Artificial Intelligence

First-Order Logic

Outline

e Why FOL?
e Syntax and semantics of FOL
e Using FOL

e Wumpus world in FOL

e Knowledge engineering in FOL

Pros and cons of propositional
logic

© Propositional logic is declarative

© Propositional logic allows partial/disjunctive/negated
information
© Propositional logic is compositional:
- meaning of B, ; A P, , is derived from meaning of B, ; and of
1,2
© Meaning in propositional logic is context-independent
— (unlike natural language, where meaning depends on context)
® Propositional logic has very limited expressive power
- (unlike natural language)
- E.g., cannot say "pits cause breezes in adjacent squares*
e except by writing one sentence for each square

First-order logic
.|

e Whereas propositional logic assumes the
world contains facts,

e first-order logic (like natural language)
assumes the world contains

- : people, houses, numbers, colors,
baseball games, wars, ...

- : red, round, prime, brother of, bigger
than, part of, comes between, ...

- : father of, best friend, one more than,
plus, ...

Syntax of FOL: Basic elements
]
e Constants KingJohn, 2, NUS,...

e Predicates Brother, >,...
e Functions Sqrt, LeftLegOf,...

e Variables X,¥,a,b,..
e Connectives —, =, A, Vv, &
e Equality =

e Quantifiers v, 3

Atomic sentences
C]

Atomic sentence = predicate (term,,....,term,)
or term, = term,

Term = function (term,,...,term,)
or constant or variable

E.g.,
e Brother(KingJohn,RichardTheLionheart)

e > (Length(LeftLegOf(Richard)),
Length(LeftLegOf(KingJohn)))

Complex sentences
L |

e Complex sentences are made from atomic

sentences using connectives
-S,S,A S, S,vS, §S,= S, S, S,

E.g.
e Sibling(KingJohn,Richard) =

Sibling(Richard,KingJohn)

Truth in first-order logic
R

Sentences are true with respect to a and an

Model contains objects () and
relations among them

Interpretation specifies referents for
constant symbols —

predicate symbols —

function symbols —

An atomic sentence predicate(term,,...,term,) is true
iff the referred to by term,,...,term,
are in the referred to by predicate

Models for FOL: Example

person
erson
ing
left leg left leg
N N

Universal quantification

G
e V<variables> <sentence>
e Everyone at SMU is smart:
Vx At(x,SMU) = Smart(x)

e VX Pis true in a model m iff P is true with x being
each possible object in the model

e Roughly speakifng, equivalent to the of
of P

At(KingJohn,SMU) = Smart(KingJohn)
A At(Richard,SMU) = Smart(Richard)
A At(Rupert,SMU) = Smart(Rupert)
AN

A common mistake to avoid
]

e Typically, = is the main connective with Vv

e Common mistake: using A as the main
connective with V:
vx At(x,SMU) A Smart(x)
means “Everyone is at SMU and everyone is smart”

Existential quantification
.|

d<variables> <sentence>
Someone at SMU is smart:
dx At(x,SMU) A Smart(x)

dx P is true in a model m iff P is true with x being
some possible object in the model

e Roughly speaking, equivalent to the of
of P

At(KingJohn,SMU) A Smart(KingJohn)
v At(Richard,SMU) A Smart(Richard)
v At(Rupert,SMU) A Smart(Rupert)

V...

Another common mistake to avoid
C]
e Typically, A is the main connective with 3

e Common mistake: using = as the main
connective with 3:

dx At(x,SMU) = Smart(x)

is true if there is anyone who is not at SMU!

Properties of quantifiers
.|

VX Vy is the same as Vy Vx
dx 3y is the same as Jy Ix
x Vyis the same as Vy 3x
dx Vy Loves(x,y)
- “There is a person who loves everyone in the world”
e Vydx Loves(x,y)
- “Everyone in the world is loved by at least one person”

° : each can be expressed using the
other

e VX Likes(x,IceCream) —(3x —Likes(x,lceCream))
e dx Likes(x,Broccoli) —(Vx —Likes(x,Broccoli))

Equality
|

e term, = term, is true under a given
interpretation if and only if term, and term,
refer to the same object

e E.g., definition of Sibling in terms of Parent:

vx,y Sibling(x,y) < [-(X=y)A (@m,f—=(m=f)A
Parent(m,x) A Parent(f,x) A Parent(m,y) A
Parent(f,y))]

Using FOL

.|
The kinship domain:
e Brothers are siblings
Vx,y Brother(x,y) < Sibling(x,y)
e One's mother is one's female parent
v'm,c Mother(c) = m < (Female(m) A Parent(m,c))

e “Sibling” is symmetric
vx,y Sibling(x,y) < Sibling(y,x)

Interacting with FOL KBs

e Suppose a wumpus-world agent is using an FOL KB
?n5d perceives a smell and a breeze (but no glitter) at
Te11(KB,Percept([Smell,Breeze,None],5))
Ask(KB,3a BestAction(a,5))
i.e., does the KB entail some best action at =57
Answer: Yes, {a/Shoot} (binding list)
Given a sentence S and a substitution o,
So denotes the result of plugging o into S; e.g.,
S = Smarter(x,y)
o = {x/Hillary,y/Bill}
So = Smarter(Hillary,Bill)
e Ask(KB,S) returns some/all o such that KB |= o

Knowledge base for the wumpus
world

°
- Vt,s,b Percept([s,b,Glitter],t) = Glitter(t)

- Vt Glitter(t) = BestAction(Grab,t)

Deducing hidden properties

.|
e VXx,y,a,b Adjacent([x,y],[a,b]) &
[a’b] € {[X+1 ’y]’ [X'1 ,y],[X,y+1],[X,y-1]}
Properties of squares:
o Vst Af(Agent,s,t) A Breeze(t) = Breezy(s)
Squares are breezy near a pit:

- rule---infer cause from effect
V's Breezy(s) = \Exi{r} Adjacent(r,s) A Pit(r)$
- rule---infer effect from cause
vr Pit(r) = [v's Adjacent(r,s) = Breezy(s)$]

Knowledge engineering in FOL

G
1. ldentify the task
2. Assemble the relevant knowledge

Decide on a vocabulary of predicates, functions,
and constants

Encode general knowledge about the domain

Encode a description of the specific problem
instance

6. Pose queries to the inference procedure and get
answers

7. Debug the knowledge base

The electronic circuits domain

]
One-bit full adder

c1

1o—t—e—
2e B o

/i

Je A2
__® ° —e2

The electronic circuits domain

1. ldentify the task

- Does the circuit actually add properly? (circuit
verification)

2. Assemble the relevant knowledge

- Composed of wires and gates; Types of gates
(AND, OR, XOR, NOT)
- lIrrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary

- Alternatives:
Type(X,) = XOR
Type(X,, XOR)
XOR(X,)

The electronic circuits domain
C]

4. Encode general knowledge of the domain

vt,,t, Connected(t,, t,) = Signal(t,) = Signal(t,)

Vvt Signal(t) = 1 v Signal(t) =0

1#£0

vt,,t, Connected(t;, t,) = Connected(t,, t,)

vg Type(g) = OR = Signal(Out(1,g9)) =1 < 3n

Signal(In(n,g)) = 1

- Vg Type(g) = AND = Signal(Out(1,9)) =0 < 3In
Signal(In(n,g))=0

- Vg Type(g) = XOR = Signal(Out(1,g)) = 1 < Signal(In(1,g))
Signal(In(2,9))

- Vg Type(g) = NOT = Signal(Out(1,9)) # Signal(In(1,9))

The electronic circuits domain
C]

5. Encode the specific problem instance
Type(X,) = XOR Type(X,) = XOR
Type(A;) = AND Type(A,) = AND
Type(O,) = OR

Connected(Out(1,X4),In(1,X5,))
Connected(Out(1,X4),In(2,A,))
Connected(Out(1,A,),In(1,0,))
Connected(Out(1,A,),In(2,0,))

Connected(Out(1,X,),0ut(1,C,))
Connected(Out(1,0,),0ut(2,C,))

Connected(In(1,C,),In(1,X,)
Connected(In(1,C,),In(1,A,)
Connected(In(2,C,),In(2,X,)
Connected(In(2,C,),In(2,A,)
Connected(In(3,C,),In(2,X,)

()

)
)
)
)
2))
Connected(In(3,C,),In(1,A,))

The electronic circuits domain
C]

6. Pose queries to the inference procedure:
What are the possible sets of values of all
the terminals for the adder circuit?
Jiy,15,153,04,0, Signal(In(1,C_1)) =i, A
Signal(In(2,C,)) = i, A Signal(In(3,C,)) = i5 A
Signal(Out(1,C,)) = o, A Signal(Out(2,C,)) = o,

7. Debug the knowledge base

May have omitted assertions like 1 # 0

Summary
.|

e First-order logic:
- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality,
quantifiers
e Increased expressive power: sufficient to
define wumpus world

