to predict 100 x g % of the
cases and scheme 2 for the rest, then
« TP rate for combined scheme:
qgxt+1-g) xt,
« FP rate for combined scheme:
q xfr1-g) x [,
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FWEKA
sl Summar y of some measures
Domain Plot Explanation

Lift chart | Marketing TP TP
Subset (TP+FP)/ (TP+ FP+ TN+FN)
size

ROC Communications | TPrate |TP/(TP+FN)

curve FP rate FP/ (FP+TN)

Recall- Information Recall TP/ (TP+FN)

precision |retrieval Precision | TP/ (TP+FP)

curve

zé;? 2% ROC curves for two schemes
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100%

805
True
positives

o0

0%

0 20% 40% 0% 80% 100%
False positives
For a small, focused sample, use method A
For alarger one, use method B
In between, choose between A and B with appropriate
probabilities
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More measures...

» Percentage of retrieved documents that are relevant:
precision=TP/(TP+FP)

 Percentage of relevant documents that are returned:
recall =TP/(TP+FN)

« Precision/recall curves have hyperbolic shape

« Summary measures: average precision at 20%, 50% and
80% recall (three-point average recall)

* F-measure=(2 recall precision)/ (recall+precision)

= sensitivity x specificity = (TP / (TP + FN)) x (IN / (TP + TN))

* Area under the ROC curve (AUC):
probability that randomly chosen positive instance is
ranked above randomly chosen negative one
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AFVES Cost curves

* Cost curves plot expected costs directly
« Example for case with uniform costs (i.e. error):

Alwayswrong ...

Always pick —

Expected
error
057

,FI - - Always right

ofF———F———
o 05 1

Prabability p [+]
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24 Cost curves: example with costs

EKA

zé;? * Evaluating numeric prediction

057

Normalized
expected
cost
0.

.25

ot
[ 05 ’
Probability cost function pe[+]

Probability cost function p,[+1=,,, Zi 0

Normalized expected cost=fnxp,[+]+fpx(1-p,[+])

« Same strategies: independent test set,
cross-validation, significance tests, etc.

« Difference: error measures

« Actual target values: a, a, ...a,,

« Predicted target values: p, p, ... p,

* Most popular measure: mean-squared
error

(p-af'+.+(p-a,f

n
« Easy to manipulate mathematically
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Other measures

Improvement on the mean

¢ The root mean-squared error:

n

\/(nfa,)u.., +(p-a,f

¢ The mean absolute error is less sensitive to
outliers than the mean-squared error:

|pi-ai|+... +|p-a,|
n
¢ Sometimes relative error values are more
appropriate (e.g. 10% for an error of 50
when predicting 500)

* How much does the scheme improve on
simply predicting the average?

¢ The relative squared error is:

(p=af'+... +(p-a,f
(@-a,+...+3-a,}

* The relative absolute erroris:

|pi-ay|+... +p,~a.l
|la-ai|+... +[a—a,]
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Correlation coefficient

%% Which measure?

¢ Measures the statistical correlation between
the predicted values and the actual values

Sm
S,S,

~Dla-a —pr _a
Sp4= L(p-pla-3) Sp= Z(p~P S,= (a-af

- n-1 n-1 n-1

¢ Scale independent, between -1 and +1
¢ Good performance leads to large values!

¢ Best tolook at all of them
*» Often it doesn’t matter

* Example:

A B C D
Root mean- squared error |67.8 91.7 63.3 57.4
Mean absolute error 41.3 38.5 334 29.2

Root rel squared error 42.2% |57.2% |39.4% 35.8%
Relative absolute error 43.1% [40.1% |34.8% 30.4%
Correlation coefficient 0.88 0.88 0.89 0.91

* D best
* Csecond- best
* A, Barguable
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AFY The MDL principle

«éy 2% Model selection criteria

* MDL stands for minimum description length

¢ The description length is defined as:
space required to describe a theory

+
space required to describe the theory’s mistakes

« In our case the theory is the classifier and the
mistakes are the errors on the training data

* Aim: we seek a classifier with minimal DL
* MDL principle is a model selection criterion
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% Elegance vs. errors

* Theory 1: very simple, elegant theory that
explains the data almost perfectly

* Theory 2: significantly more complex theory
that reproduces the data without mistakes

* Theory 1 is probably preferable

* Classical example: Kepler’s three laws on
planetary motion

+ Less accurate than Copernicus’s latest
refinement of the Ptolemaic theory of epicycles
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A&F¥ MDLand Bayes’s theorem

* L[T]=“length” of the theory

* L[E|T]=training set encoded wrt the theory

* Description length= L[T] + L[E|T]

* Bayes'’s theorem gives a posteriori
probability of a theory given the data:

_ PrIEMPAT]
Pr[T|E]= PriE]

* Equivalent to:

-log Pr[T|E]=-log Pr[E|T]-log Pr| T]+log Pr|
og Pr[T|E]=-log Pr{E|T]-log Pr{ T]+log Pr[E]

constant
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* Model selection criteria attempt to find a
good compromise between:
* The complexity of a model
o Its prediction accuracy on the training data

¢ Reasoning: a good model is a simple model
that achieves high accuracy on the given data

* Also known as Occam’s Razor :
S
\

the best theory is the smallest one
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that describes all the facts

William of Ockham, born in the village of Ockham in
Surrey (England) about 1285, was the most
influential philosopher of the 14th century and a
controversial theologian.

A&F=4 MDL and compression

* MDL principle relates to data compression:
« The best theory is the one that compresses the data
the most
« Le. to compress a dataset we generate a model and
then store the model and its mistakes
* We need to compute
(a) size of the model, and
(b) space needed to encode the errors
* (b) easy: use the informational loss function

* (a) need a method to encode the model
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AFW VDL and MAP

» MAP stands for maximum a posteriori probability

» Finding the MAP theory corresponds to finding the
MDL theory

« Difficult bit in applying the MAP principle:
determining the prior probability Pr(T] of the theory

= Corresponds to difficult part in applying the MDL
principle: coding scheme for the theory

« Le. if we know a priori that a particular theory is
more likely we need fewer bits to encode it
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Discussion of MDL principle

» Advantage: makes full use of the training data when
selecting a model

Disadvantage 1: appropriate coding scheme/prior
probabilities for theories are crucial

Disadvantage 2: no guarantee that the MDL theory
is the one which minimizes the expected error
Note: Occam’s Razor is an axiom!

» Epicurus’s principle of multiple explanations: keep
all theories that are consistent with the data

MDL and clustering
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* Description length of theory:
bits needed to encode the clusters
¢ e.g. cluster centers
* Description length of data given theory:
encode cluster membership and position
relative to cluster
+ e.g. distance to cluster center
* Works if coding scheme uses less code space
for small numbers than for large ones
* With nominal attributes, must communicate
probability distributions for each cluster
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