By Patrick Lester (Updated July 18, 2005)

This arficle has been franslafed from English info Albanian, Chinsse, French, German, Greek, Polish, Poviupuess, Russian, and Spanish. Other franslafions are welcome. See email address af the
boffom of this arficle.

The A* {pronounced A-star) algorithm can be complicated for beginners. Wihile there are many aricles on the weh that explain A%, rmost are written for people who understand
the basics already. This aticle is for the true heginner.

This atticle does naottry to he the definitive work on the subject. Instead it describes the fundamentals and prepares you to go out and read all ofthose other materials and
understand what they are talking about. Links to some of the best are provided at the end of this article, under Further Reading.

Finally, this aricle is not program-specific. You should be able to adapt what's here to any computer language. As you might expect, however, | have included a link to a sample
program at the end of this aricle. The sample package contains two wersions: one in C++ and one in Blitz Basic. [t also contains executables ifyou justwant to see A* in action.

Butwe are getting ahead of ourselves. Let's start at the heginning ...
Introduction: The Search Area

Let's assume that we have sameone whao wants to get fram point A 1o point B, Let's assume that & wall separates the twao points. This is illustrated below, with green being the
starting point A, and red being the ending point B, and the blue filled squares heing the wall in between.

[Figure 1]

The first thing yvou should notice is thatwe have divided our search area into a sgquare grid. Simplifying the search area, as we have done here, is the first step in pathfinding.
This particular method reduces our search area to a simple two dimensional array. Each item in the array represents one of the squares on the grid, and its status is recorded
as walkahle ar unwalkahle, The pathis found by figuring outwhich squares we should take to get from Ato B. Once the path is found, our person moves fram the center of ane
square to the center ofthe next until the target is reached.

These center points are called "nodes”. When you read ahout pathfinding elsewhere, you will often see people discussing nodes. Why not just call them squares? Because it
i possible to divide up your pathfinding area into something atherthan squares. They could be rectanales, hexagans, triangles, or any shape, really. And the nodes could be
placed ampwhere within the shapes —in the center or along the edges, or ampwhere else. We are using this system, however, because itis the simplest.

Starting the Search

Onece we hawe simplified our search area into a manageable number of nodes, a5 we have done with the grid layout above, the next step is to conduct 3 search to find the
shortest path. We da this hy starting at point &, checking the adjacent squares, and generally searching outward until we find our target.

We hegin the search by doing the following:

1. Begin atthe starting point A and add itto an "open list" of squares to be considered. The apen listis kind of like a shopping list. Right now there is just one itermn on the
list, but we will have more later. It containg squares that might fall along the path you want to take, but mayhe not. Basically, this is a list of squares that need to be
checked out.

2. Look at all the reachahle orwalkahle squares adjacent to the starting paint, ianaring squares with walls, water, or other illegal terrain. Add them to the open list, too. For
each ofthese squares, save point A as its "parent square”. This parent sguare stuffis important when we want to trace our path. twill be explained maore later.

3. Dropthe starting sguare Afrom your open list, and add itto a "closed list" of squares that you don't need to look at again for now.

At this nnint v shonld have snmethinn like the follwdinn ilhstratinon Inthis illnstratinn the dark oreen snnare in the centar is vnnr stading snnare s notlined in linht hine tn

m e ime e m e e e m s PR . . P —

indicate that the square has been added ta the closed list. All of the adjacent squares are now on the apen list of squares to he checked, and they are outlined in light green.
Each has a gray pointer that points back to its parent, which is the starting square.

[Figure 2]

Mext, we choose one of the adjacent squares on the open list and more ar less repeat the earlier process, as described below. Butwhich square do we choose? The ane with
the loweest F cost.

Path Scoring

The key to determining which sguares to use when figuring out the path is the fallowing eguation:
F=G+H

whiere

+ G =the movement costto mave from the staring point Ato a given square on the grid, following the path generated to get there.

+ H=the estimated moverment cost to rmove frorm that given square on the grid ta the final destination, point B. This is often referred to as the heuristic, which can be a hit
confusing. The reason why it is called thatis hecause itis a guess. We really don't know the actual distance until we find the path, because all sorts ofthings can be in
the weay fwealls, weater, et} You are given one weay to calculate H in this tutorial, but there are many others that you can find in other aticles an the web.

Qur path is generated by repeatedly gaing through our apen list and chooasing the square with the lowest F scare. This process will be described in mare detail a hit further in
the adicle. First let's look more closely at how we calculate the equation.

As described above, G is the movement cost to move from the starting paint to the given square using the path generated to getthere. In this example, we will assign a costof
1010 each horizantal orverical square moved, and a cost of 14 for a diagonal move, We use these numbers hecause the actual distance to move diagonally is the square root
of 2 {don't be scared), or roughly 1.414 times the cost of moving harizontally or vertically. We use 10 and 14 for simplicity's sake. The ratio is about right, and we avoid having to
calculate square roots and we avoid decimals. This isn'tjust because we are dumb and don't like math. Using whole numbers like these is a lot faster for the computer, too. As
you will soon find out, pathfinding can he very slow ifvou don't use short cuts like these.

Since we are calculating the G cost along & specific path to a given square, the way to figure outthe G cast ofthat square is to take the & cast of its parent, and then add 10 or
14 depending onwhetheritis diagonal or orthogaonal {non-diagonal) from that parent square. The need for this method will hecome apparent a little further on in this examnple,
aswe get more than one square away from the starting square.

Hcan he estirmated in a variety of ways. The method we use here is called the Manhattan method, where you calculate the total number of squares moved horizontally and
vertically to reach the target square from the current square, ignoring diagonal moverment, and ignaring any ohstacles that may be in the way, We then multiply the total by 10,
our costfor moving one square harizontally orvertically. This is (prabably called the Manhattan method because itis like calculating the number of eity blocks fram ane place to
anather, where you can't cut across the block diagonally.

Reading this description, vou might guess that the heuristic is merely a rough estimate of the remaining distance bhetween the current square and the target"as the crow flies”
This isn'tthe case. We are actually trying to estimate the remaining distance along the path fwhich is usually farther). The closer our estimate is to the actual remaining
distance, the faster the algarithm will he. [fwe overestimate this distance, however, it is not guaranteed to give us the shortest path. In such cases, we have what is called an
“inadrmissible heuristic"

Technically, in this example, the Manhattan method is inadmissible because it slightly owerestirmates the remaining distance. Butwe will use it ampway hecadse itis a 1ot easier
to understand for our purposes, and hecause itis only a slight overestimation. On the rare accasionwhen the resulting path is not the shortest possible, it will be nearly as
short Want to know more? You can find equations and additional notes on heuristics here.

F iz calculated by adding G and H. The results of the first step in our search can be seen in the illustration below. The F, &, and H scores are written in each square. As is
indicated in the square to the immediate right of the staring square, F is printed in the top left, G is printed in the hottom left, and H is printed in the bottam right.

[Figure 3]

Solet's look at some ofthese squares. In the square with the letters init, G=10. Thiz is because itis just one square from the starting square in a horizontal direction. The
squares immediately abave, below, and to the left ofthe starting square all have the same G score of 10. The diagonal squares have G scores of 14,

The H scares are calculated by estimating the Manhattan distance to the red target square, maving only horizontally and vertically and ignaring the wall that is in the way. Using
this method, the square to the immediate right ofthe startis 3 sguares from the red square, for a H score of 30, The square just above this square is 4 squares away
(remember, anly move harizontally and vertically) for an H score of 40, You can probably see how the H scares are calculated for the other squares.

The F score for each sgquare, again, is simply calculated by adding G and H together.

Continuing the Search

Ta continue the search, we simply choose the lowest F score sguare from all those that are on the open list. We then da the following with the selected square:
43 Drop itfrom the open list and add itto the closed list.

a) Check all ofthe adjacent squares. lgnoring those that are on the closed list or unwalkable derrain with walls, water, or other illegal terrain, add squares to the open list if
they are noton the open list already. Make the selected sguare the "parent” of the new sguares.

6 If an adjacent square is already on the apen list, checkta see ifthis path to that square is & better ane. In otherwards, checkto see ifthe G scare forthat square is lower
ifwe use the current sguare to get there. Ifnot, don't do anvthing.
Ornthe other hand, ifthe G cost of the new path is lower, change the parent of the adjacent square to the selectad square (in the diagrarm above, change the direction
ofthe pointerto point at the selected square). Finally, recalculate both the F and G scores of that square. Ifthis seems confusing, you will see it illustrated below.

Qkay, 50 let's see how this works. Of our initial 9 squares, we have 8 left on the open list after the starting square was switched to the closed list. Ofthese, the one with the
loweest F costis the ane to the immediate right of the starting square, with an F scare of 40. Sowe selectthis square a5 our next square. [tis highlight in Blue in the fallowing
illustration.

[Figure 4]

First, we drop it frarm our open list and add itto our closed list ithat's why it's now highlighted in blue). Thenwe check the adjacent sguares. Well, the ones to the immediate
right ofthis square are wall sgquares, sowe ighore those. The one to the immediate leftis the staring sguare. That's on the closed list, so we ignore that, too.

The ather four squares are already on the apen list, so0we need to check ifthe paths to those squares are any better using this sguare to getthere, using G scares as our paint
of reference. Let's look at the square right above our selected square. Its current G score is 14, [fwe instead went through the current sguare to getthere, the G score waould he
equal to 20 (10, which is the & score to getto the current square, plus 10 more to go verically ta the one just abave it). A G scare of 20 is higher than 14, so this is not a better
path. That should make sense if vou look at the diagram. It's more direct to getto that square from the starting square by simply moving one square diagonally to getthere,
rather than moving harizontally one square, and then werdically one sguare.

Wher we repeat this process for all 4 ofthe adjacent squares already on the open list, we find that none of the paths are improved by going through the current sgquare, 5o we
don't change amthing. S0 now that we |ooked at all of the adjacent squares, we are done with this square, and ready to mowe to the next square.

Sowe gothrough the list of squares on our open list, which is now down to 7 squares, and we pick the one with the lowest F cost. Interestingly, in this case, there are two
siUares with 3 score of 54, S0 which dowe choose? It doesn't really matter. For the purposes of speed, it can be faster to choose the last one you added to the open list. This
biases the search in favar of sguares that get found later anin the search, when you have gotten closer to the target. But it doesn't really matter. (Differing treatment of ties is
witty teed versions of A% may find different paths of equal length.)

So let's choose the one just below, and to the right of the statting square, as is shown in the following illustration.

[Figure §]

This time, when we check the adjacent squares we find that the ane ta the immediate right is 2 wall square, 50 we ignare that. The same goes far the ane just abave that. We
alsoignare the square just helow the wall. Why? Because you can't getto that sguare directly from the current square without cutting across the corner ofthe nearby wall. You
really need to go down first and then mowve over to that square, moving around the corner in the process. (Wote: This rule on cutting corners is optional. Its use depends on ho
your nodes are placed.)

That leaves five other squares. The other two squares below the current square aren't already on the open list, so we add thern and the current square becomes their parent.
Ofthe ather three sguares, twa are already on the clased list ithe statting square, and the one just above the current square, bath highlighted in blue in the diagram), o we
ignare them. And the last square, to the immediate left of the current sguare, is checked to see ifthe G score is any lower ifyou go through the current square to getthere. Mo
dice. Sowe're done and ready to check the next square on our apen list.

We repeat this process until we add the target square to the closed list, atwhich point it looks something like the illustration below.

[Figure 6]

Mate that the parent sguare for the square twao squares below the starting square has changed fram the previous illustration. Befare it had a G score of 28 and painted backto
the square ahove it and to the right. Mow it has a score of 20 and points to the sguare just abave it. This happened somewhere along the way on our search, where the G score
weas checked and itturned outto be lower using a new path — so the parentwas switched and the G and F scores were recalculated. While this change doesn't seerm too
important in this example, there are plenty of possible situations where this constant checking will make all the difference in determining the best path to yvour target.

50 how do we determine the path? Simple, just start at the red target square, and work backwards moving from one square to its parent, fallowing the arrows. This will
evantually take you back to the statting square, and that's wour path. It should loak like the fallowing illustration. Maving fram the starting square Ata the destination square B is
simply a matter of moving from the center of each square (the node) to the center of the next square on the path, until you reach the target.

[Figure 7]
Summary of the A" Method
Okay, now that you have gone through the explanation, let's lay out the step-by-step method all in one place:
13 Add the starting sguare (or node) to the open list
2y Repeat the following:
a) Lookforthe lowest F cost square on the open list. We refer ta this as the current square.
by Switch it to the closed list.
¢y For each ofthe 8 squares adjacent to this current square ...
+ Ifitis notwalkable orifitis onthe closed list, ignore it. Otherwise do the following.
o [fitisn'tonthe open list, add it to the open list. Make the current square the parent ofthis square. Record the F, G, and H costs ofthe square.

« Ifitis onthe open list already, checkto see ifthis path to that square is better, using G cost as the measure. Alower G cost means that this is a better path. If so,
change the parent ofthe square to the current square, and recalculate the G and F scores ofthe square. Ifyou are keeping your open list sorted by F score, you may
need to resart the listto account for the change.

d) Stop when you:

+ Addthe target square to the closed list, inwhich case the path has been found (see note helow), ar
+ Failtofind the target square, and the open listis empty. In this case, there is no path.

3) Save the path. Working backwards from the target square, go from each square to its parent sguare until you reach the starting sguare. That is your path.

Mate: In earlier versions ofthis article, itwas suggested thatyou can stop when the target square {or node) has been added to the open list, rather than the closed list. Doing
this will be faster and it will almaost always give vou the shaortest path, but not akways. Situations where doing this could make a difference are when the movement cost to move
fram the second to the last node to the last (targety node can vary significantly - as inthe case of a river crossing between tio nodes, for example.

Small Rant

Forgive me for digressing, but it is woarth painting out that when vou read various discussions of A* pathfinding on the weh and in assorted forums, you will accasionally see
someone refer to cerain code as A% when itisn't. For the A* method to be used, you need to include the elements just discussed ahove -- specifically open and closed lists and
path scaring using F, G, and H. There are lots of other pathfinding algorithms, butthose other methods are naot A%, which is generally considered to be the best ofthe lot. Brvan
Stout discusses many ofthem in the ardicle referenced atthe end ofthis aricle, including some oftheir pros and cons. Sometimes alternatives are better under certain
circumstances, butyou should understand what you are getting inta. Okay, enouah ranting. Back ta the aicle.

Motes on Implementation

Mowy that vou understand the hasic methad, here are some additional things ta think about when you are writing your own program. Some of the following materials reference
the program Dwrate in C++ and Blitz Basic, but the points are equally valid in other languages.

1. Other Units (collision avoidance) [fyou happen to look closely at oy example code, you will notice that it cormpletely ignores ather units on the screen. The units pass right
through each other. Depending on the game, this may he acceptable or it may not. If you want to consider ather units in the pathfinding algorithm and have them move around
one another, | suggest that you anly consider units that are either stopped or adjacent to the pathfinding unit at the tirme the path is calculated, treating their current locations as
urwalkable. For adjacent units that are maoving, vou can discourage collisions by penalizing nodes that lie alang their respective paths, thereby encouraging the pathfinding unit
to find an alternate route (described more under #2).

Ifyou choose to consider other units that are moving and not adjacent to the pathfinding unit, you will need to develop a method for predicting where they will be at any given
paintintime so that they can be dodged properly. Otherwise you will probahly end up with strange paths where units zig-zag to awoid other units that aren't there anvmore.

“ouwill also, of course, need to develop some collision detection code because no matter how good the path is atthe time it is calculated, things can change overtime. When
a callision accurs & unit must either calculate a new path ar, ifthe ather unitis maving and itis not a head-an collision, wait far the ather unit to step out of the way befare
proceeding with the current path.

These tips are probably enough to getyou started. Ifyou want to learn mare, here are some links that you might find helpful:

« Steering Behavior for Autonormous Characters: Craig Reynold's work on steering is a bit different from pathfinding, but it can be integrated with pathfinding ta make a
mare camplete movement and callision avaidance system.

The Long and Shart of Steering in Computer Games: An interesting survey ofthe literature on steering and pathfinding. This is a pdffile.

+« Coordinated Unit Movernent: First in a two-part series of adicles on farmation and group-based moverment by Age of Empires designer Dave Pottinger.

+ Implementing Coordinated Movernent: Second in Dawve Pottinger's two-part series.

2. Variable Terrain Cost In this tutorial and my accormpanying prograrm, terrain is just one of two things —walkable or uraalkable. Butwhat ifyou have terrain that is walkahble,
but at a higher movement cast? Bwamps, hills, stairs in a dungeon, etc. —these are all examples ofterrain that is walkable, but at a higher cost than flat, open araund. Similarly,
aroad might have a lower mowverment costthan the surrounding terrain.

This problern is easily handled by adding the terrain cost inwhen you are calculating the G cost of any given node. Simply add a honus costto such nodes. The A% pathfinding
algarithm is already written to find the lowest cost path and should handle this easily. Inthe simple example | described, when terrain is only walkable or urwalkable, A% will
look for the shortest, most direct path. But in a wariable-cost terrain environment, the least cost path might invalve traweling a longer distance — like taking a road around a
swamp rather than plowing straight throuah it

Aninteresting additional consideration is something the professionals call "influence mapping." Just as with the variahle terrain costs described above, you could create an
additional point systern and apply itto paths for Al purposes. Imagine thatyou have a map with & bunch of units defending a pass through a mountain region. Bvery tirme the
computer sends somebody on a path through that pass, it gets whacked. If you wanted, vou could create an influence map that penalized nodes where lots of carnage is taking
place. This would teach the computer to favar safer paths, and help it avoid dumb situations where it keeps sending troops through a particular path, just because itis shorter
(but alzo more dangerous).

et another possible use is penalizing nodes that lie along the paths of nearby moving units. One ofthe downsides of A* is that when a group of units all try o find pathsto a
similar lacation, there is usually & significant amaount of averlap, a5 ane ar more units try to take the same or similar routes to their destinations. Adding & penalty to nodes
already 'claimed' by other units will help ensure a degree of separation, and reduce caollisions. Donttreat such nodes as unwalkable, however, because you still want multiple
units to he able to sgueeze through tight passageways in single file, ifnecessary. Also, you should only penalize the paths of units that are near the pathfinding unit, nat all
paths, orvou will get strange dodging behavior as units avoid paths of units that are nowhere near them atthe time. Also, you should only penalize path nodes that lie along the
current and future portion of a path, not previous path nodes that have already been visited and left hehind.

2. Hardlittg Utexcplored Areas: Have you ever plaved a PC game where the computer always knows exactly what path to take, even though the map hasnt been explored vet?
Depending upon the game, pathfinding that is too good can be unrealistic. Fortunately, this is a problem that is can be handled fairly easily.

The answer is to create a separate "known'Walkabilib array for each of the various players and computer oppaonents (each player, not each unit-- that would require a lot more
camputer memaond. Each array would contain information about the areas thatthe playver has explared, with the rest of the map assumed to be walkable until proven otherwvisea.
Lzing this approach, units will wander down dead ends and make similarwrong choices until they have learned theirway around. Once the map is explored, howewver,
pathfinding would work narmally.

4, Smootfrer Paths: While & will automatically give you the shortest, lowest cost path, itwon't automatically give you the smoathest looking path. Take a look atthe final path
calculated in our example {in Figure 7). On that path, the very first step is below, and to the right of the starting square. Woauldn't our path be smoother ifthe first step was
instead the sguare directly below the starting square?

There are several ways to address this problem. While vou are calculating the path you could penalize nodes where there is a chanae aof direction, adding a penalty to their G
scares. Alternatively, you could run through your path after itis calculated, looking for places where choosing an adjacent node would give wou & path that looks hetter. For more
on the whaole issue, check out Toward More Realistic Pathfinding, a (free, but registration required) aricle at Gamasutra.com by Marco Pinter.

5 Non-square Search Areas: In our example, we used a simple 2D sguare layout. vYou don't need to use this approach. You could use irregularly shaped areas. Think ofthe
hoard game Risk, and the countries in that game. You could devise a pathfinding scenario for a garme like that To do this, you would need to create a table for storing which
countries are adjacentto which, and a G cost assaociated with maving from ane country to the next. You would also need to come up with a methad for estimating H. Evenything
elsewould be handled the same as inthe ahove example. Instead of using adjacent squares, you would simply look up the adjacent countries in the table when adding new
iterns to wour apen list.

Similarly, you could create a waypoint system for paths on a fixed terrain map. Waypoints are commonly traversed points on a path, perhaps on a road or key tunnel in a
dungeon. As the garme designer, you could pre-assign these waypoints. Two waypoints would be considered "adjacent’ to one anather if there were no abstacles on the direct
line path between them. As in the Risk example, youwould save this adjacency infarmation in a lookup table of some kind and use itwhen generating your new open list items.
Youwould then record the associated G costs (perhaps by using the direct line distance hetween the nodes) and H costs (perhaps using a direct line distance frorm the node to
the goal). Eventhing else would proceed as usual.

Amit Patel has written a brief aricle delving into some alternatives. Far another example of searching on an isometric RPG map using a non-sguare search area, check out my
article Two-Tiered A% Pathfinding.

6. Some Speed Tips: Asvou develop yvour own A* program, or adapt the one | wrote, you will eventually find that pathfinding is using a hefty chunk of your CPU time, paricularly if
you have a decent number of pathfinding units on the hoard and a reasonably large map. Ifyou read the stuff on the net, you will find that this is true even for the professionals
witio design games like Starcraft or Age of Empires. [fyad see things start to slow down due to pathfinding, here are same ideas that may speed things up

+« Consider a smaller map or fewer units.

+ Mever do path finding for more than a fewe units at a time. Instead put thern in a queue and spread thern out over several game cycles. Ifyour game is running at, say, 40
cycles per second, no one will ever notice. But they will naotice ifthe game seems to slow down every once in a while when a bunch of units are all calculating paths at
the same time.

« Consider using larger squares (orwhatever shape you are using) for your map. This reduces the total number of nodes searched to find the path. If you are ambitious,
you can devise two or rore pathfinding systems that are used in different situations, depending upon the length ofthe path. This is what the professionals do, using
large areas for long paths, and then switching to finer searches using smaller squaresfareas when you get clogse to the target. Ifyou are interested in this concept,
check out my aticle Two-Tiered A* Pathfinding.

« Forlonger paths, consider devising precalculated paths that are hardwired into the game.

+ Consider pre-processing your map to figure outwhat areas are inaccessible from the rest of the map. | call these areas "islands." In reality, they can be islands or any
other area thatis otherwise walled off and inaccessihle. One ofthe downsides of A% is that ifyou tell it ta loak for paths ta such areas, itwill search the whoale map,
stopping onlywhen every accessible squareinode has been processed through the open and closed lists. That can waste a lot of CPU time. It can be prevented by
predetermining which areas are inaccessible (via a flaod-fill or similar routine), recarding that infarmation in an array of some kind, and then checking it befare
beginning a path search.

¢ |nacrowded, maze-like environment, consider tagging nodes that don't lead amywhere as dead ends. Such areas can be manually pre-designated inyour map editar
or, ifyou are ambhitious, vou could dewvelap an algarithm to identify such areas automatically. Any collection of nodes in a given dead end area could he given a unigue
identifying number. Then you could safely ignore all dead ends when pathfinding, pausing only to consider nodes in a dead end area if the staring location ar
drstinatinn hannen tn he inthe nadicular dead and area in nnestinn

7. Maintaining the Cpen List This is actually one ofthe mosttime consuming elements ofthe &* pathfinding algorithm. Every time you access the open list, you need to find
the square that has the lowest F cost. There are several ways wou could do this. You could save the path iterns as needed, and simply go through the whole list each time you
need to find the lowest F cost square. This is simple, but really slow for long paths. This can be improved by maintaining a sorted list and simply arabhing the first item off the
list every tirne you need the lowest F-cost square. When Dwrate my program, this was the first method | used.

This will work reasonahly well for small maps, butitisn'tthe fastest solution. Serious A% prograrmmers who want real speed use something called a binary heap, and this is
what | use in my code. In my experience, this approach will be at least 2-3times as fastin most situations, and geometrically faster (10+ times as fast) on longer paths. Ifyou
are motivated to find out rmore about binary heaps, check aut ry article, Using Binary Heaps in A Pathfinding.

Another possible bottleneck is the way vou clear and maintain yaur data structures between pathfinding calls. | persanally prefer to stare eventhing in arrays, YWhile nodes can
be generated, recarded and maintained in a dynamic, object-oriented manner, 1 find that the amount of time needed to create and delete such objects adds an extra,
unnecessary level of averhead that slows things down. Ifyou use arrays, however, you will need to clean things up between calls. The last thing you will want to do in such
cases is spend time zero-ing everything out after a pathfinding call, especially ifvou have a large map.

| avoid this overhead by creating a 2d array called whichListixy) that designates each node on my map as either on the apen list or closed list. After pathfinding atternpts, 1 do
notzera autthis array. Instead | regetthe values of onClosedList and onOpenList in every pathfinding call, incrementing both by +4 or samething similar an each path finding
atternpt. This way, the algorithm can safely ignaore as garbage any data left over from previous pathfinding attempts. | also store values like F, G and H costs in arrays. In this
case, | simply wiite aver any pre-existing values and dan't bother clearing the arravs when I'm dane.

Storing data in multiple arrays consumes more memary, though, sothere is a trade off. Ultimately, vou should use whatever method you are most comfortable with.

8. Dijiestra'’s Algorithm: While A% is generally considered to be the best pathfinding alaaorithm {see rant ahove), there is at least one other algarithm that has its uses - Dijkstra's
algorithm. Dijkstra's is essentially the same as A%, exceptthere is no heuristic (H is always 0). Because it has no heuristic, it searches by expanding out equally in every
direction. As yvou might imagine, because of this Dijkstra's usually ends up exploring a much larger area hefore the target is found. This generally makes it slower than A*.

Sowhy use it? Sometimes we don't know where our target destination is. Say you have a resource-gathering unit that needs to go get some resources of some kind. It may
knowe wehere several resource areas are, but itwants to go to the closest one. Here, Dijkstra's is better than A* because we don't know which one is closest. Qur only alternative
is to repeatedly use A% to find the distance to each ane, and then choose that path. There are probably countless similar situations where we know the kind of lacation we might
he searching for, want to find the closest one, but not know where it is orwhich one might be closest.

Further Reading

Qkay, nowe yau have the hasics and a sense of some of the advanced concepts. Atthis point, I'd suggestwading into my source code, The package contains bivo versions, one
in C++ and one in Blitz Basic. Both versions are heavily commented and should he fairly easy to fallow, relatively speaking. Here is the link.

+ Sample Code: A Pathfinder (20} Version 1.9

Ifyou do not hawve access to C++ or Blie Basic, two small exe files can be found in the G++version. The Blitz Basic wersion can be run by dowenloading the free dermo wersion of
Blitz Basic 30 {not Blitz Plus) atthe Blitz Basic web site.

“ou should also consider reading through the following web pages. They should be much easier to understand now that you have read this tutarial.

+ Amit's A* Pages: This is a very widely referenced page by Amit Patel, but it can be a bit confusing ifyou haven't read this adicle first. Well worth checking out. See
especially Amit's own thoughts on the topic.

+ Smart Moves: Intelligent Path Finding: This article by Bryan Stout at Gamasutra.com requires registration to read. The registration is free and well worth it just to reach
thiz aficle, much less the ather resources that are available there. The prodram written in Delphi by Bryan helped me learn A%, and itis the inspiration behind my A%
prograrm. It also descrihes some alternatives to A%

o Terrain Analysis: This is an advanced, but interesting, aricle by Dave Pottinger, a professional at Ensernble Studios. This guy coordinated the developrment of Age of
Empires and Age of Kings. Don't expectto understand everything here, butitis an interesting article that might give you some ideas of wour own. It includes some
discussion of mip-rmapping, influence mapping, and some other advanced Alfpathfinding concepts.

Some other sites worth checking out:

+« aiGury: Pathfinding
+ Game Al Resource: Pathfinding
+« Gameleyv.net Pathfinding

| also highly recommend the fallowing hooks, which have a hunch of aricles on pathfinding and other Al topics. They also have CDs with sample code. | own them hoth. Plus, if
you buy them from Amazon through these links, Il get a fews pennies from Amazon.

Al 3ame Frogramming | Al Game Programming
Wizdom Wizsdom 2

Steve Rabin Steve Rabin
Best Price $34.949 Best Price §32.97

or Buy New F94.07 or Buy New F44.07

Bi . B h
[fr';);‘ammnmm] [fr';lﬁ‘ammnmm]

Well, that's it. Ifyou happen towrite a program that uses any ofthese concepts, I'd love to see it. | can be reached at

patrick@policyalmanac. org

Lintil then, good luck!

