

Introduction

- We will define sequential decision problems (SDPs)
- We will discuss two major algorithms for solving SDPs
- Value iteration:
- estimate rewards
- refine rewards, repeatedly
- use rewards to make plan
- Policy iteration:
- make initial plan
- calculate rewards and re-make plan, repeatedly
- We will discuss the related issues of
- Delayed rewards
- Immortal/eternal agents

Sequential decision problems

- A sequential decision problem (SDP) is a problem where the utility obtained by an agent depends on a sequence of decisions
- SDPs in known, accessible, deterministic domains can be solved using search algorithms that we have already seen
- The result is a sequence of actions that lead (inevitably) to a "good" state
- But SDPs typically include utilities, uncertainty, sensing issues, etc.
- They generalise the searching and planning problems that we have seen up to now
- An agent needs to know what action to take in each possible state, allowing for future uncertainties

An example SDP

- Beginning from the start state of 17.1(a):
- The agent must select an action at each time step, from the set $\{U p$, Down, Left, Right\}
- Each non-terminal state incurs a step-cost
- The agent's interaction finishes when it reaches
any terminal state
- Each terminal state confers a "reward"
- The agent wants to maximise its overall utility
- The utility of a sequence of states is the sum of the step-costs, plus the terminal utility
- If actions are deterministic, it's trivial!
- [Up, Up, Right, Right, Right]
- But each action has a pre-defined probability of "failure"
- Given by the transition model in 17.1(b)
- Non-determinism limits the usefulness of search
- So what's the best policy now?

Figure $\mathbf{1 7 . 1}$ (a) A simple 4×3 environment that presents the agent with a sequential decision problem. (b) Illustration of the transition model of the environment: the "intended" outcome occurs with probability 0.8 , but with probability 0.2 the agent moves at right angles to the intended direction. A collision with a wall results in no movement. The two terminal states have reward +1 and -1 , respectively, and all other states have a reward of -0.04 .

Optimal Policies

- The optimal policy for this environment depends on many factors
- Each of the following points assumes "all else being equal"
- It depends on the transition model:
- Less-certain actions imply a more conservative policy
- It depends on the terminal utilities:
- A bigger discrepancy between the two implies a more conservative policy
- It depends on the step-cost:

- A lower step-cost implies a more conservative policy

Optimal policies for various step costs

- 17.2(b1): get to any terminal ASAP!
- 17.2(b2): risk the bad terminal
- 17.2(a): ditto, but less
- 17.2(b3): avoid the bad terminal at all costs
- 17.2(b4): I want to live forever!

Figure 17.2 (a) An optimal policy for the stochastic environment with $R(s)=-0.04$ in the nonterminal states. (b) Optimal policies for four different ranges of $R(s)$.

Before we describe our two algorithms, we need to describe two fundamental processes that they employ

A policy determines a set of utilities

- Given any policy, we can determine the agent's corresponding utilities if it follows that policy
- For each non-terminal state, an equation describes its expected utility as a function of the transition model
e.g. for the policy in 17.2(a):
- $\mathrm{x}_{33}=0.8 \times 1+0.1 \times \mathrm{x}_{33}+0.1 \times \mathrm{x}_{32}-0.04$
- $x_{32}=0.8 \times x_{33}+0.1 \times x_{32}+0.1 \times-1-0.04$
- $\mathrm{x}_{23}=0.8 \times \mathrm{x}_{33}+0.1 \times \mathrm{x}_{23}+0.1 \times \mathrm{x}_{23}-0.04$
- ...

Figure 17.3 The utilities of the states in the 4×3 world, calculated with $\gamma=1$ and $R(s)=-0.04$ for nonterminal states.

- In general, n non-terminal states gives n simultaneous linear equations
- Solving with Gaussian elimination gives the utilities
- But Gaussian elimination is $O\left(n^{3}\right) \ldots$
- This process is often called value determination

A set of utilities determines a policy

- Correspondingly: given a utility for each state, we can determine the optimal policy for the agent
- For each state independently, calculate the expected outcome for each action, and choose the best action
- e.g. for State 3,1 in 17.3:
- Up: $\quad 0.8 \times \mathrm{x}_{32}+0.1 \times \mathrm{x}_{21}+0.1 \times \mathrm{x}_{41}-0.04 \approx 0.592$
- Down: $0.8 \times x_{31}+0.1 \times x_{41}+0.1 \times x_{21}-0.04 \approx 0.553$
- Right: $0.8 \times \mathrm{x}_{41}+0.1 \times \mathrm{x}_{32}+0.1 \times \mathrm{x}_{31}-0.04 \approx 0.398$
- Left: $0.8 \times x_{21}+0.1 \times x_{31}+0.1 \times x_{32}-0.04 \approx 0.611$

So the best action in State 3,1 is Left Note that the agent shouldn't just head for the adjacent state with the highest utility...

We shall call this process action determination

Figure 17.3 The utilities of the states in the 4×3 world, calculated with $\gamma=1$ and $R(s)=-0.04$ for nonterminal states.

The Bellman Equation

- The utility of a state is specified formally by the Bellman equation [1957]

$$
U_{i}=R_{i}+\max _{a} \sum_{j} M_{i j}^{a} U_{j}
$$

- $M_{i j}^{a}$ is the probability that doing Action a in State i leaves the agent in State j
- i.e. it represents the transition model
- $\sum_{j} M_{i j}^{a} U_{j}$ is the weighted sum of all possible outcomes of doing Action a in State i
- $\max _{a} \sum_{j} M_{i j}^{a} U_{j}$ is the expected outcome of the best action to do in State i
- $R_{i}+\max _{a} \sum M_{i j}^{a} U_{j}$ is the cost of being in State i, plus the cost of behaving optimally thereafter
- cf. value determination, with a twist...
- The Bellman equation underpins both SDP algorithms
- But it cannot be solved directly because
- The equations for the states are mutually dependent
- The use of max $_{a}$ means the equation is non-linear

Value iteration

- Basic idea:
- Determine the true utility of each state
- Then determine the optimal action in each state, by action determination
- To determine the utility of each state, use an iterative approximation algorithm
- \quad start with arbitrary utilities U
- update U to make them locally consistent with Bellman
- repeat until U is "close enough"
- This has been proven to converge, under reasonable assumptions

Aside: iterative approximation algorithms

- An iterative approximation algorithm that you may know is Newton's algorithm for finding square roots.
Find the square root of y by repeatedly improving an initial estimate x_{0}, using $x_{k+1}=\left(x_{k}+y / x_{k}\right) / 2$
- e.g. $y=25$
- $x_{0}=1$
- $x_{1}=13$
- $x_{2}=7.46$
- $x_{3}=5.41$
- $x_{4}=5.02$
- $x_{5}=5.00002$
- $x_{6}=5.00000000005$
- etc.
- The key point in an iterative approximation algorithm is that the update step f is a contraction
i.e. $u \neq v \rightarrow|f(u)-f(v)|<|u-v|$
e.g. f might be "divide by 2 "
- Applying f brings points closer together
- $f\left(f i x_{f}\right)=f i x_{f}$
- e.g. the fixed point of "divide by $2 "$ is 0
- Therefore f brings any point closer to its fixed point
- And any contraction has only one fixed point

Value iteration approximation

- The key to the algorithm is that in the (iterated) update step, the link between U and U^{\prime} is broken
- U' (the new set of utilities) is created under the assumption that U (the old set of utilities) is correct
- If U is correct, there will be no change and the iteration terminates
- If U is not correct, U ' will be closer to the correct

```
function VALUE-ITERATION ( }mdp,\epsilon)\mathrm{ returns a utility function
    inputs: mdp, an MDP with states S, actions }A(s)\mathrm{ , transition model }P(\mp@subsup{s}{}{\prime}|s,a)\mathrm{ ,
            rewards }R(s)\mathrm{ , discount }
            \epsilon \text { , the maximum error allowed in the utility of any state}
    local variables: }U,\mp@subsup{U}{}{\prime}\mathrm{ , vectors of utilities for states in S}\mathrm{ , initially zero
                            \delta, the maximum change in the utility of any state in an iteration
    repeat
        U\leftarrowU';};\delta\leftarrow
        for each state s in S do
            \mp@subsup{U}{}{\prime}[s]\leftarrowR(s)+\gamma}\mp@subsup{\operatorname{max}}{a\inA(s)}{}\mp@subsup{\sum}{\mp@subsup{s}{}{\prime}}{}P(\mp@subsup{s}{}{\prime}|s,a)U[\mp@subsup{s}{}{\prime}
            if }|\mp@subsup{U}{}{\prime}[s]-U[s]|>\delta\mathrm{ then }\delta\leftarrow|\mp@subsup{U}{}{\prime}[s]-U[s]
    until }\delta<\epsilon(1-\gamma)/
    return }
```

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (17.8).

Value iteration performance

- 17.5(a) shows how the utility of each state approaches the correct value as value iteration proceeds
- State 4,3 (a terminal) is immediately correct
- 3,3 achieves correctness early
- It is "close to" a terminal
- The other states get worse before they get better, i.e. until they are "connected to" a terminal
- As usual with iterative approximation algorithms, diminishing returns applies
- The utilities approach the correct values asymptotically, and a threshold cut-off must be used

(a)

(b)

Figure $\mathbf{1 7 . 5}$ (a) Graph showing the evolution of the utilities of selected states using value iteration. (b) The number of value iterations k required to guarantee an error of at most $\epsilon=c \cdot R_{\text {max }}$, for different values of c, as a function of the discount factor γ.

Figure 17.3 The utilities of the states in the 4×3 world, calculated with $\gamma=1$ and $R(s)=-0.04$ for nonterminal states.

Assessing performance

- But we can derive the optimal policy without knowing the exact utilities
- Calculate the policy loss at each iteration by using the current value of U to derive the "current policy" \quad "
- Then compare π with the optimal policy
- 17.6 shows, for each iteration, the error in the utilities vs. the policy loss
- The policy loss is uniformly less than the error in the utilities
- The optimal policy is derived long before the exact utilities are derived
- Can we use this idea to develop a faster algorithm?

Figure 17.6 The maximum error $\left\|U_{i}-U\right\|$ of the utility estimates and the policy loss $\left\|U^{\pi_{i}}-U\right\|$, as a function of the number of iterations of value iteration.

Policy iteration

- Basic idea:
- We (usually) don't need to know exact utilities; we just need to know what to do!
- e.g. is jumping off a cliff -100 or $-1,000$?
- Hence iterate on the actual policy, not its utilities
- To determine the optimal policy, use an iterative approximation algorithm
- \quad start with an arbitrary policy π
- compute the utilities U of π, by value determination
- update π according to U, by action determination
- repeat until no change in π
- This also has been proven to converge, under reasonable assumptions

Policy iteration operation

- In each iteration
- Derive the utilities from the current policy, then
- Check each state to see if its action is optimal
- If there are any updates, iterate again
- But updating a policy is a much "coarser" operation than updating a utility value
- Hence convergence is quicker
- Deriving the utilities can be slow
- Gaussian elimination is cubic in the no. of states
- For large problems, it may be better to use (a simplified form of) value iteration itself!

```
function POLICY-ITERATION( }mdp\mathrm{ ) returns a policy
    inputs: mdp, an MDP with states S, actions A(s), transition model P(s's}|s,a
    local variables: }U\mathrm{ , a vector of utilities for states in S, initially zero
                \pi}\mathrm{ , a policy vector indexed by state, initially random
    repeat
        U\leftarrow\operatorname{Policy-Evaluation ( }\pi,U,mdp)
        unchanged? \leftarrow true
        for each state s in S do
            if max max }\mp@subsup{\sum}{\mp@subsup{s}{}{\prime}}{}P(\mp@subsup{s}{}{\prime}|s,a)U[\mp@subsup{s}{}{\prime}]>\mp@subsup{\sum}{\mp@subsup{s}{}{\prime}}{}P(\mp@subsup{s}{}{\prime}|s,\pi[s])U[\mp@subsup{s}{}{\prime}]\mathrm{ then do
                \pi[s]\leftarrow\underset{a\inA(s)}{\operatorname{argmax}}\mp@subsup{\sum}{\mp@subsup{s}{}{\prime}}{}P(\mp@subsup{s}{}{\prime}|s,a)U[\mp@subsup{s}{}{\prime}]
                unchanged? }\leftarrow\mathrm{ false
    until unchanged?
    return }
```

[^0]
Utilities over time

- In many disciplines where rewards are distributed through time, it is normal to regard present returns as being more valuable than future returns
- "a bird in the hand is worth two in the bush"
- From economic theory: Net Present Value
- In our context that is usually implemented by discounting future rewards
- Our additive rewards for a sequence of states

$$
U\left(\left[s_{0}, s_{1}, s_{2}, \ldots, s_{n}\right]\right)=R\left(s_{0}\right)+R\left(s_{1}\right)+R\left(s_{2}\right)+\ldots
$$

becomes

$$
U\left(\left[s_{0}, s_{1}, s_{2}, \ldots, s_{n}\right]\right)=R\left(s_{0}\right)+\gamma R\left(s_{1}\right)+\gamma^{2} R\left(s_{2}\right)+\ldots
$$

- For a constant discount rate γ, this is equivalent to paying an interest rate of $1 / \gamma-1$

Eternal agents

- This acquires especial importance in the context of eternal agents
- Some environments have no terminal states
- Some agents don't want to die!
- If two summations are infinitely long, it becomes difficult to compare them meaningfully without discounting
- Quite likely they both grow indefinitely
- But with discounting they will be bounded
- Discounting also appeals intuitively to the idea that we cannot look too far ahead
- cf. limited horizons in game-playing
- A smaller value of y implies a shorter horizon

[^0]: Figure 17.7 The policy iteration algorithm for calculating an optimal policy.

