
QMDP-Net: Deep Learning for Planning under
Partial Observability

Peter Karkus1,2 David Hsu1,2 Wee Sun Lee2

1NUS Graduate School for Integrative Sciences and Engineering
2School of Computing

National University of Singapore
{karkus, dyhsu, leews}@comp.nus.edu.sg

Abstract

This paper introduces the QMDP-net, a neural network architecture for planning under
partial observability. The QMDP-net combines the strengths of model-free learning and
model-based planning. It is a recurrent policy network, but it represents a policy for a
parameterized set of tasks by connecting a model with a planning algorithm that solves the
model, thus embedding the solution structure of planning in a network learning architecture.
The QMDP-net is fully differentiable and allows for end-to-end training. We train a QMDP-
net on different tasks so that it can generalize to new ones in the parameterized task set
and “transfer” to other similar tasks beyond the set. In preliminary experiments, QMDP-net
showed strong performance on several robotic tasks in simulation. Interestingly, while
QMDP-net encodes the QMDP algorithm, it sometimes outperforms the QMDP algorithm
in the experiments, as a result of end-to-end learning.

1 Introduction

Decision-making under uncertainty is of fundamental importance, but it is computationally hard,
especially under partial observability [24]. In a partially observable world, the agent cannot determine
the state exactly based on the current observation; to plan optimal actions, it must integrate information
over the past history of actions and observations. See Fig. 1 for an example. In the model-based
approach, we may formulate the problem as a partially observable Markov decision process (POMDP).
Solving POMDPs exactly is computationally intractable in the worst case [24]. Approximate POMDP
algorithms have made dramatic progress on solving large-scale POMDPs [17, 25, 29, 32, 37]; however,
manually constructing POMDP models or learning them from data remains difficult. In the model-free
approach, we directly search for an optimal solution within a policy class. If we do not restrict the
policy class, the difficulty is data and computational efficiency. We may choose a parameterized
policy class. The effectiveness of policy search is then constrained by this a priori choice.

Deep neural networks have brought unprecedented success in many domains [16, 21, 30] and
provide a distinct new approach to decision-making under uncertainty. The deep Q-network (DQN),
which consists of a convolutional neural network (CNN) together with a fully connected layer,
has successfully tackled many Atari games with complex visual input [21]. Replacing the post-
convolutional fully connected layer of DQN by a recurrent LSTM layer allows it to deal with partial
observaiblity [10]. However, compared with planning, this approach fails to exploit the underlying
sequential nature of decision-making.

We introduce QMDP-net, a neural network architecture for planning under partial observability.
QMDP-net combines the strengths of model-free learning and model-based planning. A QMDP-net
is a recurrent policy network, but it represents a policy by connecting a POMDP model with an
algorithm that solves the model, thus embedding the solution structure of planning in a network

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

ar
X

iv
:1

70
3.

06
69

2v
3

 [
cs

.A
I]

 3
 N

ov
 2

01
7

(a) (b) (c) (d)

Fig. 1: A robot learning to navigate in partially observable grid worlds. (a) The robot has a map. It
has a belief over the initial state, but does not know the exact initial state. (b) Local observations
are ambiguous and are insufficient to determine the exact state. (c, d) A policy trained on expert
demonstrations in a set of randomly generated environments generalizes to a new environment. It
also “transfers” to a much larger real-life environment, represented as a LIDAR map [12].

learning architecture. Specifically, our network uses QMDP [18], a simple, but fast approximate
POMDP algorithm, though other more sophisticated POMDP algorithms could be used as well.

A QMDP-net consists of two main network modules (Fig. 2). One represents a Bayesian filter, which
integrates the history of an agent’s actions and observations into a belief, i.e. a probabilistic estimate
of the agent’s state. The other represents the QMDP algorithm, which chooses the action given the
current belief. Both modules are differentiable, allowing the entire network to be trained end-to-end.

We train a QMDP-net on expert demonstrations in a set of randomly generated environments. The
trained policy generalizes to new environments and also “transfers” to more complex environments
(Fig. 1c–d). Preliminary experiments show that QMDP-net outperformed state-of-the-art network
architectures on several robotic tasks in simulation. It successfully solved difficult POMDPs that
require reasoning over many time steps, such as the well-known Hallway2 domain [18]. Interestingly,
while QMDP-net encodes the QMDP algorithm, it sometimes outperformed the QMDP algorithm in
our experiments, as a result of end-to-end learning.

2 Background

2.1 Planning under Uncertainty

A POMDP is formally defined as a tuple (S,A,O, T, Z,R), where S, A and O are the state, action,
and observation space, respectively. The state-transition function T (s, a, s′) = P (s′|s, a) defines the
probability of the agent being in state s′ after taking action a in state s. The observation function
Z(s, a, o) = p(o|s, a) defines the probability of receiving observation o after taking action a in
state s. The reward function R(s, a) defines the immediate reward for taking action a in state s.

In a partially observable world, the agent does not know its exact state. It maintains a belief, which is
a probability distribution over S. The agent starts with an initial belief b0 and updates the belief bt at
each time step t with a Bayesian filter:

bt(s
′) = τ(bt−1, at, ot) = ηO(s′, at, ot)

∑
s∈S T (s, at, s

′)bt−1(s), (1)

where η is a normalizing constant. The belief bt recursively integrates information from the entire
past history (a1, o1, a2, o2, . . . , at, ot) for decision making. POMDP planning seeks a policy π that
maximizes the value, i.e., the expected total discounted reward:

Vπ(b0) = E
(∑∞

t=0 γ
tR(st, at+1)

∣∣ b0, π), (2)

where st is the state at time t, at+1 = π(bt) is the action that the policy π chooses at time t, and
γ ∈ (0, 1) is a discount factor.

2.2 Related Work

To learn policies for decision making in partially observable domains, one approach is to learn models
[6, 19, 26] and solve the models through planning. An alternative is to learn policies directly [2, 5].
Model learning is usually not end-to-end. While policy learning can be end-to-end, it does not exploit
model information for effective generalization. Our proposed approach combines model-based and

2

model-free learning by embedding a model and a planning algorithm in a recurrent neural network
(RNN) that represents a policy and then training the network end-to-end.

RNNs have been used earlier for learning in partially observable domains [4, 10, 11]. In particular,
Hausknecht and Stone extended DQN [21], a convolutional neural network (CNN), by replacing
its post-convolutional fully connected layer with a recurrent LSTM layer [10]. Similarly, Mirowski
et al. [20] considered learning to navigate in partially observable 3-D mazes. The learned policy
generalizes over different goals, but in a fixed environment. Instead of using the generic LSTM,
our approach embeds algorithmic structure specific to sequential decision making in the network
architecture and aims to learn a policy that generalizes to new environments.

The idea of embedding specific computation structures in the neural network architecture has been
gaining attention recently. Tamar et al. implemented value iteration in a neural network, called
Value Iteration Network (VIN), to solve Markov decision processes (MDPs) in fully observable
domains, where an agent knows its exact state and does not require filtering [34]. Okada et al.
addressed a related problem of path integral optimal control, which allows for continuous states
and actions [23]. Neither addresses the issue of partial observability, which drastically increases
the computational complexity of decision making [24]. Haarnoja et al. [9] and Jonschkowski and
Brock [15] developed end-to-end trainable Bayesian filters for probabilistic state estimation. Silver
et al. introduced Predictron for value estimation in Markov reward processes [31]. They do not
deal with decision making or planning. Both Shankar et al. [28] and Gupta et al. [8] addressed
planning under partial observability. The former focuses on learning a model rather than a policy.
The learned model is trained on a fixed environment and does not generalize to new ones. The
latter proposes a network learning approach to robot navigation in an unknown environment, with a
focus on mapping. Its network architecture contains a hierarchical extension of VIN for planning
and thus does not deal with partial observability during planning. The QMDP-net extends the prior
work on network architectures for MDP planning and for Bayesian filtering. It imposes the POMDP
model and computation structure priors on the entire network architecture for planning under partial
observability.

3 Overview

We want to learn a policy that enables an agent to act effectively in a diverse set of partially
observable stochastic environments. Consider, for example, the robot navigation domain in Fig. 1.
The environments may correspond to different buildings. The robot agent does not observe its own
location directly, but estimates it based on noisy readings from a laser range finder. It has access
to building maps, but does not have models of its own dynamics and sensors. While the buildings
may differ significantly in their layouts, the underlying reasoning required for effective navigation is
similar in all buildings. After training the robot in a few buildings, we want to place the robot in a
new building and have it navigate effectively to a specified goal.

Formally, the agent learns a policy for a parameterized set of tasks in partially observable stochastic
environments: WΘ = {W (θ) | θ ∈ Θ}, where Θ is the set of all parameter values. The parameter
value θ captures a wide variety of task characteristics that vary within the set, including environments,
goals, and agents. In our robot navigation example, θ encodes a map of the environment, a goal,
and a belief over the robot’s initial state. We assume that all tasks inWΘ share the same state space,
action space, and observation space. The agent does not have prior models of its own dynamics,
sensors, or task objectives. After training on tasks for some subset of values in Θ, the agent learns a
policy that solves W (θ) for any given θ ∈ Θ.

A key issue is a general representation of a policy forWΘ, without knowing the specifics ofWΘ or its
parametrization. We introduce the QMDP-net, a recurrent policy network. A QMDP-net represents a
policy by connecting a parameterized POMDP model with an approximate POMDP algorithm and
embedding both in a single, differentiable neural network. Embedding the model allows the policy
to generalize overWΘ effectively. Embedding the algorithm allows us to train the entire network
end-to-end and learn a model that compensates for the limitations of the approximate algorithm.

Let M(θ)=(S,A,O, fT (·|θ), fZ(·|θ), fR(·|θ)) be the embedded POMDP model, where S,A and
O are the shared state space, action space, observation space designed manually for all tasks
in WΘ and fT (·|·), fZ(·|·), fR(·|·) are the state-transition, observation, and reward functions to
be learned from data. It may appear that a perfect answer to our learning problem would have

3

(a)

Policy

(b)

QMDP
planner

Bayesian
filter

(c)

QMDP
planner

QMDP
planner

QMDP
planner

Bayesian
filter

Bayesian
filter

Bayesian
filter

Fig. 2: QMDP-net architecture. (a) A policy maps a history of actions and observations to a new
action. (b) A QMDP-net is an RNN that imposes structure priors for sequential decision making
under partial observability. It embeds a Bayesian filter and the QMDP algorithm in the network. The
hidden state of the RNN encodes the belief for POMDP planning. (c) A QMDP-net unfolded in time.

fT (·|θ), fZ(·|θ), and fR(·|θ) represent the “true” underlying models of dynamics, observation, and
reward for the task W (θ). This is true only if the embedded POMDP algorithm is exact, but not
true in general. The agent may learn an alternative model to mitigate an approximate algorithm’s
limitations and obtain an overall better policy. In this sense, while QMDP-net embeds a POMDP
model in the network architecture, it aims to learn a good policy rather than a “correct” model.

A QMDP-net consists of two modules (Fig. 2). One encodes a Bayesian filter, which performs
state estimation by integrating the past history of agent actions and observations into a belief. The
other encodes QMDP, a simple, but fast approximate POMDP planner [18]. QMDP chooses the
agent’s actions by solving the corresponding fully observable Markov decision process (MDP) and
performing one-step look-ahead search on the MDP values weighted by the belief.

We evaluate the proposed network architecture in an imitation learning setting. We train on a
set of expert trajectories with randomly chosen task parameter values in Θ and test with new
parameter values. An expert trajectory consist of a sequence of demonstrated actions and observations
(a1, o1, a2, o2, . . .) for some θ ∈ Θ. The agent does not access the ground-truth states or beliefs
along the trajectory during the training. We define loss as the cross entropy between predicted and
demonstrated action sequences and use RMSProp [35] for training. See Appendix C.7 for details. Our
implementation in Tensorflow [1] is available online at http://github.com/AdaCompNUS/qmdp-net.

4 QMDP-Net

We assume that all tasks in a parameterized setWΘ share the same underlying state space S, action
space A, and observation space O. We want to learn a QMDP-net policy forWΘ, conditioned on the
parameters θ ∈ Θ. A QMDP-net is a recurrent policy network. The inputs to a QMDP-net are the
action at ∈ A and the observation ot ∈ O at time step t, as well as the task parameter θ ∈ Θ. The
output is the action at+1 for time step t+ 1.

A QMDP-net encodes a parameterized POMDP model M(θ)=(S,A,O, T =fT (·|θ), Z=
fZ(·|θ), R=fR(·|θ)) and the QMDP algorithm, which selects actions by solving the model approxi-
mately. We choose S, A, and O of M(θ) manually, based on prior knowledge onWΘ, specifically,
prior knowledge on S, A, and O. In general, S 6= S, A 6= A, and O 6= O. The model states,
actions, and observations may be abstractions of their real-world counterparts in the task. In our robot
navigation example (Fig. 1), while the robot moves in a continuous space, we choose S to be a grid
of finite size. We can do the same for A and O, in order to reduce representational and computational
complexity. The transition function T , observation function Z, and reward function R of M(θ) are
conditioned on θ, and are learned from data through end-to-end training. In this work, we assume
that T is the same for all tasks inWΘ to simplify the network architecture. In other words, T does
not depend on θ.

End-to-end training is feasible, because a QMDP-net encodes both a model and the associated
algorithm in a single, fully differentiable neural network. The main idea for embedding the algorithm
in a neural network is to represent linear operations, such as matrix multiplication and summation, by
convolutional layers and represent maximum operations by max-pooling layers. Below we provide
some details on the QMDP-net’s architecture, which consists of two modules, a filter and a planner.

4

http://github.com/AdaCompNUS/qmdp-net

(a) Bayesian filter module (b) QMDP planner module

Fig. 3: A QMDP-net consists of two modules. (a) The Bayesian filter module incorporates the
current action at and observation ot into the belief. (b) The QMDP planner module selects the action
according to the current belief bt.

Filter module. The filter module (Fig. 3a) implements a Bayesian filter. It maps from a belief,
action, and observation to a next belief, bt+1 = f(bt|at, ot). The belief is updated in two steps. The
first accounts for actions, the second for observations:

b′t(s) =
∑
s′∈S T (s, at, s

′)bt(s
′), (3)

bt+1(s) = ηZ(s, ot)b
′
t(s), (4)

where ot ∈ O is the observation received after taking action at ∈ A and η is a normalization factor.

We implement the Bayesian filter by transforming Eq. (3) and Eq. (4) to layers of a neural network.
For ease of discussion consider our N×N grid navigation task (Fig. 1a–c). The agent does not know
its own state and only observes neighboring cells. It has access to the task parameter θ that encodes
the obstacles, goal, and a belief over initial states. Given the task, we choose M(θ) to have a N×N
state space. The belief, bt(s), is now an N×N tensor.

Eq. (3) is implemented as a convolutional layer with |A| convolutional filters. We denote the
convolutional layer by fT . The kernel weights of fT encode the transition function T in M(θ). The
output of the convolutional layer, b′t(s, a), is a N×N×|A| tensor.

b′t(s, a) encodes the updated belief after taking each of the actions, a ∈ A. We need to select the
belief corresponding to the last action taken by the agent, at. We can directly index b′t(s, a) by at if
A = A. In general A 6= A, so we cannot use simple indexing. Instead, we will use “soft indexing”.
First we encode actions in A to actions in A through a learned function fA. fA maps from at to
an indexing vector wat , a distribution over actions in A. We then weight b′t(s, a) by wat along the
appropriate dimension, i.e.

b′t(s) =
∑
a∈A b

′
t(s, a)wat . (5)

Eq. (4) incorporates observations through an observation modelZ(s, o). NowZ(s, o) is aN×N×|O|
tensor that represents the probability of receiving observation o ∈ O in state s ∈ S. In our grid
navigation task observations depend on the obstacle locations. We condition Z on the task parameter,
Z(s, o) = fZ(s, o|θ) for θ ∈ Θ. The function fZ is a neural network, mapping from θ to Z(s, o). In
this paper fZ is a CNN.

Z(s, o) encodes observation probabilities for each of the observations, o ∈ O. We need the ob-
servation probabilities for the last observation ot. In general O 6= O and we cannot index Z(s, o)
directly. Instead, we will use soft indexing again. We encode observations in O to observations in O
through fO. fO is a function mapping from ot to an indexing vector, wot , a distribution over O. We
then weight Z(s, o) by wot , i.e.

Z(s) =
∑
o∈O Z(s, o)wot . (6)

Finally, we obtain the updated belief, bt+1(s), by multiplying b′t(s) and Z(s) element-wise, and
normalizing over states. In our setting the initial belief for the task W (θ) is encoded in θ. We
initialize the belief in QMDP-net through an additional encoding function, b0 = fB(θ).

5

Planner module. The QMDP planner (Fig. 3b) performs value iteration at its core. Q values are
computed by iteratively applying Bellman updates,

Qk+1(s, a) = R(s, a) + γ
∑
s′∈S T (s, a, s′)Vk(s′), (7)

Vk(s) = maxaQk(s, a). (8)

Actions are then selected by weighting the Q values with the belief.

We can implement value iteration using convolutional and max pooling layers [28, 34]. In our grid
navigation task Q(s, a) is a N×N×|A| tensor. Eq. (8) is expressed by a max pooling layer, where
Qk(s, a) is the input and Vk(s) is the output. Eq. (7) is a N×N convolution with |A| convolutional
filters, followed by an addition operation withR(s, a), the reward tensor. We denote the convolutional
layer by f ′T . The kernel weights of f ′T encode the transition function T , similarly to fT in the filter.
Rewards for a navigation task depend on the goal and obstacles. We condition rewards on the task
parameter, R(s, a) = fR(s, a|θ). fR maps from θ to R(s, a). In this paper fR is a CNN.

We implement K iterations of Bellman updates by stacking the layers representing Eq. (7) and Eq. (8)
K times with tied weights. After K iterations we get QK(s, a), the approximate Q values for each
state-action pair. We weight the Q values by the belief to obtain action values,

q(a) =
∑
s∈S QK(s, a)bt(s). (9)

Finally, we choose the output action through a low-level policy function, fπ, mapping from q(a) to
the action output, at+1.

QMDP-net naturally extends to higher dimensional discrete state spaces (e.g. our maze navigation
task) where n-dimensional convolutions can be used [14]. While M(θ) is restricted to a discrete
space, we can handle continuous tasksWΘ by simultaneously learning a discrete M(θ) for planning,
and fA, fO, fB, fπ to map between states, actions and observations inWΘ and M(θ).

5 Experiments

The main objective of the experiments is to understand the benefits of structure priors on learning
neural-network policies. We create several alternative network architectures by gradually relaxing
the structure priors and evaluate the architectures on simulated robot navigation and manipulation
tasks. While these tasks are simpler than, for example, Atari games, in terms of visual perception,
they are in fact very challenging, because of the sophisticated long-term reasoning required to handle
partial observability and distant future rewards. Since the exact state of the robot is unknown, a
successful policy must reason over many steps to gather information and improve state estimation
through partial and noisy observations. It also must reason about the trade-off between the cost of
information gathering and the reward in the distance future.

5.1 Experimental Setup

We compare the QMDP-net with a number of related alternative architectures. Two are QMDP-net
variants. Untied QMDP-net relaxes the constraints on the planning module by untying the weights
representing the state-transition function over the different CNN layers. LSTM QMDP-net replaces
the filter module with a generic LSTM module. The other two architectures do not embed POMDP
structure priors at all. CNN+LSTM is a state-of-the-art deep CNN connected to an LSTM. It is similar
to the DRQN architecture proposed for reinforcement learning under partially observability [10].
RNN is a basic recurrent neural network with a single fully-connected hidden layer. RNN contains no
structure specific to planning under partial observability.

Each experimental domain contains a parameterized set of tasksWΘ. The parameters θ encode an
environment, a goal, and a belief over the robot’s initial state. To train a policy forWΘ, we generate
random environments, goals, and initial beliefs. We construct ground-truth POMDP models for the
generated data and apply the QMDP algorithm. If the QMDP algorithm successfully reaches the
goal, we then retain the resulting sequence of action and observations (a1, o1, a2, o2, . . .) as an expert
trajectory, together with the corresponding environment, goal, and initial belief. It is important to note
that the ground-truth POMDPs are used only for generating expert trajectories and not for learning
the QMDP-net.

6

For fair comparison, we train all networks using the same set of expert trajectories in each domain. We
perform basic search over training parameters, the number of layers, and the number of hidden units
for each network architecture. Below we briefly describe the experimental domains. See Appendix C
for implementation details.

Grid-world navigation. A robot navigates in an unknown building given a floor map and a goal.
The robot is uncertain of its own location. It is equipped with a LIDAR that detects obstacles in its
direct neighborhood. The world is uncertain: the robot may fail to execute desired actions, possibly
because of wheel slippage, and the LIDAR may produce false readings. We implemented a simplified
version of this task in a discrete n×n grid world (Fig. 1c). The task parameter θ is represented as
an n×n image with three channels. The first channel encodes the obstacles in the environment, the
second channel encodes the goal, and the last channel encodes the belief over the robot’s initial state.
The robot’s state represents its position in the grid. It has five actions: moving in each of the four
canonical directions or staying put. The LIDAR observations are compressed into four binary values
corresponding to obstacles in the four neighboring cells. We consider both a deterministic and a
stochastic variant of the domain. The stochastic variant adds action and observation uncertainties.
The robot fails to execute the specified move action and stays in place with probability 0.2. The
observations are faulty with probability 0.1 independently in each direction. We trained a policy
using expert trajectories from 10, 000 random environments, 5 trajectories from each environment.
We then tested on a separate set of 500 random environments.

Fig. 4: Highly ambiguous observations in
a maze. The four observations (in red) are
the same, despite that the robot states are
all different.

Maze navigation. A differential-drive robot navigates
in a maze with the help of a map, but it does not know its
pose (Fig. 1d). This domain is similar to the grid-world
navigation, but it is significant more challenging. The
robot’s state contains both its position and orientation.
The robot cannot move freely because of kinematic con-
straints. It has four actions: move forward, turn left, turn
right and stay put. The observations are relative to the
robot’s current orientation, and the increased ambiguity
makes it more difficult to localize the robot, especially
when the initial state is highly uncertain. Finally, suc-
cessful trajectories in mazes are typically much longer
than those in randomly-generated grid worlds. Again
we trained on expert trajectories in 10, 000 randomly
generated mazes and tested them in 500 new ones.

(a) (b)

Fig. 5: Object grasping using touch sens-
ing. (a) An example [3]. (b) Simplified
2-D object grasping. Objects from the
training set (top) and the test set (bottom).

2-D object grasping. A robot gripper picks up novel
objects from a table using a two-finger hand with noisy
touch sensors at the finger tips. The gripper uses the
fingers to perform compliant motions while maintaining
contact with the object or to grasp the object. It knows the
shape of the object to be grasped, maybe from an object
database. However, it does not know its own pose relative
to the object and relies on the touch sensors to localize
itself. We implemented a simplified 2-D variant of this
task, modeled as a POMDP [13]. The task parameter θ
is an image with three channels encoding the object shape, the grasp point, and a belief over the
gripper’s initial pose. The gripper has four actions, each moving in a canonical direction unless it
touches the object or the environment boundary. Each finger has 3 binary touch sensors at the tip,
resulting in 64 distinct observations. We trained on expert demonstration on 20 different objects with
500 randomly sampled poses for each object. We then tested on 10 previously unseen objects in
random poses.

5.2 Choosing QMDP-Net Components for a Task

Given a new task WΘ, we need to choose an appropriate neural network representation for
M(θ). More specifically, we need to choose S,A and O, and a representation for the functions
fR, fT , f

′
T , fZ , fO, fA, fB, fπ. This provides an opportunity to incorporate domain knowledge in a

principled way. For example, ifWΘ has a local and spatially invariant connectivity structure, we can
choose convolutions with small kernels to represent fT , fR and fZ .

7

In our experiments we use S=N×N for N×N grid navigation, and S=N×N×4 for N×N maze
navigation where the robot has 4 possible orientations. We use |A| = |A| and |O| = |O| for all tasks
except for the object grasping task, where |O| = 64 and |O| = 16. We represent fT , fR and fZ by
CNN components with 3×3 and 5×5 kernels depending on the task. We enforce that fT and fZ
are proper probability distributions by using softmax and sigmoid activations on the convolutional
kernels, respectively. Finally, fO is a small fully connected component, fA is a one-hot encoding
function, fπ is a single softmax layer, and fB is the identity function.

We can adjust the amount of planning in a QMDP-net by setting K. A large K allows propagating
information to more distant states without affecting the number of parameters to learn. However, it
results in deeper networks that are computationally expensive to evaluate and more difficult to train.
We used K = 20 . . . 116 depending on the problem size. We were able to transfer policies to larger
environments by increasing K up to 450 when executing the policy.

In our experiments the representation of the task parameter θ is isomorphic to the chosen state
space S. While the architecture is not restricted to this setting, we rely on it to represent fT , fZ , fR by
convolutions with small kernels. Experiments with a more general class of problems is an interesting
direction for future work.

5.3 Results and Discussion

The main results are reported in Table 1. Some additional results are reported in Appendix A. For
each domain, we report the task success rate and the average number of time steps for task completion.
Comparing the completion time is meaningful only when the success rates are similar.

QMDP-net successfully learns policies that generalize to new environments. When evaluated
on new environments, the QMDP-net has higher success rate and faster completion time than the
alternatives in nearly all domains. To understand better the performance difference, we specifically
compared the architectures in a fixed environment for navigation. Here only the initial state and the
goal vary across the task instances, while the environment remains the same. See the results in the
last row of Table 1. The QMDP-net and the alternatives have comparable performance. Even RNN
performs very well. Why? In a fixed environment, a network may learn the features of an optimal
policy directly, e.g., going straight towards the goal. In contrast, the QMDP-net learns a model for
planning, i.e., generating a near-optimal policy for a given arbitrary environment.

POMDP structure priors improve the performance of learning complex policies. Moving
across Table 1 from left to right, we gradually relax the POMDP structure priors on the network
architecture. As the structure priors weaken, so does the overall performance. However, strong priors
sometimes over-constrain the network and result in degraded performance. For example, we found
that tying the weights of fT in the filter and f ′T in the planner may lead to worse policies. While both
fT and f ′T represent the same underlying transition dynamics, using different weights allows each
to choose its own approximation and thus greater flexibility. We shed some light on this issue and
visualize the learned POMDP model in Appendix B.

QMDP-net learns “incorrect”, but useful models. Planning under partial observability is in-
tractable in general, and we must rely on approximation algorithms. A QMDP-net encodes both a
POMDP model and QMDP, an approximate POMDP algorithm that solves the model. We then train
the network end-to-end. This provides the opportunity to learn an “incorrect”, but useful model that
compensates the limitation of the approximation algorithm, in a way similar to reward shaping in
reinforcement learning [22]. Indeed, our results show that the QMDP-net achieves higher success
rate than QMDP in nearly all tasks. In particular, QMDP-net performs well on the well-known
Hallway2 domain, which is designed to expose the weakness of QMDP resulting from its myopic
planning horizon. The planning algorithm is the same for both the QMDP-net and QMDP, but the
QMDP-net learns a more effective model from expert demonstrations. This is true even though
QMDP generates the expert data for training. We note that the expert data contain only successful
QMDP demonstrations. When both successful and unsuccessful QMDP demonstrations were used
for training, the QMDP-net did not perform better than QMDP, as one would expect.

QMDP-net policies learned in small environments transfer directly to larger environments.
Learning a policy for large environments from scratch is often difficult. A more scalable approach

8

Table 1: Performance comparison of QMDP-net and alternative architectures for recurrent policy
networks. SR is the success rate in percentage. Time is the average number of time steps for task
completion. D-n and S-n denote deterministic and stochastic variants of a domain with environment
size n×n.

QMDP QMDP-net Untied LSTM CNN RNN
QMDP-net QMDP-net +LSTM

Domain SR Time SR Time SR Time SR Time SR Time SR Time

Grid D-10 99.8 8.8 99.6 8.2 98.6 8.3 84.4 12.8 90.0 13.4 87.8 13.4
Grid D-18 99.0 15.5 99.0 14.6 98.8 14.8 43.8 27.9 57.8 33.7 35.8 24.5
Grid D-30 97.6 24.6 98.6 25.0 98.8 23.9 22.2 51.1 19.4 45.2 16.4 39.3

Grid S-18 98.1 23.9 98.8 23.9 95.9 24.0 23.8 55.6 41.4 65.9 34.0 64.1

Maze D-29 63.2 54.1 98.0 56.5 95.4 62.5 9.8 57.2 9.2 41.4 9.8 47.0
Maze S-19 63.1 50.5 93.9 60.4 98.7 57.1 18.9 79.0 19.2 80.8 19.6 82.1

Hallway2 37.3 28.2 82.9 64.4 69.6 104.4 82.8 89.7 77.8 99.5 68.0 108.8

Grasp 98.3 14.6 99.6 18.2 98.9 20.4 91.4 26.4 92.8 22.1 94.1 25.7

Intel Lab 90.2 85.4 94.4 107.7 20.0 55.3 - - -
Freiburg 88.4 66.9 93.2 81.1 37.4 51.7 - - -

Fixed grid 98.8 17.4 98.6 17.6 99.8 17.0 97.0 19.7 98.4 19.9 98.0 19.8

would be to learn a policy in small environments and transfer it to large environments by repeating
the reasoning process. To transfer a learned QMDP-net policy, we simply expand its planning module
by adding more recurrent layers. Specifically, we trained a policy in randomly generated 30 × 30
grid worlds with K = 90. We then set K = 450 and applied the learned policy to several real-life
environments, including Intel Lab (100×101) and Freiburg (139×57), using their LIDAR maps
(Fig. 1c) from the Robotics Data Set Repository [12]. See the results for these two environments in
Table 1. Additional results with different K settings and other buildings are available in Appendix A.

6 Conclusion

A QMDP-net is a deep recurrent policy network that embeds POMDP structure priors for planning
under partial observability. While generic neural networks learn a direct mapping from inputs to
outputs, QMDP-net learns how to model and solve a planning task. The network is fully differentiable
and allows for end-to-end training.

Experiments on several simulated robotic tasks show that learned QMDP-net policies successfully
generalize to new environments and transfer to larger environments as well. The POMDP structure
priors and end-to-end training substantially improve the performance of learned policies. Interestingly,
while a QMDP-net encodes the QMDP algorithm for planning, learned QMDP-net policies sometimes
outperform QMDP.

There are many exciting directions for future exploration. First, a major limitation of our current
approach is the state space representation. The value iteration algorithm used in QMDP iterates
through the entire state space and is well known to suffer from the “curse of dimensionality”. To
alleviate this difficulty, the QMDP-net, through end-to-end training, may learn a much smaller
abstract state space representation for planning. One may also incorporate hierarchical planning [8].
Second, QMDP makes strong approximations in order to reduce computational complexity. We
want to explore the possibility of embedding more sophisticated POMDP algorithms in the network
architecture. While these algorithms provide stronger planning performance, their algorithmic
sophistication increases the difficulty of learning. Finally, we have so far restricted the work to
imitation learning. It would be exciting to extend it to reinforcement learning. Based on earlier
work [28, 34], this is indeed promising.

Acknowledgments We thank Leslie Kaelbling and Tomás Lozano-Pérez for insightful discussions that
helped to improve our understanding of the problem. The work is supported in part by Singapore Ministry of
Education AcRF grant MOE2016-T2-2-068 and National University of Singapore AcRF grant R-252-000-587-
112.

9

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL
http://tensorflow.org/.

[2] J. A. Bagnell, S. Kakade, A. Y. Ng, and J. G. Schneider. Policy search by dynamic programming. In
Advances in Neural Information Processing Systems, pages 831–838, 2003.

[3] H. Bai, D. Hsu, W. S. Lee, and V. A. Ngo. Monte carlo value iteration for continuous-state POMDPs. In
Algorithmic Foundations of Robotics IX, pages 175–191, 2010.

[4] B. Bakker, V. Zhumatiy, G. Gruener, and J. Schmidhuber. A robot that reinforcement-learns to identify and
memorize important previous observations. In International Conference on Intelligent Robots and Systems,
pages 430–435, 2003.

[5] J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intelligence
Research, 15:319–350, 2001.

[6] B. Boots, S. M. Siddiqi, and G. J. Gordon. Closing the learning-planning loop with predictive state
representations. The International Journal of Robotics Research, 30(7):954–966, 2011.

[7] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[8] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping and planning for visual
navigation. arXiv preprint arXiv:1702.03920, 2017.

[9] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel. Backprop kf: Learning discriminative deterministic state
estimators. In Advances in Neural Information Processing Systems, pages 4376–4384, 2016.

[10] M. J. Hausknecht and P. Stone. Deep recurrent Q-learning for partially observable MDPs. arXiv preprint,
2015. URL http://arxiv.org/abs/1507.06527.

[11] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

[12] A. Howard and N. Roy. The robotics data set repository (radish), 2003. URL http://radish.
sourceforge.net/.

[13] K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez. Grasping POMDPs. In International Conference on
Robotics and Automation, pages 4685–4692, 2007.

[14] S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neural networks for human action recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(1):221–231, 2013.

[15] R. Jonschkowski and O. Brock. End-to-end learnable histogram filters. In Workshop on Deep Learning
for Action and Interaction at NIPS, 2016. URL http://www.robotics.tu-berlin.de/fileadmin/
fg170/Publikationen_pdf/Jonschkowski-16-NIPS-WS.pdf.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems, pages 1097–1105, 2012.

[17] H. Kurniawati, D. Hsu, and W. S. Lee. Sarsop: Efficient point-based POMDP planning by approximating
optimally reachable belief spaces. In Robotics: Science and Systems, volume 2008, 2008.

[18] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable environ-
ments: Scaling up. In International Conference on Machine Learning, pages 362–370, 1995.

[19] M. L. Littman, R. S. Sutton, and S. Singh. Predictive representations of state. In Advances in Neural
Information Processing Systems, pages 1555–1562, 2002.

[20] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre,
K. Kavukcuoglu, et al. Learning to navigate in complex environments. arXiv preprint arXiv:1611.03673,
2016.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

10

http://tensorflow.org/
http://arxiv.org/abs/1507.06527
http://radish.sourceforge.net/
http://radish.sourceforge.net/
http://www.robotics.tu-berlin.de/fileadmin/fg170/Publikationen_pdf/Jonschkowski-16-NIPS-WS.pdf
http://www.robotics.tu-berlin.de/fileadmin/fg170/Publikationen_pdf/Jonschkowski-16-NIPS-WS.pdf

[22] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and
application to reward shaping. In International Conference on Machine Learning, pages 278–287, 1999.

[23] M. Okada, L. Rigazio, and T. Aoshima. Path integral networks: End-to-end differentiable optimal control.
arXiv preprint arXiv:1706.09597, 2017.

[24] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes. Mathematics of
Operations Research, 12(3):441–450, 1987.

[25] J. Pineau, G. J. Gordon, and S. Thrun. Applying metric-trees to belief-point POMDPs. In Advances in
Neural Information Processing Systems, page None, 2003.

[26] G. Shani, R. I. Brafman, and S. E. Shimony. Model-based online learning of POMDPs. In European
Conference on Machine Learning, pages 353–364, 2005.

[27] G. Shani, J. Pineau, and R. Kaplow. A survey of point-based POMDP solvers. Autonomous Agents and
Multi-agent Systems, 27(1):1–51, 2013.

[28] T. Shankar, S. K. Dwivedy, and P. Guha. Reinforcement learning via recurrent convolutional neural
networks. In International Conference on Pattern Recognition, pages 2592–2597, 2016.

[29] D. Silver and J. Veness. Monte-carlo planning in large POMDPs. In Advances in Neural Information
Processing Systems, pages 2164–2172, 2010.

[30] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

[31] D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley, G. Dulac-Arnold, D. Reichert,
N. Rabinowitz, A. Barreto, et al. The predictron: End-to-end learning and planning. arXiv preprint, 2016.
URL https://arxiv.org/abs/1612.08810.

[32] M. T. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs. Journal of
Artificial Intelligence Research, 24:195–220, 2005.

[33] C. Stachniss. Robotics 2D-laser dataset. URL http://www.ipb.uni-bonn.de/datasets/.

[34] A. Tamar, S. Levine, P. Abbeel, Y. Wu, and G. Thomas. Value iteration networks. In Advances in Neural
Information Processing Systems, pages 2146–2154, 2016.

[35] T. Tieleman and G. Hinton. Lecture 6.5 - rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for machine learning, pages 26–31, 2012.

[36] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo. Convolutional LSTM network:
A machine learning approach for precipitation nowcasting. In Advances in Neural Information Processing
Systems, pages 802–810, 2015.

[37] N. Ye, A. Somani, D. Hsu, and W. S. Lee. Despot: Online POMDP planning with regularization. Journal
of Artificial Intelligence Research, 58:231–266, 2017.

11

https://arxiv.org/abs/1612.08810
http://www.ipb.uni-bonn.de/datasets/

A Supplementary Experiments

A.1 Navigation on Large LIDAR Maps

We provide results on additional environments for the LIDAR map navigation task. LIDAR maps
are obtained from [33]. See Section C.5 for details. Intel corresponds to Intel Research Lab.
Freiburg corresponds to Freiburg, Building 079. Belgioioso corresponds to Belgioioso Castle. MIT
corresponds to the western wing of the MIT CSAIL building. We note the size of the grid size NxM
for each environment. A QMDP-net policy is trained on the 30x30-D grid navigation domain on
randomly generated environments using K = 90. We then execute the learned QMDP-net policy
with different K settings, i.e. we add convolutional layers to the planner that share the same kernel
weights. We report the task success rate and the average number of time steps for task completion.

Table 2: Additional results for navigation on large LIDAR maps.

QMDP QMDP-net QMDP-net QMDP-net Untied
K=450 K=180 K=90 QMDP-net

Domain SR Time SR Time SR Time SR Time SR Time

Intel 100×101 90.2 85.4 94.4 108.0 83.4 89.6 40.8 78.6 20.0 55.3
Freiburg 139×57 88.4 66.9 92.0 91.4 93.2 81.1 55.8 68.0 37.4 51.7
Belgioioso 151×35 95.8 63.9 95.4 71.8 90.6 62.0 60.0 54.3 41.0 47.7
MIT 41×83 94.4 42.6 91.4 53.8 96.0 48.5 86.2 45.4 66.6 41.4

In the conventional setting, when value iteration is executed on a fully known MDP, increasing
K improves the value function approximation and improves the policy in return for the increased
computation. In a QMDP-net increasingK has two effects on the overall planning quality. Estimation
accuracy of the latent values increases and reward information can propagate to more distant states.
On the other hand the learned latent model does not necessarily fit the true underlying model, and it
can be overfitted to the K setting during training. Therefore a too high K can degrade the overall
performance. We found that Ktest = 2Ktrain significantly improved success rates in all our test
cases. Further increasing Ktest = 5Ktrain was beneficial in the Intel and Belgioioso environments,
but it slightly decreased success rates for the Freiburg and MIT environments.

We compare QMDP-net to its untied variant, Untied QMDP-net. We cannot expand the layers of
Untied QMDP-net during execution. In consequence, the performance is poor. Note that the other
alternative architectures we considered are specific to the input size and thus they are not applicable.

A.2 Learning “Incorrect” but Useful Models

We demonstrate that an “incorrect” model can result in better policies when solved by the approximate
QMDP algorithm. We compute QMDP policies on a POMDP with modified reward values, then
evaluate the policies using the original rewards. We use the deterministic 29×29 maze navigation
task where QMDP did poorly. We attempt to shape rewards manually. Our motivation is to break
symmetry in the model, and to implicitly encourage information gathering and compensate for the
one-step look-ahead approximation in QMDP. Modified 1. We increase the cost for the stay actions
to 20 times of its original value. Modified 2. We increase the cost for the stay action to 50 times of
its original value, and the cost for the turn right action to 10 times of its original value.

Table 3: QMDP policies computed on an “incorrect” model and evaluated on the “correct” model.

Original
Variant SR Time reward

Original 63.2 54.1 1.09
Modified 1 65.0 58.1 1.71
Modified 2 93.0 71.4 4.96

Why does the “correct” model result in poor policies when solved by QMDP? At a given point the Q
value for a set of possible states may be high for the turn left action and low for the turn right action;

12

while for another set of states it may be the opposite way around. In expectation, both next states
have lower value than the current one, thus the policy chooses the stay action, the robot does not
gather information and it is stuck in one place. Results demonstrate that planning on an “incorrect”
model may improve the performance on the “correct” model.

B Visualizing the Learned Model

B.1 Value Function

We plot the value function predicted by a QMDP-net for the 18× 18 stochastic grid navigation task.
We used K = 54 iterations in the QMDP-net. As one would expect, states close to the goal have
high values.

Fig. 6: Map of a test environment and the corresponding learned value function VK .

B.2 Belief Propagation

We plot the execution of a learned QMDP-net policy and the internal belief propagation on the
18× 18 stochastic grid navigation task. The first row in Fig. 7 shows the environment including the
goal (red) and the unobserved pose of the robot (blue). The second row shows ground-truth beliefs
for reference. We do not access ground-truth beliefs during training except for the initial belief. The
third row shows beliefs predicted by a QMDP-net. The last row shows the difference between the
ground-truth and predicted beliefs.

Fig. 7: Policy execution and belief propagation in the 18× 18 stochastic grid navigation task.

13

The figure demonstrates that QMDP-net was able to learn a reasonable filter for state estimation in
a noisy environment. In the depicted example the initial belief is uniform over approximately half
of the state space (Step 0). Due to the highly uncertain initial belief and the observation noise the
robot stays in place for two steps (Step 1 and 2). After two steps the state estimation is still highly
uncertain, but it is mostly spread out right from the goal. Therefore, moving left is a reasonable
choice (Step 3). After an additional stay action (Step 4) the belief distribution is small enough and
the robot starts moving towards the goal (not shown).

B.3 State-Transition Function

We plot the learned and ground-truth state-transition functions. Columns of the table correspond to
actions. The first row shows the ground-truth transition function. The second row shows fT , the
learned state-transition function in the filter. The third row shows f ′T , the learned state-transition
function in the planner.

Fig. 8: Learned transition function T in the 18× 18 stochastic grid navigation task.

While both fT and f ′T represent the same underlying transition dynamics, the learned transition
probabilities are different in the filter and planner. Different weights allows each module to choose its
own approximation and thus provides greater flexibility. The actions in the model a ∈ A are learned
abstractions of the agent’s actions a ∈ A. Indeed, in the planner the learned transition probabilities
for action ai ∈ A do not match the transition probabilities of ai ∈ A.

B.4 Reward Function

Next plot the learned reward function R for each action a ∈ A.

Fig. 9: Learned reward function R in the 18× 18 stochastic grid navigation domain.

While the learned rewards do not directly correspond to rewards in the underlying task, they are
reasonable: obstacles are assigned negative rewards and the goal is assigned a positive reward. Note
that learned reward values correspond to the reward after taking an action, therefore they should be
interpreted together with the corresponding transition probabilities (third row of Fig. 8).

14

C Implementation Details

C.1 Grid-World Navigation

We implement the grid navigation task in randomly generated discrete N×N grids where each cell
has p=0.25 probability of being an obstacle. The robot has 5 actions: move in the four canonical
directions and stay put. Observations are four binary values corresponding to obstacles in the four
neighboring cells. We consider a deterministic variant (denoted by -D) and a stochastic variant
(denoted by -S). In the stochastic variant the robot fails to execute each action with probability
Pt=0.2, in which case it stays in place. The observations are faulty with probability Po=0.1
independently in each direction. Since we receive observations from 4 directions, the probability of
receiving the correct observation vector is only 0.94 = 0.656. The task parameter, θ, is an N×N×3
image that encodes information about the environment. The first channel encodes obstacles, 1 for
obstacles, 0 for free space. The second channel encodes the goal, 1 for the goal, 0 otherwise. The third
channel encodes the initial belief over robot states, each pixel value corresponds to the probability of
the robot being in the corresponding state.

We construct a ground-truth POMDP model to obtain expert trajectories for training. It is important
to note that the learning agent has no access to the ground-truth POMDP models. In the ground-truth
model the robot receives a reward of −0.1 for each step, +20 for reaching the goal, and −10 for
bumping into an obstacle. We use QMDP to solve the POMDP model, and execute the QMDP
policy to obtain expert trajectories. We use 10, 000 random grids for training. Initial and goal states
are sampled from the free space uniformly. We exclude samples where there is no feasible path.
The initial belief is uniform over a random fraction of the free space which includes the underlying
initial state. More specifically, the number of non-zero values in the initial-belief are sampled from
{1, 2, . . . Nf/2, Nf} where Nf is the number of free cells in the grid. For each grid we generate 5
expert trajectories with different initial state, initial belief and goal. Note that we do not access the
true beliefs after the first step nor the underlying states along the trajectory.

We test on a set of 500 environments generated separately in equal conditions. We declare failure
after 10N steps without reaching the goal. Note that the expert policy is sub-optimal and it may fail
to reach the goal. We exclude these samples from the training set but include them in the test set.

We choose the structure of M(θ), the model in QMDP-net, to match the structure of the underlying
task. The transition function in the filter fT and the planner f ′T are both 3×3 convolutions. While
they both represent the same transition function we do not tie their weights. We apply a softmax
function on the kernel matrix so its values sum to one. The reward function, fR, is a CNN with
two convolutional layers. The first has 3×3 kernel, 150 filters, ReLU activation. The second has
1×1 kernel, 5 filters and linear activation. The observation model, fZ , is a similar two-layer CNN.
The first convolution has a 3×3 kernel, 150 filters, linear activation. The second has 1×1 kernel, 17
filters and linear activation. The action mapping, fA, is a one-hot encoding function. The observation
mapping, fO, is a fully connected network with one hidden layer with 17 units and tanh activation. It
has 17 output units and softmax activation. The low-level policy function, fπ, is a single softmax
layer. The state space mapping function, fB, is the identity function. Finally, we choose the number
of iterations in the planner module, K={30, 54, 90} for grids of size N={10, 18, 30} respectively.

The 3×3 convolutions in fT and fZ imply that T and O are spatially invariant and local. In the
underlying task the locality assumption holds but spatial invariance does not: transitions depend on
the arrangement of obstacles. Nevertheless, the additional flexibility in the model allows QMDP-net
to learn high-quality policies, e.g. by shaping the rewards and the observation function.

C.2 Maze Navigation

In the maze navigation task a differential drive robot has to navigate to a given goal. We generate
random mazes on N×N grids using Kruskal’s algorithm. The state space has 3 dimensions where
the third dimension represents 4 possible orientations of the robot. The goal configuration is invariant
to the orientation. The robot now has 4 actions: move forward, turn left, turn right and stay put. The
initial belief is chosen in a similar manner to the grid navigation case but in the 3-D space. The
observations are identical to grid navigation but they are relative to the robot’s orientation, which
significantly increases the difficulty of state estimation. The stochastic variant (denoted by -S) has

15

a motion and observation noise identical to the grid navigation. Training and test data is prepared
identically as well. We use K={76, 116} for mazes of size N={19, 29} respectively.

We use a model in QMDP-net with a 3-dimensional state space of size N×N×4 and an action space
with 4 actions. The components of the network are chosen identically to the previous case, except
that all CNN components operate on 3-D tensors of size N×N×4. While it would be possible to
use 3-D convolutions, we treat the third dimension as channels of a 2-D image instead, and use
conventional 2-D convolutions. If the output of the last convolutional layer is of size N×N×Nc
for the grid navigation task, it is of size N×N×4Nc for the maze navigation task. When necessary,
these tensors are transformed into a 4 dimensional form N×N×4×Nc and the max-pool or softmax
activation is computed along the last dimension.

C.3 Object Grasping

We consider a 2-D implementation of the grasping task based on the POMDP model proposed by
Hsiao et al. [13]. Hsiao et al. focused on the difficulty of planning with high uncertainty and solved
manually designed POMDPs for single objects. We phrase the problem as a learning task where we
have no access to a model and we do not know all objects in advance. In our setting the robot receives
an image of the target object and a feasible grasp point, but it does not know its pose relative to the
object. We aim to learn a policy on a set of object that generalizes to similar but unseen objects.

The object and the gripper are represented in a discrete grid. The workspace is a 14×14 grid, and
the gripper is a “U” shape in the grid. The gripper moves in the four canonical directions, unless it
reaches the boundaries of the workspace or it is touching the object. in which case it stays in place.
The gripper fails to move with probability 0.2. The gripper has two fingers with 3 touch sensors on
each finger. The touch sensors indicate contact with the object or reaching the limits of the workspace.
The sensors produce an incorrect reading with probability 0.1 independently for each sensor. In each
trial an object is placed on the bottom of the workspace at a random location. The initial gripper pose
is unknown; the belief over possible states is uniform over a random fraction of the upper half of the
workspace. The local observations, ot, are readings from the touch sensors. The task parameter θ is
an image with three channels. The first channel encodes the environment with an object; the second
channel encodes the position of the target grasping point; the third channel encodes the initial belief
over the gripper position.

We have 30 artificial objects of different sizes up to 6×6 grid cells. Each object has at least one cell
on its top that the gripper can grasp. For training we use 20 of the objects. We generate 500 expert
trajectories for each object in random configuration. We test the learned policies on 10 new objects
in 20 random configurations each. The expert trajectories are obtained by solving a ground-truth
POMDP model by the QMDP algorithm. In the ground-truth POMDP the robot receives a reward of
1 for reaching the grasp point and 0 for every other state.

In QMDP-net we choose a model with S = 14× 14, |A| = 4 and |O| = 16. Note that the underlying
task has |O| = 64 possible observations. The network components are chosen similarly to the grid
navigation task, but the first convolution kernel in fZ is increased to 5×5 to account for more distant
observations. We set the number of iterations K=20.

C.4 Hallway2

The Hallway2 navigation problem was proposed by Littman et al. [18] and has been used as a
benchmark problem for POMDP planning [27]. It was specifically designed to expose the weakness
of the QMDP algorithm resulting from its myopic planning horizon. While QMDP-net embeds
the QMDP algorithm, through end-to-end training QMDP-net was able to learn a model that is
significantly more effective given the QMDP algorithm.

Hallway2 is a particular instance of the maze problem that involves more complex dynamics and
high noise. For details we refer to the original problem definition [18]. We train a QMDP-net on
random 8×8 grids generated similarly to the grid navigation case, but using transitions that match the
Hallway2 POMDP model. We then execute the learned policy on a particularly difficult instance of
this problem that embeds the Hallway2 layout in a 8×8 grid. The initial state is uniform over the
full state space. In each trial the robot starts from a random underlying state. The trial is deemed
unsuccessful after 251 steps.

16

C.5 Navigation on a Large LIDAR Map

We obtain real-world building layouts using 2-D laser data from the Robotics Data Set Repository [12].
More specifically, we use SLAM maps preprocessed to gray-scale images available online [33]. We
downscale the raw images to NxM and classify each pixel to be free or an obstacle by simple
thresholding. The resulting maps are shown in Fig. 10. We execute policies in simulation where a
grid is defined by the preprocessed map. The simulation employs the same dynamics as the grid
navigation domain. The initial state and initial belief are chosen identically to the grid navigation
case.

Fig. 10: Preprocessed N×M maps. A, Intel Research Lab, 100×101. B, Freiburg, building 079,
139×57. C, Belgioioso Castle, 151×35. D, western wing of the MIT CSAIL building, 41×83.

A QMDP-net policy is trained on the 30x30-D grid navigation task on randomly generated environ-
ments. For training we set K = 90 in the QMDP-net. We then execute the learned policy on the
LIDAR maps. To account for the larger grid size we increase the number of iterations to K = 450
when executing the policy.

C.6 Architectures for Comparison

We compare QMDP-net with two of its variants where we remove some of the POMDP priors
embedded in the network (Untied QMDP-net, LSTM QMDP-net). We also compare with two generic
network architectures that do not embed structural priors for decision making (CNN+LSTM, RNN).
We also considered additional architectures for comparison, including networks with GRU [7] and
ConvLSTM [36] cells. ConvLSTM is a variant of LSTM where the fully connected layers are
replaced by convolutions. These architectures performed worse than CNN+LSTM for most of our
task.

Untied QMDP-net. We obtain Untied QMDP-net by untying the kernel weights in the convolu-
tional layers that implement value iteration in the planner module of QMDP-net. We also remove
the softmax activation on the kernel weights. This is equivalent to allowing a different transition
model at each iteration of value iteration, and allowing transition probabilities that do not sum to
one. In principle, Untied QMDP-net can represent the same policy as QMDP-net and it has some
additional flexibility. However, Untied QMDP-net has more parameters to learn as K increases. The
training difficulty increases with more parameters, especially on complex domains or when training
with small amount of data.

LSTM QMDP-net. In LSTM QMDP-net we replace the filter module of QMDP-net with a generic
LSTM network but keep the value iteration implementation in the planner. The output of the LSTM
component is a belief estimate which is input to the planner module of QMDP-net. We first process
the task parameter input θ, an image encoding the environment and goal, by a CNN. We separately
process the action at and observation ot input vectors by a two-layer fully connected component.
These processed inputs are concatenated into a single vector which is the input of the LSTM layer.
The size of the LSTM hidden state and output is chosen to match the number of states in the grid, e.g.
N2 for an N×N grid. We initialize the hidden state of the LSTM using the appropriate channel of
the input θ that encodes the initial belief.

17

CNN+LSTM. CNN+LSTM is a state-of-the-art deep convolutional network with LSTM cells.
It is similar in structure to DRQN [10], which was used for learning to play partially observable
Atari games in a reinforcement learning setting. Note that we train the networks in an imitation
learning setting using the same set of expert trajectories, and not using reinforcement learning, so
the comparison with QMDP-net is fair. The CNN+LSTM network has more structure to encode
a decision making policy compared to a vanilla RNN, and it is also more tailored to our input
representation. We process the image input, θ, by a CNN component and the vector input, at and ot,
by a fully connected network component. The output of the CNN and the fully connected component
are then combined into a single vector and fed to the LSTM layer.

RNN. The considered RNN architecture is a vanilla recurrent neural network with 512 hidden
units and tanh activation. At each step inputs are transformed into a single concatenated vector. The
outputs are obtained by a fully connected layer with softmax activation.

We performed hyperparameter search on the number of layers and hidden units, and adjusted learning
rate and batch size for all alternative networks. In particular, we ran trials for the deterministic grid
navigation task. For each architecture we chose the best parametrization found. We then used the
same parametrization for all tasks.

C.7 Training Technique

We train all networks, QMDP-net and alternatives, in an imitation learning setting. The loss is defined
as the cross-entropy between predicted and demonstrated actions along the expert trajectories. We do
not receive supervision on the underlying ground-truth POMDP models.

We train the networks with backpropagation through time on mini-batches of 100. The networks
are implemented in Tensorflow [1]. We use RMSProp optimizer [35] with 0.9 decay rate and 0
momentum setting. The learning rate was set to 1 × 10−3 for QMDP-net and 1 × 10−4 for the
alternative networks. We limit the number of backpropagation steps to 4 for QMDP-net and its untied
variant; and to 6 for the other alternatives, which gave slightly better results. We used a combination
of early stopping with patience and exponential learning rate decay of 0.9. In particular, we started
to decrease the learning rate if the prediction error did not decrease for 30 consecutive epochs on a
validation set, 10% of the training data. We performed 15 iterations of learning rate decay.

We perform multiple rounds of the training method described above. In our partially observable
domains predictions are increasingly difficult along a trajectory, as they require multiple steps of
filtering, i.e. integrating information from a long sequence of observations. Therefore, for the
first round of training we limit the number of steps along the expert trajectories, for training both
QMDP-net and its alternatives. After convergence we perform a second round of training on the full
length trajectories. Let Lr be the number of steps along the expert trajectories for training round
r. We used two training rounds with L1 = 4 and L2 = 100 for training QMDP-net and its untied
variant. For training the other alternative networks we used L1 = 6 and L2 = 100, which gave better
results.

We trained policies for the grid navigation task when the grid is fixed, only the initial state and goal
vary. In this variant we found that a low Lr setting degrades the final performance for the alternative
networks. We used a single training round with L1 = 100 for this task.

18

	1 Introduction
	2 Background
	2.1 Planning under Uncertainty
	2.2 Related Work

	3 Overview
	4 QMDP-Net
	5 Experiments
	5.1 Experimental Setup
	5.2 Choosing QMDP-Net Components for a Task
	5.3 Results and Discussion

	6 Conclusion
	A Supplementary Experiments
	A.1 Navigation on Large LIDAR Maps
	A.2 Learning ``Incorrect'' but Useful Models

	B Visualizing the Learned Model
	B.1 Value Function
	B.2 Belief Propagation
	B.3 State-Transition Function
	B.4 Reward Function

	C Implementation Details
	C.1 Grid-World Navigation
	C.2 Maze Navigation
	C.3 Object Grasping
	C.4 Hallway2
	C.5 Navigation on a Large LIDAR Map
	C.6 Architectures for Comparison
	C.7 Training Technique

