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% WEKA Implementation:
Bl Real machine learning schemes

Decision trees
From ID3 to C4.5 (pruning, numeric attributes, ...)

Classification rules
From PRISM to RIPPER and PART (pruning, numeric data, ...)

Extending linear models
Support vector machines and neural networks

Instance-based learning
Pruning examples, generalized exemplars, distance functions

Numeric prediction
Regression/model trees, locally weighted regression

Clustering: hierarchical, incremental, probabilistic

Hierarchical, incremental, probabilistic

Bayesian networks
Learning and prediction, fast data structures for learning
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=48l Industrial-strength algorithms

For an algorithm to be usetul in a wide
range of real-world applications it must:

Permit numeric attributes
Allow missing values
Be robust in the presence of noise

Be able to approximate arbitrary concept
descriptions (at least in principle)

Basic schemes need to be extended to fulfill
these requirements

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)



P
P :.-, b WEKA
-" 2 TI1!:- University
) of Waikato

Decision trees

Extending ID3:

to permit numeric attributes: straightforward
to dealing sensibly with missing values: trickier

stability for noisy data:
requires pruning mechanism

End result: C4.5 (Quinlan)

Best-known and (probably) most widely-used
learning algorithm

Commercial successor: C5.0

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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“@ Numeric attributes

Standard method: binary splits
E.g. temp <45
Unlike nominal attributes,
every attribute has many possible split points

Solution is straightforward extension:

Evaluate info gain (or other measure)
for every possible split point of attribute

Choose “best” split point
Info gain for best split point is info gain for attribute

Computationally more demanding

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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gmal \\Veather data (again!)

Outlook
unny
unny

Overcast

Rainy

out | ook
out | ook
out | ook

hum dity

Temperature Humidity Wwindy Play

High
High
High

Normal

sunny and humdity = high then play = no
rainy and windy = true then play = no
overcast then play = yes

normal then play = yes
none of the above then play = yes

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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&= \\Veather data (again!)

Outlook Temperature Humidity Wwindy
Sunny Hot High False
Sunny Hot High True

Overcast Hot High False
Rainy Mild Normal False

Outlook Temperature Humidity

unny 85 85
unny 80 90
Overcast 83 86

SLIELCIE Rainy 75 80
out | ook =

out | 00k = Olervower—rror—proy—F oo
hum dity = normal then play = yes
none of the[

outl ook = sunny and humdity > 83 then play = no
| f outlook = rainy and wndy = true then play = no
| f outl ook overcast then play = yes

If humdity < 85 then play = yes

| f none of the above then play = yes

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Example

Split on temperature attribute:

E.g. temperature <71.5:yes/4, no/2
temperature =71.5: yes/5, no/3

Info([4,2],[5,3])
=6/14 info([4,2]) + 8/14 info([5,3])
= 0.939 bits

Place split points halfway between values
Can evaluate all split points in one pass!

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)



g Can avoid repeated sorting

Sort instances by the values of the numeric attribute
Time complexity for sorting: O (nlog n)

Does this have to be repeated at each node of the

tree?

No! Sort order for children can be derived from sort
order for parent
Time complexity of derivation: O (n)

Drawback: need to create and store an array of sorted
indices for each numeric attribute

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Binary vs multiway splits

Splitting (multi-way) on a nominal attribute
exhausts all information in that attribute

Nominal attribute is tested (at most) once on
any path in the tree

Not so for binary splits on numeric
attributes!

Numeric attribute may be tested several times
along a path in the tree

Disadvantage: tree is hard to read
Remedy:

pre-discretize numeric attributes, or
use multi-way splits instead of binary ones

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 10



g Computing multi-way splits

Simple and efficient way of generating
multi-way splits: greedy algorithm
Dynamic programming can find optimum
multi-way splitin O (n?) time
imp (k, i, j) is the impurity of the best split of
values x; ... x;into k sub-intervals
imp (k, 1,1) =
min,_;_; imp (k-1, 1, j) +imp (1, j+1, 7)

imp (k, 1, N) gives us the best k-way split
In practice, greedy algorithm works as well

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Missing values

Split instances with missing values into pieces

A piece going down a branch receives a weight
proportional to the popularity of the branch

weights sum to 1

Info gain works with fractional instances
use sums of weights instead of counts

During classification, split the instance into
pieces in the same way

Merge probability distribution using weights

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Pruning

Prevent overfitting to noise in the data
“Prune” the decision tree

Two strategies:

Postpruning
take a fully-grown decision tree and discard
unreliable parts

Prepruning
stop growing a branch when information
becomes unreliable
Postpruning preferred in practice—
prepruning can “stop early”

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Prepruning

Based on statistical significance test

Stop growing the tree when there is no statistically
significant association between any attribute and
the class at a particular node

Most popular test: chi-squared test

ID3 used chi-squared test in addition to
information gain

Only statistically significant attributes were allowed
to be selected by information gain procedure

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 14



Early stopping

Pre-pruning may stop the growth
process prematurely: early stopping
Classic example: XOR/Parity-problem

No individual attribute exhibits any significant
association to the class

Structure is only visible in fully expanded tree
Prepruning won'’t expand the root node

But: XOR-type problems rare in practice
And: prepruning faster than postpruning

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

15



gz77% WEKA
-" 2 TI1!:- University
) of Waikato

Postpruning

First, build full tree

Then, prune it

Fully-grown tree shows all attribute interactions
Problem: some subtrees might be due to
chance effects
Two pruning operations:

Subtree replacement

Subtree raising
Possible strategies:

error estimation

significance testing

MDL principle

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Subtree replacement

Bottom-up .

Consider replacing a tree only =25 \ >25
after considering all its subtrees
bad statutory holidays
> 10 <= 10

good wage increase 1st year
<=2.5 >2.5
4 4

working hours per week statutory holidays <=

>

<=36 | >36 > 10 <=10 good
bad health plan contribution good
none | half full <=4 >4

Y
good bad bad

good

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Delete node
Redistribute instances

Slower than subtree
replacement

(Worthwhile?)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 18
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Estimating error rates

Prune only if it does not increase the estimated error

Error on the training data is NOT a useful estimator
(would result in almost no pruning)

Use hold-out set for pruning
(“reduced-error pruning”)

C4.5’s method

Derive confidence interval from training data

Use a heuristic limit, derived from this, for pruning
Standard Bernoulli-process-based method

Shaky statistical assumptions (based on training data)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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e C4.5's method

Error estimate for subtree is weighted sum of
error estimates for all its leaves

Error estimate for a node:

e=(f+%+z\/§—§+4§2)/(1+%)

If c=25% then z=0.69 (from normal
distribution)

fis the error on the training data
Nis the number of instances covered by the leaf

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 20
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Example

working hours per week

health plan contribution
4 bad 1 bad 4 bad
2 good 1 good 2 good

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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g Complexity of tree induction

Assume
m attributes
n training instances
tree depth O (log n)

Building a tree O (m nlog n)
Subtree replacement O (n)
Subtree raising O (n (log n)?)

Every instance may have to be redistributed at
every node between its leaf and the root

Cost for redistribution (on average): O (log n)
Total cost: O (m nlog n) + O (n (log n)?)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 22
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S From trees to rules

Simple way: one rule for each leaf
C4.5rules: greedily prune conditions from
each rule if this reduces its estimated error
Can produce duplicate rules
Check for this at the end
Then

look at each class in turn
consider the rules for that class

find a “good” subset (guided by MDL)
Then rank the subsets to avoid conflicts

Finally, remove rules (greedily) if this
decreases error on the training data

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 23
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C4.5: choices and options

C4.5rules slow for large and noisy datasets

Commercial version C5.0rules uses a
different technique

Much faster and a bit more accurate

C4.5 has two parameters

Confidence value (default 25%):
lower values incur heavier pruning

Minimum number of instances in the two most
popular branches (default 2)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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TDIDT: Top-Down Induction of Decision Trees

The most extensively studied method of
machine learning used in data mining

Different criteria for attribute/test selection
rarely make a large ditference

Ditferent pruning methods mainly change
the size of the resulting pruned tree

C4.5 builds univariate decision trees

Some TDITDT systems can build
multivariate trees (e.g. CART)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 25
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Classification rules

Common procedure: separate-and-conquer

Differences:
Search method (e.g. greedy, beam search, ...)
Test selection criteria (e.g. accuracy, ...)
Pruning method (e.g. MDL, hold-out set, ...)
Stopping criterion (e.g. minimum accuracy)
Post-processing step

Also: Decision list

VS.
one rule set for each class

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 26



il Test selection criteria

of Waikato

Basic covering algorithm:
keep adding conditions to a rule to improve its accuracy

Add the condition that improves accuracy the most

Measure 1: p/t

t total instances covered by rule
p number of these that are positive

Produce rules that don’t cover negative instances,
as quickly as possible
May produce rules with very small coverage
—special cases or noise?
Measure 2: Information gain p (log(p/1) —log(P/T))

P and Tthe positive and total numbers before the new condition was

added
Information gain emphasizes positive rather than negative instances

These interact with the pruning mechanism used

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 27
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Missing values, numeric attributes

Common treatment of missing values:
for any test, they fail

Algorithm must either

use other tests to separate out positive instances
leave them uncovered until later in the process

In some cases it’s better to treat “missing”
as a separate value

Numeric attributes are treated just like they
are in decision trees

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 28



Pruning rules

Two main strategies:
Incremental pruning
Global pruning
Other ditference: pruning criterion
Error on hold-out set (reduced-error pruning)
Statistical significance
MDL principle
Also: post-pruning vs. pre-pruning

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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ggmd Jsing a pruning set

For statistical validity, must evaluate
measure on data not used for training:

This requires a growing set and a pruning set
Reduced-error pruning :
build full rule set and then prune it

Incremental reduced-error pruning :
simplify each rule as soon as it is built

Can re-split data after rule has been pruned
Stratification advantageous

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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=@ Incremental reduced-error pruning

Initialize E to the i nstance set
Until Eis enpty do
Split Einto Gow and Prune in the ratio 2:1
For each class C for which G ow contains an instance

Use basic covering algorithmto create best perfect rule
for C

Cal culate M{R): worth of rule on Prune
and W(R-): worth of rule with final condition
omtted

|f WM(R) < WR), prune rule and repeat previous step

Fromthe rules for the different cl asses, select the one
that’s worth nost (i.e. with largest (R))

Print the rule
Renove the instances covered by rule fromE
Cont I nue

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Measures used in IREP

(p+(N-n)] /T
(N is total number of negatives)
Counterintuitive:
p=2000and n=1000vs. p=1000 and n=1
Successrate p/t
Problem: p=1and t=1
vs. p=1000 and = 1001
(p—n)/t
Same effect as success rate because it equals
2plt —1
Seems hard to find a simple measure of a
rule’s worth that corresponds with intuition

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Variations

Generating rules for classes in order

Start with the smallest class

Leave the largest class covered by the default rule
Stopping criterion

Stop rule production if accuracy becomes too low

Rule learner RIPPER:

Uses MDL-based stopping criterion

Employs post-processing step to modify rules
guided by MDL criterion

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Using global optimization

RIPPER: Repeated Incremental Pruning to Reduce Error
Reduction (does global optimization in an efficient way)

Classes are processed in order of increasing size
Initial rule set for each class is generated using IREP
An MDL-based stopping condition is used

DL: bits needs to send examples wrt set of rules, bits
needed to send k tests, and bits for k

Once a rule set has been produced for each class, each
rule is re-considered and two variants are produced

One is an extended version, one is grown from scratch
Chooses among three candidates according to DL
Final clean-up step greedily deletes rules to minimize DL

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 34



Avoids global optimization step used in C4.5rules
and RIPPER

Generates an unrestricted decision list using
basic separate-and-conquer procedure

Builds a partial decision tree to obtain a rule

A rule is only pruned if all its implications are known
Prevents hasty generalization

Uses C4.5’s procedures to build a tree

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 35



“@#d Building a partial tree

Expand- subset (9S):
Choose test T and use it to split set of exanples
| nto subsets

Sort subsets into increasing order of average
ent r opy
whi | e
there is a subset X not yet been expanded
AND all subsets expanded so far are | eaves

expand- subset ( X)
| f
all subsets expanded are | eaves
AND estimated error for subtree
= estinmated error for node

undo expansi on into subsets and make node a | eaf

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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S48y Notes on PART

Make leaf with maximum coverage into a rule

Treat missing values just as C4.5 does
I.e. split instance into pieces

Time taken to generate a rule:
Worst case: same as for building a pruned tree
Occurs when data is noisy

Best case: same as for building a single rule
Occurs when data is noise free

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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‘@ Rules with exceptions

Given: a way of generating a single good rule
Then it’s easy to generate rules with exceptions
Select default class for top-level rule

Generate a good rule for one of the remaining
classes

Apply this method recursively to the two subsets
produced by the rule

(I.e. instances that are covered/not covered)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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--> [ris setosa
50/150

petal length >= 2.45

petal width < 1.75
petal length < 5.35

--> Iris versicolor
49/52

petal length >=4.95
petal width < 1.55
--> Iris virginica
272

y

|

sepal length < 4.95

sepal width >=2.45
--> [ris virginica
1/1

petal length >= 3.35
--> Iris virginica
47/48

petal length < 4.85
sepal length < 5.95
--> [ris versicolor

1/1

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Extending linear classification

[Linear classifiers can’t model nonlinear
class boundaries

Simple trick:

Map attributes into new space consisting of
combinations of attribute values

E.g.: all products of n factors that can be
constructed from the attributes

Example with two attributes and n = 3:

— 3 2 2 3

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 41
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Problems with this approach

15t problem: speed

10 attributes, and n =5 [U>2000 coefficients

Use linear regression with attribute selection

Run time is cubic in number of attributes
2rd problem: overfitting

Number of coefficients is large relative to the
number of training instances

Curse of dimensionality kicks in

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 42



Support vector machines

Support vector machines are algorithms for
learning linear classifiers

Resilient to overfitting because they learn a
particular linear decision boundary:
The maximum margin hyperplane

Fast in the nonlinear case

Use a mathematical trick to avoid creating
“pseudo-attributes”

The nonlinear space is created implicitly

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 43
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maximum margin hyperplane \

support vectors

The instances closest to the maximum margin
hyperplane are called support vectors

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 44
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The support vectors define the maximum margin hyperplane
All other instances can be deleted without changing its position and orientation

maximum margin hyperplane \

support vectors
This means the hyperplane X=Wy+w, a,+w,a,
can be written as x= b+ Zi is supp. vector X N a( 1) .8

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 45
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Finding support vectors

X:‘b_l_zi is supp. vector O(ija(I)'a

Support vector: training instance for which o ;> 0

Determine O ; and b ?—

A constrained quadratic optimization problem
Off-the-shelf tools for solving these problems
However, special-purpose algorithms are faster

Example: Platt’s sequential minimal optimization
algorithm (implemented in WEKA)

Note: all this assumes separable datal!

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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L@ Nonlinear SVMs

“Pseudo attributes” represent attribute
combinations

Overfitting not a problem because the
maximum margin hyperplane is stable

There are usually few support vectors relative to
the size of the training set

Computation time still an issue

Each time the dot product is computed, all the
“pseudo attributes” must be included

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)



i A mathematical trick

Avoid computing the “pseudo attributes”

Compute the dot product before doing the
nonlinear mapping

Example: R
X=‘b+zi 1S supp. vector O‘J’Yj(aU)'a)H

Corresponds to a map into the instance space

spanned by all products of n attributes

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Pl Other kernel functions

Mapping is called a “kernel function”

Polynomial kernel X=D+, s s vomer &, Vi 8(1)-8)°

We can use others: o o
Xz‘b_l_zi is supp. vector O(j.VjK(a(I)'a)

Only requirement: K(X,X)=¢(X) (X))
Examples:

K(%, %)=(%%+1)

—()_fj—)_i:j-l-]_)z )

202

K(J_fj,}_fj)=eXp(

K(x;, X)=tanh(BX;X +Db) )

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 49



Have assumed that the data is separable (in
original or transformed space)

Can apply SVMs to noisy data by
introducing a “noise” parameter C

C bounds the influence of any one training
instance on the decision boundary

Corresponding constraint: 0 <o, <C

Still a quadratic optimization problem
Have to determine C by experimentation

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 50
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@ Sparse data

SVM algorithms speed up dramatically if
the data is sparse (i.e. many values are 0)

Why? Because they compute lots and lots
of dot products

Sparse data L1 compute dot products very
etficiently
[terate only over non-zero values

SVMs can process sparse datasets with
10,000s of attributes

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Applications

Machine vision: e.g face identification
Outperforms alternative approaches (1.5% error)

Handwritten digit recognition: USPS data
Comparable to best alternative (0.8% error)

Bioinformatics: e.g. prediction of protein
secondary structure

Text classifiation

Can modity SVM technique for numeric
prediction problems

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Support vector regression

Maximum margin hyperplane only applies to
classification

However, idea of support vectors and kernel
functions can be used for regression

Basic method same as in linear regression:
want to minimize error

Difference A: ignore errors smaller than € and
use absolute error instead of squared error

Difference B: simultaneously aim to maximize
flatness of function

User-specified parameter € defines “tube”

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 53



=48 More on SVM regression

If there are tubes that enclose all the
training points, the flattest of them is used

Eg.: mean is used if 2¢ > range of target values
Model can be written as: x=b+2, supp. vector ;2(1)-8

Support vectors: points on or outside tube
Dot product can be replaced by kernel function

Note: coetficients a may be negative

No tube that encloses all training points?
Requires trade-off between error and flatness

Controlled by upper limit C on absolute value
of coefficients o

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Class

Class

4 6 8 10
Attribute

Class

Attribute

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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=gl The kernel perceptron

Can use “kernel trick” to make non-linear classifier
using perceptron rule

Observation: weight vector is modified by adding or
subtracting training instances

Can represent weight vector using all instances that
have been misclassified:
Canuse X;X;y(jla'(j);a; instead of 2; w;a,
(where class value yis either -1 or +1)
Now swap summation signs: 2, y()X;a'());a,

Can be expressed as: 2 y(ja'(j)a
Can replace dot product by kernel:

s, y()K(@'()),3

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 56
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Comments on kernel perceptron

Finds separating hyperplane in space created by kernel
function (if it exists)

But: doesn't find maximum-margin hyperplane
Easy to implement, supports incremental learning

Linear and logistic regression can also be upgraded
using the kernel trick

But: solution is not “sparse”: every training instance
contributes to solution

Perceptron can be made more stable by using all weight
vectors encountered during learning, not just last one
(voted perceptron)

Weight vectors vote on prediction (vote based on
number of successful classifications since inception)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 57
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@aa Multilayer perceptrons

Using kernels is only one way to build nonlinear
classifier based on perceptrons

Can create network of perceptrons to approximate
arbitrary target concepts

Multilayer perceptron is an example of an artificial
neural network

Consists of: input layer, hidden layer(s), and
output layer of

Structure of MLP is usually found by experimentation
Parameters can be found using backpropagation

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 58
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Backpropagation

Hot to learn weights given network structure?

Cannot simply use perceptron learning rule
because we have hidden layer(s)

Function we are trying to minimize: error

Can use a general function minimization
technique called gradient descent

Need differentiable activation function: use sigmoid
function instead of threshold function

f s 1
. (X) ~ l4exp(—-x) .
Need differentiable error function: can't use zero-one

loss, but can use squared error

E=5(y-f(x))’

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 60
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The two activation functions

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Function: x*+1
Derivative: 2x
Learning rate: 0.1
Start value: 4

Can only find a local minimum!

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Need to find partial derivative of error
function for each parameter (i.e. weight)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 63
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What about the weights for the connections from
the input to the hidden layer?

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 64



Same process works for multiple hidden layers and
multiple output units (eg. for multiple classes)

Can update weights after all training instances have been
processed or incrementally:

batch learningvs. stochastic backpropagation
Weights are initialized to small random values

How to avoid overfitting?
Early stopping: use validation set to check when to stop
Weight decay: add penalty term to error function

How to speed up learning?
Momentum: re-use proportion of old weight change
Use optimization method that employs 2nd derivative

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 65



Sl Radial basis function networks

Another type of feedforward network with
two layers (plus the input layer)

Hidden units represent points in instance
space and activation depends on distance

To this end, distance is converted into
similarity: Gaussian activation function
Width may be different for each hidden unit

Points of equal activation form hypersphere
(or hyperellipsoid) as opposed to hyperplane

Output layer same as in MLP

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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=4l 1 carning RBF networks

Parameters: centers and widths of the RBFs +
weights in output layer

Can learn two sets of parameters
independently and still get accurate models

Eg.: clusters from k-means can be used to form
basis functions

Linear model can be used based on fixed RBFs
Makes learning RBFs very efficient

Disadvantage: no built-in attribute weighting
based on relevance

RBF networks are related to RBF SVMs
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Instance-based learning

Practical problems of 1-NN scheme:

Slow (but: fast tree-based approaches exist)
Remedy: remove irrelevant data

Noise (but: k -NN copes quite well with noise)
Remedy: remove noisy instances

All attributes deemed equally important
Remedy: weight attributes (or simply select)

Doesn’t perform explicit generalization
Remedy: rule-based NN approach
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Leaming prototypes

Only those instances involved in a decision
need to be stored

Noisy instances should be filtered out
Idea: only use prototypical examples

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Speed up, combat noise

[B2: save memory, speed up classification
Work incrementally
Only incorporate misclassified instances
Problem: noisy data gets incorporated

IB3: deal with noise

Discard instances that don’t perform well

Compute confidence intervals for
1. Each instance’s success rate
2. Default accuracy of its class

Accept/reject instances
Accept if lower limit of 1 exceeds upper limit of 2
Reject if upper limit of 1 is below lower limit of 2
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e \Weight attributes

[B4: weight each attribute
(weights can be class-specific)

Weighted Euclidean distance:
VI Wi (X, =y )+ Wa(X, = 7,)%)

Update weights based on nearest neighbor
Class correct: increase weight
Class incorrect: decrease weight

Amount of change for i th attribute depends on
|xi' yz‘l

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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2@ Rectangular generalizations

Nearest-neighbor rule is used outside
rectangles

Rectangles are rules! (But they can be more
conservative than “normal” rules.)

Nested rectangles are rules with exceptions

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Generalized exemplars

Generalize instances into hyperrectangles
Online: incrementally modity rectangles

Offline version: seek small set of rectangles that
cover the instances

Important design decisions:

Allow overlapping rectangles?
Requires conflict resolution

Allow nested rectangles?
Dealing with uncovered instances?
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g Scparating generalized exemplars

of Waikato

Separation
line
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“@ Generalized distance functions

Given: some transformation operations on
attributes

K*: similarity = probability of transtorming
instance A into B by chance
Average over all transformation paths

Weight paths according their probability
(need way of measuring this)

Uniform way of dealing with ditferent
attribute types

Easily generalized to give distance between
sets of instances
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Numeric prediction

Counterparts exist for all schemes previously
discussed
Decision trees, rule learners, SVMs, etc.

(Almost) all classification schemes can be applied
to regression problems using discretization
Discretize the class into intervals
Predict weighted average of interval midpoints
Weight according to class probabilities
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Regression trees

Like decision trees, but:
Splitting criterion:  minimize intra-subset

variation

Termination criterion: std dev becomes
small

Pruning criterion:  based on numeric error
measure

Prediction: Leaf predicts average

class values of instances
Piecewise constant functions
Easy to interpret
More sophisticated version: model trees
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AEN \odel trees

Build a regression tree

Each leaf LI linear regression function

Smoothing: factor in ancestor’s predictions
. . I__ np+Kkq
Smoothing formula: p'=="-7*

Same effect can be achieved by incorporating
ancestor models into the leaves

Need linear regression function at each node

At each node, use only a subset of attributes
Those occurring in subtree
(+maybe those occurring in path to the root)

Fast: tree usually uses only a small subset of
the attributes

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)



Building the tree

Splitting: standard deviation reduction

SDR=sd(

Termination:
Standard deviation < 5% of its value on full training set
Too few instances remain (e.g. < 4)

Pruning:
Heuristic estimate of absolute error of LR models:

n+v

—xaverage absolute error

Greedily remove terms from LR models to minimize
estimated error

Heavy pruning: single model may replace whole subtree

Proceed bottom up: compare error of LR model at internal
node to error of subtree

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Nominal attributes

Convert nominal attributes to binary ones
Sort attribute by average class value

If attribute has k values,
generate k — 1 binary attributes

i th is 0 if value lies within the first i, otherwise 1

Treat binary attributes as numeric

Can prove: best split on one of the new
attributes is the best (binary) split on original
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Missing values

Modity splitting criterion:
SDR=2xsd(T)-X,|¢|xsd(T)

To determine which subset an instance

goes into, use surrogate splitting

Split on the attribute whose correlation with
original is greatest

Problem: complex and time-consuming
Simple solution: always use the class

Test set: replace missing value with
average

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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i Surrogate splitting based on class

Choose split point based on instances with
known values
Split point divides instances into 2 subsets
L (smaller class average)
R (larger)
m is the average of the two averages
For an instance with a missing value:
Choose Lif class value < m
Otherwise R

Once full tree is built, replace missing values
with averages of corresponding leaf nodes
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aia Pseudo-code for M5

Four methods:
Main method: MakeModelTree
Method for splitting: split
Method for pruning: prune
Method that computes error: subtreeError

We'll brietly look at each method in turn

Assume that linear regression method performs
attribute subset selection based on error

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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MakeMbodel Tree (i nstances)

{

SD = sd(i nstances)
for each k-valued nom nal attribute

convert into k-1 synthetic binary attributes
root = newNode

root.instances = instances
split(root)

prune(root)
printTree(root)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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split(node)
{
| f sizeof (node.instances) < 4 or
sd(node. i nstances) < 0.05*SD
node. type = LEAF
el se
node. type = | NTERI OR
for each attribute
for all possible split positions of attribute
calculate the attribute's SDR
node. attribute = attri bute wth maxi num SDR
split(node.left)
split(node.right)
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prune( node)

{
| f node = I NTERI OR t hen

prune(node. | eft Chil d)
prune(node. ri ght Chil d)

node. nodel = | i near Regressi on( node)
| f subtreeError(node) > error(node) then
node. type = LEAF

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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a1 hireeError

subt reeError (node)
{
| = node.left; r = node.right
| f node = I NTERI OR t hen
return (sizeof(l.instances)*subtreeError(l)
+ sizeof (r.instances)*subtreeError(r))
/ si zeof (node. i nst ances)
el se return error(node)

}

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)



=l Rules from model trees

PART algorithm generates classification rules by
building partial decision trees

Can use the same method to build rule sets for
regression

Use model trees instead of decision trees

Use variance instead of entropy to choose node
to expand when building partial tree

Rules will have linear models on right-hand side

Caveat: using smoothed trees may not be
appropriate due to separate-and-conquer strategy
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Locally weighted regression

Numeric prediction that combines
instance-based learning
linear regression

“Lazy”:
computes regression function at prediction time
works incrementally

Weight training instances
according to distance to test instance
needs weighted version of linear regression

Advantage: nonlinear approximation
But: slow
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Design decisions

Weighting function:
Inverse Euclidean distance
Gaussian kernel applied to Euclidean distance
Triangular kernel used the same way
etc.

Smoothing parameter is used to scale the
distance function
Multiply distance by inverse of this parameter

Possible choice: distance of kth nearest
training instance (makes it data dependent)
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@4 Discussion

Regression trees were introduced in CART
Quinlan proposed model tree method (M5)
M5’; slightly improved, publicly available

Quinlan also investigated combining
instance-based learning with M5

CUBIST: Quinlan’s commercial rule learner
for numeric prediction

Interesting comparison: neural nets vs. M5
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=l Clustering: how many clusters?

How to cho

Choose k
squared ¢

Use penal

ose kin k-means? Possibilities:

that minimizes cross-validated
istance to cluster centers

ized squared distance on the

training ¢

ata (eg. using an MDL criterion)

Apply k-means recursively with k=2 and use
stopping criterion (eg. based on MDL)

Seeds for subclusters can be chosen by seeding
along direction of greatest variance in cluster
(one standard deviation away in each direction
from cluster center of parent cluster)

Implemented in algorithm called X-means (using
Bayesian Information Criterion instead of MDL)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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i  [ncremental clustering

Heuristic approach (COBWEB/CLASSIT)

Form a hierarchy of clusters incrementally

Start:
tree consists of empty root node

Then:

add instances one by one

update tree appropriately at each stage

to update, find the right leaf for an instance
May involve restructuring the tree

Base update decisions on category utility
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dil Clustering weather data

Outlook . Humidity Windy

Sunny High False
Sunny High True

Overcast High False
Rainy High False
Rainy Normal False

Rainy Normal True

Overcast Normal True
Sunny High False
Sunny Normal False
Rainy Normal False
Sunny Normal True

Overcast High True

Overcast Normal False

Rainy High True
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ID Outlook

Clustering weather data

Humidity

windy

Sunny
Sunny

Overcast
Rainy
Rainy
Rainy

Overcast
Sunny
Sunny
Rainy
Sunny

Overcast

Overcast

Rainy

High
High
High
High
Normal

Normal

Normal
High
Normal
Normal
Normal
High

Normal

High

False

True

False
False
False

True

True
False
False
False
True
True
False

True

Merge best host
and rynner- up
~

S
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Outlook

Sunny
Sunny

Overcast

Rainy

Final hierarchy

Temp. Humidity Windy
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Versicolor
Versicolor
Versicolor
Versicolor
Versicolor
Versicolor
Virginica
Virginica

Versicolor
Versicolor

Versicolor
Versicolor

Virginica
Virginica
Virginica
Virginica
Virginica
Virginica

Setosa
Setosa
Setosa
Setosa

Virginica
Virginica

Setosa
Setosa

\
Setosa
Setosa
Setosa
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Category utility: quadratic loss function
defined on conditional probabilities:

__ X, PriCZ, Zj(Pr[ajz vl C - Prla,= ij]z)
CUC, C,...,C)= -

Every instance in ditferent category
numerator becomes

n-Y,¥;Pria=v,]*
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-l N\ umeric attributes

Assume normal distribution:

2

_ 1 (a=p)

f(a)—ma exp( — azglé )
Then:

_ 2 1
Y Prla=v]'=[f(a) da= s
Thus >, PriClX, Y .(Prla=v,;| C)*-Prla=v,]?)
CU(C, C, ..., C,)==21cx 2 Prlar v, [ 0T - Pazy,

becomes S, Pr{Cl- %, (1 -1)

CU(C, C, ...,C,)=

k

Prespecified minimum variance
acuity parameter
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asad Probability-based clustering

Problems with heuristic approach:
Division by k?
Order of examples?
Are restructuring operations sufficient?

Is result at least local minimum of category
utility?

Probabilistic perspective
seek the most likely clusters given the data

Also: instance belongs to a particular cluster
with a certain probability
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Finite mixtures

Model data using a mixture of distributions

One cluster, one distribution

governs probabilities of attribute values in that
cluster

Finite mixtures : finite number of clusters

Individual distributions are normal
(usually)

Combine distributions using cluster weights
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=4 Two-class mixture model

of Waikato

>>>W0>WO>>W
>>W>>WO>>W
>TWwWw>wW>w>

>>>wW> >

A
A
B
B
A
A
A
A
A

>TW>W0W>TT >

A
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Using the mixture model

Probability that instance x belongs to
cluster A:

__ Prix|A]Pr[A] _ f(x;u,,0,)p,
Pr{A|x]= Prixl . Prlx]

with

(x—p)

f(x;u,o)= <2nanp< )

Probability of an instance given the clusters:

Pr[x|the clusters]|=% . Pr| x|cluster,] Pr|[cluster,]
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Learning the clusters

Assume:
we know there are k clusters

Learn the clusters

determine their parameters

I.e. means and standard deviations
Performance criterion:

probability of training data given the clusters
EM algorithm

finds a local maximum of the likelihood
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EM algorithm

EM = Expectation-Maximization
Generalize k-means to probabilistic setting

Iterative procedure:
E “expectation” step:
Calculate cluster probability for each instance
M “maximization” step:
Estimate distribution parameters from cluster
probabilities
Store cluster probabilities as instance
weights

Stop when improvement is negligible

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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=4 More on EM

Estimate parameters from weighted instances

1= W, X, + W, X, +...+ W, X,
A W+ W,+...+ W,

wy (X, — )2+ Wy (X, —p )+ ..+ W, (x,— )

U4~ Wi+ Wy+...+ W,

Stop when log-likelihood saturates

Log-likelihood:
2;log(p, Pr{x;| Al+ ps Pr(x;| B])

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Extending the mixture model

More then two distributions: easy
Several attributes: easy—assuming independence!

Correlated attributes: difficult

Joint model: bivariate normal distribution
with a (symmetric) covariance matrix

n attributes: need to estimate n + n (n+1)/2 parameters
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¥ More mixture model extensions

Nominal attributes: easy if independent
Correlated nominal attributes: difficult

Two correlated attributes [ v, v, parameters

Missing values: easy

Can use other distributions than normal:
“log-normal” if predetermined minimum is given
“log-odds” if bounded from above and below
Poisson for attributes that are integer counts

Use cross-validation to estimate k!
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g@8 Dayesian clustering

Problem: many parameters LI EM overtits

Bayesian approach : give every parameter a
prior probability distribution
Incorporate prior into overall likelihood figure
Penalizes introduction of parameters
Eg: Laplace estimator for nominal attributes

Can also have prior on number of clusters!
Implementation: NASA's AUTOCLASS

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 111



z T
&7 WEKA
: e The University
\ of Waikato

Discussion

Can interpret clusters by using supervised
learning

post-processing step

Decrease dependence between attributes?
pre-processing step
E.g. use principal component analysis

Can be used to fill in missing values
Key advantage of probabilistic clustering:

Can estimate likelihood of data
Use it to compare different models objectively
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j From naive Bayes to Bayesian Networks

Naive Bayes assumes:
attributes conditionally independent
given the class

Doesn’t hold in practice but
classification accuracy often high

However: sometimes performance
much worse than e.g. decision tree

Can we eliminate the assumption?
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e Enter Bayesian networks
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Graphical models that can represent any
probability distribution

Graphical representation: directed acyclic
graph, one node for each attribute

Overall probability distribution factorized
into component distributions

Graph’s nodes hold component
distributions (conditional distributions)
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windy

outlook

windy
false true
yes .350 .650
.583 417

outlook play

sunny overcast rainy
yes .238 .429 <333
.538 .077 .385

no

temperature humidity

play humidity

play temperature
hot mild cool high normal
yes .238 .429 .333 yes .350 .650

.750 .250

no

.385 .231

.385

no
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Data Mining: Practical Ma

windy

play outlook windy
false true
yes sunny .500 .500
yes overcast | .500 .500
yes rainy .125 .875
no sunny «375 .625
no overcast | .500 .500
rainy .833 .167

outlook

yes
no

sunny
.238 .429 .333
.538 .077 .385

outlook
overcast rainy

temperature

humidity

play t

yes
yes
yes
no
no
no

emperat.

high
hot .500
mild .500
cool .125
hot .833

mild
cool

.833
-250

humidity

normal
.500
.500
.875
.167
.167
+750

play outloock

hot mild

sunny .143 .429
overcast | .455 .273
rainy o s 4 B 556
sunny .556 .333
overcast | .333 =333

rainy 143 .429

temperature

cool
.429
23

.333
.111
.333
.429




Sl Computing the class probabilities

Two steps: computing a product of
probabilities for each class and normalization
For each class value
Take all attribute values and class value

Look up corresponding entries in conditional
probability distribution tables

Take the product of all probabilities

Divide the product for each class by the sum of
the products (normalization)
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Sl Why can we do this? (Part I)

Single assumption: values of a node’s
parents completely determine
probability distribution for current node

Pr[node|ancestors]|=Pr[node|parents]

Means that node/attribute is
conditionally independent of other
ancestors given parents

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
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Why can we do this? (Part II)

Chain rule from probability theory:
Pria, a, ...,a,)=11_, Prla]a;,,,...,a,]
Because of our assumption from the previous slide:

Pria, a, ...,a,|=II., Prla]a, ,,...,a,]=
i~ Prla;| a,'sparents]
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Learning Bayes nets

Basic components of algorithms for learning

Bayes nets:
Method for evaluating the goodness of a given
network
Measure based on probability of training data
given the network (or the logarithm thereof)
Method for searching through space of possible
networks

Amounts to searching through sets of edges
because nodes are fixed
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@ Problem: overfitting

Can’t just maximize probability of the training
data

Because then it’s always better to add more edges (fit
the training data more closely)

Need to use cross-validation or some penalty for
complexity of the network
AIC measure: AICscore=—LL+K

MDL measure: MDL score=—LL+%1logN

LL:log-likelihood (log of probability of data), K: number
of free parameters, IV: #instances

Another possibility: Bayesian approach with prior
distribution over networks
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L Secarching for a good structure

(>

Task can be simplified: can optimize
each node separately
Because probability of an instance is
product of individual nodes’ probabilities
Also works for AIC and MDL criterion
because penalties just add up

Can optimize node by adding or
removing edges from other nodes
Must not introduce cycles!

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 122



4 The K2 algorithm

Starts with given ordering of nodes
(attributes)

Processes each node in turn

Greedily tries adding edges from
previous nodes to current node

Moves to next node when current node
can’t be optimized further

Result depends on initial order
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Some tricks

Sometimes it helps to start the search with a naive
Bayes network

[t can also help to ensure that every node is in

Markov blanket of class node
Markov blanket of a node includes all parents, children,
and children’s parents of that node
Given values for Markov blanket, node is conditionally
independent of nodes outside blanket

I.e. node is irrelevant to classification if not in Markov
blanket of class node
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Other algorithms

Extending K2 to consider greedily adding or
deleting edges between any pair of nodes

Further step: considering inverting the direction of
edges
TAN (Tree Augmented Naive Bayes):

Starts with naive Bayes

Considers adding second parent to each node
(apart from class node)

Efficient algorithm exists
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Sl 1ikelihood vs. conditional likelihoo

In classification what we really want is to
maximize probability of class given other
attributes

Not probability of the instances

But: no closed-form solution for probabilities in
nodes’ tables that maximize this

However: can easily compute conditional
probability of data based on given network

Seems to work well when used for network scoring
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=8 Data structures for fast learning

Learning Bayes nets involves a lot of counting

for computing conditional probabilities

Naive strategy for storing counts: hash table
Runs into memory problems very quickly

More sophisticated strategy: all-dimensions
(AD) tree

Analogous to kD-tree for numeric data

Stores counts in a tree but in a clever way such
that redundancy is eliminated

Only makes sense to use it for large datasets
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humidity

windy

The University

of Waikato high true yes 1

high true no 2

high talse yes 2

high talse no 2

normal true VES 2

AD tree example normal true no 1
normal talse yes 4

normal talse \

any value

14 instances

humidity = normal windy = true play = no
7 instances 6 instances 5 instances

windy = true play = no play = no
3 instances 1 instance 3 instances

play = no

1 instance
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=488 Building an AD tree

Assume each attribute in the data has been
assigned an index

Then, expand node for attribute i with the
values of all attributes j> i

Two important restrictions:

Most populous expansion for each attribute is
omitted (breaking ties arbitrarily)

Expansions with counts that are zero are also
omitted

The root node is given index zero
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Discussion

We have assumed: discrete data, no missing
values, no new nodes

Ditferent method of using Bayes nets for
classification: Bayesian multinets
I.e. build one network for each class and make
prediction using Bayes’ rule
Ditferent class of learning methods for

Bayes nets: testing conditional
independence assertions

Can also build Bayes nets for regression
tasks
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