

## **Outline**

- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
  - forward chaining
  - backward chaining
  - resolution

## **Propositional logic: Syntax**

- Propositional logic is the simplest logic illustrates basic ideas
- The proposition symbols P<sub>1</sub>, P<sub>2</sub> etc are sentences
  - If S is a sentence, ¬S is a sentence (negation)
  - If  $S_1$  and  $S_2$  are sentences,  $S_1 \wedge S_2$  is a sentence (conjunction)
  - If S<sub>1</sub> and S<sub>2</sub> are sentences, S<sub>1</sub> ∨ S<sub>2</sub> is a sentence (disjunction)
  - If S₁ and S₂ are sentences, S₁ ⇒ S₂ is a sentence (implication)
  - If  $S_1$  and  $S_2$  are sentences,  $S_1 \Leftrightarrow S_2$  is a sentence (biconditional)

2

## **Truth tables for connectives**

| P     | Q     | $\neg P$ | $P \wedge Q$ | $P \lor Q$ | $P \Rightarrow Q$ | $P \Leftrightarrow Q$ |
|-------|-------|----------|--------------|------------|-------------------|-----------------------|
| false | false | true     | false        | false      | true              | true                  |
| false | true  | true     | false        | true       | true              | false                 |
| true  | false | false    | false        | true       | false             | false                 |
| true  | true  | false    | true         | true       | true              | true                  |

Λ

#### Logical equivalence

• Two sentences are logically equivalent iff true in same models:  $\alpha \equiv \beta$  iff  $\alpha \models \beta$  and  $\beta \models \alpha$ 

```
\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg (\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ \neg (\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{array}
```

## Validity and satisfiability

```
A sentence is valid if it is true in all models, e.g., True, A \lor \neg A, A \Rightarrow A, (A \land (A \Rightarrow B)) \Rightarrow B
```

Validity is connected to inference via the **Deduction**Theorem:

 $KB \models \alpha$  if and only if  $(KB \Rightarrow \alpha)$  is valid

A sentence is satisfiable if it is true in some model e.g., Av B, C

A sentence is unsatisfiable if it is true in no models e.g., A^¬A

Satisfiability is connected to inference via the following:  $KB \models \alpha$  if and only if  $(KB \land \neg \alpha)$  is unsatisfiable

## **Example: Wumpus world KB**

- Let P<sub>i,j</sub> be true if there is a pit in [i, j].
- Let B<sub>i,j</sub> be true if there is a breeze in [i, j].
- Pits cause breezes in adjacent squares
- The KB has 5 sentences:

$$\begin{array}{l} \neg \ P_{1,1} \\ \neg B_{1,1} \\ B_{2,1} \\ B_{1,1} \Leftrightarrow \quad (P_{1,2} \lor P_{2,1}) \\ B_{2,1} \Leftrightarrow \quad (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \end{array}$$

7

## **Wumpus models**



- KB = wumpus-world rules + observations
- $\alpha_1$  = "[1,2] is safe",  $KB \models \alpha_1$ , proved by model checking

#### Truth tables for inference

| $B_{1,1}$ | $B_{2,1}$ | $P_{1,1}$ | $P_{1,2}$ | $P_{2,1}$ | $P_{2,2}$ | $P_{3,1}$ | KB                 | $\alpha_1$         |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------|--------------------|
| false              | true               |
| false     | false     | false     | false     | false     | false     | true      | false              | true               |
| :         | :         | :         | :         | :         | :         | :         | :                  | :                  |
| false     | true      | false     | false     | false     | false     | false     | false              | true               |
| false     | true      | false     | false     | false     | false     | true      | $\underline{true}$ | $\underline{true}$ |
| false     | true      | false     | false     | false     | true      | false     | $\underline{true}$ | $\underline{true}$ |
| false     | true      | false     | false     | false     | true      | true      | $\underline{true}$ | $\underline{true}$ |
| false     | true      | false     | false     | true      | false     | false     | false              | true               |
| :         | :         | :         | :         | :         | :         | :         | :                  | :                  |
| true      | false              | false              |

9

## Inference by enumeration

```
function TT-ENTAILS?(KB, \alpha) returns true or false
symbols \leftarrow \text{a list of the proposition symbols in } KB \text{ and } \alpha
\text{return TT-Check-All}(KB, \alpha, symbols, [])
function TT-Check-All}(KB, \alpha, symbols, model) \text{ returns } true \text{ or } false
\text{if EMPTY?}(symbols) \text{ then}
\text{if PL-True?}(KB, model) \text{ then return PL-True?}(\alpha, model)
\text{else return } true
\text{else do}
P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)
\text{return TT-Check-All}(KB, \alpha, rest, \text{Extend}(P, true, model) \text{ and}
\text{TT-Check-All}(KB, \alpha, rest, \text{Extend}(P, false, model)
```

• For *n* symbols, time complexity is  $O(2^n)$ , space complexity is O(n)

#### **Proof methods**

- Proof methods divide into (roughly) two kinds:
  - Application of inference rules
    - Legitimate (sound) generation of new sentences from old
    - Proof = a sequence of inference rule applications
       Can use inference rules as operators in a standard search algorithm
    - Typically require transformation of sentences into a normal form
  - Model checking
    - truth table enumeration (always exponential in *n*)
    - improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL) algorithm
    - heuristic search in model space (sound but incomplete)

11

#### Inference rule: Resolution

Conjunctive Normal Form (CNF): conjunction of disjunctions of literals

E.g.,  $(A \vee \neg B) \wedge (B \vee \neg C \vee \neg D)$ 

• Resolution inference rule (for CNF):

 $l_i \vee \ldots \vee l_k$ ,  $m_1 \vee \ldots \vee m_n$ 

 $\ell_i \vee \ldots \vee \ell_{i-1} \vee \ell_{i+1} \vee \ldots \vee \ell_k \vee m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_n$  where  $\ell_i$  and  $m_i$  are complementary literals.

Resolution is sound and complete for propositional logic

## **Resolution example**



 $P_{1,3}$ 



13

#### **Conversion to CNF**

Convert  $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$  into CNF:

- Eliminate  $\Leftrightarrow$ , replacing  $\alpha \Leftrightarrow \beta$  with  $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ .  $(\mathsf{B}_{1,1} \Rightarrow (\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1})) \wedge ((\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1}) \Rightarrow \mathsf{B}_{1,1})$
- 2. Eliminate  $\Rightarrow$ , replacing  $\alpha \Rightarrow \beta$  with  $\neg \alpha \lor \beta$ .

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

3. Move 

¬ inwards using de Morgan's rules and double-negation:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \lor \neg P_{2,1}) \lor B_{1,1})$$

 $\begin{array}{ll} (\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge ((\neg P_{1,2} \vee \neg P_{2,1}) \vee B_{1,1}) \\ \text{4.} & \text{Apply distributivity law } (\wedge \text{ over } \vee) \text{ and flatten:} \end{array}$ 

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

#### **Resolution algorithm**

- Proof by contradiction: To show  $KB \models \alpha$ , we show that  $KB \land \neg \alpha$  is unsatisfiable
- First, KB\nabla\alpha is converted into CNF. Then, the resolution rule is applied to the resulting clauses. Each pair that contains complementary literals is resolved to produce a new clause, which is added to the set if it is not already present. The process continues until one of two things happens:
  - there are no new clauses that can be added, in which case KB does not entail α; or,
  - Two clauses resolve to yield the empty clause, in which case  $\ensuremath{\textit{KB}}$  entails  $\alpha.$

15

## **Resolution algorithm**

```
function PL-RESOLUTION(KB, \alpha) returns true or false
clauses \leftarrow \text{ the set of clauses in the CNF representation of } KB \wedge \neg \alpha
new \leftarrow \{ \}
loop \ do
for \ each \ C_i, \ C_j \ in \ clauses \ do
resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j)
if \ resolvents \ contains \ the \ empty \ clause \ then \ return \ true
new \leftarrow new \cup \ resolvents
if \ new \subseteq clauses \ then \ return \ false
clauses \leftarrow clauses \cup new
```

## **Resolution example**

- $KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$
- $\alpha = \neg P_{1,2}$



17

#### Horn clauses

- Real-world knowledge bases often contain only clauses of a restricted kind called Horn clauses.
- Horn clause =
  - proposition symbol (fact); or
  - (conjunction of symbols) (called body) ⇒ symbol (called head)
  - E.g.,  $C \wedge D \Rightarrow B$
- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

## Forward chaining

• Idea: fire any rule whose premises are satisfied in the *KB*, add its conclusion to the *KB*, until query is found

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$



19

## Forward chaining algorithm

```
function PL-FC-Entails?(KB,q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known to be true while agenda is not empty do p \leftarrow \operatorname{PoP}(agenda) unless inferred[p] do inferred[p] \leftarrow true for each Horn clause c in whose premise p appears do decrement count[c] if count[c] = 0 then do
        if HEAD[c] = q then return true
        PUSH(HEAD[c], agenda)
return false
```

• Forward chaining is sound and complete for Horn KB

















#### **Proof of completeness**

- FC derives every atomic sentence that is entailed by KB
  - FC reaches a fixed point where no new atomic sentences are derived
  - Consider the final state as a model m, assigning true/false to symbols
  - 3. Every clause in the original *KB* is true in *m*

$$a_1 \wedge \ldots \wedge a_k \Rightarrow b$$

- 4. Hence *m* is a model of *KB*
- 5. If  $KB \models q$ , q is true in every model of KB, including m

29

## **Backward chaining**

Idea: work backwards from the query q:

to prove q by BC,

check if *q* is known already, or prove by BC all premises of some rule concluding *q* 

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

- 1. has already been proved true, or
- 2. has already failed





















## Forward vs. backward chaining

- FC is data-driven reasoning. It can be used within an agent to derive conclusions from incoming percepts, often without a specific query in mind.
- FC may do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
   e.g., Where are my keys? What shall I do now?
- Complexity of BC can be much less than linear in size of KB

41

# Expressiveness limitation of propositional logic

- In Wumpus world, KB must contain sentences for every single square, not "general rules"
- Propositional logic does not scale to environments of unbounded size because it lacks the expressive power to deal concisely with time, space, and universal patterns of relationships among objects.

## **Summary**

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
  - syntax: formal structure of sentences
  - semantics: truth of sentences wrt models
  - entailment: necessary truth of one sentence given another
  - inference: deriving sentences from other sentences
  - soundness: derivations produce only entailed sentences
  - completeness: derivations can produce all entailed sentences
- Resolution is complete for propositional logic
- Forward, backward chaining are linear-time, complete for Horn clauses
- Propositional logic lacks expressive power