Pure Induction – Decision Trees

Constructing an Intensional Description from an Extensional One

Figure 18.4 FILES: figures/restaurant-stub.eps (Tue Nov 3 16:23:28 2009). Splitting the examples by testing on attributes. At each node we show the positive (light boxes) and negative (dark boxes) examples remaining. (a) Splitting on *Type* brings us no nearer to distinguishing between positive and negative examples. (b) Splitting on *Patrons* does a good job of separating positive and negative examples. After splitting on *Patrons*, *Hungry* is a fairly good second test.

Chapter 19

Figure 19.1FILES: figures/cbh.eps (Tue Nov 3 16:22:32 2009). (a) A consistent hypothesis. (b) Afalse negative. (c) The hypothesis is generalized. (d) A false positive. (e) The hypothesis is specialized.

 $\forall x \ C_2(x) \Rightarrow C_1(x)$

Version Space

Hypothesis space is hyperexponential.

Candidate elimination Example:

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Table of examples for EnjoySport

Possible hypotheses for EnjoySport:

$\langle ?, Cold, High, ?, ?, ? \rangle$	only on cold days with high humidity
, ?, ?, ?, ?, ?, ?)</th <th>the most general hypothesis - always</th>	the most general hypothesis - always
$\langle \varnothing, \varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$	the most specific hypothesis – never

General-to-specific ordering of hypotheses:

Each hypothesis corresponds to a subset of instances. h2 is more general than h1 and h3.

A version space for this task:

The version space is represented as S and G, and contains the 6 hypotheses that are consistent with all four training examples.

Let us construct this version space step by step from the four examples.

The initial version space is:

$$G_0 \leftarrow \{\langle ?, ?, ?, ?, ?, ? \rangle\}$$

$$S_0 \leftarrow \{\langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle\}$$

The examples are:

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Examples 1 and 2 are positive examples, and the specific boundary changes:

The third example is a negative example that changes G:

Notice that the new G hypotheses must also correctly classify the previous positive examples, so that [?, ?, Normal, ?, ?, ?] is not included in G.

Finally, the fourth training example is used, and produces:

The final version space:

Instance	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
A	Sunny	Warm	Normal	Strong	Cool	Change	?
В	Rainy	Cold	Normal	Light	Warm	Same	?
С	Sunny	Warm	Normal	Light	Warm	Same	?
D	Sunny	Cold	Normal	Strong	Warm	Same	?

Here are some new instances to classify. Some will require voting.

Knowledge in learning:

Figure 19.7 FILES: figures/simplify-proof2.eps (Tue Nov 3 16:23:44 2009). Proof trees for the simplification problem. The first tree shows the proof for the original problem instance, from which we can derive

Arithmetic Unknown(z) \Rightarrow Simplify $(1 \times (0 + z), z)$.

The second tree shows the proof for a problem instance with all constants replaced by variables, from which we can derive a variety of other rules.

What is means for an hypothesis to explain the classifications:

$Hypothesis \land Descriptions \models Classifications$

Explanation-based learning converts general knowledge into useful special routines.

Examples:

Physics https://webhome.phy.duke.edu/~rgb/Class/intro_physics_1/intro_physics_1.pdf

Algebra http://www.doe.virginia.gov/instruction/mathematics/resources/va_algebraic_properties.pdf

Background knowledge and the hypothesis explain the classifications of the examples:

 $Background \land Hypothesis \land Descriptions \models Classifications$