Artificial Intelligence

Propositional logic:
inference algorithms

Outline

e Propositional (Boolean) logic

e Equivalence, validity, satisfiability

e Inference rules and theorem proving
- forward chaining

- backward chaining
- resolution




Propositional logic: Syntax
|

e Propositional logic is the simplest logic — illustrates

basic ideas
e The proposition symbols P,, P, etc are sentences
- If Sis a sentence, —S is a sentence ( )

If S, and S, are sentences, S, A S, is a sentence

( )

If S; and S, are sentences, S, v S, is a sentence
)

- If S; and S, are sentences, S; = S, is a sentence

)

If S, and S, are sentences, S, < S, is a sentence

( )

Truth tables for connectives
]

Pl Q| -P[PAQIPVQ|P = Q[P & Q

false| false | true | false | false | true true
false | true | true | false | true true false
true | false| false| false | true | false false
true | true | false| true | true true true




Logical equivalence
|

e Two sentences are logically equivalent iff true in

same models: a = Riffak B and BEa
(A pB) = (BA@) commutativity of A

(aVpB) = (BVa) commutativity of V
(@AB)AY) = (aA(BA7y)) associativity of A
(aVvpB)Vy) = (aV(BVry)) associativity of V
—(7a) = a double-negation elimination
(¢ = B) = (-8 = —a) contraposition
( = B) = (~aV B) implication elimination
(@ & B) = ((a = B)A(B = «)) biconditional elimination
(A p) = (~aV—p5) de Morgan
“(aVp) = (raA—f3) de Morgan
(@A (BVY) = ((anB)V(aAy)) distributivity of A over V
(@V(BAY) = ((aVB)A(aVy)) distributivity of V over A

Validity and satisfiability
G

A sentence is if it is true in all models,
eg., True, Av-A, A=A, (AA(A=B) =B
Validity is connected to inference via the Deduction

Theorem:
KB |= a if and only if (KB = a) is valid
A sentence is if it is true in model
eg.,,AvB, C
A sentence is if it is true in models
e.g., AA—-A

Satisfiability is connected to inference via the following:
KB Eaif and only if (KB A—a) is unsatisfiable




Example: Wumpus world KB

R
e Let P;; be true if there is a pit in [i, j].
e Let B;; be true if there is a breeze in [i, j].

e Pits cause breezes in adjacent squares
e The KB has 5 sentences:

- Py

—-By 4

By

Biie (PiavPyy)

B, < (P11VvPy,vPsy)

Wumpus models

e KB = wumpus-world rules + observations
e a,="[1,2]is safe", KB ka, proved by




Truth tables for inference

By | By | Poy | Pog | Poy | Pap | P31 | KB

23]

false| false | false | false | false | false | false | false | true
false| false | false | false | false | false | true | false | true

false | true | false | false| false | false| false | false | true

false | true | false | false | false | false| true | true | true
false | true | false | false | false | true | false | true | true
false| true | false | false | false | true | true | true | true
false | true | false | false | true | false| false | false | true

true | true | true | true | true | true | true | false | false

Inference by enumeration

function TT-ENTAILS?(KB, o) returns true or false

symbols + a list of the proposition symbols in KB and «
return TT-CHECK-ALL(KB, a, symbols, | |)

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(q, model)
else return true
else do
P « FIRST(symbols); rest < REST(symbols)
return TT-CHECK-ALL(KB, o, rest, EXTEND( P, true, model) and
TT-CHECK-ALL(KB, o, rest, EXTEND( P, false, model)

e For n symbols, time complexity is O(2"), space complexity is O(n)




Proof methods
]

e Proof methods divide into (roughly) two kinds:
- Application of inference rules
e Legitimate (sound) generation of new sentences from old

e Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard
search algorithm

e Typically require transformation of sentences into a normal
form

- Model checking
e truth table enumeration (always exponential in n)

e improved backtracking, e.g., Davis--Putnam-Logemann-
Loveland (DPLL) algorithm

e heuristic search in model space (sound but incomplete)

Inference rule: Resolution
C ]

e Conjunctive Normal Form (CNF) : conjunction of
disjunctions of literals

E.g.,(Av—-B)A (Bv-Cv-D)
e Resolution inference rule (for CNF):

bV vk, mNV ...V,

v oV EgNV bV NV N my N Mg Y g Ve
where [ and m are complementary literals.

e Resolution is sound and complete for propositional
logic




Resolution example
G

P1,3 vV P2,2’ _'Pz,z

P1,3

0|
=
0
0
x

Conversion to CNF
G

ConvertB;, < (P4, Vv P,,)into CNF:

1. Eliminate <, replacing a < 3 with (a = B)A(B = a).
(B1,1 = (P1,2 Vv P2,1)) A ((P1,2 4 P2,1) = B1,1)

2. Eliminate =, replacing a = B with —av B.
(ﬁBm Vv P1,2 Vv P2,1) N (—'(P1,2 Vv P2,1) Vv B1,1)

3. Move — inwards using de Morgan's rules and
double-negation:

(=B11V Py v Py ) A ((HP12v =P, 4) v By )
4. Apply distributivity law (A over v) and flatten:
(=Byy Vv Pio Vv Py ) A (5P v By g) A (5P v By y)




Resolution algorithm
.

e Proof by contradiction: To show KB |= a, we show that
KBA—a is unsatisfiable

e First, KBA—a is converted into CNF. Then, the
resolution rule is applied to the resulting clauses. Each
pair that contains complementary literals is resolved to
produce a new clause, which is added to the setif it is
not already present. The process continues until one
of two things happens:

- there are no new clauses that can be added, in which case KB does
not entail a; or,

- Two clauses resolve to yield the empty clause, in which case KB
entails a.

Resolution algorithm
G

function PL-RESOLUTION(KB, ) returns true or false

clauses < the set of clauses in the CNF representation of KB A —«
new+{ }
loop do
for each C;, C; in clauses do
resolvents + PL-RESOLVE(C;, Cj)
if resolvents contains the empty clause then return true
new +— new U resolvents
if new C clauses then return false
clauses «+— clauses U new




Resolution example

R
e KB=(By1< (Py,v Pyq)) A= By y
e 0= _'P1,2

[jPZ.l\/ Bu‘ ’jBl.lv Pl,z\/ Pl,l‘ ’jPLzV Bl.l‘

Horn clauses
C ]

e Real-world knowledge bases often contain only
clauses of a restricted kind called Horn clauses.

e Horn clause =
- proposition symbol (fact); or
- (conjunction of symbols) (called body) = symbol
(called head)
_ Eg,CAD=B
e Can be used with forward chaining or backward
chaining.

e These algorithms are very natural and run in linear
time




Forward chaining

e |dea: fire any rule whose premises are satisfied in the
KB, add its conclusion to the KB, until query is found
Q

4
P = Q

LANM = P P

BAL = M E\

AANP = L M

AANB = L

A

B %
A

Forward chaining algorithm

function PL-FC-ENTATLS? (KB, ¢) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p+ Pop(agenda)
unless inferred(p] do
inferred|p] + true
for each Horn clause ¢ in whose premise p appears do
decrement count|c]
if count[c] = 0 then do
if HEAD[¢] = ¢ then return true
Pusu(HEAD|c], agenda)
return false

e Forward chaining is sound and complete for Horn KB




Forward chaining example

Forward chaining example




Forward chaining example

Forward chaining example




Forward chaining example

Forward chaining example




Forward chaining example

Forward chaining example




Proof of completeness
L |

e FC derives every atomic sentence that is
entailed by KB

1. FC reaches a fixed point where no new atomic
sentences are derived

2. Consider the final state as a model m, assigning
true/false to symbols

3. Every clause in the original KB is true in m
a/n ...An a=b
4. Hence mis a model of KB

5. IfKB |= q, q is true in every model of KB,
including m

Backward chaining
|

Idea: work backwards from the query q:
to prove q by BC,

check if g is known already, or
prove by BC all premises of some rule concluding g

Avoid loops: check if new subgoal is already on the
goal stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or
2. has already failed




Backward chaining example

Backward chaining example




Backward chaining example

Backward chaining example




Backward chaining example

Backward chaining example




Backward chaining example

Backward chaining example




Backward chaining example

Backward chaining example




Forward vs. backward chaining
|

e FC is data-driven reasoning. It can be used within an
agent to derive conclusions from incoming percepts,
often without a specific query in mind.

e FC may do lots of work that is irrelevant to the goal
e BC is goal-driven, appropriate for problem-solving,
- e.g., Where are my keys? What shall | do now?

e Complexity of BC can be much less than linear in
size of KB

Expressiveness limitation of
propositional logic
.|

e In Wumpus world, KB must contain sentences for
every single square, not “general rules”

t o Propositional logic does not scale to environments of
unbounded size because it lacks the expressive
power to deal concisely with time, space, and
universal patterns of relationships among objects.




Summary
.|

Logical agents apply inference to a knowledge base to derive
new information and make decisions

Basic concepts of logic:

- syntax: formal structure of sentences

- semantics: truth of sentences wrt models

- entailment: necessary truth of one sentence given another

- inference: deriving sentences from other sentences

- soundness: derivations produce only entailed sentences

completeness: derivations can produce all entailed sentences

Resolutlon is complete for propositional logic

Florward, backward chaining are linear-time, complete for Horn
clauses

Propositional logic lacks expressive power




