Key Sample-6 (Page 1 of 2)

A* SEARCH: S -> G

Expanded	Search Fringe (g+h=f)
S	B(3+6=9), C(7+5=12), J(7+8=15)
В	C(7+5=12), J(5+8=13)
С	J(5+8=13), K(10+3=13), H(8+6=14), G(14+0=14), F(13+4=17) C(13+5=18)
J	E(12+1=13), K(10+3=13), G(14+0=14), H(8+6=14), J(7+8=15) F(13+4=17), C(13+5=18), I(15+6=21)
Е	K(10+3=13), $G(14+0=14)$, $H(8+6=14)$, $J(7+8=15)$, $F(13+4=17)$ $C(13+5=18)$, $I(15+6=21)$
К	G(14+0=14), H(8+6=14), K(11+3=14), J(7+8=15), F(13+4=17) C(13+5=18), I(15+6=21)
G	C)
	Solution path: S -> B -> J -> E -> G

Key Sample-6 (Page 2 of 2)

Question 2: Alpha-Beta Minimax A=11

B=11 C=6

D=14 E=11 F=6

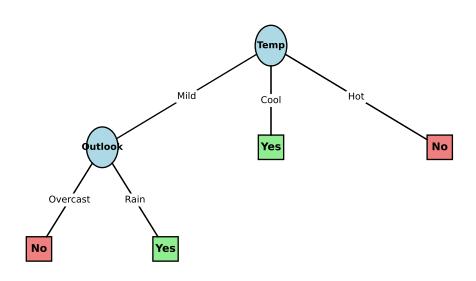
H=14 I=5 J=8 K=11 L=2 M=6 N=10 O=7

Pruned Nodes: G, N, O

Question 3: Decision Tree Information Gain Computations:

Node: Temp

✓ Temp: 0.6101


Outlook: 0.2044

Wind: 0.0032

Node: Outlook

✓ Outlook: 0.9183

Wind: 0.2516

Question 4: First-Order Logic Translation

Predicates: Gym(x), Member(x), BelongsTo(x, x), Active(x)

a. English to First-Order Logic:

1. Every gym has members.

Solution: $\forall x \ (Gym(x) \Rightarrow \exists y \ (Member(y) \land BelongsTo(y, x)))$

2. Active members belong to gyms that have other active members.

Solution: $\forall x \ (Member(x) \land Active(x) \Rightarrow \exists y \ (Gym(y) \land BelongsTo(x, y) \land \exists z \ (Member(z) \land Active(z) \land BelongsTo(z, y) \land \neg(x=z))))$

3. There is a gym where all members are active.

Solution: $\exists x \ (Gym(x) \ \land \ \forall y \ (Member(y) \ \land \ BelongsTo(y, \ x) \ \Rightarrow \ Active(y)))$

b. First-Order Logic to English:

- 1. $\forall x \ (Gym(x) \Rightarrow \exists y \ (Member(y) \land BelongsTo(y, x) \land Active(y)))$ Solution: Every gym has at least one member who is active.
- ∃x (Member(x) ∧ Active(x) ∧ ∀y (Gym(y) ∧ BelongsTo(x, y) ⇒ Active(x)))
 Solution: There exists an active member such that if they belong to any gym, then they are active.
- 3. $\forall x \ \forall y \ (\text{Member}(x) \ \land \ \text{Gym}(y) \ \land \ \text{BelongsTo}(x, \ y) \ \Rightarrow \exists z \ (\text{Member}(z) \ \land \ \text{BelongsTo}(z, \ y) \ \land \ \neg(x=z)))$ Solution: For every member at a gym, there exists another member at the same gym.