Key Sample-1 (Page 1 of 2)

A* SEARCH: S -> G

Expanded	Search Fringe (g+h=f)
S	H(5+6=11), K(3+9=12), B(8+6=14), I(8+7=15), C(10+7=17)
Н	J(8+4=12), $K(3+9=12)$, $F(7+6=13)$, $G(13+0=13)$, $B(8+6=14)$ $I(8+7=15)$, $C(9+7=16)$
J	E(10+2=12), $K(3+9=12)$, $F(7+6=13)$, $G(13+0=13)$, $B(8+6=14)$ $I(8+7=15)$, $C(9+7=16)$
E	K(3+9=12), F(7+6=13), G(13+0=13), B(8+6=14), I(8+7=15) C(9+7=16)
К	F(7+6=13), $G(13+0=13)$, $B(8+6=14)$, $I(8+7=15)$, $C(9+7=16)$ $K(10+9=19)$
F	G(13+0=13), $B(8+6=14)$, $I(8+7=15)$, $C(9+7=16)$, $K(10+9=19)$ $F(17+6=23)$
G	CI CI
	Solution path: S -> H -> G

Key Sample-1 (Page 2 of 2)

Question 2: Alpha-Beta Minimax A=14

B=14 C=4

D=14 E=14 F=4

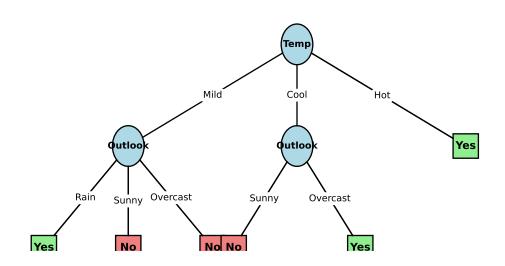
H=4 I=14 J=4 K=14 L=4 M=3 N=2 O=5

Pruned Nodes: G, N, O

Question 3: Decision Tree

Information Gain Computations:

Node: Temp


✓ Temp: 0.3601

Outlook: 0.2657

Wind: 0.1589

Node: Outlook

✓ Outlook: 0.9183 Wind: 0.2516 **Node: Outlook** ✓ Outlook: 1.0000 Wind: 1.0000

Question 4: First-Order Logic Translation

Predicates: Person(x), Knows(x, x), Likes(x, x), Friend(x, x)

a. English to First-Order Logic:

1. People like those who know them.

Solution: $\forall x \ \forall y \ (Person(x) \ \land \ Person(y) \ \land \ Knows(y, \ x) \ \Rightarrow \ Likes(x, \ y))$

2. Everyone has at least one friend.

Solution: $\forall x \ (Person(x) \Rightarrow \exists y \ (Person(y) \land Friend(x, y)))$

3. People who know each other are friends.

Solution: $\forall x \ \forall y \ (Person(x) \ \land \ Person(y) \ \land \ Knows(x, y) \ \land \ Knows(y, x) \ \Rightarrow \ Friend(x, y))$

b. First-Order Logic to English:

- 1. $\forall x \ (Person(x) \Rightarrow \exists y \ (Person(y) \land Knows(x, y) \land Likes(x, y)))$ Solution: Every person knows and likes at least one person.
- 2. $\exists x \ (Person(x) \land \forall y \ (Person(y) \land Knows(x, y) \Rightarrow Likes(y, x)))$ Solution: There exists a person such that everyone who knows them likes them.
- 3. $\forall x \ \forall y \ (Person(x) \ \land \ Person(y) \ \land \ Friend(x, y) \Rightarrow \exists z \ (Person(z) \ \land \ Knows(x, z) \ \land \ Knows(y, z)))$ Solution: For every pair of friends, there exists a person that both of them know.