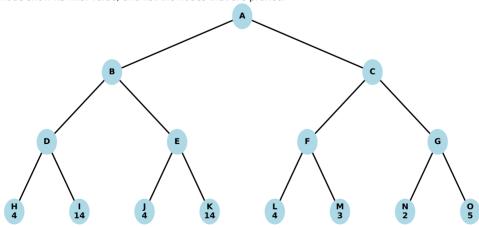

In the graph below you must show the operation of a search algorithm, starting at node S and searching for node G.

You must show all work in a table showing the node expanded and the search fringe.


In case of a tie between nodes, choose the one that comes earlier in the alphabet.

The heuristic value (the estimated distance to the goal) is the integer in each node.

# **Graph:**



## Question 2: Perform alpha-beta minimax on the following tree.



You are given the following table of data, which has three features: the Outlook, the Temperature and the Wind, and must draw a decision tree that classifies the positive and negative instances.

Show your computations for the information gain for each node in the tree.

| Day | Outlook  | Temp | Wind   | Play Tennis |
|-----|----------|------|--------|-------------|
| 1   | Rain     | Mild | Weak   | Yes         |
| 2   | Sunny    | Mild | Weak   | No          |
| 3   | Overcast | Mild | Strong | No          |
| 4   | Sunny    | Cool | Weak   | No          |
| 5   | Overcast | Cool | Strong | Yes         |
| 6   | Sunny    | Hot  | Strong | Yes         |
| 7   | Rain     | Hot  | Strong | Yes         |
| 8   | Overcast | Hot  | Strong | Yes         |

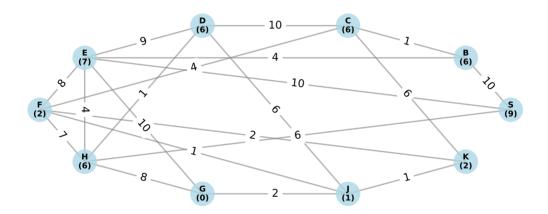
### Question 4: First-Order Logic Translation

You are given the predicates Person(x), which is true if x is a person, Knows(x, y), which is true if person x knows person y, Likes(x, y), which is true if person x likes person y, Friend(x, y), which is true if person x is a friend of person y.

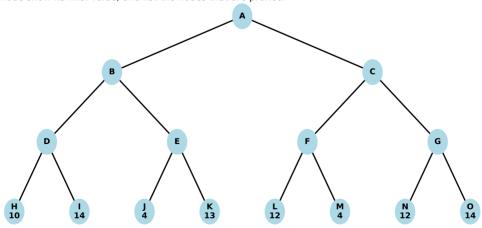
### a. Use the predicates to translate the following sentences into first-order logic:

- 1. People like those who know them.
- 2. Everyone has at least one friend.
- 3. People who know each other are friends.

- 1.  $\forall x \ (Person(x) \Rightarrow \exists y \ (Person(y) \land Knows(x, y) \land Likes(x, y)))$
- 2.  $\exists x \ (Person(x) \land \forall y \ (Person(y) \land Knows(x, y) \Rightarrow Likes(y, x)))$
- 3.  $\forall x \ \forall y \ (Person(x) \ \land \ Person(y) \ \land \ Friend(x, y) \Rightarrow \exists z \ (Person(z) \ \land \ Knows(x, z) \ \land \ Knows(y, z)))$


In the graph below you must show the operation of a search algorithm, starting at node S and searching for node G.

You must show all work in a table showing the node expanded and the search fringe.


In case of a tie between nodes, choose the one that comes earlier in the alphabet.

The heuristic value (the estimated distance to the goal) is the integer in each node.

# **Graph:**



## Question 2: Perform alpha-beta minimax on the following tree.



You are given the following table of data, which has three features: the Outlook, the Temperature and the Wind, and must draw a decision tree that classifies the positive and negative instances.

Show your computations for the information gain for each node in the tree.

| Day | Outlook  | Temp | Wind   | Play Tennis |
|-----|----------|------|--------|-------------|
| 1   | Overcast | Mild | Strong | No          |
| 2   | Rain     | Hot  | Strong | No          |
| 3   | Overcast | Cool | Strong | Yes         |
| 4   | Sunny    | Hot  | Strong | Yes         |
| 5   | Sunny    | Mild | Strong | Yes         |
| 6   | Overcast | Hot  | Weak   | Yes         |
| 7   | Overcast | Cool | Weak   | No          |
| 8   | Rain     | Hot  | Weak   | No          |

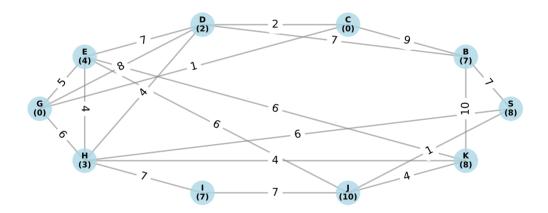
### Question 4: First-Order Logic Translation

You are given the predicates Book(x), which is true if x is a book, Author(x, y), which is true if book x is written by author y, Popular(x), which is true if x is a popular book, Popular(x), which is true if person x reads book y.

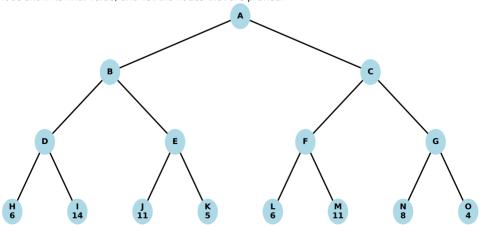
### a. Use the predicates to translate the following sentences into first-order logic:

- 1. Popular books are read by many people.
- 2. People who read books by the same author like similar books.
- 3. Every book has an author.

- 1.  $\forall x \ (Book(x) \Rightarrow \exists y \ (Author(x, y) \land Popular(y)))$
- 2.  $\exists x \ (Book(x) \land \forall y \ (Reads(y, x) \Rightarrow Popular(x)))$
- 3.  $\forall x \forall y (Book(x) \land Author(x, y) \Rightarrow \exists z (Reads(z, x) \land \exists w (Book(w) \land Author(w, y) \land Reads(z, w))))$


In the graph below you must show the operation of a search algorithm, starting at node S and searching for node G.

You must show all work in a table showing the node expanded and the search fringe.


In case of a tie between nodes, choose the one that comes earlier in the alphabet.

The heuristic value (the estimated distance to the goal) is the integer in each node.

# **Graph:**



### Question 2: Perform alpha-beta minimax on the following tree.



You are given the following table of data, which has three features: the Outlook, the Temperature and the Wind, and must draw a decision tree that classifies the positive and negative instances.

Show your computations for the information gain for each node in the tree.

| Day | Outlook  | Temp | Wind   | Play Tennis |
|-----|----------|------|--------|-------------|
| 1   | Rain     | Hot  | Weak   | Yes         |
| 2   | Sunny    | Cool | Strong | Yes         |
| 3   | Sunny    | Hot  | Strong | No          |
| 4   | Rain     | Cool | Weak   | Yes         |
| 5   | Overcast | Mild | Strong | No          |
| 6   | Overcast | Hot  | Weak   | No          |
| 7   | Sunny    | Cool | Weak   | Yes         |
| 8   | Rain     | Mild | Strong | Yes         |

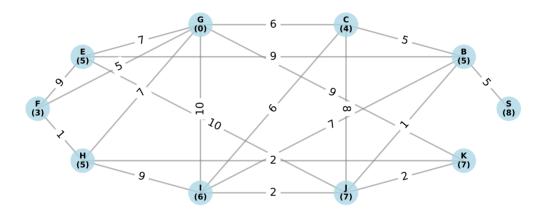
#### Question 4: First-Order Logic Translation

You are given the predicates Hospital(x), which is true if x is a hospital, Doctor(x), which is true if x is a doctor, Hospital(x), which is true if doctor x works at hospital y, Hospital(x), which is true if x is a specialist.

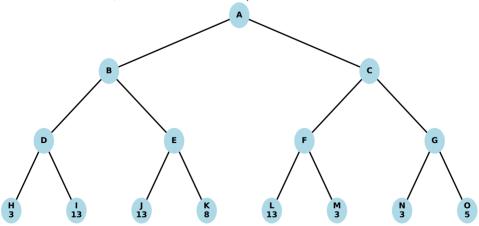
### a. Use the predicates to translate the following sentences into first-order logic:

- 1. Every hospital has doctors.
- 2. Specialists work at hospitals that have other specialists.
- 3. There is a hospital where all doctors are specialists.

- 1.  $\forall x \ (Hospital(x) \Rightarrow \exists y \ (Doctor(y) \land WorksAt(y, x) \land Specialist(y)))$
- 2.  $\exists x (Doctor(x) \land Specialist(x) \land \forall y (Hospital(y) \land WorksAt(x, y) \Rightarrow Specialist(x)))$
- 3.  $\forall x \ \forall y \ (Doctor(x) \ \land \ Hospital(y) \ \land \ WorksAt(x, y) \Rightarrow \exists z \ (Doctor(z) \ \land \ WorksAt(z, y) \ \land \ \neg(x=z)))$


In the graph below you must show the operation of a search algorithm, starting at node S and searching for node G.

You must show all work in a table showing the node expanded and the search fringe.


In case of a tie between nodes, choose the one that comes earlier in the alphabet.

The heuristic value (the estimated distance to the goal) is the integer in each node.

# **Graph:**



## Question 2: Perform alpha-beta minimax on the following tree.



You are given the following table of data, which has three features: the Outlook, the Temperature and the Wind, and must draw a decision tree that classifies the positive and negative instances.

Show your computations for the information gain for each node in the tree.

| Day | Outlook  | Temp | Wind   | Play Tennis |
|-----|----------|------|--------|-------------|
| 1   | Rain     | Mild | Strong | Yes         |
| 2   | Sunny    | Cool | Strong | Yes         |
| 3   | Rain     | Hot  | Weak   | Yes         |
| 4   | Rain     | Cool | Strong | No          |
| 5   | Overcast | Mild | Weak   | Yes         |
| 6   | Sunny    | Hot  | Weak   | Yes         |
| 7   | Overcast | Cool | Strong | No          |
| 8   | Overcast | Hot  | Strong | No          |

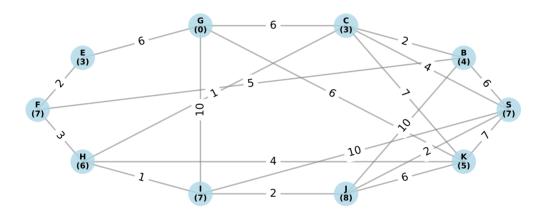
#### Question 4: First-Order Logic Translation

You are given the predicates Market(x), which is true if x is a market, Vendor(x), which is true if x is a vendor, SellsAt(x, y), which is true if vendor x SellsAt(x), which is true if x is local.

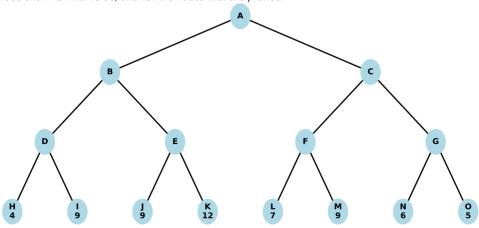
### a. Use the predicates to translate the following sentences into first-order logic:

- 1. Every market has vendors.
- 2. Local vendors sell at markets that have other local vendors.
- 3. There is a market where all vendors are local.

- 1.  $\forall x \; (Market(x) \Rightarrow \exists y \; (Vendor(y) \land SellsAt(y, x) \land Local(y)))$
- 2.  $\exists x \ (Vendor(x) \land Local(x) \land \forall y \ (Market(y) \land SellsAt(x, y) \Rightarrow Local(x)))$
- 3.  $\forall x \ \forall y \ (Vendor(x) \ \land \ Market(y) \ \land \ SellsAt(x, y) \Rightarrow \exists z \ (Vendor(z) \ \land \ SellsAt(z, y) \ \land \ \neg(x=z)))$


In the graph below you must show the operation of a search algorithm, starting at node S and searching for node G.

You must show all work in a table showing the node expanded and the search fringe.


In case of a tie between nodes, choose the one that comes earlier in the alphabet.

The heuristic value (the estimated distance to the goal) is the integer in each node.

# **Graph:**



## Question 2: Perform alpha-beta minimax on the following tree.



You are given the following table of data, which has three features: the Outlook, the Temperature and the Wind, and must draw a decision tree that classifies the positive and negative instances.

Show your computations for the information gain for each node in the tree.

| Day | Outlook  | Temp | Wind   | Play Tennis |
|-----|----------|------|--------|-------------|
| 1   | Rain     | Mild | Strong | Yes         |
| 2   | Rain     | Mild | Weak   | No          |
| 3   | Sunny    | Cool | Weak   | No          |
| 4   | Rain     | Cool | Strong | No          |
| 5   | Sunny    | Hot  | Weak   | No          |
| 6   | Rain     | Hot  | Strong | Yes         |
| 7   | Overcast | Mild | Strong | Yes         |
| 8   | Overcast | Mild | Weak   | Yes         |

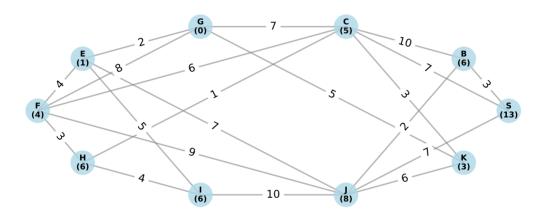
#### Question 4: First-Order Logic Translation

You are given the predicates Company(x), which is true if x is a company, Employee(x), which is true if x is an employee, WorksFor(x, y), which is true if employee x works for company y, Manager(x), which is true if x is a manager.

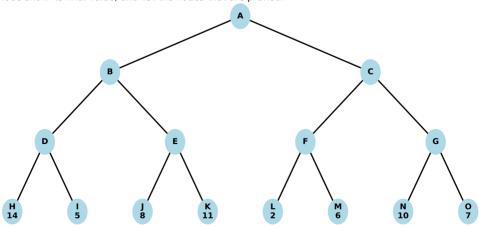
### a. Use the predicates to translate the following sentences into first-order logic:

- 1. Every company has at least one employee.
- 2. Managers work for companies that have other managers.
- 3. There is a company where all employees are managers.

- 1.  $\forall x \ (Company(x) \Rightarrow \exists y \ (Employee(y) \land WorksFor(y, x) \land Manager(y)))$
- 2.  $\exists x \ (Employee(x) \land Manager(x) \land \forall y \ (Company(y) \land WorksFor(x, y) \Rightarrow Manager(x)))$
- 3.  $\forall x \ \forall y \ (Employee(x) \ \land \ Company(y) \ \land \ WorksFor(x, y) \Rightarrow \exists z \ (Employee(z) \ \land \ WorksFor(z, y) \ \land \ \neg(x=z)))$


In the graph below you must show the operation of a search algorithm, starting at node S and searching for node G.

You must show all work in a table showing the node expanded and the search fringe.


In case of a tie between nodes, choose the one that comes earlier in the alphabet.

The heuristic value (the estimated distance to the goal) is the integer in each node.

# **Graph:**



### Question 2: Perform alpha-beta minimax on the following tree.



You are given the following table of data, which has three features: the Outlook, the Temperature and the Wind, and must draw a decision tree that classifies the positive and negative instances.

Show your computations for the information gain for each node in the tree.

| Day | Outlook  | Temp | Wind   | Play Tennis |
|-----|----------|------|--------|-------------|
| 1   | Overcast | Mild | Weak   | No          |
| 2   | Sunny    | Cool | Strong | Yes         |
| 3   | Overcast | Cool | Weak   | Yes         |
| 4   | Sunny    | Cool | Weak   | Yes         |
| 5   | Rain     | Mild | Weak   | Yes         |
| 6   | Rain     | Hot  | Weak   | No          |
| 7   | Rain     | Mild | Strong | Yes         |
| 8   | Rain     | Hot  | Strong | No          |

#### Question 4: First-Order Logic Translation

You are given the predicates Gym(x), which is true if x is a gym, Member(x), which is true if x is a member, BelongsTo(x, y), which is true if member x belongs to gym y, Active(x), which is true if x is active.

### a. Use the predicates to translate the following sentences into first-order logic:

- 1. Every gym has members.
- 2. Active members belong to gyms that have other active members.
- 3. There is a gym where all members are active.

- 1.  $\forall x \ (Gym(x) \Rightarrow \exists y \ (Member(y) \land BelongsTo(y, x) \land Active(y)))$
- 2.  $\exists x \ (Member(x) \land Active(x) \land \forall y \ (Gym(y) \land BelongsTo(x, y) \Rightarrow Active(x)))$
- 3.  $\forall x \ \forall y \ (Member(x) \ \land \ Gym(y) \ \land \ BelongsTo(x, y) \ \Rightarrow \ \exists z \ (Member(z) \ \land \ BelongsTo(z, y) \ \land \ \neg(x=z)))$