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¥ wexa Implementation:
L “ Real machine learning schemes
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« Decision trees
+ From ID3 to C4.5 (pruning, numeric attributes, ...)
¢ Classification rules
+ From PRISM to RIPPER and PART (pruning, numeric data, ...)
» Extending linear models
+ Support vector machines and neural networks
* Instance-based learning
+ Pruning examples, generalized exemplars, distance functions
* Numeric prediction
+ Regression/model trees, locally weighted regression
« Clustering: hierarchical, incremental, probabilistic
+ Hierarchical, incremental, probabilistic
* Bayesian networks
+ Learning and prediction, fast data structures for learning
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Industrial-strength algorithms

* For an algorithm to be useful in a wide
range of real-world applications it must:
+ Permit numeric attributes
+ Allow missing values
+ Be robust in the presence of noise
+ Be able to approximate arbitrary concept
descriptions (at least in principle)
* Basic schemes need to be extended to fulfill
these requirements

Decision trees

« Extending ID3:
« to permit numeric attributes:  straightforward
« to dealing sensibly with missing values: trickier
« stability for noisy data:
requires pruning mechanism
* End result: C4.5 (Quinlan)

« Best-known and (probably) most widely-used
learning algorithm
¢ Commercial successor: C5.0

03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)
gy KA . .
f=* Numeric attributes
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» Standard method: binary splits
+ E.g.temp <45
* Unlike nominal attributes,
every attribute has many possible split points
* Solution is straightforward extension:

+ Evaluate info gain (or other measure)
for every possible split point of attribute

+ Choose “best” split point
+ Info gain for best split point is info gain for attribute
* Computationally more demanding

£ Weather data (again!)
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Outlook  Temperature  Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No

Overcast Hot High False Yes
Rainy Mild Normal False Yes

I outlook = sunny and humidity = high then play = no

I outlook = rainy and windy = true then play = no

I outlook = overcast then play = yes

I humidity = nornml then play = yes

11 none of the above then play = yes
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AFV Weather data (again!)

Outlook _ Temperature _ Humidity Windy Flay
Qunny Hot High False No
Qunny Hot High True No
Overcast Hot High False Yes
Rainy Mild Normal False Yes
Outlook __ Temperature __ Humidity Windy Flay
Sunny 85 85 False No
sunny 80 % True No
Overcast 83 86 False Yes
If outlook =s|  Rany 75 80 False Yes
If outlook = r '
If outlook =
If hunidity = normal then play = yes
If none of the[jy

outlook = sunny and humidity > 83 then play = no
1t out! ool ainy and windy = true then play = no
If outlook = overcast then play = yes

If hunidity < 85 then play = yes

If none of the above then play = yes
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Can avoid repeated sorting

* Sort instances by the values of the numeric attribute
+ Time complexity for sorting: O (nlog n)

* Does this have to be repeated at each node of the
tree?

* No! Sort order for children can be derived from sort
order for parent

+ Time complexity of derivation: O (n)

+ Drawback: need to create and store an array of sorted
indices for each numeric attribute
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Computing multi-way splits

 Simple and efficient way of generating
multi-way splits: greedy algorithm
¢ Dynamic programming can find optimum
multi-way splitin O (n?) time
imp (k, i, j) is the impurity of the best split of
values x, ... x;into k sub-intervals
imp (k,1,i) =
min,;; imp (k-1,1, j) +imp (1, j+1, i)
imp (k, 1, N) gives us the best k-way split
« In practice, greedy algorithm works as well
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AWK Example

* Split on temperature attribute:

64 65 68 69 70 71 72 72 75

75 80 81 83 85
Yes No Yes Yes Yes No No Yes

Yes Yes No Yes Yes No
+ E.g. temperature <71.5: yes/4, no/2
temperature = 71.5: yes/5, no/3

+ Info([4,2],(5,3])

=6/14 info([4,2]) + 8/14 info([5,3])
=0.939 bits

* Place split points halfway between values
* Can evaluate all split points in one pass!
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Binary vs multiway splits

* Splitting (multi-way) on a nominal attribute
exhausts all information in that attribute

+ Nominal attribute is tested (at most) once on
any path in the tree

* Not so for binary splits on numeric
attributes!

+ Numeric attribute may be tested several times
along a path in the tree

» Disadvantage: tree is hard to read
* Remedy:
+ pre-discretize numeric attributes, or
+ use multi-way splits instead of binary ones
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# Missing values

« Split instances with missing values into pieces
+ A piece going down a branch receives a weight
proportional to the popularity of the branch
+ weights sum to 1
* Info gain works with fractional instances
+ use sums of weights instead of counts

» During classification, split the instance into
pieces in the same way

+ Merge probability distribution using weights
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AFVER Pruning

 Prevent overfitting to noise in the data
* “Prune” the decision tree
* Two strategies:

* Postpruning

take a fully-grown decision tree and discard
unreliable parts
* Prepruning
stop growing a branch when information
becomes unreliable
* Postpruning preferred in practice—
prepruning can “stop early”
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Early stopping

class

-

¢ Pre-pruning may stop the growth 2
process prematurely: early stopping
* Classic example: XOR/Parity-problem

+ No individual attribute exhibits any significant
association to the class

+ Structure is only visible in fully expanded tree
+ Prepruning won'’t expand the root node

* But: XOR-type problems rare in practice

¢ And: prepruning faster than postpruning

-
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* Bottom-up

» Consider replacing a tree only
after considering all its subtrees

@wking hours per vk

<=36 | >36

bad Tealth plan contribution
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EKA

y g Prepruning

* Based on statistical significance test
+ Stop growing the tree when there is no statistically
significant association between any attribute and
the class at a particular node
* Most popular test: chi-squared test
* ID3 used chi-squared test in addition to
information gain

+ Only statistically significant attributes were allowed
to be selected by information gain procedure

03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 14

Postpruning

« First, build full tree

¢ Then, prune it

« Fully-grown tree shows all attribute interactions
Problem: some subtrees might be due to
chance effects

Two pruning operations:

* Subtree replacement

* Subtree raising

Possible strategies:

* error estimation

« significance testing

« MDL principle
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¢ Delete node
« Redistribute instances

« Slower than subtree
replacement

(Worthwhile?)
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24 Estimating error rates

* Prune only if it does not increase the estimated error
* Error on the training data is NOT a useful estimator
(would result in almost no pruning)
* Use hold-out set for pruning
(“reduced-error pruning”)
* C4.5’s method
+ Derive confidence interval from training data
+ Use a heuristic limit, derived from this, for pruning
+ Standard Bernoulli-process-based method
+ Shaky statistical assumptions (based on training data)
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Example
Ctrtn v

<=36 N\ >36

1 bad

1 zoad
f=5/14
e=0.46
1 bad 4 bad e<0.51
Igood | 2good so prune!

Combined using ratios 6:2:6 gives 0.51
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2 From trees to rules

* Simple way: one rule for each leaf

* C4.5rules: greedily prune conditions from
each rule if this reduces its estimated error
« Can produce duplicate rules
« Check for this at the end

* Then
« look at each class in turn
« consider the rules for that class
« find a “good” subset (guided by MDL)

* Then rank the subsets to avoid conflicts

* Finally, remove rules (greedily) if this
decreases error on the training data
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,é;? 2% C4.5’s method

* Error estimate for subtree is weighted sum of
error estimates for all its leaves

* Error estimate for a node:
e=(f+ Z+z -t Z)I1+7)

¢ If c=25% then z=0.69 (from normal
distribution)

* fis the error on the training data

* Nis the number of instances covered by the leaf
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% Complexity of tree induction

* Assume
* mattributes
* ntraining instances
o tree depth O (log n)
* Building a tree O (mnlogn)
* Subtree replacement O (n)
* Subtree raising O (n (log n)?
« Every instance may have to be redistributed at
every node between its leaf and the root

« Cost for redistribution (on average): O (log n)
¢ Total cost: O (m nlog n) + O (n (log n)?
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AFWX C4.5: choices and options

¢ C4.5rules slow for large and noisy datasets
* Commercial version C5.0rules uses a
different technique
+ Much faster and a bit more accurate
¢ C4.5 has two parameters
+ Confidence value (default 25%):
lower values incur heavier pruning
+ Minimum number of instances in the two most
popular branches (default 2)
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AR Discussion

&FU Classification rules

TDIDT: Top-Down Induction of Decision Trees

* The most extensively studied method of
machine learning used in data mining

« Different criteria for attribute/test selection
rarely make a large difference

* Different pruning methods mainly change
the size of the resulting pruned tree

* C4.5 builds univariate decision trees

* Some TDITDT systems can build
multivariate trees (e.g. CART)
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Test selection criteria

« Basic covering algorithm:
+ keep adding conditions to a rule to improve its accuracy
+ Add the condition that improves accuracy the most

* Measure 1: p/t

+ t totalinstances covered by rule
p number of these that are positive

Produce rules that don’t cover negative instances,

as quickly as possible

May produce rules with very small coverage

—special cases or noise?

» Measure 2: Information gain p (log(p/ ) - log(P/T))

+ Pand T'the positive and total numbers before the new condition was
added

+ Information gain emphasizes positive rather than negative instances
* These interact with the pruning mechanism used
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Pruning rules

* Two main strategies:
+ Incremental pruning
+ Global pruning
¢ Other difference: pruning criterion
+ Error on hold-out set (reduced-error pruning)
+ Statistical significance
+ MDL principle
* Also: post-pruning vs. pre-pruning
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* Common procedure: separate-and-conquer
« Differences:

+ Search method (e.g. greedy, beam search, ...)

+ Test selection criteria (e.g. accuracy, ...)

+ Pruning method (e.g. MDL, hold-out set, ...)

+ Stopping criterion (e.g. minimum accuracy)

+ Post-processing step
* Also: Decision list

VS.
one rule set for each class
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Missing values, numeric attributes

* Common treatment of missing values:
for any test, they fail
+ Algorithm must either
* use other tests to separate out positive instances
* leave them uncovered until later in the process
 In some cases it’s better to treat “missing”
as a separate value
* Numeric attributes are treated just like they
are in decision trees
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KA

Using a pruning set

« For statistical validity, must evaluate
measure on data not used for training:
+ This requires a growing set and a pruning set
* Reduced-error pruning:
build full rule set and then prune it
* Incremental reduced-error pruning :
simplify each rule as soon as it is built
+ Canre-split data after rule has been pruned
« Stratification advantageous
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AV Incremental reduced-error pruning

Initialize E to the instance set
Wtil Eis enpty do
Split Einto Gowand Prune in the ratio 2:1
For each class C for which Grow contains an instance
Use basic covering algorithmto create best perfect rule
for C

Calculate w(R): worth of rule on Prune
and w(R-): vorth of rule with final condition
onitted
If W(R) <wR), prune rule and repeat previous step
Fromthe rules for the different classes, select the one
that’s worth most (i.e. with |argest wR))
Print the rule
Remove the instances covered by rule fromE
Conti nue
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Variations

* Generating rules for classes in order

+ Start with the smallest class

+ Leave the largest class covered by the default rule
* Stopping criterion

+ Stop rule production if accuracy becomes too low
* Rule learner RIPPER:

+ Uses MDL-based stopping criterion

+ Employs post-processing step to modify rules
guided by MDL criterion
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A&Fus pART

* Avoids global optimization step used in C4.5rules
and RIPPER
* Generates an unrestricted decision list using
basic separate-and-conquer procedure
* Builds a partial decision tree to obtain arule
+ Arule is only pruned if all its implications are known
+ Prevents hasty generalization
* Uses C4.5’s procedures to build a tree
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AFW Measures used in IREP

s [p+N-m1/T
+ (N is total number of negatives)
+ Counterintuitive:
* p=2000and n=1000vs. p=1000 and n=1
* Successrate p/t

+ Problem:p=1landt=1
vs. p=1000 and 7= 1001

c(p-nl/t
+ Same effect as success rate because it equals
2plt -1
* Seems hard to find a simple measure of a
rule’s worth that corresponds with intuition
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: Using global optimization

« RIPPER: Repeated Incremental Pruning to Reduce Error
Reduction (does global optimization in an efficient way)

« Classes are processed in order of increasing size

« Initial rule set for each class is generated using IREP

* An MDL-based stopping condition is used

+ DL: bits needs to send examples wrt set of rules, bits
needed to send k tests, and bits for k

¢ Once a rule set has been produced for each class, each
rule is re-considered and two variants are produced

+ Oneis an extended version, one is grown from scratch
+ Chooses among three candidates according to DL
« Final clean-up step greedily deletes rules to minimize DL
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KA

Building a partial tree

Expand- subset (S):
Choose test T and use it to split set of exanples
into subsets
Sort subsets into increasing order of average
entropy
while
there is a subset X not yet been expanded
AND al | subsets expanded so far are | eaves
expand- subset ( X)
if
al | subsets expanded are |eaves
AND estimated error for subtree
2 estimated error for node
undo expansi on into subsets and nake node a |eaf

03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 36




03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

37

Rules with exceptions

1.Given: a way of generating a single good rule

2.Then it’s easy to generate rules with exceptions

3.Select default class for top-level rule

4.Generate a good rule for one of the remaining
classes

5.Apply this method recursively to the two subsets

produced by the rule
(Le. instances that are covered/not covered)
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Extending linear classification

AFYE Notes on PART

* Linear classifiers can’t model nonlinear
class boundaries
* Simple trick:
+ Map attributes into new space consisting of
combinations of attribute values
+ E.g. all products of n factors that can be
constructed from the attributes

* Example with two attributes and n=3:

3 2 3
X=W, a}+W,a, a,+ w,a, &+ w,a,
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* Make leaf with maximum coverage into a rule
» Treat missing values just as C4.5 does
+ Le. splitinstance into pieces
* Time taken to generate a rule:
+ Worst case: same as for building a pruned tree
¢ Occurs when data is noisy

+ Best case: same as for building a single rule
¢ Occurs when data is noise free
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Iris data example

petal length >= 2.45
potal width < 1.75
=|petal length < 5.35
> Iris versicolor|
49i52

petal length >= 4.95

petal width < 1.55
" > Tris virginica
202

sepal length < 4.95
sepal width >= 2.45

Exceptions are represented --> lris virginica
as 1

Dotted paths, alternatives
as solid ones.

petal length < 485
sepal length < 5.95

Ml > Tris versicolor

111
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% Problems with this approach

* 1stproblem: speed
+ 10 attributes, and n = 5 22000 coefficients
+ Use linear regression with attribute selection
+ Run time is cubic in number of attributes

* 2" problem: overfitting

+ Number of coefficients is large relative to the
number of training instances

+ Curse of dimensionality kicks in
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AF'E Support vector machines

* Support vector machines are algorithms for
learning linear classifiers
* Resilient to overfitting because they learn a
particular linear decision boundary:
+ The maximum margin hyperplane
* Fast in the nonlinear case

+ Use a mathematical trick to avoid creating
“pseudo-attributes”

+ The nonlinear space is created implicitly
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Support vectors

*The support vectors define the maximum margin hyperplane
« All other instances can be deleted without changing its position and orientation

maximum margin hyperplane .

supporl vectors
« This means the hyperplane ~ X=Wy+w, a,+ W, a,
can be written as x=b+3%, supp. veotor XiVi a(iya
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%% Nonlinear SVMs

* “Pseudo attributes” represent attribute
combinations

* Overfitting not a problem because the
maximum margin hyperplane is stable

+ There are usually few support vectors relative to
the size of the training set

* Computation time still an issue

+ Each time the dot product is computed, all the
“pseudo attributes” must be included
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support vectors

¢ The instances closest to the maximum margin
hyperplane are called support vectors
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Finding support vectors

X=D+Z; 55 supp. vector %iVi8 (i)-a

« Support vector: training instance for which a ;>0

* Determine O; and b?—
A constrained quadratic optimization problem
+ Off-the-shelf tools for solving these problems
+ However, special-purpose algorithms are faster
+ Example: Platt’s seq ial minimal optimizatic
algorithm (implemented in WEKA)
« Note: all this assumes separable data!
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% A mathematical trick

» Avoid computing the “pseudo attributes”
* Compute the dot product before doing the
nonlinear mapping
¢ Example: .
x=b+3, supp. vector «,y,(a(i)-a)"
* Corresponds to a map into the instance space
spanned by all products of n attributes
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AFY Other kernel functions AFVE Noise

* Have assumed that the data is separable (in

* Mapping is called a “kernel function”
original or transformed space)

* Polynomial kernel

o e
XD+ T voror Y i(81)-3) * Can apply SVMs to noisy data by
. ; PGt
« We can use others: e K301 introducing a ‘n01se parameter C .
X=D+ T, i supp. veour .Y, K(a(1)-3) * C bounds the influence of any one training
onl . K% 3 R R instance on the decision boundary
. . L X)=p(X) (X,
nly requirement: (%, %)= (%) $(X) + Corresponding constraint: 0 <a; < C
» Examples: e . 4 . . .
K(%, %)=(%-%+1) « Still a quadratic optimization problem
2 2= (17 * Have to determine C by experimentation
K(%,%)=exp(" 5" Y €Xp
- s - o *
K(%;,X)=tanh (BX;-X+Db)
03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 49 03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 50
o o
KA KA : :
= i Sparse data =t Applications

* Machine vision: e.g face identification
« Outperforms alternative approaches (1.5% error)
¢ Handwritten digit recognition: USPS data
* Comparable to best alternative (0.8% error)
 Bioinformatics: e.g. prediction of protein
secondary structure
* Text classifiation
* Can modify SVM technique for numeric

* SVM algorithms speed up dramatically if
the data is sparse (i.e. many values are 0)

* Why? Because they compute lots and lots
of dot products

* Sparse data £»compute dot products very

efficiently

o Iterate only over non-zero values

* SVMs can process sparse datasets with

10,000s of attributes prediction problems
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FWEKA : Gera .
,é % Support vector regression ,é * More on SVM regression
* Maximum margin hyperplane only applies to oIt the}re are ,mbeskfh%t enclos;z ;H th? d
classification training points, the flattest of them is use
+ Eg.: mean is used if 2¢ > range of target values

« However, idea of support vectors and kernel . o
functions can be used for regression * Model can be written as: x=b+X,, s vecer 0,2(1)-3
« Basic method same as in linear regression: * Support vectors: points on or outside tube
want to minimize error + Dot product can be replaced by kernel function

+ Difference A: ignore errors smaller than ¢ and + Note: coefficients o may be negative

use absolute error instead of squared error « No tube that encloses all training points?
+ Difference B: simultaneously aim to maximize + Requires trade-off between error and flatness
flatness of function + Controlled by upper limit C on absolute value
« User-specified parameter € defines “tube” of coefficients o
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WEKA E 1 o
AFVE Examples I
e=2" PR ISR S
10 ~ 4 " .
E - 0 2 4 G B 10
Yol Atribote
.
Atribote s ° o
A - *
e=1
e H
€=05
.
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Comments on kernel perceptron

« Finds separating hyperplane in space created by kernel
function (if it exists)
+ But: doesn't find maximum-margin hyperplane
« Easy to implement, supports incremental learning
« Linear and logistic regression can also be upgraded
using the kernel trick
+ But: solution is not “sparse”: every training instance
contributes to solution
 Perceptron can be made more stable by using all weight
vectors encountered during learning, not just last one
(voted perceptron)
+ Weight vectors vote on prediction (vote based on
number of successful classifications since inception)
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The kernel perceptron

¢ Can use “kernel trick” to make non-linear classifier
using perceptron rule

* Observation: weight vector is modified by adding or
subtracting training instances

* Can represent weight vector using all instances that
have been misclassified:

+ Canuse X,X,y(j)a’(J),a instead of X, w;a
(where class value yis either -1 or +1)
* Now swap summation signs: ZJ-Y(J)Z,- a'(j);a;
+ Can be expressed as: z,y(at)a
* Canreplace dot product by kernel:
Z,y() K@), a)
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Multilayer perceptrons

 Using kernels is only one way to build nonlinear
classifier based on perceptrons

* Can create network of perceptrons to approximate
arbitrary target concepts

* Multilayer perceptron is an example of an artificial
neural network

+ Consists of: input layer, hidden layer(s), and
output layer of

* Structure of MLP is usually found by experimentation
« Parameters can be found using backpropagation
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,émE“ Backpropagation
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* Hot to learn weights given network structure?

+ Cannot simply use perceptron learning rule
because we have hidden layer(s)

+ Function we are trying to minimize: error

+ Can use a general function minimization
technique called gradient descent

* Need differentiable activation function: use sigmoid

function instead of threshold function
—_ 1
3 (X)_ 1+exp(-x) .
* Need differentiable error function: can't use zero-one
loss, but can use squared error

E=;(y-f(x)
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¥ The two activation functions

[ 03 /

04 05

0a 04

o 0 y

o 0 - .
o s o B 0 -0 s o s 1
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Y54 Minimizing the error I

* Need to find partial derivative of error
function for each parameter (i.e. weight)
o= (y-£(2) 5T
A0 =f(x)(1-£(x))
x=3, w,f(x;)
)=f(x)f(x)

== F0)f(x) £(x)
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.
APV Remarks

« Same process works for multiple hidden layers and
multiple output units (eg. for multiple classes)

« Can update weights after all training instances have been
processed or incrementally:

+ batch learningvs. stochastic backpropagation
+ Weights are initialized to small random values
« How to avoid overfitting?
+ Early stopping: use validation set to check when to stop
+ Weight decay: add penalty term to error function
* How to speed up learning?
+ Momentum: re-use proportion of old weight change
+ Use optimization method that employs 2nd derivative
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24 Gradient descent example

» Function: xX*+1

» Derivative: 2x

» Learning rate: 0.1
* Start value: 4

Can only find a local minimum!
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e Minimizing the error II

* What about the weights for the connections from
the input to the hidden layer?

o (e ) £
X=X, w,f(x)

dx _ o, df(x)
dw,= Wi dw,

df(x) _ dx, _
=F1x) = (x)a,

==X F(x) w,f(x) 8,

dw,
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A&F¥= Radial basis function networks

* Another type of feedforward network with
two layers (plus the input layer)
» Hidden units represent points in instance
space and activation depends on distance
+ To this end, distance is converted into
similarity: Gaussian activation function
+ Width may be different for each hidden unit
+ Points of equal activation form hypersphere
(or hyperellipsoid) as opposed to hyperplane

* Output layer same as in MLP
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Learning RBF networks

» Parameters: centers and widths of the RBFs +
weights in output layer

« Can learn two sets of parameters
independently and still get accurate models

+ Eg.: clusters from k-means can be used to form
basis functions

+ Linear model can be used based on fixed RBFs
+ Makes learning RBFs very efficient
« Disadvantage: no built-in attribute weighting
based on relevance

* RBF networks are related to RBF SVMs

e

Instance-based learning
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* Practical problems of 1-NN scheme:

+ Slow (but: fast tree-based approaches exist)
* Remedy: remove irrelevant data

+ Noise (but: k -NN copes quite well with noise)
* Remedy: remove noisy instances

+ All attributes deemed equally important
* Remedy: weight attributes (or simply select)

+ Doesn’t perform explicit generalization
+ Remedy: rule-based NN approach

Learning prototypes
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* Only those instances involved in a decision
need to be stored

* Noisy instances should be filtered out
* Idea: only use prototypical examples

Speed up, combat noise
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« IB2: save memory, speed up classification
+ Work incrementally
+ Only incorporate misclassified instances
+ Problem: noisy data gets incorporated
* IB3: deal with noise
+ Discard instances that don’t perform well
+ Compute confidence intervals for
+ 1. Each instance’s success rate
¢ 2. Default accuracy of its class
+ Accept/reject instances
* Accept if lower limit of 1 exceeds upper limit of 2
* Reject if upper limit of 1 is below lower limit of 2

AWK Weight attributes

03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 70

« IB4: weight each attribute
(weights can be class-specific)

* Weighted Euclidean distance:
VWG = )+ ot WX, 7))

* Update weights based on nearest neighbor
« Class correct: increase weight
« Class incorrect: decrease weight
. f\mmlmt of change for i th attribute depends on
X~ Vi

APV Rectangular generalizations
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Nearest-neighbor rule is used outside
rectangles

Rectangles are rules! (But they can be more
conservative than “normal” rules.)

Nested rectangles are rules with exceptions
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APV Generalized exemplars

* Generalize instances into hyperrectangles
+ Online: incrementally modify rectangles
+ Offline version: seek small set of rectangles that
cover the instances
* Important design decisions:
+ Allow overlapping rectangles?
* Requires conflict resolution
+ Allow nested rectangles?
+ Dealing with uncovered instances?
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Generalized distance functions

* Given: some transformation operations on
attributes

* K*: similarity = probability of transforming

instance A into B by chance
« Average over all transformation paths
« Weight paths according their probability
(need way of measuring this)

¢ Uniform way of dealing with different
attribute types

* Easily generalized to give distance between
sets of instances
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/é;?

Class1 | o

Separation /
line
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Numeric prediction

* Counterparts exist for all schemes previously
discussed
+ Decision trees, rule learners, SVMs, etc.
* (Almost) all classification schemes can be applied
to regression problems using discretization
+ Discretize the class into intervals
+ Predict weighted average of interval midpoints
+ Weight according to class probabilities

Regression trees
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¢ Like decision trees, but:
+ Splitting criterion: ~ minimize intra-subset

variation

+ Termination criterion:  std devbecomes
small

+ Pruning criterion: ~ based on numeric error
measure

+ Prediction: Leaf predicts average

class values of instances
* Piecewise constant functions
* Easy to interpret
* More sophisticated version: model trees

AV Model trees
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* Build a regression tree
* Each leaf & linear regression function

* Smoothing: factor in ancestor’s predictions
+ Smoothing formula: p'=""%
+ Same effect can be achieved by incorporating
ancestor models into the leaves
* Need linear regression function at each node
* At each node, use only a subset of attributes
+ Those occurring in subtree
+ (+maybe those occurring in path to the root)
* Fast: tree usually uses only a small subset of
the attributes
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&Fv=s Building the tree

« Splitting: standard deviation reduction
T,
o SDR=sd(T)-3,| 7|xsd(T)
« Termination:
+ Standard deviation < 5% of its value on full training set
+ Too few instances remain (e.g. < 4)

« Pruning:
+ Heuristic estimate of absolute error of LR models:

e
.. xaverage_absolute_error

+ Greedily remove terms from LR models to minimize
estimated error

+ Heavy pruning: single model may replace whole subtree

+ Proceed bottom up: compare error of LR model at internal
node to error of subtree
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Missing values

* Modify splitting criterion:
SDR= [ xsd(T)- %, 7ix sd(T))
* To determine which subset an instance
goes into, use surrogate splitting

« Split on the attribute whose correlation with
original is greatest

¢ Problem: complex and time-consuming
« Simple solution: always use the class

» Test set: replace missing value with
average
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A&F Nominal attributes

« Convert nominal attributes to binary ones
« Sort attribute by average class value
« If attribute has k values,
generate k-1 binary attributes
« ithis 0 if value lies within the first i, otherwise 1
» Treat binary attributes as numeric
* Can prove: best split on one of the new
attributes is the best (binary) split on original
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Surrogate splitting based on class

* Choose split point based on instances with
known values

« Split point divides instances into 2 subsets
« L (smaller class average)
¢ R (larger)

* m is the average of the two averages

 For an instance with a missing value:
¢ Choose Lif class value < m
* Otherwise R

¢ Once full tree is built, replace missing values
with averages of corresponding leaf nodes

o

% Pseudo-code for M5'

03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 82

* Four methods:
+ Main method: MakeModelTree
+ Method for splitting: split
+ Method for pruning: prune
+ Method that computes error: subtreeError
* We'll briefly look at each method in turn
» Assume that linear regression method performs
attribute subset selection based on error

&

% MakeModelTree
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MakeMbdel Tree (i nstances)

SD = sd(instances)
for each k-val ued noninal attribute
convert into k-1 synthetic binary attributes
root = newNode
root.instances = instances
split(root)
pr une(root)
printTree(root)
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split

split(node)

if sizeof(node.instances) < 4 or
sd(node. i nstances) < 0.05*SD
node. type = LEAF
el se
node. type = | NTERIOR
for each attribute
for all possible split positions of attribute
calculate the attribute's SDR
node. attribute = attribute with maxi rum SDR
split(node.left)
split(node. right)

prune
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prune(node)

if node = I NTERI OR t hen
prune( node. | ef t Chi | d)
prune( node. ri ght Chi | d)
node. nodel = | i near Regressi on(node)
if subtreeError(node) > error(node) then
node.type = LEAF

subtreeError
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subtreeEr ror (node)

I = node.left; r = node.right
if node = INTERI CR then
return (sizeof (I.instances)*subtreeError(l)
+ sizeof (r.instances)*subtreeError(r))
I si zeof (node. i nst ances)
el se return error(node)

}

Model tree for servo data
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Result
of merging

>45

o

KA Rules from model trees
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* PART algorithm generates classification rules by
building partial decision trees

¢ Can use the same method to build rule sets for
regression

+ Use model trees instead of decision trees

+ Use variance instead of entropy to choose node
to expand when building partial tree

* Rules will have linear models on right-hand side

* Caveat: using smoothed trees may not be
appropriate due to separate-and-conquer strategy

&

£ Locally weighted regression
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¢ Numeric prediction that combines
 instance-based learning
o linear regression
e “Lazy”:
« computes regression function at prediction time
« works incrementally
* Weight training instances
» according to distance to test instance
« needs weighted version of linear regression
* Advantage: nonlinear approximation
* But: slow

03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) %
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APV Design decisions

* Weighting function:
+ Inverse Euclidean distance
+ Gaussian kernel applied to Euclidean distance
+ Triangular kernel used the same way
+ etc.
* Smoothing parameteris used to scale the
distance function
+ Multiply distance by inverse of this parameter

+ Possible choice: distance of k th nearest
training instance (makes it data dependent)

N
APV Discussion

03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) o1

Clustering: how many clusters?

* How to choose kin k-means? Possibilities:

+ Choose kthat minimizes cross-validated
squared distance to cluster centers
+ Use penalized squared distance on the
training data (eg. using an MDL criterion)
+ Apply k-means recursively with k=2 and use
stopping criterion (eg. based on MDL)
« Seeds for subclusters can be chosen by seeding
along direction of greatest variance in cluster
(one standard deviation away in each direction
from cluster center of parent cluster)

¢ Implemented in algorithm called X-means (using
Bayesian Information Criterion instead of MDL)
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Clustering weather data

© owos Temp mumany wny| L
sy Hot High  False
B sumy  Hot High  True wno
C  Overcast  Hot High False 7
D Rany  Mid  Hgh  Fase
E  Rany  Cool  Norma False
F Rany  Cool  Normal  True
G Overcast Cool  Normal  True
H o sy Mild High  False
I sumy  Cool  Normal  False
3 Rany  Mild  Norma False
K sy Mild Normal  True
L Overcast Mild  High  True
M Overcast Hot  Normal False
N Rany  Mild  High  True
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Regression trees were introduced in CART
Quinlan proposed model tree method (M5)
M5'’: slightly improved, publicly available
Quinlan also investigated combining
instance-based learning with M5

CUBIST: Quinlan’s commercial rule learner
for numeric prediction

Interesting comparison: neural nets vs. M5
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Incremental clustering

* Heuristic approach (COBWEB/CLASSIT)
» Form a hierarchy of clusters incrementally
e Start:
+ tree consists of empty root node
* Then:
+ add instances one by one
+ update tree appropriately at each stage
+ to update, find the right leaf for an instance
+ May involve restructuring the tree
* Base update decisions on category utility
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D Outlook Temp. Humidity Windy
A sy Hot  Hgh  Fase
Sy Mot High  True
C overcast ot Hgh  False
D Rany  Mid  Hgh  Faise
E  Rany  Cool  Normal False 5
F Rany  Cool  Normal  True
6 Owrcast Cool  Normad  True | erge best host
W sy Mg Hgh  Fase | and runner-up
| simmy  Cool  Normal  Faise Do
3 Rany  Mild  Normal  False Ix
K smny  Mild Normal  True IO, )
L Overcast  Mild High True N N RN RN NG
M Overcast Mot  Normal  Fase
N Rany M High  Twe Consider splitting the best
host if merging doesn't help
03/01/06 Data Mining Practical Machine Learning Tools and Techniques (Chapter 6) %
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AFY Final hierarchy

Oops! a‘and b are
actually very similar
03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) o7
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o
¥* Numeric attributes

* Assume normal distribution:

fla)= ! exp(-"5)

* Then:
— = 2 = !
X, Prla=v,|’=[ f(a)’da=,
* Thus 3, PriGx, 3, (Prla=v,|C)*- Prias~v )
CU(C, G, ....C)= K
becomes CUC, C, ..., ="kt
L Cyeens C)=

* Prespecified minimum variance
+ acuity parameter

03/04/06
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Category utility

* Category utility: quadratic loss function
defined on conditional probabilities:

CU( Cl. Cz s Ck)z ZIPI'[C,]LZ/(H'[B/;VACJZ*PI'[BF viF)

* Every instance in different category £
numerator becomes

n-%.3 Prla=v, —— maximum

number of attributes
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£ Probability-based clustering

* Problems with heuristic approach:
+ Division by k?
+ Order of examples?
+ Are restructuring operations sufficient?
+ Is result at least local minimum of category
utility?
* Probabilistic perspective £
seek the most likely clusters given the data
* Also: instance belongs to a particular cluster
with a certain probability
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APV Finite mixtures

AF¥ Two-class mixture model

* Model data using a mixture of distributions
* One cluster, one distribution

+ governs probabilities of attribute values in that
cluster

* Finite mixtures : finite number of clusters

¢ Individual distributions are normal
(usually)

* Combine distributions using cluster weights
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Using the mixture model

* Probability that instance x belongs to

cluster A:
__ Prix|A|Pr{A] _ f(X:u400P4
PriA|x]="" 00 =00
with . - 1 (x=uP
flx;u,0)=,, ,exp(=73%)

* Probability of an instance given the clusters:

Prix|the clusters]=Y, Pr|x|cluster,] Pr{cluster]
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£ EM algorithm

* EM = Expectation-Maximization
* Generalize k-means to probabilistic setting
« Iterative procedure:
« E “expectation” step:
Calculate cluster probability for each instance
* M “maximization” step:
Estimate distribution parameters from cluster
probabilities

« Store cluster probabilities as instance
weights
* Stop when improvement is negligible
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A st B 62 B 62 A 48 A 3 A 51
A 43 A 47 A 51 B o B & A 48
B 6 A 52 A 52 A 51 B 6 B o
data R & RS RS A B s & A i
A a2 B 65 A 45 B o5 B 61 A 41
A a5 A 48 B 62 B os A 48
A 45 A 25 A 43 B 65 B 64
A 45 A 6 A 40 A 45 A 48
model
@
#,=50, 0,=5,p,=0.6 =65, 0,=2,p=0.4
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Learning the clusters
* Assume:
+ we know there are k clusters
¢ Learn the clusters 2
+ determine their parameters
+ Le. means and standard deviations
* Performance criterion:
+ probability of training data given the clusters
* EM algorithm
+ finds a local maximum of the likelihood
03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 108
A M EM
P s ore on
* Estimate parameters from weighted instances
WX WXt WX,
Ha=  wiweotw,
_ Wi xy=p)+ Wy (D= p Pt Wy (X, )
0 4= Wit Wyt ot W,
* Stop when log-likelihood saturates
* Log-likelihood:
2, log (p, Pr{x;| Al+psPr(x| B])
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,é;? 24 Extending the mixture model

-
AL More mixture model extensions

* More then two distributions: easy

* Several attributes: easy—assuming independence!

¢ Correlated attributes: difficult
+ Joint model: bivariate normal distribution

+ nattributes: need to estimate n + n (n+1)/2 parameters

with a (symmetric) covariance matrix

* Nominal attributes: easy if independent
¢ Correlated nominal attributes: difficult
« Two correlated attributes Ev, v, parameters
* Missing values: easy
¢ Can use other distributions than normal:
¢ “log-normal” if predetermined minimum is given
¢ “log-odds” if bounded from above and below
« Poisson for attributes that are integer counts
* Use cross-validation to estimate k!

03/04/06
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F

¥ Bayesian clustering

¥ Discussion

F

* Problem: many parameters & EM overfits
* Bayesian approach : give every parameter a

prior probability distribution

+ Incorporate prior into overall likelihood figure

+ Penalizes introduction of parameters

* Eg: Laplace estimator for nominal attributes
* Can also have prior on number of clusters!

* Implementation: NASA’s AUTOCLASS

* Can interpret clusters by using supervised
learning
+ post-processing step
* Decrease dependence between attributes?
+ pre-processing step
+ E.g. use principal component analysis
* Can be used to fill in missing values
* Key advantage of probabilistic clustering:
+ Can estimate likelihood of data
+ Use it to compare different models objectively

03/04/06
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o
/é WEKY From naive Bayes to Bayesian Networks

A&F¥% Enter Bayesian networks

Naive Bayes assumes:

attributes conditionally independent
given the class

Doesn’t hold in practice but
classification accuracy often high
However: sometimes performance
much worse than e.g. decision tree

Can we eliminate the assumption?

* Graphical models that can represent any
probability distribution

« Graphical representation: directed acyclic
graph, one node for each attribute

* Overall probability distribution factorized
into component distributions

« Graph’s nodes hold component
distributions (conditional distributions)

03/04/06
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Y

Computing the class probabilities

03/04/06 Data Mining: Practical Ma

* Two steps: computing a product of
probabilities for each class and normalization
+ For each class value
« Take all attribute values and class value

* Look up corresponding entries in conditional
probability distribution tables

* Take the product of all probabilities

+ Divide the product for each class by the sum of
the products (normalization)

o>

Why can we do this? (PartI)

03/04/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6) 17

* Single assumption: values of a node’s
parents completely determine
probability distribution for current node

Pr[node|ancestors]|=Pr{node|parents]

e Means that node/attribute is
conditionally independent of other
ancestors given parents

A&Fvx  Why can we do this? (Part IT)
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» Chain rule from probability theory:
Pria, a,...,a,]=II}, Priala,,., ... a]
» Because of our assumption from the previous slide:

Pra, a, ..., a,)=TIL, Prla]a, ,,...,a,]=
111, Pria,| a, 'sparents]

A&Fv¥  earning Bayes nets
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« Basic components of algorithms for learning
Bayes nets:
+ Method for evaluating the goodness of a given
network
* Measure based on probability of training data
given the network (or the logarithm thereof)
+ Method for searching through space of possible
networks
* Amounts to searching through sets of edges
because nodes are fixed
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20



,éf 2% Problem: overfitting

,é;i 2% Searching for a good structure

* Can’tjust maximize probability of the training
data
+ Because then it’s always better to add more edges (fit
the training data more closely)
* Need to use cross-validation or some penalty for
complexity of the network
— AIC measure: AICscore=—LL+K
— MDL measure: MDLscore=-LL+ 5log N

— LL:log-likelihood (log of probability of data), K: number
of free parameters, N: #instances

« Another possibility: Bayesian approach with prior
distribution over networks

* Task can be simplified: can optimize
each node separately
+ Because probability of an instance is
product of individual nodes’ probabilities
+ Also works for AIC and MDL criterion
because penalties just add up
+ Can optimize node by adding or
removing edges from other nodes
» Must not introduce cycles!
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F

£ The K2 algorithm

£ .
WEKA - Some tricks

« Starts with given ordering of nodes
(attributes)

* Processes each node in turn

* Greedily tries adding edges from
previous nodes to current node

* Moves to next node when current node
can’t be optimized further

¢ Result depends on initial order

* Sometimes it helps to start the search with a naive
Bayes network

* It can also help to ensure that every node is in
Markov blanket of class node

+ Markov blanket of a node includes all parents, children,
and children’s parents of that node

+ Given values for Markov blanket, node is conditionally
independent of nodes outside blanket

+ Le.node is irrelevant to classification if not in Markov
blanket of class node
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@mmﬁ Other algorithms

zé;?‘”“i‘ Likelihood vs. conditional likelihoo:

» Extending K2 to consider greedily adding or
deleting edges between any pair of nodes
+ Further step: considering inverting the direction of
edges
* TAN (Tree Augmented Naive Bayes):
+ Starts with naive Bayes

+ Considers adding second parent to each node
(apart from class node)

+ Efficient algorithm exists

* In classification what we really want is to
maximize probability of class given other
attributes

— Not probability of the instances

* But: no closed-form solution for probabilities in
nodes’ tables that maximize this

* However: can easily compute conditional
probability of data based on given network

* Seems to work well when used for network scoring
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4 Data structures for fast learning

* Learning Bayes nets involves a lot of counting
for computing conditional probabilities
« Naive strategy for storing counts: hash table
+ Runs into memory problems very quickly
* More sophisticated strategy: all-dimensions
(AD) tree
+ Analogous to kD-tree for numeric data

+ Stores counts in a tree but in a clever way such
that redundancy is eliminated

+ Only makes sense to use it for large datasets
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H% Building an AD tree

* Assume each attribute in the data has been
assigned an index

« Then, expand node for attribute i with the
values of all attributes j> i

+ Two important restrictions:

* Most populous expansion for each attribute is
omitted (breaking ties arbitrarily)

« Expansions with counts that are zero are also
omitted

 The root node is given index zero

humidity windy play

wigh ves T

aigh tue .

sigh filie yes 2
i file 5

moml e ves

AD tree example = = =

wual flse w 0
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F

K Discussion
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* We have assumed: discrete data, no missing
values, no new nodes

« Different method of using Bayes nets for
classification: Bayesian multinets

+ Le. build one network for each class and make
prediction using Bayes’ rule

« Different class of learning methods for
Bayes nets: testing conditional
independence assertions

* Can also build Bayes nets for regression
tasks
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